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This paper studies the estimation of β in structural time series equations of
the form

yt = β′Yt + ut ,(1)

where yt is a scalar observation of an outcome variable in period t, Yt is a K ×
1 vector of explanatory variables, ut is an error term, and β contains the K
structural parameters of interest. The explanatory variables Yt may contain
contemporaneous variables, but also lagged variables or agents’ expectations of
future variables that may not be measured well by the econometrician. We
are interested in applications where E[Ytut] 6= 0, such that standard regression
techniques yield inconsistent estimates of β due to endogeneity.

Equation (1) nests a wide range of dynamic relationships of interest in macroe-
conomics. Consider the example of the Hybrid New Keynesian Phillips Curve
(henceforth, the “Phillips Curve”),

πt = γbπt−1 + γfπ
e
t+1 + λgapt + ut ,(2)

where πt denotes inflation, πet+1 is a measure of price setters’ period t expectation
of inflation in t + 1, and gapt is an output gap measure (the deviation of actual
economic activity from the level without price rigidities). Equation (2) maps
into the more general problem in (1) with yt = πt, Yt = [πt−1, π

e
t+1, gapt]

′ and
β = [γb, γf , λ]′. The estimation of β = [γb, γf , λ]′ is complicated by a number of
well-known problems that result in E[Ytut] 6= 0, see for instance Mavroeidis et al.
(2014) or McLeay and Tenreyro (2019) for discussions. One source of endogeneity
is measurement error, as in practice the output gap and inflation expectations
must be replaced with proxy measures. A second source of endogeneity is si-
multaneity, since the error term generally includes structural shocks that also
influence the endogenous variables in Yt. Many theoretical dynamic relationships
include expectations and other endogenous explanatory variables and therefore
face similar problems.

A common approach in the literature is to rely on dynamics for identification
and use lagged variables as instrumental variables. In the Phillips Curve appli-
cation, it is for instance typical to use gapt−1, gapt−2, . . . and πt−2, πt−3, . . ., or
lags of other readily available macroeconomic variables.1 Instrument exogeneity,

1Galí and Gertler (1999), for example, use four lags of inflation, the labor income share, the output
gap, the long-short interest rate spread, wage inflation, and commodity price inflation, but treat πt−1 as
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in this case, requires that the error term ut is uncorrelated with any of the in-
strumenting lagged macroeconomic variables. In other words, the shocks (and
lags thereof) influencing the error term ut must be uncorrelated with the shocks
influencing the lagged variables used as instruments. When these instruments
are lags of endogenous variables, there is no general reason to believe that re-
strictions of this sort hold in reality. Lags of the output gap or inflation are,
for example, not valid instruments for (2) in empirically plausible medium-scale
macroeconomic models such as the Smets and Wouters (2007) model. For this
reason, Barnichon and Mesters (2020) propose 2SLS with current and lagged
values of external measures of monetary policy shocks as instruments, as these
measures are potentially more credibly uncorrelated with ut than lagged macro
variables. However, when using such measures to identify monetary impulse re-
sponses, the literature is rarely comfortable with imposing the strong assumption
that the instrument is unconditionally uncorrelated with lags of the error term
(unconditional lag exogeneity), and usually avoids doing so by including a rich
set of lagged macroeconomic controls in vector autoregressive models (VARs) and
local projections (LPs). Unfortunately, as we will show, including such controls
in 2SLS regressions with a distributed lag (DL) of shocks as instruments shrinks
the explanatory power of the instruments to that of only the contemporaneous
value, resulting in weaker or even under-identification.

In this paper, we propose a novel approach to identifying and estimating β
that allows the inclusion of lagged variables as controls without weakening iden-
tification. Specifically, we replace the single equation (1) with an H-dimensional
system of structural equations in forecast errors of yt and Yt, where H is the
number of leads. The forecast errors can be derived from a variety of forecasting
models, including VARs or LPs that include a rich set of controls. The con-
temporaneous values of the Nz instrumental variables generate HNz moment
conditions, which we solve in closed form for β, yielding a restricted IV estima-
tor in the system of reduced form forecast errors. We refer to this estimator as
System Projections on Instrumental Variables, or SP-IV.

SP-IV estimates structural equations on the basis of the relationships between
empirical estimates of impulse responses to economic shocks. Specifically, we
show that SP-IV is equivalent to a straightforward regression of the impulse
response function (IRF) of yt on the IRFs of Yt, where the IRFs can be obtained
from a VAR, LPs, or other valid impulse response estimators. Intuitively, SP-

exogenous, and so also use it as an instrument.
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IV finds the linear combination of IRFs of the endogenous variables to one or
more suitably chosen structural shocks that most closely matches the IRFs of the
dependent variable to the same shocks. Moreover, these IRFs can be obtained
from any LP or VAR identification scheme, and do not necessarily require the
availability of external shock measures.

SP-IV also has several other practical advantages relative to 2SLS with DL
instruments. First, it can leverage existing external shock measures just like
2SLS, but with adequate controls, it requires only the weaker assumptions of
contemporaneous and lead exogeneity, compared to contemporaneous, lead, and
lag exogeneity for 2SLS. Second, depending on the DGP, the use of forecast errors
instead of raw variables can improve efficiency in estimating β. Third, similar
efficiency gains in the first stage can increase effective instrument strength, and
thereby mitigate weak instrument problems.

We describe inference under strong identification and develop a first-stage test
for instrument strength by extending the popular bias-based test in Stock and
Yogo (2005) to the SP-IV setting. As instrumental variables are often weak in
practice, we describe weak instrument robust inference procedures based on the
Anderson and Rubin (1949) AR statistic and Kleibergen’s (2005) KLM statistic.
These inference methods for SP-IV also enable the formal testing of hypotheses
about structural relationships across IRFs in macroeconomic applications.

We demonstrate the potential performance gains of SP-IV in simulations es-
timating the Phillips curve parameters using data generated from the Smets and
Wouters (2007) model. When the instrument is lag endogenous, based on an em-
pirical calibration, 2SLS with DL instruments is prohibitively biased, but SP-IV
with suitable controls is not. When the instruments are valid for both estimators,
SP-IV with controls exhibits considerably smaller bias than 2SLS with DL in-
struments. A VAR implementation of SP-IV has the lowest bias of all estimators
we consider, while LP implementations have lower variances. The robust infer-
ence procedures for SP-IV remain well-sized in realistic sample sizes and exhibit
smaller size distortions when HNz is large than single-equation specifications
with DL instruments.

As an empirical application, we estimate the Phillips curve in US data using
the Main Business Cycle (MBC) shock of Angeletos et al. (2020) as an instru-
ment. Identified as the shock that maximally explains the cyclical variation in
unemployment, Angeletos et al. (2020) conclude from its muted impact on in-
flation that the Phillips curve must be very flat. However, we find that robust
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confidence sets for the slope of the Phillips curve are consistent with weak but also
fairly strong cyclical connections between inflation and economic activity. This
application illustrates how SP-IV enables formal assessments of structural rela-
tionships between IRFs over multiple horizons, while accounting for the sampling
error in the IRF estimates. After properly accounting for estimation uncertainty,
the evidence from IRFs to an MBC shock does not provide strong support for
inflation dynamics that are disconnected from the business cycle.

Researchers frequently draw conclusions about structural economic relation-
ships by looking at relative magnitudes of IRF coefficients. However, only a few
existing studies use regressions with IRFs to more formally estimate the param-
eters in these relationships. An early contribution by Jordà and Kozicki (2011)
proposes a regression of IRFs from LPs as a solution to a minimum distance
problem to identify structural parameters. However, Jordà and Kozicki (2011)
abstract from issues of identification and consider only reduced-form IRFs, re-
lying on a high-level assumption for consistency. Our paper instead develops
the methodology for regressions with “structural” IRFs from both LPs or VARs.
More recently, Barnichon and Mesters (2020) show that 2SLS with a DL of an
economic shock as instruments is equivalent to a regression in terms of IRFs
estimated from a DL regression. The SP-IV approach in this paper allows the
IRFs to come from general VAR or LP specifications and identification schemes,
and we demonstrate several other advantages of SP-IV relative to 2SLS with DL
instruments. Inspired by Barnichon and Mesters (2020), Del Negro et al. (2020)
regress posterior draws of impulse response coefficients from a VAR to estimate
Phillips Curve parameters in a Bayesian framework, but they do not provide
a theoretical development of their method. Finally, Galí and Gambetti (2020)
identify markup shocks in a VAR and estimate the Phillips curve parameters
using counterfactual data generated from the VAR after setting all realizations
of the markup shocks to zero. This approach can also be viewed as a regression
with IRFs, in this case to all relevant shocks except the markup shock that causes
simultaneity problems.

Henceforth, IN denotes the N -dimensional identity matrix, ⊗ the Kronecker
product, Tr(·) the trace operator, vec(·) the vectorization operator, mineval{·}
/maxeval{·} the minimum/maximum eigenvalue, E[Y | X] the conditional expec-
tation of Y givenX, p→ convergence in probability, d→ convergence in distribution,
and PU = U ′(UU ′)−1U the projection matrix.
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1. System Projections on Instrumental Variables

We begin by reformulating the dynamic relationship in (1) in terms of forecast
errors. Taking h-horizon leads and subtracting the conditional expectation given
an Nx × 1 vector of predictors Xt−1 (including a constant) yields

y⊥t (h) = β′Y ⊥t (h) + u⊥t (h) ,(3)

where y⊥t (h) = yt+h−E[yt+h | Xt−1], Y ⊥t (h) = Yt+h−E[Yt+h | Xt−1], and u⊥t (h) =

ut+h − E[ut+h | Xt−1]. Let zt denote an Nz × 1 vector of instrumental variables,
and define z⊥t = zt − E[zt | Xt−1]. Note that lags of zt may also be included in
Xt−1. As explained in the introduction, we focus on applications that rely on
dynamics for identification, exploiting orthogonality conditions between the error
term ut and zt, zt−1, ... Instead of the usual approach of imposing orthogonality
between zt−h and ut for various h ≥ 0, we impose

E[u⊥t (h)z⊥t ] = 0 ; h = 0, . . . , H − 1 .(4)

Without conditioning on Xt−1 and under stationarity, the orthogonality condi-
tions in (4) are equivalent to imposing orthogonality between zt−h and ut. The
key departure from 2SLS with a DL of zt as instruments is that the moments
in (4) are not in terms of the unconditional data but in terms of forecast errors
conditional on the predictors Xt−1.

1.1. The Generalized Method of Moments Problem

The conditions in (4) provide a set of HNz moment conditions that can be used
to identify the K elements of β. Let y⊥H,t and u⊥H,t denote the H × 1 vectors in
which the (h+ 1)-th element is y⊥t (h) or u⊥t (h) respectively. Let Y ⊥H,t denote the
HK × 1 vector stacking the H × 1 vectors Y k,⊥

H,t , where Y
k
t is the k-th variable in

Yt. Using this notation, the moment conditions are

E[u⊥H,t(β)⊗ z⊥t ] = 0 ,(5)

where u⊥H,t(b) ≡ y⊥H,t − (b′ ⊗ IH)Y ⊥H,t and the truth is b = β.
The moment conditions in (5) can be augmented to account for the estimation

of the forecast errors. We consider the class of forecasting models that are linear
in Xt−1, but possibly nonlinear in a set of parameters collected in the vector
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d. This class includes LPs and VARs, both of which are widely used in applied
macroeconomics.2 The moment conditions for this step are

E
[[
y⊥′H,t(ζ), Y ⊥′H,t(ζ), z⊥′t (ζ)

]′ ⊗Xt−1

]
= 0,(6)

where y⊥H,t(d), Y ⊥H,t(d), z⊥t (d) are functions of parameters d that depend on the
forecasting model chosen, and the true value of d is ζ.

