
 

 

Working Paper 2204 Appendix                          October 2023 
Research Department 
https://doi.org/10.24149/wp2204app 

Working papers from the Federal Reserve Bank of Dallas are preliminary drafts circulated for professional comment. 
The views in this paper are those of the authors and do not necessarily reflect the views of the Federal Reserve Bank 
of Dallas or the Federal Reserve System. Any errors or omissions are the responsibility of the authors. 

Online Appendix to Dynamic 
Identification Using System 
Projections on Instrumental 

Variables 
 

Daniel J. Lewis and Karel Mertens 
 
 

https://doi.org/10.24149/wp2204app


Dynamic Identi ication Using System 
Projections an Instrumental Variables

Daniel Lewis Karel Mertens

ONLINE APPENDIX

Contents

I Testing the Null Hypothesis of Weak Instruments 1
I.1 Weak IV Representation of the SP-IV Estimator . . . . . . . . . . 2
I.2 Definition of Weak Instruments . . . . . . . . . . . . . . . . . . . 4
I.3 Characterizing the Boundary of the Weak Instrument Set . . . . . 5
I.4 Null Hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
I.5 Test Statistic and Critical Values . . . . . . . . . . . . . . . . . . 6

II Additional Simulation Results 8
II.1 IRF Estimates in the Simulations . . . . . . . . . . . . . . . . . . 8
II.2 Simulation Results Using Three Instruments (Nz = 3) . . . . . . . 9
II.3 Simulation Results for Generalized SP-IV estimators . . . . . . . 10
II.4 Simulation Results for Alternative 2SLS Specifications . . . . . . 13

I Testing the Null Hypothesis of Weak Instruments

This section describes the weak instruments test in the SP-IV model discussed
in Section 2.2 of the main text. The test nests the popular bias-based test of
Stock and Yogo (2005) when H = 1. The development of the test is analogous to
that of the weak instruments test in Lewis and Mertens (2022), which extends the
Stock and Yogo (2005) test to be robust to autocorrelation and heteroskedasticity.
Mathematically, the extension of the Stock and Yogo (2005) test in Lewis and
Mertens (2022) closely resembles the extension required for SP-IV to allowH > 1.

We first establish some specific notation: ||U ||2 is the spectral norm of U (the
positive square root of the maximum eigenvalue of UU ′, also the `2-norm if U
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is a vector), Pn is the set of positive definite n × n matrices, On×m is the set of
n×m orthogonal real matrices U such that UU ′ = In, Kn,m denotes the n×m
commutation matrix such that Kn,m vec(U) = vec(U ′) where U ∈ Rn×m. We
also define the special matrix Rn,m = In ⊗ vec(Im). The dimension of Rn,m is
nm2×n. For U ∈ Rnm×nm, the (i, j)-th element of V = R′n,m(U⊗Im)Rn,m ∈ Rn×n

is Tr(Uij) where Uij ∈ Rm×m is (i, j)-th block of U and Tr(·) is the trace. For
U ∈ Rnm×m, the i-th element of V = R′n,m vec(U ′) ∈ Rn is equal to Tr(Ui) where
Ui ∈ Rm×m is the i-th row block of U . Note that R′n,mRn,m = mIN .

I.1 Weak IV Representation of the SP-IV Estimator

Using the more general notation for the restriction matrix R defined above, the
SP-IV estimator is

β̂ =
(
R′K,H(Y ⊥H PZ⊥Y ⊥′H ⊗ IH)RK,H

)−1
R′K,H vec(y⊥HPZ⊥Y ⊥′H ) ,(I.1)

where PZ⊥ = Z⊥′(Z⊥Z⊥′)−1Z⊥. As is standard in the literature, (see, e.g.,
Staiger and Stock (1997)), we assume identification but first-stage parameters
that are local-to-zero.

Assumption 4. ΘY = C/
√
T where C ∈ RHK×Nz is a fixed matrix and RK,H(CC ′⊗

IH)RK,H is of full rank.

This assumption implies that the instruments are weak under the null hypoth-
esis. The following replace Assumptions 2 and 3 to allow the characterization of
the weak instrument asymptotic distribution of β̂.

