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1 Introduction

Empirical researchers using instrumental variables (IV) estimation frequently report first-
stage F -statistics – or in the multiple endogenous regressors case, Cragg and Donald (1993)
statistics – to assess instrument relevance. These statistics are typically compared with crit-
ical values based on the bias of two-stage least-squares (2SLS) relative to the bias of OLS,
which are tabulated by Stock and Yogo (2005). However, these test statistics and critical
values require the assumption of homoskedastic and serially uncorrelated errors, and are
generally invalid if this assumption does not hold. As recently discussed in a survey by
Andrews et al. (2019), in practice this often means that researchers assume homoskedastic
and serially uncorrelated errors for the purpose of a first-stage test, but make different as-
sumptions when conducting inference for the second-stage parameters of interest.

In an important paper, Montiel Olea and Pflueger (2013) introduce a new statistic –
the “effective F-statistic” – that accounts for heteroskedasticity and autocorrelation in the
model errors. Their test is based on a Nagar approximation of the 2SLS bias relative to
a benchmark, and the limiting distribution and associated critical values depend on the
application-specific structure of the robust covariance matrix of the reduced form parame-
ters. A practical limitation, however, is that the test based on the effective F-statistic only
applies to IV models with a single endogenous regressor. Andrews et al. (2019) point to the
lack of a heteroskedasticity and autocorrelation robust (HAR) test for models with multiple
endogenous regressors as an important remaining gap in the IV pre-testing literature.1 The
contribution of this paper is to fill that gap by generalizing the Montiel Olea and Pflueger
(2013) test to allow for an arbitrary number of endogenous regressors, and in so doing extend
the Stock and Yogo (2005) bias-based test to be heteroskedasticity-autocorrelation robust.

Our generalized test statistic is an extension of the Cragg-Donald statistic proposed by
Stock and Yogo (2005), and nests the effective F-statistic as a special case. As in Montiel
Olea and Pflueger (2013), we consider the Nagar approximation of the 2SLS bias relative to
a benchmark. As in Stock and Yogo (2005), we use a weighted `2-norm as our bias criterion.
Our test therefore also nests the Stock and Yogo (2005) test under conditional homoskedas-
ticity, with numerical differences in the critical values that are due only to the use of the
Nagar approximation instead of numerical integration to compute the bias. We show that
the worst-case Nagar bias has a sharp upper bound that is inversely proportional to the min-
imum eigenvalue of the concentration matrix, but depends otherwise only on a covariance

1In practice, researchers sometimes report the Kleibergen and Paap (2006) (KP) HAR version of the Cragg and Donald
(1993) test statistic. However, the KP statistic and its associated limiting distribution are for tests of non-identification,
not weak identification. As discussed in Sanderson and Windmeijer (2016) and Andrews et al. (2019), the KP statistic
should also not be compared to the Stock and Yogo (2005) critical values, as it does not share the limiting distribution
of their Cragg-Donald statistic except in the special case of homoskedasticity.
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matrix that can be consistently estimated using HAR methods. As in the Montiel Olea and
Pflueger (2013) test, obtaining this upper bound requires a numerical optimization step.
With many endogenous regressors, this step could be very costly. However, our formula-
tion of the optimization problem allows the use of efficient specialized numerical techniques
that lead to trivial computation times in typical applications. For very large-dimensional
models, we describe a simplified – but more conservative – procedure that avoids numerical
optimization altogether.

Our generalized test statistic has a limiting distribution related to a matrix consisting of
traces of partitions of a non-central Wishart random matrix. We provide analytical expres-
sions for the cumulants of this matrix of traces, and show that the cumulants of our test
statistic are bounded by expressions that depend only on an estimable covariance matrix and
the minimum eigenvalue of the concentration matrix. We then approximate the bounding
limiting distribution of our test statistic by matching the first three bounding cumulants as
in Imhof (1961). We construct critical values testing the null hypothesis that the minimum
eigenvalue does not exceed the largest value compatible with a given bias threshold (the
instruments are weak), against the alternative that the bias is below that threshold (the
instruments are strong).