The moments in (5) and (6) can be stacked in a moment function f(yH,t, YH,t, zt, Xt−1; b, d)

with E[f(yH,t, YH,t, zt, Xt−1; β, ζ)] = 0. Let Wt = [y⊥′H,t, Y
⊥′
H,t, z

⊥′
t , X

′
t−1]′. The

associated GMM objective function is

FT (b, d) =
1

T

(
T∑
t=1

f(Wt; b, d)

)′
Φ(b, d)

(
T∑
t=1

f(Wt; b, d)

)
,(7)

where Φ(b, d) is a positive definite weighting matrix. The forecasting step and the
structural estimation step are separable for estimation and inference purposes,
since b does not enter (6), following a simple application of Frisch-Waugh-Lovell.
More formally, we make the following assumption,

Assumption 1. There exists a unique solution, ζ, to the forecasting moments
(6), which are linear in Xt−1; the associated GMM estimator satisfies

√
T
(
ζ̂ − ζ

)
d→

N (0, Vζ) for some feasible weighting matrix and positive definite Vζ.

Under Assumption 1, the Jacobian of (5) with respect to d is zero in expec-
tation at ζ since E

[(
y⊥′H,t, Y

⊥′
H,t, z

⊥′
t

)′ ⊗Xt−1

]
= 0 by definition, so by the delta

method the variance of (5) is unaffected by estimation error in the forecast er-
rors. This means we can henceforth take the forecasts as given and focus on the
structural estimation step. For notational simplicity, in what follows we suppress
the dependence of the forecast errors on ζ.

1.2. The SP-IV Estimator

Let Φs(b, d) denote the block in the weighting matrix Φ(b, d) corresponding to
the moments identifying the structural equation, (5). Our baseline estimator uses
Φs(b, d) = IH ⊗Q−1, where Q = E[z⊥t z

⊥′
t ], to standardize and orthogonalize z⊥t .3

2For recent assessments of both methods, see Stock and Watson (2018), Plagborg-Møller and Wolf (2021),
or Li et al. (2021).

3Efficient GMM uses Φs(β, ζ) = (Σ−1
u⊥
H

⊗ Q−1), where Σu⊥
H

= E
[
u⊥H,t(β)u⊥H,t(β)′

]
. Appendix B presents

the resulting GLS version of SP-IV, as well as the CUE SP-IV estimator.
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The resulting solution to (7) for β is

β =
(
R′(E[Y ⊥H,tz

⊥′
t ]Q−1E[Y ⊥H,tz

⊥′
t ]′ ⊗ IH)R

)−1(8)

×R′ vec(E[y⊥H,tz
⊥′
t ]Q−1E[Y ⊥H,tz

⊥′
t ]′) ,

where R = IK ⊗ vec(IH). Let the H × T matrix y⊥H , the HK × T matrix Y ⊥H ,
and the Nz × T matrix Z⊥ collect the sample of observations of y⊥H,t, Y ⊥H,t, and
z⊥t respectively. The sample analog of (8) is

β̂ =
(
R′(Y ⊥H PZ⊥Y ⊥′H ⊗ IH)R

)−1
R′ vec(y⊥HPZ⊥Y ⊥′H ) ,(9)

which minimizes (7) with respect to b, using the sample weighting matrix, IH ⊗
(Z⊥Z⊥′/T )−1. That minimization problem is equivalent to minimizing Tr(u⊥HPZ⊥u⊥′H ),
or the sum of squared residuals in the system

y⊥H = (β′ ⊗ IH)Y ⊥H + u⊥H ,(10)

after projection on the instruments z⊥t . Thus, β̂ is also the restricted 2SLS
estimator in the system of equations in (10), where the only restrictions are
implied by (1). Because of this representation for the minimisation problem, we
refer to our framework as System Projections on Instrumental Variables (SP-
IV), and β̂ as the SP-IV estimator.

The SP-IV estimator has a useful interpretation based on the impulse response
functions of yt and Yt to innovations in the instruments zt. Consider the following
IRF estimates,

Θ̂Y =
Y ⊥H Z

⊥′

T

(
Z⊥Z⊥′

T

)− 1
2

; Θ̂y =
y⊥HZ

⊥′

T

(
Z⊥Z⊥′

T

)− 1
2

,(11)

which are OLS coefficients from regressing Y ⊥H,t and y⊥H,t on standardized innova-

tions to the instruments,
(
Z⊥Z⊥′/T

)− 1
2 z⊥t . Using Θ̂y, construct the HNz×1 vec-

tor Θ̂y stacking the Nz vectors of IRF coefficients of yt. Construct the HNz ×K
matrix Θ̂Y similarly stacking Θ̂Y . Formally,

Θ̂Y = ((Z⊥Z⊥′/T )−
1
2Z⊥ ⊗ IH/T )Y⊥H ;(12)

Θ̂y = ((Z⊥Z⊥′/T )−
1
2Z⊥ ⊗ IH/T )y⊥H ,

where y⊥H = vec
(
y⊥H
)
is TH× 1 and Y⊥H = [vec(Y ⊥H,1), . . . , vec(Y ⊥H,K)] is TH×K.
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Then the SP-IV estimator β̂ in (9) is equivalent to

β̂ = (Y⊥′H (PZ⊥ ⊗ IH)Y⊥H)−1Y⊥′H (PZ⊥ ⊗ IH)y⊥H ,(13)

= (Θ̂′Y Θ̂Y )−1Θ̂′Y Θ̂y ,

which shows that the estimate of the structural parameters, β̂, is the slope in the
OLS regression of Θ̂y on Θ̂Y , i.e. the coefficients in a regression of IRFs of yt
and Yt to zt conditional on Xt−1.

The expression for β̂ in (13) suggests a two-step procedure for implementing
SP-IV. The first step consists of estimating IRFs using instruments satisfying the
exogeneity conditions, which are already frequently estimated objects in empir-
ical macroeconomics. In the second step, given such a set of IRF estimates, the
SP-IV estimator is obtained by regressing the IRF of the outcome variable yt
on the IRFs of the endogenous variables Yt. To theoretically justify the moment
conditions in (4), it will often be natural to choose instruments leading to impulse
responses to interpretable economic shocks, such as monetary policy shocks, gov-
ernment spending shocks, etc. For the Phillips curve example in (2), the first
step estimates IRFs of inflation πt and the slack measure gapt to a monetary pol-
icy shock (or other aggregate demand shocks orthogonal to the cost-push term,
ut). In the second step, the IRF of πt is regressed on the IRF of gapt as well as
the IRFs of lagged and expected future inflation, πt−1 and πet+1. The latter are
obtained by lagging and leading the IRF of πt by one horizon. Appendix A gives
practical details on the implementation using LPs or VARs.

A large literature studies the identification of economic shocks presenting po-
tential instruments for SP-IV, see Ramey (2016) or Kilian and Lütkepohl (2017)
for surveys. However, any valid strategy for identifying structural IRFs based on
LPs or VARs can be used in conjunction with SP-IV provided the underlying
shocks satisfy the exogeneity conditions (5). SP-IV recovers the coefficients that
best fit the structural economic relationship between IRFs of the variables in
that relationship to the shocks chosen by the econometrician. Technically, SP-IV
only requires IRFs to an identified rotation of economic shocks that satisfy the
exogeneity conditions. In other words, the shocks and their associated IRFs need
not necessarily be separately identified. In practice, it is also possible to perform
SP-IV with a subset of horizons rather than all h = 0, . . . , H − 1.
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1.3. The Difference Between SP-IV and 2SLS with DL instruments

The standard approach for identifying β in (1) with zt, ..., zt−H+1 as instruments
exploits the HNz orthogonality conditions

E[utzt−h] = 0 ; h = 0, . . . , H − 1 .(14)

2SLS is the estimator adopted almost exclusively in the literature; the first
stage consists of regressing the endogenous variables Yt on the lag sequence
zt, ..., zt−H+1, and the second stage consists of regressing yt on the predicted
values. When zt consists of measures of economic shocks, the first stage im-
plicitly estimates the IRF coefficients of Yt to the shocks zt using a DL model.
Barnichon and Mesters (2020) observe that, after similarly estimating the IRF
of yt, the 2SLS estimates equal the estimates in OLS regression of the IRF of
yt on the IRFs of Yt. The 2SLS estimator with lagged shocks as instruments
therefore can – like SP-IV – be interpreted as a regression in terms of IRFs. In
2SLS, the regression uses IRFs estimated by single-equation DL models, i.e. re-
gressions of yt and Yt on zt, ..., zt−H+1 without additional controls. In contrast,
in SP-IV the IRFs can be obtained from LPs or VARs in which the h-step ahead
forecasts of yt and Yt given zt are conditioned on a set of additional predictors,
Xt−1. In the literature, IRFs are typically estimated using LPs or VARs, not DL
models, for the reasons already discussed. An advantage of SP-IV is therefore
that it estimates structural relationships across IRFs as they are estimated in
practice. Whereas the IRFs for 2SLS rely on the availability of external measures
of economic shocks, the IRFs for SP-IV can also exploit internal instruments gen-
erated from recursivity assumptions, or any other short or long-run covariance
restrictions. Thus, SP-IV greatly expands the options for identification.

The ability to accommodate controls also yields three further theoretical ad-
vantages of SP-IV. To exposit these advantages, we adopt the usual impulse-
propagation paradigm to express yt and Yt in terms of current and past realiza-
tions of “structural shocks”, εt, where E[εt] = 0, E[εtε

′
t] = Idim(ε) and E[εtε

′
s] = 0

for s 6= t. Assuming linearity of yt and Yt in εt, equation (1) implies that the
error term can be expressed as a linear combination of current and past shock
realizations:

ut = µ′0εt + µ′1εt−1 + µ′2εt−2 + . . . .(15)
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For simplicity, we also assume stationarity throughout.

1. Weaker Exogeneity Requirements With suitably chosen predictors
Xt−1, SP-IV has weaker exogeneity requirements than 2SLS:

Proposition 1. The exogeneity condition for 2SLS with lags of zt is

(16) µ′lE[εt+h−lz
′
t] = 0 ; l = 0, . . . ,∞ ; h = 0, . . . , H − 1.

If Xt−1 spans all εj,t−l for which µj,l 6= 0 in (15), SP-IV including Xt−1 as con-
trols requires only

(17) µ′l−hE[εt+hz
′
t] = 0 ; l = h, . . . , H − 1 ; h = 0, . . . , H − 1.

Proof. The 2SLS result follows from substituting (15) in (14) and stationarity.
The SP-IV result follows similarly, orthogonalizing (15) to Xt−1.

Following Stock and Watson (2018), we denote the conditions in (16) with
l > h as lag exogeneity, with l = h as contemporeneous exogeneity, and with
l < h as lead exogeneity. 2SLS requires all three forms of exogeneity to hold.4 In
contrast, the SP-IV exogeneity condition is implied by only contemporaneous and
lead exogeneity, since conditioning on Xt−1 eliminates the influence of all past
values of εt on u⊥t (h). With a sufficiently rich set of predictors, the exogeneity
conditions on zt are thus substantially weaker, echoing the arguments in Stock
and Watson (2018) for including controls in LP with instrumental variables.

Consider again the Phillips Curve example in (2). As instruments, Barnichon
and Mesters (2020) consider a DL of Romer and Romer’s (2004) measure of mon-
etary policy surprises, zRRt , which are the residuals in a regression of the intended
funds rate change at FOMCmeetings on the current rate and Greenbook forecasts
of output growth and inflation. Assume no measurement error and that the error
term in (2) is just an exogenous cost-push shock following ut = ρuut−1 + υt, with
0 ≤ ρu < 1, and υt is white noise. Unless ρu = 0, ut depends on υt, and all lags
υt−1, υt−2, . . .. If zRRt is uncorrelated with υt, its leads up to H − 1, and all of its
lags, then zRRt , ..., zRRt−H+1 satisfy the moments (16) for estimation of the Phillips
Curve. Suppose, however, that the regression generating zRRt is misspecified by
omitting one or more lags of inflation. In that case, zRRt generally still depends on

4The conditions in (16) are sufficient but not strictly necessary, as exogeneity requires only∑∞
l=0 µ

′
lE[εt+h−lz

′
t] = 0. However, there are no theoretical reasons to expect this knife-edge case.