Assumption 5. The following limits hold as T →∞:

u⊥Hu
⊥′
H /T

p→ Σu⊥H
∈ PH ,(5.a)

u⊥Hv
⊥′
H /T

p→ Σu⊥Hv
⊥
H
∈ RH×HK ,

v⊥Hv
⊥′
H /T

p→ Σv⊥H
∈ PHK ,

T−
1
2

[
vec((Z⊥Z⊥′)−

1
2Z⊥w⊥′H )

vec((Z⊥Z⊥′)−
1
2Z⊥v⊥′H )

]
d→ N (0,W ⊗ INz) ,(5.b)

and Ŵ
p→W(5.c)

where W =

[
W1 W12

W′
12 W2

]
∈ P(K+1)H .
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w⊥H = y⊥H − (β′ ⊗ IH)ΘYQ
− 1

2Z⊥ are the reduced-form errors with covariance
matrix W1, v⊥H = Y ⊥H − ΘYQ

− 1
2Z⊥ are first-stage error terms with covariance

matrix W2, and W is the joint covariance of the reduced-form and first-stage
errors.

The SP-IV estimator can be rewritten as

β̂ =
(
R′K,H(sZY s

′
ZY ⊗ IH)RK,H

)−1
R′K,H vec(sZys

′
ZY ).(I.2)

where sZy = y⊥HZ
⊥′(Z⊥Z⊥′)−

1
2 and sZY = Y ⊥H Z

⊥′(Z⊥Z⊥′)−
1
2 . This alternative

expression reformulates β̂ in terms of random vectors with asymptotic distribu-
tions given in Assumption 5. Define the random variables η1 and η2 (H×Nz and
HK ×Nz respectively) as[

vec(η1)

vec(η2)

]
∼ N

((
0HNz

vec(C)

)
,S⊗ INz

)
(I.3)

where S ∈ P(K+1)H , partitioned as W with

S1 = W1 + (β′ ⊗ IH)W2(β ⊗ IH)− (β′ ⊗ IH)W′
12 −W12(β ⊗ IH),(I.4)

S12 = W12 − (β′ ⊗ IH)W2 , S2 = W2,

such that S⊗ INz is the asymptotic covariance of
T−

1
2

[
vec(u⊥HZ

⊥′(Z⊥Z⊥′)−
1
2 )′ vec(Y ⊥H Z

⊥′(Z⊥Z⊥′)−
1
2 )′
)′
. Proposition 6 then

characterizes the distribution of the random variable β∗ = β̂ − β.

Proposition 6. Under Assumptions 4 and 5, sZY
d→ η2 and sZy

d→ (β′⊗IH)η2 +

η1, and thus

β̂ − β d→ β∗ =
(
R′K,H(η2η

′
2 ⊗ IH)RK,H

)−1
R′K,H vec(η1η

′
2).

Proof. The results follow directly from the stated assumptions, the expression
for β̂ in (I.2), and the continuous mapping theorem.

Since β∗ converges to a quotient of quadratic forms in normal random vari-
ables, β̂ is not a consistent estimator of β. The asymptotic bias of the SP-IV
estimator is the expected value E[β∗]. Before introducing the weak instruments
set, we define the concentration matrix for the model.
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Definition 1. The concentration matrix is Λ = 1
Nz

Φ−
1
2RK,H(CC ′⊗IH)RK,HΦ−

1
2

where Φ = R′K,H(S2 ⊗ IH)RK,H .

I.2 Definition of Weak Instruments

We consider instruments weak when a weighted `2-norm of the asymptotic bias
E[β∗] is large relative to a worst-case benchmark.

Definition 2. The bias criterion is B = Tr(S1)−
1
2 ||E [β∗]′Φ

1
2 ||2.

Following Stock and Yogo (2005), the `2-norm in the bias criterion aggregates
the K elements of the bias through a quadratic loss function, such that B is
weakly positive and penalizes larger biases more heavily. The criterion applies a
weighting matrix, Φ, to put the elements of E [β∗] on a comparable scale. The
weighting matrix Φ effectively standardizes the regressors in the second stage so
that they have unit standard deviation and are orthogonal. The bias criterion
also scales by Tr(S1), which is the probability limit of T−1u⊥HPZ⊥u⊥′H . This scaling
expresses B as a ratio, relative to the same worst-case bias as in Montiel-Olea
and Pflueger (2013), and Lewis and Mertens (2022). The intuition for the worst-
case bias is given by the ad-hoc approximation of E[β∗] in terms of a ratio of
expectations as in Staiger and Stock (1997):

E[β∗] ≈ vec(S12)′RK,HΦ−
1
2

Tr(S1)
1
2

(IK + Λ)−1Φ−
1
2 Tr(S1)

1
2(I.5)

Using this approximation, the bias criterion in (2) reaches a maximum of unity
when the errors u⊥H are perfect linear combinations of the second-stage regressors,
v⊥HP

⊥
Z , such that the first term in (I.5) is a K × 1 unit vector, and when the

instruments are completely uninformative so the concentration matrix, Λ, is zero.