To demonstrate the practical usefulness of our test, we consider the Ramey and Zubairy
(2018) IV estimates of state-dependent government spending multipliers. Starting from ex-
isting specifications for estimating the dynamic effects of government spending shocks, the
authors introduce a second endogenous regressor by interacting government spending with
an indicator for the state of the business cycle or for the monetary policy regime. This
application is a good example of how multiple endogenous regressors quickly arise in prac-
tice, as it is common for researchers to explore specifications with interactions between an
endogenous regressor and other variables. Ramey and Zubairy (2018) use local projections
to estimate the effects over different forecast horizons, which means that autocorrelation in
the model errors is almost certainly a concern. Indeed, we find that our robust test regularly
leads to different conclusions regarding instrument strength than the Stock and Yogo (2005)
test which assumes no autocorrelation, or the Montiel Olea and Pflueger (2013) test applied
within each of the regime subsamples. Multiple endogenous regressors of course arise in
many other contexts as well, including in time series, cross-sectional, as well as panel data
models. Our generalized test should therefore be useful to economic practitioners across a
broad range of empirical applications.

Like that of Montiel Olea and Pflueger (2013), and the most widely used test of Stock and
Yogo (2005), our testing procedure is based on a bias criterion. Stock and Yogo (2005) addi-
tionally consider a criterion based on size distortions of second-stage Wald tests. Sanderson
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and Windmeijer (2016) also derive a bias-based test, but study a different class of weakly
identified models. In particular, they consider cases in which the matrix of first-stage co-
efficients has a rank deficiency local to unity, as opposed to a rank local to zero as in the
asymptotic framework of Stock and Yogo (2005) and Montiel Olea and Pflueger (2013). To
date, the Sanderson and Windmeijer (2016) approach has also only been developed under
homoskedasticity. Andrews (2018) takes a distinctly different approach, which is broadly
applicable to GMM problems, whereby both robust and non-robust confidence sets are
computed for the parameters of interest. The relationship between the sets, linked to the
size distortion of standard inference, determines whether identification is strong enough to
proceed with non-robust methods. Finally, a recent paper by Carrasco and Doukali (2021)
introduces a first-stage test that is robust to heteroskedasticity and many instruments. How-
ever, as the Montiel Olea and Pflueger (2013) test, their test only applies to models with a
single endogenous regressor.

When conducted in conjunction with hypothesis tests for identified parameters, pre-
tests for weak instruments form part of a multiple hypothesis testing problem, which can
contribute to size distortions in inference on estimated second-stage parameters; see Lee et
al. (2021). In applying our proposed test, we encourage empirical researchers to be mindful
of this issue, and also consider robust inference procedures for second-stage parameters,
particularly in cases of marginal rejections. However, given the popularity of first-stage tests
in applied work, we view a test that allows researchers to make consistent assumptions in
both estimation stages as an important improvement over the common practice of assuming
away heteroskedastcity and autocorrelation in the first stage, but not in the second.

2 Model and Summary of Testing Procedure

In this section, we provide a non-technical summary of the model assumptions and testing
procedures. We also discuss how our test compares to those of Stock and Yogo (2005) and
Montiel Olea and Pflueger (2013).

Model Our proposed test applies to linear instrumental variables models with N endoge-
nous regressors and K ≥ N instruments,

y = Y β + u,(1)

Y = ZΠ + v,(2)

where β ∈ RN contains the main parameters of interest, and Π ∈ RK×N contains the first-
stage parameters. The econometrician observes y ∈ RT , Y ∈ RT×N , and Z ∈ RT×K , where
T is the sample size. Without loss of generality, we assume that there are no additional
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exogenous regressors, and that Z ′Z/T = IK . In the presence of additional exogenous regres-
sors, it suffices to first project y, Y , and Z on these regressors and replace all variables with
the resulting projection errors. In addition, the formulas in this paper assume the user has
subsequently normalized Z such that its sample average is zero and its sample covariance
is the identity matrix.