11



lags of υt, and the lag exogeneity requirement, E[ut−lzt] = 0, l = 1, . . . ,∞, is not
satisfied. However, by including lags of inflation amongst predictors Xt−1, the
exogeneity requirements for SP-IV remain satisfied as long as contemporaneous
and lead exogeneity hold. We return to this example later in the simulations of
Section 3.

The assumption that a set of variables Xt−1 spans the history of shocks εt
determining ut resembles the invertibility assumption in VARs and the practice
of including lagged controls in LPs to avoid lag exogeneity requirements (Ramey
2016; Stock and Watson 2018). Here though, the assumption is weaker than that
needed to estimate dynamic causal effects using LPs of VARs since Xt−1 must
span only the shocks included in the error term ut in the structural equation of
interest, rather than the history of all shocks driving yt and Yt jointly.5 However,
a richer set of predictors offers better insurance against violations of the lag
exogeneity assumption.

2. Efficiency Gains Conditioning on predictors Xt−1 can also lead to asymp-
totic efficiency gains relative to 2SLS with DL instruments. Whether SP-IV im-
proves efficiency depends on the data generating process (DGP) driving ut and
the informativeness of the predictors Xt−1. Intuitively, the SP-IV estimator is
more efficient than 2SLS if the variances of forecast errors u⊥t (h) at h = 0, ..., H−1

are small relative to the variance of the error term ut. The ranking of estimators
depends in general on the DGP. Here we consider an AR(1) illustrative model,

(18) ut = ρuut−1 + υt, 0 ≤ ρu < 1, E[υt] = 0, E[υ2
t ] = σ2

υ, E[υtυs] = 0, s 6= t.

Let Σu⊥H
denote the covariance of u⊥H,t.

Proposition 2.

(i) If ut is i.i.d., SP-IV is asymptotically as efficient as 2SLS.

(ii) If ut follows the AR(1) process in (18) and Xt−1 is empty or otherwise
uninformative for ut, then u⊥H,t = uH,t and β̂2SLS is asymptotically more
efficient than β̂ whenever ρu > 0 and H > 1.

(iii) β̂ is asymptotically more efficient than β̂2SLS if σ2
u > maxeval(Σu⊥H

). If
ut follows the AR(1) process in (18) and Xt−1 spans past shocks, then the

5For the Phillips curve, zRR
t could still be contaminated by other demand shocks after conditioning on

Xt−1, and the IRFs identified with zRR
t in VARs or LPs with Xt−1 as controls may therefore not repre-

sent the causal effects of monetary policy shocks; nevertheless, as long as Xt−1 eliminates the influence of
υt−1, υt−2, . . ., zRR

t remains a valid instrument for SP-IV including on Xt−1.
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condition becomes σ2
υ

1−ρ2u
> maxeval

(
Σu⊥H

)
, where the (h, i) entry of Σu⊥H

is

given by
∑min{h,i}

j=1 σ2
υρ

h+i−2j
u .

Proof. See Appendix C.

When ut is i.i.d., the errors in both estimators are identical in population
since Xt−1 does not predict ut, . . . ut+H−1 and forecast errors do not accumulate
over h = 0, . . . , H − 1. Hence, the asymptotic variances of both estimators are
the same, (i). Under (18), if Xt−1 has no predictive power but ut is persistent
(ρu > 0), then 2SLS dominates SP-IV (ii). However, when Xt−1 spans the
influence of υt−1, υt−2, . . . on the errors, SP-IV is asymptotically more efficient
as long as ρu is sufficiently high and the forecast horizon H is not too large,
(iii). Efficiency gains from using SP-IV are more likely when ut is predictable
and the maximum forecast horizon, H, is moderate, as illustrated graphically in
Appendix C.

3. Stronger Identification The ability to condition on Xt−1 in SP-IV can
also improve the effective strength of the instruments, as measured by the con-
centration parameter (see, e.g., Stock and Yogo (2005)). Weak instruments lead
to bias in 2SLS estimators and make conventional inference methods invalid. In
many time series applications, instruments are weak, while the endogenous vari-
ables can be highly persistent, and thus predictable. Let ωt be the error term in
the first stage of 2SLS with variance σ2

ω. Denote the H×1 vector of errors in the
SP-IV first stage regression of YH,t on zt (but no additional predictors) as vH,t,
with covariance ΣvH . The errors in the SP-IV first stage regression of YH,t on
zt and the additional predictors Xt−1 is v⊥H,t, with covariance Σv⊥H

. We consider
the case where zt is a fully exogenous instrument (i.e. not lag endogenous) since
otherwise the concentration parameter is not well-defined for 2SLS.

Proposition 3. When K = 1, for a given exogenous zt, satisfying (16), and H:

(i) Unless Xt−1 is completely irrelevant, the concentration parameter for SP-IV
conditional on Xt−1 is larger than for SP-IV without controls;

(ii) If Tr(Σv⊥H
)/H < σ2

ω, the concentration parameter for SP-IV is larger than
that for 2SLS.

Proof. See Appendix D.
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Part(i) in Proposition 3 states that when the predictors have explanatory
power for the endogenous regressors, their inclusion in SP-IV increases the effec-
tive strength of the instruments, as measured by the concentration parameter,
and conditioning onXt−1 therefore decreases bias. Part(ii) in Proposition 3 states
that the effective instrument strength can also increase relative to 2SLS, depend-
ing on the persistence and predictability of the errors, as well as on H. As the
predictability of the endogenous variables diminishes with the forecast horizon
H, the advantage of conditioning on lagged variables can be outweighed by the
recency of zt for Yt in 2SLS. When K > 1, instrument strength depends on the
entire eigenstructure of the first stage parameters (and that of Σv⊥H

), making a
fully general result not readily available. Intuitively, however, conditioning on
Xt−1 should similarly strengthen the instruments when Xt−1 has explanatory
power.

We emphasize that it is not possible to replicate the advantages of SP-IV by
incorporating the controls Xt−1 in the single-equation 2SLS setting. First, adding
Xt−1 as additional regressors in both stages of 2SLS with DL instruments weak-
ens identification. As an extreme case, suppose conditioning on Xt−1 eliminates
the influence of all past realizations of the structural shocks, εt, on Yt and zt. In-
cluding Xt−1 as additional regressors then implies that only the contemporaneous
instruments zt remain relevant, since Xt−1 spans all lags shocks and thus of zt;
by construction, all zt−h for h > 0 are uncorrelated with Y ⊥t and are completely
irrelevant as instruments. Identification can no longer exploit information from
the dynamic relationship between zt and Yt. Moreover, when Nz < K, without
information from the lags of zt the model is under-identified.

Second, it is generally also not possible to circumvent the lag exogeneity
requirement of 2SLS by first projecting zt on Xt−1 and using the residuals,
z⊥t , ..., z

⊥
t−H+1 as the instrumental variables in 2SLS. This is the implicit pro-

cedure, for example, when a shock is first identified in a VAR or LPs with Xt−1

as controls, and a DL of that shock is then used as the instruments in 2SLS. ut
must still be orthogonal to all lags of the identified shock, which is not generally
the case. Even when such a weaker form of lag exogeneity is plausible, this ap-
proach does not have the other advantages of SP-IV that arise whenever Xt−1 is
sufficiently predictive for the endogenous variables.6

Finally, adding Xt−H to both stages of a 2SLS regression of yt on Yt with
6See also Lloyd and Manuel (2023) for further discussion of why residualizing instruments, but not

regressors, to controls is not advisable.
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zt−1, ...zt−H+1 as instruments also does not replicate the advantages of SP-IV.
This approach is based on instrumenting more distant H − 1-step ahead forecast
errors and still requires lag exogeneity at horizons smaller than H. By instru-
menting only more distant H − 1-step-ahead forecast errors, this approach does
not increase identification strength to the same extent as SP-IV with Xt−1 as
controls, and also still requires lag exogeneity at horizons smaller than H.

1.4. Consistency of the SP-IV Estimator

Consider the following high-level assumptions on covariances:

Assumption 2. The following probability limits and rank condition hold:

Z⊥Z⊥′/T
p→ E[z⊥t z

⊥′
t ] = Q, where Q is positive definite,(2.a)

Y ⊥H Z
⊥′/T

p→ E[Y ⊥H,tz
⊥′
t ] = ΘYQ

1
2 , a real HK ×Nz matrix,(2.b)

Z⊥u⊥′H /T
p→ E[z⊥t u

⊥′
H,t] = 0,(2.c)

R′(ΘY Θ′Y ⊗ IH)R is a fixed matrix with full rank.(2.d)

The convergence in probability in 2.a-2.c holds under standard primitive con-
ditions and laws of large numbers. Condition 2.a ensures linear independence
of the instruments and consistency of the sample weighting matrix. Condition
2.b states that the covariance between Y ⊥H and Z⊥ is consistently estimated.
The population covariance ΘYQ

1
2 is a rotation of ΘY , a matrix containing the

impulse response coefficients of Y ⊥t to z⊥t , after standardization. Condition 2.c
is the exogeneity condition. Finally, the rank condition 2.d is sufficient for the
existence of a unique solution to the moment conditions (5), and ensures that
the denominator of the closed form solution (8) is full rank, with the definition
of ΘY implying that the instruments are relevant. 2.b and 2.d jointly imply that
the instruments are strong, an assumption we relax in Section 2.

Assumption 2 resembles the usual (strong) IV assumptions, see for instance
Stock and Yogo (2005). Note that condition 2.d does not require that there
are at least as many instruments as endogenous regressors, Nz ≥ K. Since
rank(R′(ΘY Θ′Y⊗IH)R) = min{K,H rank(ΘY Θ′Y )}, the order condition isHNz ≥
K, since there are HNz moment conditions in (5). Adding leads of yt and Yt

makes up for Nz < K just as adding lags of zt as instruments does for IV based
on a single equation.

Proposition 4 states the consistency result for the SP-IV estimator in (9).
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Proposition 4. Under Assumptions 1 and 2, β̂ p→ β.

Proof. Both terms in (9) converge by the stated assumptions, and the result
follows from the continuous mapping theorem.

2. Inference for SP-IV

2.1. Inference under Strong Instruments

When the instruments are strong, under the conditions in Assumption 1-2, in-
ference for SP-IV can proceed analogously to standard 2SLS. With a further
high-level assumption, the limiting distribution of β̂ follows:

Assumption 3. T−1/2 vec(Z⊥u⊥′H )
d→ N(0, (Σu⊥H

⊗Q)),where Σu⊥H
is full rank.

Proposition 5. Under Assumptions 1-3,

(19)
√
T (β̂ − β)

d→ N(0, Vβ) ,

where Vβ = (R′(ΘY Θ′Y ⊗ IH)R)−1R′
(

ΘY Θ′Y ⊗ Σu⊥H

)
R (R′(ΘY Θ′Y ⊗ IH)R)−1.

Proof. The result is immediate, after rearranging (9), from Proposition 4, the
stated assumptions, and the continuous mapping theorem.

Vβ can be estimated by replacing Σu⊥H
with a consistent estimate, and ΘY Θ′Y

with Y ⊥H PZ⊥Y ⊥′H . Inference can be based on standard Wald tests. A natural
consistent estimator is

(20) Σ̂u⊥H
= û⊥H û

⊥′
H /(T −Nx −K),

since, as noted following Assumption 1, estimation error in the forecast errors
does not impact their asymptotic variances. Including adequate lags in Xt−1

obviates the need for an autocorrelation robust estimate by eliminating auto-
correlation in both u⊥t and z⊥t . Any mechanical correlation between u⊥t (0) and
u⊥t−h(h), say, drops out of var(u⊥H,t ⊗ z⊥t ), since when z⊥t is serially uncorrelated,
so too is u⊥H,t⊗ z⊥t .7 This is not the case for 2SLS, which generally requires auto-
correlation robust methods due to mechanical autocorrelation in the overlapping
lag sequence of zt.