Definition 3. The weak instrument set is

(I.6) Bτ (W) = {C ∈ RN×K , β ∈ RN : B ≥ τ}.

The weak instrument set is the set of values for β and the first-stage pa-
rameters C such that bias B exceeds a tolerance level τ . This set depends on
W, which can be consistently estimated, but also on C, and the K unknown
parameters in β.
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I.3 Characterizing the Boundary of the Weak Instrument Set

Under Assumptions 4 & 5, the bias criterion in Definition 2 can be decomposed
as B = ||hρ||2, where

h = HE
[(
R′K,H(S(l + ψ)(l + ψ)′S ′ ⊗ IH)RK,H

)−1
R′K,H

(
S(l + ψ)ψ′S−1 ⊗ IH

)]
,

ρ =
(
Φ−

1
2 ⊗ IH2

)
vec (S12) /

√
Tr(S1) ,

l = S
− 1

2
2 C, ψ = S

− 1
2

2 (η2−C), vec(ψ) ∼ N (0, IKHNz), and S = ((Φ/H)−
1
2⊗IH)S

1
2
2 .

This decomposition is analogous to that of Lemma 1 in Lewis and Mertens (2022).
The matrix h is the expected value of a random matrix that is a function of ψ,
a matrix with i.i.d standard normal variables as elements. This expected value –
when it exists – also depends on location parameters C and on W2. The vector
ρ depends on W and β. In general, there is no tractable analytical expression
for the integral underlying the expectation in h, which is required to evaluate
the bias. Following Montiel-Olea and Pflueger (2013) and Lewis and Mertens
(2022), we adopt a Nagar (1959) approximation to h around ψ = 0, which we
denote by hn. The Nagar bias is defined as Bn = ||hnρ||2. Using the eigenvalue
decomposition Λ = QΛDΛQ

′
Λ, the Nagar approximation of h around ψ = 0 is

given by

hn = N−1
z QΛD

− 1
2

Λ M1(D−
1
2

Λ QΛ ⊗ L0 ⊗ IK)(IKH ⊗ (INz ⊗ L0)KNz ,HNzRH,Nz)M2

(I.7)

with L0 = HNz
− 1

2Q′ΛΛ−
1
2R′K,HNz(S vec(l)⊗ IHNz) ∈ OK×HNz , M1 = R′K,K

(
IK3 +

(KK,K ⊗ IK)
)
and M2 = RK,HR

′
K,H/(K + 1)− IKH2 .

Analogous to Lewis and Mertens (2022), we base our test on

Bn ≤ λ−1
minB(W) ,(I.8)

where λmin = mineval{Λ} and

B(W) = (Nz

√
H)−1sup

L0

{||M1(IK ⊗ L0 ⊗ IK)(IKH ⊗ (INz ⊗ L0)KNz ,HNzRH,Nz)M2Ψ||2} ,

(I.9)

Ψ =
(
SW

− 1
2

2 [W12 : W2]′ ⊗ IH)RK+1,H(R′K+1,H(W ⊗ IH)RK+1,H)−
1
2 .

(I.10)
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I.4 Null Hypothesis

Given a bias tolerance level τ , the test of the null hypothesis of weak instruments
is based on a test of whether the minimum eigenvalue of Λ is less than or equal
to a threshold value λ∗min(τ). More formally, the null and alternative hypotheses
for the test are

H0 : λmin ∈ H(W) vs. H1 : λmin 6∈ H(W),(I.11)

where H(W) = {λmin ∈ R+ : λmin ≤ λ∗min(τ)},

where λ∗min(τ) = B(W)/τ . The null hypothesis is that the minimum eigenvalue
of the concentration matrix is in the set of values for which the worst-case Nagar
bias is greater than the tolerance level τ . Under the alternative, the minimum
eigenvalue is not in that set of values.

I.5 Test Statistic and Critical Values

The following proposition presents our statistic to test the null hypothesis.