Consider the reduced form of (1), y = ZΠβ + w, where w = vβ + u, and assume that
T−

1
2 [Z ′w vec(Z ′v)′]′

d→ N (0,W), where W is the asymptotic covariance of the reduced
form and first-stage OLS coefficients, and vec is the vectorization operator. The weak
instruments test of Stock and Yogo (2005) requires W to be of the Kronecker form Σwv⊗IK ,
where [w v]′[w v]/T

p→ Σwv. The Kronecker structure arises generally only in conditionally
homoskedastic and serially uncorrelated models. The purpose of this paper is to let W

be any positive definite matrix, thereby allowing for arbitrary distributional assumptions
about the model errors. Montiel Olea and Pflueger (2013) also relax the Kronecker form
assumption, but only consider models with N = 1. We defer a detailed discussion of all
our assumptions to Section 3, but they are otherwise entirely analogous to Stock and Yogo
(2005) and Montiel Olea and Pflueger (2013). They include the assumption that the first-
stage relationship in (2) is local to zero, and that the instruments are therefore weak under
the null hypothesis.

Generalized Test In practice, our test for weak instruments consists of the following
steps:

1. Replace all variables with the residuals after projections on any additional exoge-
nous regressors. Normalize the instruments such that the sample average is zero and
Z ′Z/T = IK .

2. Obtain the residuals from the reduced-form regressions of y on Z and Y on Z, denoted
by ŵt and v̂t, respectively, where t = 1, ..., T indexes individual observations. Compute
a heteroskedasticity-robust, heteroskedasticity-and-autocorrelation robust (HAR), or
clustered covariance matrix, Ŵ, of the vector (ŵt, v̂

′
t)
′ ⊗ Zt, or, equivalently, the

reduced-form and first-stage parameters.

3. Compute the test statistic, gmin,

gmin = T−1 mineval{Φ̂−
1
2Y ′ZZ ′Y Φ̂−

1
2},

where Φ̂ = (IN ⊗ vec(IK))′(Ŵ2 ⊗ IK)(IN ⊗ vec(IK)), and Ŵ2 is the lower NK ×NK
diagonal block of Ŵ, corresponding to the estimated robust covariance matrix of the
first-stage coefficients, and mineval{·} is the smallest eigenvalue.

4. For a user-supplied relative bias threshold, τ , (e.g., 0.10), obtain λmin = B(Ŵ)/τ where
B(Ŵ) is calculated numerically using the Matlab code accompanying this paper. The
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function B(Ŵ) is closely related to the largest possible Nagar bias relative to the
benchmark, and is defined in Theorem 1 with special cases described in the discussion
following the statement of the theorem. The scalar λmin is the threshold value for the
minimum eigenvalue of the concentration matrix, which is defined in (10).

5. Calculate the first three cumulants of the bounding limiting distribution of the test
statistic gmin using the formulas

κ1 = K(1 + λmin),

κ2 = 2
(

maxeval{(IN ⊗ vec(IK))′((Σ̂2 ⊗ IK)(IN ⊗ vec(IK))}+ 2λminK maxeval{Σ̂}
)
,

κ3 = 8
(

maxeval{(IN ⊗ vec(IK))′((Σ̂3 ⊗ IK)(IN ⊗ vec(IK))}+ 3λminK maxeval{Σ̂}2
)
,

where Σ̂ = K(Φ̂−
1
2 ⊗ IK)Ŵ2(Φ̂−

1
2 ⊗ IK) and maxeval{·} is the largest eigenvalue.

6. For a given significance level, α, (e.g., 0.05) compute the critical values of the limiting
distribution using the Imhof (1961) approximation,

Pr(χ2
ν < (x− κ1)4ω + ν), ν = 8κ2ω

2, ω = κ2/κ3,

where χ2
ν is the (central) chi-squared distribution with (fractional) ν degrees of freedom.