7The argument is analogous to that of Montiel Olea and Plagborg-Møller (2021) for LP with instrumental
variables.
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2.2. A Test for Weak Instruments

In many applications, the available instruments may be weak. If so, Wald in-
ference will be invalid, leading to empirical rejection rates that generally exceed
nominal levels. In the Online Appendix, we derive a bias-based test of instru-
ment strength for SP-IV that is analogous to the popular Stock and Yogo (2005)
bias-based test of weak instruments for standard 2SLS. We consider a Nagar ap-
proximation of the bias under weak instrument asymptotics, as in Montiel-Olea
and Pflueger (2013) and Lewis and Mertens (2022). Like Stock and Yogo (2005)
and Lewis and Mertens (2022), we use a weighted `2-norm of the bias to accom-
modate multiple endogenous regressors (K>1). Weak instruments are defined
as those for which the bias in β̂ is at least τ percent of a worst-case benchmark
under weak instrument asymptotics. The test statistic is similar to that of Cragg
and Donald (1993), and the test rejects the null hypothesis of weak instruments
when the statistic exceeds the level-α critical value of a bounding distribution.
The test nests the Stock and Yogo (2005) test when H = 1.

2.3. Weak Instrument Robust Inference for SP-IV

We describe two robust test statistics for SP-IV with local projections. Appendix
A describes the implementation of the tests when using a VAR.

AR Statistic The “S-statistic” of Stock and Wright (2000) extends the AR
statistic to the GMM setting. For SP-IV, the statistic and its limiting distribution
under the null hypothesis are defined as

AR(b) = (T − dAR) Tr

(
u⊥H(b)PZ⊥u⊥H(b)′

(
u⊥H(b)MZ⊥u⊥H(b)′

)−1
)
,(21)

AR(β)
d→ χ2

HNz ,

where MZ⊥ = IT − PZ⊥ is the residualizing matrix and dAR = Nz + Nx is a
degrees of freedom correction. Rather than the moment covariance matrix, we
use the normalizing matrix typically used with the AR statistic, asymptotically
equivalent under the null hypothesis. Note that estimation error in the first stage
does not impact inference based on the AR statistic since it does not impact
the asymptotic variance of the u⊥H,t ⊗ z⊥t , for the same reasons explained under
Assumption 1.
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KLM Statistic The AR statistic can have poor power when there are over-
identifying restrictions. This is the case when HNz > K, i.e. when the number
of IRF coefficients exceeds the number of endogenous regressors. As this may
often be the case, we consider the Kleibergen (2005) KLM statistic, which can
improve power (Andrews et al. 2019).

Following Kleibergen (2005),

K(b) = (T − dK) vec
(
Ξ−1u⊥H(b)Y̌ ′H

)′
R(22)

×
(
R′(Y̌H Y̌

′
H ⊗ Ξ−1u⊥H(b)u⊥′H (b)Ξ−1)R

)−1

×R′ vec
(
Ξ−1u⊥H(b)Y̌ ′H

)′
,

K(β)
d→ χ2

K ,

where Y̌H = Y ⊥H PZ⊥− v̌⊥H ǔ⊥′H (b)
(
ǔ⊥H(b)ǔ⊥′H (b)

)−1
u⊥H(b)PZ⊥ is the projection of Y ⊥

on Z⊥, Ξ = u⊥H(b)MZ⊥u⊥′H (b), v̌⊥H = v⊥HMZ⊥ , ǔ⊥H(b) = u⊥H(b)MZ⊥ , and dK = Nz +

Nx is a degrees of freedom correction. Intuitively, instead of the covariance of u⊥H
and (Z⊥Z⊥′)−1/2Z⊥, the numerator of the KLM statistic features the covariance
of u⊥H and the projection of a transformation of Y ⊥H on (Z⊥Z⊥′)−1/2Z⊥. Our
formulation differs from Kleibergen (2005) only by the replacement of u⊥H and
v⊥H with ǔ⊥H and v̌⊥H . This choice is consistent with the IV statistic in Kleibergen
(2002) and asymptotically equivalent to the form in Kleibergen (2005) under the
null.

3. Performance of SP-IV in Model Simulations

In this section, we demonstrate the performance improvements offered by SP-IV
in simulations, supporting our theoretical claims. The objective in all simulations
is to estimate the parameters of the Phillips Curve in (2) using data generated
from the macroeconomic model of Smets and Wouters (2007) (SW).8 The Phillips
Curve in (2) is one of the equations in the SW model within a system of fourteen
simultaneous equations for the dynamics of key macroeconomic aggregates. An
important feature of the estimated SW model is that the shocks underlying the
error term ut in the Phillips curve explain a very large fraction of the variance of
inflation. This means that, in realistic sample sizes, the weak instrument problem
is generally severe, due to the small role played by other shocks. Moreover, the

8The data is generated from the SW model using the Dynare replication code kindly provided by Johannes
Pfeifer at https://sites.google.com/site/pfeiferecon/dynare.
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error term ut is persistent, as are most of the macro aggregates generated by
the model. Both features make the estimation of the Phillips curve parameters
challenging. Conventional IV methods tend to perform poorly, and our simulation
setup is therefore an ideal laboratory to evaluate the potential improvements
offered by SP-IV.

As mentioned in the introduction, using a sequence of lagged endogenous
variables as instruments – as in Galí and Gertler (1999) and the subsequent
literature – is not valid for identification in this setting. In the SW model, the
error term in (2) is the ARMA(1,1) process

ut = ρuut−1 + εpt − µpε
p
t−1 , ρu = 0.99, µp = 0.83(23)

where εpt is an i.i.d. normally distributed price markup shock.9 Inverting the
autoregressive term in (23) yields ut = εpt + ρu(1 − µp)εpt−1 + ρu(ρu − µp)εpt−2 +

ρ2
u(ρu − µp)ε

p
t−3 + . . ., which shows that the error term ut generally depends on

the entire history of price markup shocks εpt , ε
p
t−1, ε

p
t−2, . . . The period t values of

the endogenous model variables are functions of all current and lagged values of
a 7×1 shock vector εt, including εpt . Lagged values of these endogenous variables
therefore violate the lag exogeneity requirement.

Because lagged endogenous variables are not valid instruments, we consider a
measure of the monetary policy shock as zt, as in Barnichon and Mesters (2020).
We present two sets of simulations. In the first, we use a measure of monetary
policy shocks that violates the lag exogeneity requirement in an arguably realistic
manner to illustrate that the SP-IV estimator – unlike the 2SLS estimator –
remains consistent. In the second, we use the true model monetary policy shock
as the instrument to level the playing field across estimators and compare the
small sample performance of 2SLS and SP-IV when both are consistent.

Inflation expectations πet+1 are treated as unobserved and are replaced in (2)
by realized future inflation πt+1, as is typical in the literature when expectations
appear in structural equations. Under rational expectations – as assumed in the
SW model – the resulting measurement error depends only on future realizations
of the model shocks, which does not create any additional endogeneity problems
given that the instruments used in all simulations satisfy lead exogeneity.

We do not assume that the econometrician possesses a set of controls span-
ning the full history of model shocks. Instead, we use a realistic set of controls

9We assume that the econometrician cannot exploit the ARMA(1,1) error structure in (23).
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consisting of seven endogenous model variables: the short-term interest rate, in-
flation, marginal cost, output, consumption, investment, and the real wage. In
the simulations, we consider both LP and VAR implementations of SP-IV that
include four lags of these endogenous model variables in the control set, Xt−1.
Note that the SW model does not permit a finite-order structural VAR repre-
sentation in the seven endogenous model variables listed above. As shown in
Plagborg-Møller and Wolf (2021), this implies that the VAR-based estimates of
the IRFs are (asymptotically) biased for horizons beyond the lag length of the
VAR, whereas the LP-based IRFs remain consistent at all horizons as long as the
necessary exogeneity requirements are satisfied. This disadvantage of VAR-based
IRFs must be weighed against the efficiency gains relative to LP-based IRFs, see
Li et al. (2021). We consider both LP and VAR implementations of SP-IV in the
simulations, as it is not clear ex ante how the different bias-variance properties
of the IRF estimators translate to the SP-IV estimators.

We also report key insights from additional simulations for specifications with
multiple demand shocks as instruments, for the generalized (or efficient GMM)
versions of the SP-IV estimators, and for alternative specifications for 2SLS that
incorporate controls. The full results for these additional simulations are available
in the Online Appendix.

3.1. Simulations with Violations of Lag Exogeneity

Our first set of simulations demonstrates how SP-IV can help ensure exogeneity
by conditioning on lagged macroeconomic variables. We are motivated by the
identification of the Phillips Curve, for example, with monetary policy shock
measures like those constructed by Romer and Romer (2004), or based on high-
frequency changes in Fed Funds futures as in Kuttner (2001). A practical concern
with such measures is that, despite careful construction, they may still contain
a meaningful predictable component (Barakchian and Crowe 2013; Bauer and
Swanson 2022; Cieslak 2018; Coibion 2012; Miranda-Agrippino and Ricco 2021;
Ramey 2016). Consequently, researchers identifying monetary IRFs using these
measures typically include various lagged macro variables as controls in their
models. However, when the same measures are used as instruments to estimate
structural equations using 2SLS – as in Barnichon and Mesters (2020) for example
– estimation proceeds without controls.

To illustrate the potential implications of excluding controls, we simulate
“Romer and Romer (2004) instruments” that consist of the true monetary policy
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Table 1: Results with Lag Endogenous Instrument, T = 5000

Mean Estimates
γb γf λ

True Value 0.15 0.85 0.05
OLS 0.48 0.48 0.00

H = 8
2SLS 0.27 0.58 -0.09
SP-IV LP 0.26 0.60 -0.08
SP-IV LP-C 0.16 0.84 0.05
SP-IV VAR 0.12 0.83 0.09

H = 20
2SLS 0.24 0.76 -0.02
SP-IV LP 0.24 0.75 -0.02
SP-IV LP-C 0.23 0.81 0.02
SP-IV VAR 0.17 0.83 0.05

Empirical Size of Nominal 5% Tests
H = 8 H = 20

Wald 2SLS 55.0 96.0
Wald SP-IV LP 61.2 96.0
Wald SP-IV LP-C 9.3 34.9
Wald SP-IV VAR 5.5 13.3

AR 2SLS 72.5 72.3
AR SP-IV LP 67.6 54.4
AR SP-IV LP-C 4.6 5.8
AR SP-IV VAR 4.9 4.5

KLM 2SLS 82.5 85.9
KLM SP-IV LP 81.5 72.4
KLM SP-IV LP-C 5.2 5.5
KLM SP-IV VAR 4.9 4.6

Notes: Left: top row reports the true Smets and Wouters (2007) model parameters,
and the remaining rows the mean estimates across 5000 Monte Carlo samples. All IV
estimators use h = 0, ...,H − 1 and the lag endogenous monetary policy instrument
described in the text. SP-IV LP and LP-C denote implementations based on LPs
without and with Xt−1 (described in the text) as controls, respectively. SP-IV VAR
denotes implementation with a VAR for Xt with four lags. Right: Robust tests for
2SLS use a Newey-West HAR variance matrix with Sun (2014) fixed-b critical values;
inference procedures for SP-IV are described in Section 2 and Appendix A.

shocks in the SW model, augmented with a linear function of inflation over the
past four quarters. We estimate the coefficients on lagged inflation by regressing
the actual Romer and Romer (2004) measures on four lags of the log change in
the GDP deflator (the inflation measure used to estimate the SW model) over
the 1969-2004 sample. The resulting instruments have non-zero covariances with
lagged inflation that are calibrated to the U.S. data (with an R2 of 0.08), and
therefore violate the lag exogeneity requirement. However, by construction, the
simulated instruments are exogenous conditional on Xt−1, since the relevant lags
of inflation are included among the variables in the control set.