Proposition 7. Define the test statistic

g = N−1
z mineval{Φ̂−

1
2 (Y ⊥H PZ⊥Y ⊥′H )Φ̂−

1
2},

where Φ̂ = R′K,H(Ŵ2 ⊗ IH)RK,H . Then, under Assumptions 4 and 5,

g
d→ mineval{R′K,H(ζ ⊗ IK)RK,H/(HNz)},

where the KH × KH random matrix ζ = S(l + ψ)(l + ψ)′S ′ has a noncen-
tral Wishart distribution, ζ ∼ W(Nz,Σ,Ω), with Nz degrees of freedom, co-
variance matrix Σ = SS ′ ∈ PKH , and a matrix of noncentrality parameters
Ω = Σ−1Sll′S ′.17

Proof. The proposition follows from Slutsky’s theorem, the continuous mapping
theorem, and Y ⊥H PZ⊥Y ⊥′H

d→ R′K,H

(
S

1
2
2 (l + ψ)(l + ψ)′S

1
2′
2 ⊗ IK

)
RK,H , which im-

plies the stated distribution of ζ.

While ζ has a noncentral Wishart distribution, critical values for the test
statistic g require the distribution of mineval{R′K,H(ζ ⊗ IH)RK,H}, which is the

17We adopt the notational convention of Muirhead (1982) for the noncentral Wishart distribution.
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minimum eigenvalue of the K ×K matrix consisting of the traces of the H ×H
partitions of ζ. To the best of our knowledge, the distribution of this function of
ζ is unknown. Moreover, the limiting distribution of g depends in general on all
parameters in Σ and Ω, not just on the threshold for λmin.

To address both these challenges, we follow Stock and Yogo (2005) and Lewis
and Mertens (2022) and obtain critical values from a bounding limiting distribu-
tion of g. Specifically, we consider the distribution of γ′R′K,H(ζ ⊗ IH)RK,Hγ ≥
mineval{R′K,H(ζ ⊗ IH)RK,H} as a bounding distribution, where γ is the eigen-
vector associated with the minimum eigenvalue of Λ and γ′γ = 1. The following
theorem is a straightforward extension of Theorem 2 in Lewis and Mertens (2022).

Theorem 1. For ζ ∼ W(Nz,Σ,Ω),

(i) The n-th cumulant of γ′R′K,H(ζ ⊗ IH)RK,Hγ is

κn = 2n−1(n− 1)!
(
Nz Tr

(
((γγ′ ⊗ IH)Σ)n

)
+ nTr

(
((γγ′ ⊗ IH)Σ)nΩ

))
.

(ii) The n-th cumulant κn with n > 1 is bounded by

κn ≤2n−1(n− 1)!
(
Nz maxeval{R′K,H(Σn ⊗ IH)RK,H}

+ nHNzλmin maxeval{Σ}n−1
)
.

Proof. See Lewis and Mertens (2022).

As in Lewis and Mertens (2022), we consider the class of approximating dis-
tributions proposed by Imhof (1961), which match the first three cumulants of an
unknown target distribution. We select the Imhof distribution with the largest
critical value at significance level α subject to the constraints that the first cumu-
lant, κ1 = HNz(1 + λmin), matches that of the target distribution, and that the
second and third cumulants respect the analytical upper bounds on the cumu-
lants of the limiting distribution of g. The resulting critical value is guaranteed
to be conservative relative to the unknown critical value from the true limiting
distribution of the test statistic, g.
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II Additional Simulation Results

II.1 IRF Estimates in the Simulations

Figures II.1 and II.2 show the true model impulse responses to a one s.t.d. con-
tractionary monetary policy shock, together with the mean IRF estimates and
2.5% and 97.5% percentiles, across 5000 simulations from the Smets and Wouters
(2007) model discussed in Section 3. The columns show IRFs estimated using
a distributed lag specification, local projections with the set of control variables
Xt−1 described in the main text, and a VAR in Xt with four lags. The top rows
in each Figure show the IRFs of inflation, whereas the bottom rows show the
IRFs of the output gap (real marginal cost). For brevity, we only show the IRFs
associated with the monetary policy shock for H = 20 quarters. Results for the
other specifications are available on request.

Figure II.1: True and Estimated IRFs in Simulations, Small Sample (T = 250)

(a) Distributed Lag
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(c) VAR
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(d) Distributed Lag
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(e) LP with controls
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(f) VAR
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Notes: Figures show IRFs to a one s.t.d. contractionary monetary policy shock in data generated
by the Smets and Wouters (2007) model. Red lines show the true IRFs. Blue lines show the
mean and 2.5% and 97.5% percentiles of the estimated IRFs across 5000 samples.