7. Compare the value of the test statistic gmin to the critical value from the previous step
divided by K.

We provide a Matlab file, gweakivtest.m, to implement all of these steps.

Simplified Test As in Montiel Olea and Pflueger (2013), we also provide a simplified
conservative version of the test that avoids the numerical optimization step. This version of
the test may be useful for applications where the number of instruments and/or endogenous
regressors is very large. The simplified version of the test follows the same steps as the
generalized test, but replaces the sharp bound B(Ŵ) with the non-sharp bound Bs(Ŵ)

defined in Theorem 1. The conservative bound Bs(Ŵ) only requires a one-time computation
of the largest singular value of two matrices, and is therefore computationally much faster.
For the single regressor case, Montiel Olea and Pflueger (2013) prove that B(Ŵ) ≤ 1, and
in that case the simplified procedure can use λmin = min{Bs(Ŵ), 1}/τ . In models with
multiple endogenous regressors, however, it is not necessarily the case that B(Ŵ) ≤ 1. The
bound Bs(Ŵ) can be smaller or larger than one depending on the application.

Comparison with Existing Critical Values Figure 1 illustrates the critical values that
arise from our testing procedure as a function of the number of instrumental variables K.
The panels in the first column of Figure 1 show critical values for models with N = 1,
N = 2, and N = 3 endogenous regressors for the homoskedastic and serially uncorrelated
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model considered in Stock and Yogo (2005). We show the critical values based on the sharp
bound on the Nagar bias, as well as those from the more conservative simplified procedure
without the numerical optimization step. Each panel also plots the critical values from the
Stock and Yogo (2005) tables for comparison, which are available for K > N + 1. For the
N = 1 case (top left panel), we additionally show the critical values from the Montiel Olea
and Pflueger (2013) test for K ≥ 1, as well as the analytical critical values derived recently
for K > 1 by Skeels and Windmeijer (2018).

In the homoskedastic and serially uncorrelated model, the critical values only depend
on the number of endogenous regressors N and the number of instruments K. In the more
general model, the critical values depend additionally on a HAR covariance matrix of the
reduced form parameter estimates. The critical values are therefore different for each appli-
cation. To nevertheless give a sense of the critical values that may arise in practice, the right
column in Figure 1 shows an average of the robust critical values for 500 different general
covariance matrices drawn randomly from a central Wishart distribution with an identity
covariance matrix. Each panel also shows the – in these cases incorrect – Stock and Yogo
(2005) non-robust critical values for comparison, and the upper panel (N = 1) additionally
shows the robust Montiel Olea and Pflueger (2013) critical values.

The main takeaways from Figure 1 are as follows. For models with a single endoge-
nous regressor (N = 1), either homoskedastic or heteroskedastic, there are only negligible
numerical differences between our critical values and those of Montiel Olea and Pflueger
(2013).2 The only exception is the homoskedastic model with K = 2. As we explain below,
the reason is that we recommend switching to a more conservative upper bound on the
bias when the degree of overidentification is less than two, as the Nagar approximation is
potentially poor in those cases. This can be seen in the homoskedastic model for N = 1 in
the top left panel, as the Montiel Olea and Pflueger (2013) critical value is well below the
analytical critical value obtained by Skeels and Windmeijer (2018) when K = 2. Whenever
K > N + 1, the three panels for the homoskedastic model (left column) show that the
critical values based on the Nagar bias are relatively close to the Stock and Yogo (2005)
values. The robust critical values under a general covariance in the right column of Figure
1, on the other hand, are generally well above the Stock and Yogo (2005) values, which in
those cases incorrectly assume homoskedasticity. We emphasize, however, that our robust
critical values should be compared against the generalized test statistic in this paper, and
not the Cragg-Donald statistic used in the Stock and Yogo (2005) test. Finally, for illustra-
tive purposes Figure 1 also plots the more conservative critical values from our simplified