The left panel in Table 1 reports mean estimates of β = [γb, γf , λ]′ across 5000
Monte Carlo samples. We consider specifications with horizons of H = 8 and
H = 20 quarters. To minimize small-sample features and focus on the violation
of the exogeneity requirements, Table 1 considers a long sample T = 5000. The
true model parameters are shown in the first row, with OLS estimates in the

21



second. The remaining rows report results for 2SLS with H lags of the monetary
policy instrument, SP-IV based on LP without controls (SP-IV LP), and LP and
VAR implementations of SP-IV (LP-C and VAR) conditioning on Xt−1.

Unsurprisingly, the OLS estimates are severely biased because of endogeneity,
pointing incorrectly to a completely flat Phillips curve. Because of the violation
of lag exogeneity, the estimates based on 2SLS with DL instruments are also
strongly biased. The average estimate of λ even has the wrong sign for both
H = 8 and H = 20. The next row shows the SP-IV estimator without controls
Xt−1; it is also biased because, like 2SLS, it requires lag exogeneity to hold. The
bias is almost identical to that of 2SLS since in this case SP-IV and 2SLS exploit
very similar sample moments for identification.

The next two rows show the SP-IV estimators that condition on Xt−1 using
either LPs or a VAR. Both procedures produce mean estimates with the correct
sign and values that are much closer to the truth. The reason for the smaller
bias is the conditioning step, which helps eliminate the persistent influence of past
markup shocks that leads to a violation of the lag exogeneity requirement. The
lag-truncation bias present at longer horizons in the IRF coefficients underlying
the SP-IV VAR estimates is relatively inconsequential. For H = 20 the SP-IV
VAR estimates are in fact closer to the truth than the SP-IV LP-C estimates.

The right panel of Table 1 reports empirical rejection rates for nominal 5%
tests that β equals the true value for the various SP-IV inference procedures
described in Section 2 and Appendix A. Table 1 also reports analogous HAR
procedures for the single equation specification with DL instruments, referred to
as ‘AR 2SLS’ and ‘KLM 2SLS’ for simplicity.10 When exogeneity fails, rejection
rates will not match nominal levels. As Table 1 shows, every test associated with
estimators for which exogeneity is violated (OLS, 2SLS, and SP-IV LP) is indeed
badly oversized. Conversely, for the SP-IV estimators that condition on Xt−1,
(SP-IV LP-C and SP-IV VAR), the robust AR and KLM tests, defined in (21) and
(22) respectively, exhibit empirical rejection rates very close to 5%, again demon-
strating that the conditioning step adequately protects against the violation of
lag exogeneity.11 While the SP-IV estimators with controls have much smaller

10This is a slight abuse of terminology as the AR and KLM test are defined by the moments they evaluate,
and are not tied to a particular estimator. Both tests require HAR covariance estimates because of serial
correlation in the Phillips curve residual ut and the DL structure of the instrument set.

11As explained in Appendix A, the fact that IRF estimates at horizons beyond the VAR lag length are
inconsistent does not affect the asymptotic validity of the AR or KLM tests for SP-IV VAR used in the
simulations.
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bias, some bias remains. The fact that robust inference procedures effectively
control size indicates residual bias is related to the weakness of the instruments,
even in a relatively large sample. This is consistent with the corresponding Wald
test remaining somewhat oversized, especially when H = 20.

The results in Table 1 illustrate the advantage of SP-IV with controls rela-
tive to 2SLS in terms of weakening the exogeneity conditions. As explained in
Section 1.3, adding Xt−1 or Xt−H as controls to both stages of 2SLS does not
similarly remove the lag endogeneity bias. Simulation results reported in the
Online Appendix show that both these alternative 2SLS estimators perform very
poorly under lag endogeneity. In our simulation setup, a version of 2SLS without
controls but using a DL of z⊥t – the residual in a regression of zt on Xt−1 – as
instruments does successfully remove the endogeneity bias in large samples. The
reason is that the Phillips curve residual ut in the SW model does not depend
on lags of the uncontaminated monetary policy shock. However, for the reasons
given in Section 1.3, the same 2SLS estimator with a DL of z⊥t as instruments does
not perform as well as SP-IV with controls in simulations with small samples,
which we discuss next.

3.2. Small Sample Performance

Given the limited role of monetary policy shocks for inflation dynamics in the
SW model, estimating the parameters of the Phillips curve using monetary policy
shocks as instruments is especially challenging in small samples. The main goal
of the next simulations is to show how the conditioning step in SP-IV may not
only weaken exogeneity requirements but also substantially alleviate weak instru-
ment problems. To level the playing field across estimators, we now assume that
the econometrician has the true monetary policy shocks as instruments. This
assumption is unrealistic but permits a comparison between the various estima-
tors focused solely on instrument strength, as the exogeneity requirement is now
satisfied for all IV estimators. We consider a sample of T = 250 quarters, a
best-case in most macro applications roughly corresponding to the postwar pe-
riod, but also report results for T = 500 and T = 5000 to verify the asymptotic
properties of the estimators and inference procedures.

Bias. Table 2 reports the mean estimates of β = [γb, γf , λ]′ for the various
samples sizes. The first two rows report the true model parameters and OLS
results. As expected, OLS is severely biased regardless of T due to endogeneity.
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Table 2: Mean parameter estimates

T = 250 T = 500 T = 5000
γb γf λ γb γf λ γb γf λ

True Value 0.15 0.85 0.05 0.15 0.85 0.05 0.15 0.85 0.05
OLS 0.47 0.47 0.00 0.48 0.48 0.00 0.48 0.48 0.00

H = 8
2SLS 0.27 0.51 0.01 0.24 0.61 0.00 0.17 0.83 0.04
SP-IV LP 0.26 0.51 0.01 0.24 0.60 0.00 0.17 0.83 0.04
SP-IV LP-C 0.29 0.64 0.05 0.25 0.74 0.04 0.16 0.84 0.05
SP-IV VAR 0.22 0.80 0.03 0.18 0.84 0.05 0.12 0.83 0.09

H = 20
2SLS 0.39 0.53 0.00 0.36 0.61 0.00 0.23 0.80 0.01
SP-IV LP 0.38 0.53 0.00 0.35 0.61 0.00 0.23 0.80 0.01
SP-IV LP-C 0.41 0.55 0.01 0.37 0.64 0.01 0.23 0.81 0.02
SP-IV VAR 0.27 0.80 0.01 0.23 0.84 0.02 0.17 0.83 0.05

Notes: Top row reports the true parameter values in the Smets and Wouters (2007)
model. The other rows report the mean estimates across 5000 Monte Carlo samples. All
IV estimators are based on h = 0, ...,H − 1 and use true model shocks as instruments.
SP-IV LP and LP-C denote implementations based on LPs without and with Xt−1 as
controls, respectively. SP-IV VAR denotes implementation with a VAR for Xt with
four lags.

The other rows show the results for 2SLS with DL instruments and the various
SP-IV estimators with H = 8 or H = 20 quarters.

As the first row under H = 8 in Table 2 shows, 2SLS produces estimates
that are closer on average to the true parameter values than OLS. Because the
instruments are now lag exogenous, the 2SLS estimates converge to the truth
as the sample size grows. However, despite the use of valid instruments, there
remains considerable bias in realistic samples with T = 250. The Phillips Curve
slope, λ, is estimated to be much flatter on average than in the model: 0.01
compared to 0.05. The backward and forward-looking inflation terms are also
heavily misweighted, with γf too low on average, and γb too high. These results
make sense, since 2SLS is biased towards OLS with weak instruments. The next
row shows that, without controls, the bias of SP-IV is almost identical to that of
2SLS for all T . This is again unsurprising as in this case both 2SLS and SP-IV
exploit essentially the same identifying moments.

The next two rows under H = 8 illustrate the possible bias reductions when
using the LP-C or VAR implementations of SP-IV, both of which condition on
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Xt−1. For the LP-C implementation, the estimates of λ average approximately
the true value of 0.05 in samples with T = 250. The forward-looking coefficient
in the Phillips Curve, γf , is also considerably closer to the truth, and the bias
in the backward-looking coefficient, γb, is only marginally worse. The VAR im-
plementation of SP-IV also delivers substantial bias improvements in all three
coefficients. Relative to the LP-C implementation, the improvements are sub-
stantially larger for γb and γf , while the improvement for λ is somewhat smaller.
Taken together, the reductions in small sample bias by adopting SP-IV LP-C or
SP-IV VAR are sizeable. These reductions are also economically meaningful, as
the differences in mean parameter estimates have considerable implications for
inflation dynamics and the inflation-output gap trade-off. As discussed in Sec-
tion 1.3, the improvements relative to 2SLS arise because the conditioning step
amplifies the signal provided by the monetary policy shock instrument, which
is generally weak in the Smets and Wouters (2007) DGP. The Online Appendix
presents additional results with multiple demand shocks as instruments (Nz = 3)
that are qualitatively similar.

The extent of the improvements in small sample performance of SP-IV relative
to 2SLS depends on the choice of H. Including additional horizons can add
useful identifying variation. On the other hand, the endogenous variables become
harder to predict at longer horizons. The results in Table 2 for H = 20 show
that the relative performance of the estimators is qualitatively the same as for
H = 8. Quantitatively, however, the reductions in bias under the LP-C or VAR
implementations of SP-IV are smaller than they are for H = 8. In general, as
predicted in Section 1.3, the advantages of SP-IV over 2SLS diminish as the
number of lags included as instruments in 2SLS – which is also the maximum
forecast horizon in SP-IV – grows larger.

The Online Appendix shows that alternative versions of 2SLS that incorporate
controls do not generate the same bias reductions as SP-IV with controls. Adding
Xt−1 as regressors in both stages greatly weakens identification, and on average
results in estimates of λ that have the wrong sign for all sample sizes. Regressing
zt on Xt−1 and including a DL of the residual as instruments yields essentially
the same results as 2SLS with a DL of zt. Finally, including Xt−H as regressors
in both stages leads to some improvement relative to 2SLS without controls, but
the reductions in bias are meaningfully smaller than for SP-IV with controls.
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Table 3: Standard deviation of parameter estimates

T = 250 T = 500 T = 5000
γb γf λ γb γf λ γb γf λ

H = 8
2SLS 0.27 0.33 0.20 0.24 0.30 0.21 0.13 0.08 0.09
SP-IV LP 0.27 0.35 0.22 0.25 0.30 0.22 0.13 0.08 0.09
SP-IV LP-C 0.28 0.27 0.25 0.26 0.20 0.23 0.12 0.06 0.08
SP-IV VAR 0.32 0.36 0.30 0.30 0.24 0.26 0.14 0.06 0.09

H = 20
2SLS 0.11 0.12 0.05 0.10 0.11 0.06 0.07 0.05 0.03
SP-IV LP 0.12 0.13 0.06 0.11 0.11 0.06 0.07 0.05 0.03
SP-IV LP-C 0.09 0.11 0.06 0.09 0.09 0.05 0.08 0.05 0.04
SP-IV VAR 0.21 0.25 0.11 0.20 0.19 0.09 0.11 0.06 0.06

Notes: Standard deviations of the estimates across 5000 Monte Carlo samples from the
Smets and Wouters (2007) model. All IV estimators are based on h = 0, ...,H − 1 and
use true model shocks as instruments. SP-IV LP and LP-C denote implementations
based on LPs without and with Xt−1 as controls, respectively. SP-IV VAR denotes
implementation with a VAR for Xt with four lags.