Figure II.1 shows the IRF estimates in a small sample with T = 250. The
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DL estimates display smaller small-sample bias than the LP and VAR estimates
but have a wider 95% range at shorter horizons. Consistent with Li et al. (2021),
the VAR estimates have a narrower range than LP with controls, particularly at
longer horizons.

Figure II.2: True and Estimated IRFs in Simulations, Large Sample (T = 5000)

(a) Distributed Lag
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Notes: See Figure II.1

Figure II.2 shows the IRF estimates in a larger sample with T = 5000. The
DL and LP estimates show essentially no bias for T = 5000. Consistent with
Montiel Olea and Plagborg-Møller (2021), the VAR estimates show no bias for
horizons up to the lag length of the VAR (four). Given that the Stock and
Watson (2012) model does not have a finite-order VAR representation in Xt,
the restrictions implied by the finite-order VAR model result in bias in the IRF
estimates at horizons beyond the lag length of the VAR.

II.2 Simulation Results Using Three Instruments (Nz = 3)

This section presents the simulation results for specifications using three in-
struments. Besides the monetary policy shock, the additional instruments are
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the government spending shock and the risk premium shock from the Smets
and Wouters (2007) model. These additional shocks also satisfy the exogeneity
requirements for estimating the parameters of the Phillips curve in the data-
generating process, both for 2SLS with DL instruments and the SP-IV estima-
tors.

Panel a. of Table II.1 reports the mean estimates across 5000 Monte Carlo
samples, Panel b. shows the standard deviations. The results are qualitatively
similar to those reported in Tables 2, 3 in the main text, which show results for
simulations with only the monetary policy shock as an instrument.

More specifically, the relative performance of the various estimators in terms
of bias and variance remains the same with three instruments. In general, the
bias improvements from using the IV estimators relative to OLS are smaller with
three instruments. However, the comparison of panel b. in Table II.1 and Table
3 in the main text shows that using additional instruments lowers the variance of
all the estimators. Therefore, the choice of the number of instruments involves a
bias-variance trade-off, at least in data generated from the SW model.

Table II.2 shows the empirical rejection rates for the specifications that use
three instruments. The Table repeats the rejection rates for H = 20, Nz = 3

that are also in Table 4 in the main text and are discussed there. The first three
columns additionally report the results for H = 8 and Nz = 3 for complete-
ness. The general conclusions remain qualitatively the same, although the size
distortions related to the many moments problem are naturally quantitatively
less pronounced. The robust SP-IV tests also appear somewhat less affected by
many moment distortions than the robust tests for the single equation speci-
fication with DL instruments (referred to in the Table as AR 2SLS and KLM
2SLS).

II.3 Simulation Results for Generalized SP-IV estimators

This section presents simulation results for the (feasible) generalized SP-IV es-
timators based on a 2-step procedure. First, we estimate the baseline SP-IV
estimators and estimate the covariance matrix Σ̂⊥u using (20). Then, we use the
latter to obtain the generalized SP-IV estimators as in (B.1). The generalized
SP-IV estimators are also the feasible 2-step efficient GMM estimators.

Table II.3 reports the standard deviations of the estimates in the simulations.
The generalized SP-IV, or “GSP-IV”, estimators are in theory asymptotically
more efficient than our baseline estimators. However, the feasible versions do not
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Table II.1: Mean and Variance of parameter estimates, Nz = 3

a. Mean Parameter Estimates

T = 250 T = 500 T = 5000
Estimator γb γf λ γb γf λ γb γf λ
True Value 0.15 0.85 0.05 0.15 0.85 0.05 0.15 0.85 0.05
OLS 0.47 0.47 0.00 0.48 0.48 0.00 0.48 0.48 0.00

H = 8
2SLS 0.40 0.56 0.00 0.36 0.63 0.00 0.23 0.82 0.02
SP-IV LP 0.39 0.56 0.00 0.36 0.63 0.00 0.22 0.82 0.02
SP-IV LP-C 0.40 0.55 0.02 0.36 0.63 0.03 0.20 0.81 0.04
SP-IV VAR 0.34 0.69 0.01 0.29 0.75 0.02 0.20 0.83 0.04