2These differences arise only because we use the Imhof (1961) approximation, matching the first three cumulants of
the target distribution, instead of the Patnaik (1949) approximation, matching the first two cumulants. We consistently
found the differences in the resulting critical values to be very small.
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Figure 1: Comparison of Critical Values
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(c) N = 2, Homoskedastic
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(e) N = 3, Homoskedastic
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Notes: The left column reports critical values assuming homoskedasticity and serial uncorrelatedness for
various numbers of endogenous regressors (N) and instruments (K). The right column repeats the exercise
under arbitrary heteroskedasticity and/or autocorrelation. Critical values depend on W and therefore vary
for each application. The figures show averages over 500 draws of W from a central Wishart distribution
with identity covariance matrix for illustrative purposes only. For comparison, we plot applicable critical
values from Montiel Olea and Pflueger (2013), Stock and Yogo (2005), and Skeels and Windmeijer (2018).

7



procedure. We generally do not recommend using these values, as the tighter values will
typically be sufficiently easy to compute. The results in Figure 1 suggest, however, that
they may be of use in applications where K or N are much larger. One final note concerns
the N = K = 1 setting, a just-identified model with a single endogenous regressor. In
this special case, another alternative is to compare a robust F−statistic, or, equivalently,
our test statistic, to the size-based critical values of Stock and Yogo (2005) (16.38 for 5%
distortion, 8.96 for a 10% distortion), which remain valid in this special case even when
homoskedasticity fails to hold, provided a robust test statistic is used, as noted in Andrews
et al. (2019). However, our main interest is in models with N > 1, for which this option is
not available.

3 Testing the Null Hypothesis of Weak Instruments

This section provides the full derivation of our testing procedures. We start by establishing
some specific notation: ||U ||2 is the spectral norm of U (the positive square root of the
maximum eigenvalue of UU ′, also the `2-norm if U is a vector), Pn is the set of positive
definite n × n matrices, On×m is the set of n × m orthogonal real matrices U such that
UU ′ = In, Kn,m denotes the n ×m commutation matrix such that Kn,m vec(U) = vec(U ′)

where U ∈ Rn×m. We also define the special matrix Rn,m = In⊗ vec(Im). The dimension of
Rn,m is nm2 × n. For U ∈ Rnm×nm, the (i, j)-th element of V = R′n,m(U ⊗ Im)Rn,m ∈ Rn×n

is Tr(Uij) where Uij ∈ Rm×m is (i, j)-th block of U and Tr(·) is the trace. For U ∈ Rnm×m,
the i-th element of V = R′n,m vec(U ′) ∈ Rn is equal to Tr(Ui) where Ui ∈ Rm×m is the i-th
row block of U . Note that R′n,mRn,m = mIN .

3.1 Weak Instrument Asymptotic Representation of the 2SLS Estimator

The 2SLS estimator for the model in (1)-(2) is

β̂2SLS = (Y ′PZY )−1Y ′PZy,(3)

where PZ = ZZ ′/T given the normalization of the instruments. Following Staiger and
Stock (1997) and the subsequent literature, we model weak instruments by assuming the
first-stage relationship is local-to-zero,

Assumption 1. vec(Π′) = vec(C ′)/
√
T = c/

√
T where C ∈ RN×K is a fixed full rank

matrix.

The next set of assumptions enables us to characterize the weak instrument asymptotic
distributions of the 2SLS estimator (and later our test statistic),
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Assumption 2. The following limits hold as T →∞:

uu′/T
p→ σ2

u ∈ R+ , vu′/T
p→ σvu ∈ RN , vv′/T

p→ Σv ∈ PN ,(2.a)

T−
1
2

[
Z ′w

vec(Z ′v)

]
d→

[
(β′ ⊗ IK)(γ2 − c) + γ1

γ2 − c

]
∼ N (0,W) ,(2.b)

where γ1 ∈ RK , γ2 ∈ RNK , W =

[
W1 W12

W′
12 W2

]
∈ P(N+1)K .