Variance. Table 3 reports the standard deviations of the various IV estima-
tors. Section 1.3 showed that SP-IV with controls can be asymptotically more
efficient than 2SLS when H is not too large and the error term ut is a suffi-
ciently persistent AR(1) process. While the error term in our simulations is the
ARMA(1,1) process in (23), similar efficiency gains can arise. Table 3 indeed
shows efficiency gains for T = 5000. For H = 8, the standard deviations of the
SP-IV LP-C estimates are uniformly smaller than those of the 2SLS estimates.
For the VAR implementation, the standard deviation is smaller for estimates of
γf , and roughly similar to 2SLS for the other two parameters. Consistent with
the theory, the relative efficiency of SP-IV disappears for larger H, as can be seen
for H = 20 and T = 5000 in the bottom panel. Also consistent with the theory
is that the conditioning step is essential to realize any efficiency gains: the SP-IV
estimates that do no condition on Xt−1, in the second row of each panel, have
similar or larger variance than 2SLS. In smaller samples with T = 250 or 500,
the LP-C implementation of SP-IV has some standard deviations smaller than
2SLS, and some larger. For T = 250 or 500, the standard deviations of SP-IV
VAR, on the other hand, are systematically greater than 2SLS.

At least for the DGP considered here, the LP-C implementation of SP-IV
consistently generates lower bias than 2SLS, while it has similar or smaller vari-
ance. The VAR implementation yields further reductions in bias in our setting,
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but generally also has slightly higher variance. That the VAR implementation
has smaller bias but greater variance may be surprising given the bias-variance
trade-off between VARs and LPs for the estimation of IRFs, see Li et al. (2021).12

However, SP-IV does not estimate IRFs, but relationships between IRFs. Biases
and covariances across IRFs can have offsetting or reinforcing effects on the bias
and variance of the SP-IV estimators. The balance of these effects, however, is
likely to be application-specific.

Table 3 further shows that all standard deviations are decreasing in H, indi-
cating that additional horizons reduce the variability of all IV estimators. Given
our bias results, this implies a bias-variance trade-off when choosing the maxi-
mum horizon H for SP-IV: larger H provides smaller bias improvements relative
to 2SLS with DL instruments, but also generates less variable estimates. Simu-
lations reported in the Online Appendix with three model shocks as instruments
(Nz = 3) show a similar bias-variance trade-off for choosing Nz: using three
instruments results in smaller bias improvements, but also lower variances.

The Online Appendix also reports results for the feasible 2-step efficient GMM
versions of SP-IV (or ‘generalized’ SP-IV), which are in theory asymptotically
more efficient than our baseline estimators. Unfortunately, we find that the
feasible versions do not generally improve performance in practice, at least not
for realistic sample sizes and our data-generating process.

Inference. Given that monetary policy shocks are weak instruments, a key
question is how severe size distortions are using standard Wald inference, and
how well the weak instrument robust procedures control size in practice. It is
well known that robust procedures may still perform poorly when the number of
instruments is large (Bekker 1994). Barnichon and Mesters (2020), for example,
report severe size distortions for AR inference with long lag sequences of instru-
menting shocks. Since SP-IV uses HNz moments, it potentially faces the same
theoretical “many-moments” problem as 2SLS with HNz instruments (Han and
Phillips 2006; Newey and Windmeijer 2009).

Table 4 reports empirical rejection rates for nominal 5% tests of the true values
of the full parameter vector, β = [γb, γf , λ]′ for sample sizes of T = 250, 500 and
5000. To better assess distortions due to many moments, Table 4 also reports
results for Nz = 3 and H = 20, see the Online Appendix for details. Note that
size distortions related to weak instruments will generally decrease with T since

12The Online Appendix shows that this trade-off is also present for the IRFs in our simulations.
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the first-stage relationships remain fixed and identification strength therefore
improves with T .

Table 4: Empirical size of nominal 5% tests

H = 8, Nz = 1 H = 20, Nz = 1 H = 20, Nz = 3
T = 250 500 5000 250 500 5000 250 500 5000

Wald 2SLS 9.1 7.5 10.9 67.2 60.8 45.4 100.0 99.9 94.3
Wald SP-IV LP 16.4 12.9 14.3 71.2 67.0 47.7 100.0 99.9 93.8
Wald SP-IV LP-C 14.8 12.5 9.3 74.6 67.0 34.9 100.0 99.8 83.0
Wald SP-IV VAR 7.9 6.5 5.5 33.7 27.0 13.3 86.7 76.7 54.1

AR 2SLS 7.6 6.8 4.6 14.0 10.5 5.2 60.0 36.3 6.4
AR SP-IV LP 6.3 5.7 5.0 10.4 6.9 5.8 14.3 8.0 5.0
AR SP-IV LP-C 6.4 5.7 4.6 11.3 7.1 5.8 16.9 9.2 5.1
AR SP-IV VAR 4.2 4.9 4.9 5.8 5.6 4.5 6.5 5.2 4.6

KLM 2SLS 3.9 3.7 3.8 4.7 5.1 4.9 0.0 7.2 5.0
KLM SP-IV LP 6.0 5.2 5.0 7.5 6.5 4.9 7.6 6.5 5.3
KLM SP-IV LP-C 7.4 5.4 5.2 11.2 7.4 5.5 11.4 7.6 6.1
KLM SP-IV VAR 5.6 5.3 4.9 8.5 6.8 4.6 11.7 8.5 5.5

Notes: Empirical rejection rates of nominal 5% tests of the true values of β = [γb, γf , λ]
′

in 5000 Monte Carlo samples from the Smets and Wouters (2007) model. All IV
estimators are based on h = 0, ...,H − 1 and use true model shocks as instruments.
Robust tests for 2SLS use a Newey-West HAR variance matrix with Sun (2014) fixed-b
critical values; inference procedures for SP-IV are described in Section 2 and Appendix
A.

As Table 4 shows, Wald tests for 2SLS exhibit meaningful size distortions
for H = 8, with empirical rejection rates substantially above the nominal 5%.
The size distortions increase meaningfully as H and/or Nz become larger. These
distortions are not surprising given the weakness of the instruments, and demon-
strate the need for robust inference procedures. For H = 8 and Nz = 1, the AR
2SLS test is relatively well-sized in small samples. Indicative of many-moment
problems, the AR 2SLS test becomes noticeably oversized in small samples when
H = 20, and even more so when in addition Nz = 3. The KLM 2SLS test controls
size better but can be conservative, which is potentially due to the use of only
approximate fixed-b critical values for HAR inference.

Just like for 2SLS, the SP-IV Wald tests show size distortions that become
very large as H and Nz increase. The SP-IV AR tests are overall well-sized. Both
the LP and LP-C implementations over-reject in small samples when H = 20,
but somewhat less so than AR 2SLS. The SP-IV KLM tests are also generally
well-sized. Just like the AR tests, the KLM tests exhibit some over-rejection in
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small samples whenH = 20 and/or Nz = 3. Overall, however, the size distortions
of the robust SP-IV tests with large HNz appear milder than those for the robust
2SLS tests.13 Because of many-moment problems, we nevertheless recommend
avoiding very large HNz also when using SP-IV.

In practice, there is no need to use all horizons for identification. Researchers
can, for example, select impulse response horizons at lower frequencies than that
of the time series (e.g. quarterly horizons in monthly data, annual horizons
in quarterly data, etc.), especially since adjacent horizons do not necessarily
contain much independent identifying information for typical shapes of IRFs.
Further refinements are also possible to address any remaining many instrument
problems, see for example Mikusheva (2021) for suggestions. In the context of
2SLS with DL instruments, Barnichon and Mesters (2020) propose quadratic
approximations to the IRFs to avoid many instrument problems, and similar
approximations are possible with SP-IV.14 Other test statistics could possibly
be adapted to SP-IV and offer improvements over the AR and KLM tests, for
example, those based on Moreira (2003) or Andrews (2016). Given the relatively
good performance of our robust test statistics in the simulations, we leave such
extensions for future work.

4. Application to the Phillips Curve with U.S. Data

In this section, we use SP-IV to estimate the parameters of the Phillips curve
in (2) using U.S. data and compare the results with 2SLS with DL instruments.
We consider the following specification for monthly inflation,

π1m
t = (1− γf )π1y

t−1 + γfπ
1y
t+12 + λUt + ut ,(24)

where π1m
t is the annualized monthly percent change in the Core CPI, π1y

t is
the percent change in the Core CPI over the preceding year in month t, and Ut
is the headline unemployment rate in month t. The specification and variable
definitions are similar to Barnichon and Mesters (2020), but we use monthly

13One likely reason that the robust SP-IV procedures control size distortions better is that 2SLS requires
HAR covariance estimates, see footnote 10. As a result, the number of parameters to be estimated increases
much more quickly with HNz than for the SP-IV covariances.

14In simulations available on request, we consider Barnichon and Mesters’s (2020) 2SLS estimator with
Almon shrinkage. The performance is poor, with bias highly variable over H, T , and parameters, and
standard deviations one to two orders of magnitude larger than those of the other estimators. No inference
procedure controls size well across all specifications. In contrast, we find that SP-IV LP-C and VAR perform
very well when tested on Barnichon and Mesters’s (2020) DGP.
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data from Jan 1978 to Feb 2020 (506 observations) instead of quarterly data.
As is common in the literature, e.g. Mavroeidis et al. (2014), (24) restricts the
coefficients on lagged and future inflation to sum to unity, γb + γf = 1, which
imposes that there is no long-run trade-off between unemployment and inflation.
The restriction is implemented by rewriting (24) as π1q

t −π
1y
t−1 = γf (π

1y
t+12−π

1y
t−1)+

λUt + ut. We consider a maximum forecast horizon of 3 years (36 months). To
make efficient use of the identifying information in the IRF dynamics and mitigate
many-moment problems, we only use the coefficients in the first month of each
of the first 12 quarters of the response horizons – that is, h = 0, 3, 6, . . . , 33. We
consider identification with a single economic shock, such that for both SP-IV
and 2SLS there are 12 identifying moments. We use the VAR implementation
of SP-IV, using a VAR with six lags in the following standard monthly macro
variables as controls: the annualized monthly percent change in the core CPI,
the unemployment rate, the 12-month change in log industrial production, the
12-month percent change in the PPI for all commodities, the 3-month Treasury
rate, and the 10-year Treasury rate.

As the instrument, we use a monthly version of the Angeletos et al. (2020)
Main Business Cycle (MBC) Shock, identified within our VAR by maximizing the
contribution to cyclical unemployment fluctuations in the frequency domain. An-
geletos et al. (2020) find that the resulting shock is interchangeable with shocks
identified by maximizing the cyclical variance contribution to other major macro
aggregates, such as GDP, consumption, investment, or hours worked. This in-
terchangeability suggests a single main driver of business cycles with a common
propagation mechanism. Empirically, this propagation mechanism best fits the
notion of an aggregate demand shock, making the MBC shock a plausible instru-
ment for estimating the Phillips curve.

We chose the MBC shock for two main reasons. The first reason is that it
serves as a good illustration of how SP-IV can be useful when interpreting em-
pirical IRFs. Observing the disconnect between the unemployment and inflation
impulse responses to the MBC shock, a key conclusion in Angeletos et al. (2020)
is that the Phillips curve must be nearly completely flat. Rather than relying
on informal visual inspections of IRFs, SP-IV allows a formal econometric in-
vestigation of the Phillips curve relationship embedded in the VAR-based IRFs.
The second reason is that the MBC shock is likely the strongest available in-
strument for identifying the Phillips curve. By construction, the MBC shock is
highly predictive for unemployment fluctuations over business cycle horizons. We
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find that the MBC shock also has some strength for inflation at horizons up to
three years. The first two columns in the first row of Table 5 show test statistics
and critical values of the weak instruments test for SP-IV, along with those for
2SLS (without controls) based on the HAR first-stage test of Lewis and Mertens
(2022). For illustrative purposes, the other columns in Table 5 report results for
each endogenous regressor separately. The test statistic is 6.3 for SP-IV, with a
critical value of 22.0 for the null of at most 10 percent bias at the 5% level (the
threshold suggested by Stock and Yogo (2005)). The test statistics are 19.8 and
6.4, respectively, for unemployment and inflation separately (critical values of
21.7 and 18.6). The test statistics for 2SLS are all much lower relative to similar
critical values of around 20, which illustrates how including the additional predic-
tors in SP-IV amplifies the signal of the instrument relative to 2SLS. Despite this
amplification, the MBC shock is still judged to be weak at conventional tolerance
levels according to the SP-IV first-stage test. The MBC shock is, nevertheless,
by far the strongest instrument across all candidate shocks that we explored.