H = 20
2SLS 0.45 0.51 0.00 0.43 0.55 0.00 0.28 0.76 0.01
SP-IV LP 0.44 0.51 0.00 0.42 0.56 0.00 0.28 0.76 0.01
SP-IV LP-C 0.44 0.51 0.01 0.43 0.56 0.01 0.27 0.76 0.02
SP-IV VAR 0.35 0.69 0.01 0.31 0.74 0.01 0.23 0.82 0.02

b. Standard Deviation of Parameter Estimates

T = 250 T = 500 T = 5000
Estimator γb γf λ γb γf λ γb γf λ
H = 8
2SLS 0.09 0.10 0.03 0.08 0.09 0.03 0.06 0.05 0.02
SP-IV LP 0.09 0.10 0.04 0.09 0.09 0.03 0.06 0.05 0.02
SP-IV LP-C 0.09 0.10 0.06 0.09 0.09 0.05 0.06 0.05 0.03
SP-IV VAR 0.11 0.13 0.05 0.11 0.11 0.05 0.06 0.05 0.03

H = 20
2SLS 0.04 0.04 0.01 0.04 0.04 0.01 0.04 0.04 0.01
SP-IV LP 0.05 0.05 0.02 0.04 0.04 0.01 0.04 0.04 0.01
SP-IV LP-C 0.04 0.05 0.02 0.04 0.04 0.02 0.04 0.04 0.01
SP-IV VAR 0.09 0.11 0.02 0.09 0.10 0.02 0.05 0.04 0.02

Notes: The first row in Panel a. contains the true parameter values β = [γb, γf , λ]
′ of (2) in the

Smets and Wouters (2007) model. The other rows show the mean (Panel a.) and standard devia-
tion (Panel b.) of estimates across 5000 Monte Carlo samples of size T and with h = 0, . . . ,H−1.
All IV estimators use the true monetary policy shock, government spending shock, and risk pre-
mium shock in the model as instruments. SP-IV LP and LP-C denote implementations based on
LPs without and with Xt−1 as controls, respectively. SP-IV VAR denotes implementation with
a VAR for Xt with four lags.

generally improve performance in practice, at least not in realistic sample sizes
and for our data-generating process. For Nz = 1, most GSP-IV variances slightly
exceed those of their SP-IV counterparts in Table 3 in the main text. With more
instruments (Nz = 3), there is some sporadic evidence of small efficiency gains
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Table II.2: Empirical size of nominal 5% tests, Nz = 3

H = 8 H = 20
T = 250 T = 500 T = 5000 T = 250 T = 500 T = 5000

Wald 2SLS 83.1 79.2 58.9 100.0 99.9 94.3
Wald SP-IV LP 84.3 80.4 60.4 100.0 99.9 93.8
Wald SP-IV LP-C 75.8 62.4 22.7 100.0 99.8 83.0
Wald SP-IV VAR 39.2 28.3 13.3 86.7 76.7 54.1

AR 2SLS 16.9 11.4 4.3 60.0 36.3 6.4
AR SP-IV LP 7.0 5.7 4.7 14.3 8.0 5.0
AR SP-IV LP-C 7.0 5.6 4.5 16.9 9.2 5.1
AR SP-IV VAR 3.9 5.1 4.8 6.5 5.2 4.6

KLM 2SLS 2.7 4.3 4.3 0.0 7.2 5.0
KLM SP-IV LP 5.7 5.2 5.3 7.6 6.5 5.3
KLM SP-IV LP-C 7.3 5.5 5.6 11.4 7.6 6.1
KLM SP-IV VAR 6.9 6.6 4.9 11.7 8.5 5.5

Notes: The table shows empirical rejection rates of nominal 5% tests of the true values of
β = [γb, γf , λ]

′ in 5000 Monte Carlo samples from the Smets and Wouters (2007) model. All IV
estimators are based on h = 0, ...,H − 1 and use the true monetary policy shock, government
spending shock, and risk premium shock in the model as instruments. SP-IV LP and LP-C denote
implementations based on local projections without and with Xt−1 (described in the text) as
controls, respectively. SP-IV VAR denotes implementation with a vector autoregression for Xt

with four lags. Robust tests for 2SLS use a HAR Newey-West variance matrix with Sun (2014)
fixed-b critical values; inference procedures for SP-IV are described in Section 2 and Appendix
A.

of GSP-IV relative to their SP-IV counterparts in Panel b. in Table 3. The fact
that GSP-IV does not consistently provide efficiency gains (and frequently fares
slightly worse) in small samples likely results from estimation error in the H×H
weighting matrix, which itself depends on the estimate β̂, which is only weakly
identified.