In principle, many other shock measures could be used to identify the pa-
rameters of (24), including monetary policy shocks as in Barnichon and Mesters
(2020). Table 5 reports the first stage test results for various popular monetary
policy shock measures. The main takeaway is that, at least in the sample that we
consider, each of the monetary policy shocks is far too weak as an instrument to
be useful for identifying the Phillips curve in practice. A few have some strength
for inflation separately in the first stage of 2SLS, but none do for both endogenous
regressors jointly, which is what matters for identification. Moreover, any hint
of instrument strength disappears entirely after including lagged macroeconomic
variables as controls in SP-IV. That none of the 2SLS/SP-IV first-stage tests with
monetary policy shocks comes close to rejecting the null of weak instruments is
not surprising, as it reflects the broadly held view that monetary disturbances are
relatively unimportant as drivers of inflation and economic activity. We also con-
sidered several other plausible demand shock measures, such as the credit spread
shock of Gilchrist and Zakrajšek (2012) and the Bloom (2009) uncertainty shock,
but none are nearly as strong as the MBC shock in the post-1978 sample. Us-
ing multiple shocks could improve identification strength but creates potential
many-instrument problems. To the extent that the MBC shock indeed collects a
range of demand disturbances that satisfy the exogeneity requirements, it is by
far the most informative available instrument for the identification of the Phillips
curve.
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Table 5: First-Stage Test Results

π, U jointly U separately π separately

2SLS SP-IV 2SLS SP-IV 2SLS SP-IV
g cv g cv g cv g cv g cv g cv

MBC 2.3 21.9 6.3 22.0 4.2 20.4 19.8 21.7 2.3 19.5 6.4 18.6

Monetary Policy Shock Measures:

RR 0.3 20.2 0.4 21.2 0.3 17.7 0.5 20.0 1.9 17.8 0.9 18.6

GK 3.5 21.0 0.1 22.3 3.5 20.3 0.4 22.1 7.4 18.8 0.1 17.3

MAR 0.1 19.7 0.0 21.0 0.2 17.8 0.1 20.9 0.8 18.6 0.0 17.3

JK 0.6 19.9 0.0 22.3 1.5 18.9 0.2 22.1 2.0 18.6 0.1 17.3

SWA 1.0 19.7 0.0 22.3 1.0 19.4 0.1 22.1 5.7 17.2 0.0 17.3

BC 1.3 21.1 0.0 22.3 2.1 19.7 0.1 22.1 5.4 18.9 0.0 17.3

SN 1.0 20.2 0.0 22.5 1.1 19.4 0.1 22.1 7.1 17.0 0.0 17.6

Notes: The table reports test results for the null hypothesis of weak instrument bias less than
or equal to 10% of the worst-case benchmark. g is the test statistic, cv is the 5% critical value.
U and π are the endogenous regressors in the restricted equation, i.e. Ut and π

1y
t+12 − π

1y
t−3. For

2SLS, results are for the HAR test of Lewis and Mertens (2022). For SP-IV, the test is described
in the Online Appendix. MBC is the main business cycle shock of Angeletos et al. (2020). The
monetary policy shock measures are Romer and Romer (2004) (RR), Gertler and Karadi (2015)
(GK), Miranda-Agrippino and Ricco (2021) (MAR), Jarociński and Karadi (2020) (JK), Swanson
(2021) (SWA), Barakchian and Crowe (2013) (BC), Nakamura and Steinsson (2018) (NS). RR,
GK, and BC are updated versions from Ramey (2016); the other series are from the original
sources.

Our monthly version of the MBC shock produces IRFs that are very consistent
with those in Angeletos et al. (2020). The red lines in Figures 1a-1b plot VAR-
based IRFs of π1m

t and Ut to a one-standard-deviation MBC shock. The figures
show the first twelve IRF coefficients that are used in the estimation and also
show the next eight quarters to visualize the full dynamics. As in Angeletos et al.
(2020), the MBC shock looks like an aggregate demand shock, driving unemploy-
ment higher and inflation lower. At the same time, the MBC shock explains a
relatively small fraction of the forecast error variance (FEV) of inflation, nearly
zero on impact and only 20% after two years, see Figure 1c. This finding illus-
trates the apparent “disconnect” between inflation and the shock that explains
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Figure 1: Impact of the MBC Shock on Inflation and Unemployment
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Notes: Inflation is the annualized Core CPI inflation rate from a quarter ago (π1q
t ). IRFs in red

in (a) and (b) are from a VAR with six lags using the annualized monthly core CPI inflation,
the unemployment rate, the 12-month change in log industrial production, the 12-month percent
change in the PPI for all commodities, the 3-month Treasury rate, and the 10-year Treasury
rate. The estimation sample is from Jan 1978 to Feb 2020. Blue lines in (a) and (b) show results
from the DL regressions in the first stage of 2SLS. Panel (c) shows the FEV contributions of the
MBC shock in the VAR.

most of the cyclical variation in unemployment, see also Del Negro et al. (2020).
As previously explained, both 2SLS and SP-IV estimates can be expressed as
the coefficients in regressions of IRFs. In SP-IV, these IRFs are the red lines in
Figures 1a-1b.15 The 2SLS estimator instead uses the IRFs obtained from DL
regressions of π1m

t (and π1y
t−1 and π

1y
t+12) and Ut on the current and lagged values of

the MBC shock. For illustration, these IRFs are shown in blue in Figures 1a-1b.
Figure 2 displays the estimates of γf and λ, together with 68%, 90% and 95%

confidence sets. Since neither of the first-stage tests in Table 5 rejects the null
of weak instruments, the confidence sets are both based on the KLM statistic.
The point estimates of γf , the weight on future inflation, are 0.65 for 2SLS and
0.66 for SP-IV. The slope estimates are also close, λ = −0.15 in SP-IV versus
λ = −0.14 in 2SLS, and have the expected negative sign since unemployment
is the gap measure. The similarity in point estimates is not too surprising,
given that we use the VAR-identified MBC shock to construct the instruments
for 2SLS. The inference results, on the other hand, are much less similar. The
confidence sets based on the 2SLS "single equation" moments do not reject any
plausible values of γf , nor do they rule out a wide range of possible values of
λ. Comparatively, inference for SP-IV is much sharper for the weight on future
inflation, with the confidence set ruling out values of γf that are meaningfully

15The IRF of π1y
t+12 − π

1y
t−1 is straightforward to construct from the IRF of π1m

t .
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Figure 2: 2SLS and SP-IV Confidence Sets for Estimates of Phillips Curve Parameters
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Notes: Figures show point estimates and 68%, 90% and 95% confidence sets based on
the KLM statistic for SP-IV VAR described in Appendix A. Confidence sets for 2SLS
are based on the KLM test and a Newey-West HAR covariance matrix with Sun (2014)
fixed-b critical values.

below 0.5 or above 1. At the same time, the SP-IV sets also do not rule out a wide
range of possible Phillips curve slopes, with values of λ ranging from close to -0.6
to somewhat greater than zero within the 90% set. We attribute the relatively
more informative SP-IV confidence sets to the greater effective strength of the
instruments, as discussed in Section 1.3.

As to the inflation-activity disconnect, our robust inference results act as a
warning against drawing strong conclusions from informal comparisons of IRF
point estimates. When judging relationships across IRFs, it is important to take
into account that these estimates are inevitably uncertain. SP-IV estimates the
posited relationships between IRFs from VARs or LPs formally and allows in-
ference that is robust to the distortions caused by sampling error in the IRF
estimates. The confidence sets in Figure 1b, for example, are consistent with
weak but also relatively strong cyclical connections between inflation and unem-
ployment. The business cycle anatomy of Angeletos et al. (2020), therefore, does
not provide strong evidence that inflation and activity are largely disconnected.

5. Concluding Remarks and Future Research

While we focused mainly on the identifying the parameters of the inflation
Phillips curve, SP-IV should be useful for identifying a wide variety of structural
relationships in macroeconomics, such as Euler equations for consumption or in-
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vestment, the wage Phillips curve, monetary or fiscal policy rules, and aggregate
production functions.16 SP-IV can be used more broadly to conduct inference on
ratios (or other relationships) of impulse response coefficients, such as Okun co-
efficients, sacrifice ratios, multipliers, etc., conditional on economic shocks. Our
methodology could be extended to panel data settings and should be more gener-
ally useful in applications that commonly rely on lagged variables as instruments,
such as the estimation of production functions in industrial organization. SP-IV
could also be used in cross-sectional applications. If h = 0, ..., H−1 indexes cross-
sectional groups rather than time horizons, then SP-IV amounts to instrumental
variables in the cross-section with heterogeneity in the first stage coefficients. Fu-
ture work can also develop methods to optimally select the horizons/groups used
for identification. We plan to pursue these and other avenues in future research.
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Appendix

A. Practical Implementation of SP-IV with LPs or VARs

Let yH denote the H × T matrix of leads of the outcome variable, i.e. with yt+h
in the h + 1-th row and t-th column. Let YH be the HK × T matrix vertically
stacking the H × T matrices Y k

H for k = 1, . . . , K, each of which has Y k
t+h in the

h + 1-th row and t-th column, and Y k
t the k-th variable in the vector Yt. Let

Xt be the period t observation of an Nx × 1 collection of predetermined control
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variables (including a constant). Xt can include not only current values, but also
lags of yt, Yt, Zt, or any other time series.

Local Projections Define the Nx × T matrix X with controls Xt−1 in the
t-th column, the projection matrix PX = X ′(XX ′)−1X, and residualizing matrix
MX = IT − PX . Using a direct forecasting approach, the forecast errors after
projection on Xt−1 are given by

y⊥H = yHMX , Y ⊥H = YHMX , Z⊥ = ZMX ,(A.1)

which can be used in (9) to obtain the SP-IV estimator β̂. By the Frisch-Waugh-
Lovell Theorem, this direct forecasting approach is equivalent to estimating Jordà
(2005) local projections of yt+h and Yt+h on zt and Xt−1 for h = 0, . . . , H − 1,
using the estimated coefficients on zt to construct the rows of Θ̂y and Θ̂Y and
subsequently constructing the SP-IV estimator using the alternative expression
for β̂ in (13). When Z⊥ are measures of economic shocks, the LP estimates
are IRF coefficients representing the dynamic causal effects of the shocks. Some
studies estimate IRFs by local projections of an endogenous outcome variable at
t + h on an endogenous explanatory variable Y k

t and controls Xt−1 using zt as
instruments, a procedure often referred to as “LP-IV”. Such IRFs can be used for
identification in the SP-IV estimator exactly as described above, i.e. using the
reduced form projections of the outcome variables on zt and Xt−1.

Vector Autoregressions Suppose that yt, Yt, and zt, are – possibly together
with other variables – all contained in Xt and that Xt evolves according to a
VAR,

Xt = AXt−1 + et .(A.2)

The representation in terms of a VAR of order one is without loss of generality,
as any VAR of order p can be rewritten as a VAR of order one (in “companion
form”). As before, let X denote the Nx×T matrix with Xt−1 in the t-th column,
and let Xf denote the Nx × T matrix with Xt in the t-th column. The standard
estimator of A is Â = XfX ′(XX ′)−1, leading to the h-step ahead forecast errors

X⊥t (h) =
h∑
j=0

Âh−j êt+j , êt = Xt − ÂXt−1 .(A.3)
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The appropriate selection of elements in X⊥t (h) leads to y⊥H , Y ⊥H and Z⊥, which
can be used to obtain the SP-IV estimator β̂ in (9). “Structural” VARs are VARs
in which researchers make assumptions to identify columns of D in et = Dεt,
allowing the estimation of IRFs that are interpretable as dynamic causal effects
of the associated economic shocks in εt. If ε̂1:Nz

t are the Nz identified shocks in the
structural VAR, it is possible to use z⊥t = ε̂1:Nz

t to form Z⊥ and use these shock
estimates for identification in the SP-IV estimator. This procedure also nests
identification with “external instruments”, which can be directly included in the
VAR and combined with zero restrictions in D as proposed by Plagborg-Møller
and Wolf (2021), or used indirectly as instruments to identify columns in D as in
the “proxy SVAR” or “SVAR-IV” approach (Mertens and Ravn 2013; Stock and
Watson 2012; Stock and Watson 2018). Note that (11), or equivalently (12), are
consistent estimators of the IRFs associated with ε̂1:Nz

t if the VAR restrictions
imposed hold in the DGP. In finite samples, however, these IRF estimates will
not be numerically identical to those obtained from Θ̂V AR

X,h = ÂhD1:Nz, h =

0, . . . , H − 1, where D1:Nz denotes the first Nz columns of D. The reason is that
the restrictions implied by the VAR dynamics are imposed on the reduced form
forecast errors, but (11) or (12) do not impose the same VAR dynamics on the
IRFs.