For brevity, we do not report the simulation results for the bias and empirical
rejection rates, but they are available on request. The results are comparable
overall to the regular SP-IV estimators discussed in the main text. The GSP-IV
estimators consistently show somewhat greater bias than their SP-IV counter-
parts when additional instruments are included. In sum, at least in our setting,
the simulation results offer little motivation to prefer GSP-IV over SP-IV in
practice.
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Table II.3: Standard deviation of parameter estimates, GSP-IV

T = 250 T = 500 T = 5000
γb γf λ γb γf λ γb γf λ

H = 8, Nz = 1
GSP-IV LP 0.33 0.46 0.24 0.27 0.40 0.24 0.12 0.08 0.09
GSP-IV LP-C 0.36 0.33 0.31 0.31 0.22 0.28 0.12 0.06 0.08
GSP-IV VAR 0.36 0.41 0.34 0.33 0.27 0.32 0.13 0.06 0.09

H = 20, Nz = 1
GSP-IV LP 0.15 0.18 0.07 0.12 0.14 0.06 0.07 0.05 0.03
GSP-IV LP-C 0.10 0.11 0.06 0.09 0.09 0.05 0.08 0.05 0.03
GSP-IV VAR 0.24 0.28 0.14 0.21 0.19 0.13 0.12 0.06 0.06

H = 8, Nz = 3
GSP-IV LP 0.11 0.12 0.04 0.09 0.10 0.03 0.06 0.05 0.02
GSP-IV LP-C 0.10 0.10 0.05 0.09 0.08 0.05 0.06 0.05 0.03
GSP-IV VAR 0.11 0.12 0.05 0.10 0.11 0.05 0.06 0.05 0.03

H = 20, Nz = 3
GSP-IV LP 0.04 0.04 0.01 0.03 0.03 0.01 0.04 0.04 0.01
GSP-IV LP-C 0.03 0.03 0.01 0.03 0.03 0.01 0.04 0.04 0.01
GSP-IV VAR 0.07 0.09 0.02 0.07 0.09 0.02 0.05 0.04 0.02

Notes: Rows show standard deviations across 5000 Monte Carlo samples of size T with h =
0, . . . ,H − 1. Nz = 1 estimators use the monetary policy shock as an instrument; Nz = 3 add
the government spending and risk premium shocks as instruments. GSP-IV is the (feasible)
generalized estimator in (B.1), obtained in a two-step procedure using (20).

II.4 Simulation Results for Alternative 2SLS Specifications

This section presents simulation results for alternative 2SLS estimators that in-
corporate controls.

As mentioned in the main text, we consider three alternative versions of 2SLS
estimation with controls. The first, labeled 2SLS-C, adds Xt−1 as controls to
both stages of 2SLS with DL instruments. The second, labeled 2SLS-CL, adds
Xt−H as controls to both stages of 2SLS with DL instruments. The third, labeled
2SLS-CZ, does not add any controls to 2SLS, but uses a DL of z⊥t – the residual
in the regression of zt on Xt−1 – as the instruments.

Table II.4 reports mean estimates of the different versions of 2SLS in the
simulations for T = 5000 with the lag endogenous monetary policy instrument
as in Section 3.1. For comparison, the Table also repeats the results for the
implementations of SP-IV based on LPs with Xt−1 as controls and a VAR in Xt

with four lags. As the Table shows, 2SLS-C reduces overall bias in the parameter
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estimates relative to 2SLS, but still produces a severely biased estimate for the
slope of the Phillips Curve, λ. As explained in the main text, the problem
of including Xt−1 as controls to address lag endogeneity is that doing so also
diminishes the explanatory power of the lags of the instruments in the first stage.
As a result, identification weakens to the point where even in large samples there
remains a strong bias in λ. Adding Xt−H instead as controls (2SLS-CL) avoids
that problem, but also does not fully insulate 2SLS from the bias due to lag
endogeneity. Table II.4 shows that 2SLS-CL generates bias improvements relative
to 2SLS, but not to the same extent as the SP-IV LP-C and VAR estimators.
Finally, the only version of 2SLS that is successful in removing the lag endogeneity
bias is the version in which zt is first orthogonalized toXt−1 (2SLS-CZ). Table II.4
shows that, in large samples, 2SLS-CZ generates on average the same parameter
estimates as SP-IV using LPs with controls.