Our preferred implementation of SP-IV with structural VARs is instead to
select the elements corresponding to yt and Yt in Θ̂V AR

X,h to form Θ̂y and Θ̂Y ,
and then obtain the SP-IV estimator from the regression of impulse responses
as in (13). This alternative implementation imposes the VAR dynamics on both
the reduced form forecast errors as well as on the impulse responses. In general,
imposing the VAR dynamics is easily done in all formulas above by replacing
y⊥HPZ⊥Y ⊥H by Θ̂V AR

y (Θ̂V AR
Y )′ and Y ⊥H PZ⊥Y ⊥H by Θ̂V AR

Y (Θ̂V AR
Y )′, where Θ̂V AR

Y is
the HK × Nz matrix stacking the K blocks of the VAR IRF coefficients of Yt,
and Θ̂V AR

y contains the H × Nz VAR IRF coefficients of yt. When comfortable
imposing VAR dynamics, it makes sense to impose these restrictions consistently,
and we therefore recommend this second implementation for SP-IV with VARs.

To impose the VAR dynamics in the Generalized SP-IV formula (B.1), re-
place y⊥HPZ⊥ by Θ̂V AR

y (ZMXZ
′/T )−

1
2ZMX . To impose the VAR dynamics in

the KLM statistic in (22), replace Y ⊥H PZ⊥ by Θ̂V AR
Y (ZMXZ

′/T )−
1
2ZMX , replace

u⊥H(b)PZ⊥ by
(
ΘV AR
y − (b′ ⊗ IH)ΘV AR

Y

)
(ZMXZ

′/T )−
1
2ZMX , and u⊥H(b)MZ⊥ by

u⊥H(b)−
(
ΘV AR
y − (b′ ⊗ IH)ΘV AR

Y

)
(ZMXZ

′/T )−
1
2ZMX . When imposing the VAR

restrictions in the AR test for SP-IV, some additional care is warranted. First,
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when replacing u⊥H(b)PZ⊥ in (21), it is important that the VAR IRFs are consis-
tent for all horizons. This requires that the VAR restrictions hold in the DGP
for inference based on the AR statistic to be a correctly-sized test of the null
hypothesis. Second, the normalizing variance in (21) must also take the VAR re-
strictions into account, which can be done in practice by computing the variance
using the Delta Method.

Table A.1: SPIV-VAR: Empirical size of nominal 5% tests

H = 8, Nz = 1 H = 8, Nz = 3
T = 250 500 5000 250 500 5000

AR SP-IV VAR, FE only 4.2 4.9 4.9 3.9 5.1 4.8
AR SP-IV VAR, IRFs and FE 4.7 3.1 7.6 3.4 1.9 91.7
AR SP-IV VAR, IRFs and FE, 8 lags 25.2 11.7 5.7 49.2 19.2 6.1

KLM SP-IV VAR, FE only 5.5 5.3 5.1 5.9 5.6 4.7
KLM SP-IV VAR, IRFs and FE 5.6 5.3 4.9 6.9 6.6 4.9
KLM SP-IV VAR, IRFs and FE, 8 lags 5.0 5.1 5.0 6.7 6.0 4.7

Notes: Empirical rejection rates of nominal 5% tests of the true values of β = [γb, γf , λ]
′

in 5000 Monte Carlo samples from the Smets and Wouters (2007) model. All results are
for SP-IV based on a VAR in Xt using true model shocks as the instrument. ‘FE only’
uses the VAR only to obtain forecast errors, but does not impose the VAR restrictions
on the IRFs. ‘IRFS and FE Only’ impose the VAR restrictions as described in the text.
‘8 lags’ means that a VAR with 8 lags was used instead of a VAR with 4 lags.

As explained in the main text, the SW model used in the simulations of
Section 3 does not permit a finite-order VAR representation in Xt. As a result,
the IRFs based on a VAR with four lags are not (asymptotically) unbiased for
horizons exceeding the lag length, see Plagborg-Møller and Wolf (2021). Table
A.1 reports empirical rejection rates for different versions of the robust SP-IV test
statistics for simulations using the true monetary policy shock as the instrument.
The “FE only” version uses the forecast errors implied by the VAR but does not
impose the VAR restrictions on the IRFs. The “IRFs and FE” version additionally
imposes the VAR restrictions on both the forecast errors and the IRFs. In this
case, the denominator in the AR statistic is obtained using the Delta Method.
The “IRFs and FE, 8 lags” version does the same, except that it is based on a
VAR with eight lags such that the VAR IRFs are consistent for the first eight
IRF horizons. We restrict attention to specifications with H = 8, as the Delta
Method approximation quickly becomes computationally costly as H increases.

The first row in the table shows that misspecification in the IRFs due to lag
truncation in the VAR does not lead to meaningful size distortions in the AR
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test if the VAR is only used to generate the forecast errors. In contrast, the
second row shows that lag truncation bias in the IRFs at longer horizons creates
size distortions when the VAR restrictions are also imposed on the IRFs. The
distortions become larger as sampling error fades with larger T , and when a larger
number of biased IRF estimates are used for identification as Nz increases. The
third row shows that, when T is large, increasing the lag length in the VAR to
eight essentially eliminates the size distortions. However, including more lags in
the VAR creates large distortions in small samples because of the larger number
of VAR parameters to be estimated. In practice, researchers concerned with
VAR lag truncation bias can choose lag length as a function of sample size, or
else simply not impose the VAR restrictions on the IRFs when using the AR test
for inference. In the simulations in Section 3, we chose the latter option and
report the ’FE only’ AR test while keeping the VAR lag length at four for all
sample sizes.

Finally, the next three rows in Table A.1 show that our implementation of the
KLM test for SP-IV is not affected by lag truncation bias. All empirical rejection
rates remain close to nominal size regardless of T , Nz, the number of lags in the
VAR, or whether the VAR restrictions are imposed on the IRFs or not. Given
the greater robustness in the simulations, we recommend inference based on the
KLM test when using the VAR implementation for SP-IV. In the simulations in
Section 3 as well as the empirical application in Section 4, we use the ‘IRFs and
FE’ version of the KLM test that imposes the restrictions implied by a VAR on
the IRFs.

B. Generalized and CUE SP-IV

Using the weighting matrix Φs(β, ζ) = (Σ−1
u⊥H
⊗Q−1), where Σu⊥H

is the covariance
of u⊥H,t, leads to the efficient GMM estimator of β. This estimator is also the

“Generalized Least Squares” version of SP-IV minimizing Tr
(

(u⊥HPZ⊥u⊥′H )Σ−1
u⊥H

)
.

Given Σu⊥H
, the closed form generalized SP-IV estimator is

β̂G =
(
R′
(
Y ⊥H PZ⊥Y ⊥′H ⊗ Σ−1

u⊥H

)
R
)−1

R′
(
Y ⊥H PZ⊥ ⊗ Σ−1

u⊥H

)
vec(y⊥HPZ⊥) .(B.1)

For inference, we replace Assumption 2.d by

Assumption 2.d′. R′(ΘY Θ′Y ⊗ Σ−1
u⊥H

)R is a fixed matrix with full rank.
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Under Assumptions 1, 2.a-2.c, Assumption 2.d′, and Assumption 3,

(B.2)
√
T (β̂G − β)

d→ N(0, VβG) , VβG =
(
R′
(

ΘY Θ′Y ⊗ Σ−1
u⊥H

)
R
)−1

.

The Generalized SP-IV estimator is feasible after replacing Σu⊥H
with a consistent

estimator like the one in Section 2.1, using a two-step or iterated procedure.
Alternatively, the continuously updating (CUE) GMM estimator minimizes the
AR statistic in (21) with respect to b. The KLM statistic in (22) is zero at the
CUE estimator, so both AR and KLM confidence sets contain the CUE.

C. Proof of Proposition 2

Proof. The asymptotic variance of the SP-IV estimator in (9) is

(C.1) aV ar(β̂) = (Θ′Y ΘY )−1Θ′Y
(
INz ⊗ var(u⊥H,t)

)
ΘY (Θ′Y ΘY )−1 ,

The asymptotic variance of the 2SLS estimator is

(C.2) aV ar(β̂2SLS) = (Θ′Y ΘY )−1 var(ut) .

We consider β̂j asymptotically more efficient than β̂i if aV ar(β̂i) − aV ar(β̂j) is
positive semi-definite (Rothenberg and Leenders 1964).

If ut is i.i.d., then it is unpredictable andE[u2
t ] = E[ut(h)2] ∀h and E[ut(s)ut(h)] =

0, s 6= h, so var(u⊥H,t) = var(ut)IH , and part i) follows.
Suppose that Xt−1 is only a constant, or uninformative; then u⊥H,t = uH,t.

aV ar(β̂)−aV ar(β̂2SLS) will be positive definite as long as var(ut) = σ2
υ/(1−ρ2

u) <

maxeval (var(uH,t)). var(uH,t) is a matrix with h, i entry ρ|h−i|u σ2
υ/(1− ρ2

u). When
ρu > 0, by the Perron-Frobenius theorem this matrix has a unique positive
dominant eigenvalue that is bounded from below by the minimum row sum.
The minimum row sum is (

∑H−1
h=0 ρ

h
u)σ

2
υ/(1 − ρ2

u) which is strictly larger than
var(ut) when ρu > 0 and H > 1. Therefore, maxeval var(uH,t) > var(ut) when
ρu > 0, H > 1, completing part ii).

Finally, aV ar(β̂2SLS)− aV ar(β̂) is positive definite if var(ut) = σ2
υ/(1− ρ2

u) >

maxeval
(
var(u⊥H,t)

)
, giving the first part of (iii) . If Xt−1 spans the full history

of υt up to t−1, u⊥t (h) =
∑h

j=0 ρ
j
uυt+h−j, and the condition specializes to σ2

υ/(1−
ρ2
u) > maxeval var(u⊥H,t), where the h, i entry of var(u⊥H,t) is

∑min{h,i}
j=1 σ2

υρ
h+v−2j
u ,

as stated in the proposition.
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Figure C.1: Asymptotic Efficiency of SP-IV and 2SLS
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Notes: Results are for an AR(1) error term with persistence ρu. H is horizon length.

D. Proof of Proposition 3

Proof. Consider the weak instruments asymptotic embedding ΘY = C/
√
T where

C is a HK × Nz fixed matrix. When K = 1, the concentration parameter for
2SLS is Tr(CC ′)/(HNz)/σ

2
ω, where σ2

ω is the variance of the first stage error
term. For SP-IV without conditioning on Xt−1, the concentration parameter is
Tr(CC ′)/(Nz Tr(ΣvH )), see Definition 1 in the Online Appendix. For SP-IV with
conditioning on Xt−1, the concentration parameter is Tr(CC ′)/(Nz Tr(Σv⊥H

)), see
Definition 1 in the Online Appendix. Tr(ΣvH ) is larger than Tr(Σv⊥H

) unless Xt−1

is completely irrelevant for predicting Yt+h, h = 0, ..., H − 1. Parts (i) and (ii)
follow from the expressions for the concentration parameters.
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