Table II.4: Mean Parameter estimates, Alternative 2SLS Specifications, Lag
Endogenous Instrument, T = 5000

Estimator γb γf λ
True Value 0.15 0.85 0.05
OLS 0.48 0.48 0.00

H = 8
2SLS 0.27 0.58 -0.09
2SLS-C 0.19 0.87 -0.06
2SLS-CL 0.20 0.83 0.01
2SLS-CZ 0.16 0.84 0.05
SP-IV LP-C 0.16 0.84 0.05
SP-IV VAR 0.12 0.83 0.09

H = 20
2SLS 0.24 0.76 -0.02
2SLS-C 0.21 0.84 -0.06
2SLS-CL 0.23 0.81 0.01
2SLS-CZ 0.23 0.81 0.02
SP-IV LP-C 0.23 0.81 0.02
SP-IV VAR 0.17 0.83 0.05

Notes: The first row contains the true parameter values β = [γb, γf , λ]
′ of (2) in the Smets

and Wouters (2007) model. The other rows show the mean estimates across 5000 Monte Carlo
samples of size T and with h = 0, . . . ,H − 1. 2SLS-C adds Xt−1 as controls to both stages,
2SLS-CL adds Xt−H as controls to both stages, 2SLS-CZ is 2SLS a DL of z⊥t as instruments
instead of zt. SP-IV LP-C and VAR denote implementations based on LP with Xt−1 and a VAR
in Xt with four lags, respectively.

Table II.5 reports mean estimates of the different versions of 2SLS in the same
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simulations with the fully exogenous monetary policy instrument as in Section
3.2. As the Table shows, 2SLS-C produces strong bias in λ in all sample sizes.
The reason is again that adding Xt−1 as controls greatly weakens the identifying
information from the lags of the instrument. The 2SLS-CL estimates based on
adding Xt−H as controls lead to some small sample bias improvements relative to
2SLS without any controls, but these improvements are not as large as for SP-IV
since estimation is based exclusively on H-step ahead forecast errors. Finally,
when the instrument zt is fully exogenous already, the 2SLS-CZ estimates with a
DL of residualized shocks z⊥t offers no further improvement relative to 2SLS with
a DL of zt in small samples: the mean parameter estimates for 2SLS and 2SLS-
CZ are essentially the same across all specifications; unlike SP-IV with controls,
there is no improvement in the effective instrument strength.

Table II.5: Mean Parameter estimates, Alternative 2SLS Specifications,
Fully Exogenous Instruments

T = 250 T = 500 T = 5000
Estimator γb γf λ γb γf λ γb γf λ
True Value 0.15 0.85 0.05 0.15 0.85 0.05 0.15 0.85 0.05
OLS 0.47 0.47 0.00 0.48 0.48 0.00 0.48 0.48 0.00

H = 8
2SLS 0.27 0.51 0.01 0.24 0.61 0.00 0.17 0.83 0.04
2SLS-C 0.31 0.69 -0.05 0.27 0.76 -0.04 0.18 0.89 -0.11
2SLS-CL 0.30 0.58 0.02 0.26 0.69 0.03 0.16 0.83 0.05
2SLS-CZ 0.27 0.52 0.01 0.24 0.62 0.01 0.16 0.84 0.05
SP-IV LP-C 0.29 0.64 0.05 0.25 0.74 0.04 0.16 0.84 0.05
SP-IV VAR 0.22 0.80 0.03 0.18 0.84 0.05 0.12 0.83 0.09

H = 20
2SLS 0.39 0.53 0.00 0.36 0.61 0.00 0.23 0.80 0.01
2SLS-C 0.37 0.57 -0.07 0.33 0.64 -0.06 0.21 0.85 -0.08
2SLS-CL 0.40 0.53 0.00 0.37 0.61 0.00 0.23 0.80 0.02
2SLS-CZ 0.39 0.53 0.00 0.36 0.61 0.00 0.23 0.81 0.02
SP-IV LP-C 0.41 0.55 0.01 0.37 0.64 0.01 0.23 0.81 0.02
SP-IV VAR 0.27 0.80 0.01 0.23 0.84 0.02 0.17 0.83 0.05

Notes: The first row contains the true parameter values β = [γb, γf , λ]
′ of (2) in the Smets

and Wouters (2007) model. The other rows show the mean estimates across 5000 Monte Carlo
samples of size T and with h = 0, . . . ,H − 1. 2SLS-C adds Xt−1 as controls to both stages,
2SLS-CL adds Xt−H as controls to both stages, 2SLS-CZ is 2SLS a DL of z⊥t as instruments
instead of zt. SP-IV LP-C and VAR denote implementations based on LP with Xt−1 and a VAR
in Xt with four lags, respectively.
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