Defining γ̂1 = T−
1
2Z ′y, γ̂2 = T−

1
2 vec(Z ′Y ), the 2SLS estimator in (3) can be written as

β̂2SLS =
(
R′N,K(γ̂2γ̂

′
2 ⊗ IK)RN,K

)−1
R′N,K vec(γ̂1γ̂

′
2).(4)

Under Assumptions 1 and 2, γ̂2
d→ γ2 and γ̂1

d→ γ1. By the continuous mapping theorem,

β̂2SLS − β
d→ β∗2SLS =

(
R′N,K(γ2γ

′
2 ⊗ IK)RN,K

)−1
R′N,K vec(γ1γ

′
2).(5)

Equation (5) states that β̂∗2SLS converges to a quotient of quadratic forms in normal random
variables, and β̂2SLS is therefore not consistent.

Finally, we assume that an estimator Ŵ is available that is consistent for W.

3.2 Weak Instrument Set and Null Hypothesis

As in Montiel Olea and Pflueger (2013) and Stock and Yogo (2005), our null hypothesis
of weak instruments is based on a bias criterion. We consider instruments weak when a
weighted `2 norm of the asymptotic bias E[β∗2SLS] is large relative to a benchmark. Define
S ∈ P(N+1)K partitioned as W with

S1 = W1 + (β′ ⊗ IK)W2(β ⊗ IK)− (β′ ⊗ IK)W′
12 −W12(β ⊗ IK),(6)

S12 = W12 − (β′ ⊗ IK)W2

S2 = W2,

such that S is the covariance of T−
1
2 [Z ′u vec(Z ′v)′]′ for T →∞.

Our bias criterion is

B = Tr(S1)−
1
2 ||E [β∗2SLS]′R′N,K(S

1
2
2 ⊗ IK)||2,(7)

where the weighting matrix is R′N,K(S2⊗IK)RN,K and the benchmark for the bias is Tr(S1)
1
2 .

When there is just a single endogenous regressor, N = 1, the weighting matrix R′N,K(S2 ⊗
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IK)RN,K becomes the scalar Tr(S2). In that case, B = E [β∗2SLS]
√

Tr(S2)/
√

Tr(S1), which
is identical to the criterion in Montiel Olea and Pflueger (2013) after replacing E [β∗2SLS]

with a Nagar (1959) approximation. Our extension of the benchmark to the N > 1 case is
analogous to Montiel Olea and Pflueger (2013) and retains the interpretation as the worst-
case 2SLS bias as K →∞, see Appendix A.

In Appendix B, we show that

B = ||hρ||2, where(8)

h = KE
[(
R′N,K(S(l + ψ)(l + ψ)′S ′ ⊗ IK)RN,K

)−1
R′N,K

(
S(l + ψ)ψ′S−1 ⊗ IK

)]
,

ρ =
(
(R′N,K(S2 ⊗ IK)RN,K)−

1
2 ⊗ IK2

)
vec (S12) /

√
Tr(S1) ,

and l = S
− 1

2
2 c, ψ = S

− 1
2

2 (γ2−c) ∼ N (0, INK), and S = ((R′N,K(S2⊗IK)RN,K/K)−
1
2⊗IK)S

1
2
2 .3

In the conditionally homoskedastic and serially uncorrelated model, S = INK , Tr(S1)/K =

σ2
u, R′N,K(S2⊗ IK)RN,K/K = Σv, R′N,K vec(S12)/K = σvu. In that case B is identical to the

absolute bias criterion in Stock and Yogo (2005).

The weak instrument set is defined as Bτ (W) = {l ∈ RNK , β ∈ RN : B > τ}, i.e. as the
set associated with bias relative to the benchmark that exceeds a tolerance level τ . This
set depends on W, which can be consistently estimated, but also on the NK unknown
parameters in l, and on the N unknown parameters in β.

In general, there is no tractable analytical expression for the integral underlying the
expectation in h. Whereas Stock and Yogo (2005) evaluate this integral using Monte Carlo
methods, we follow Montiel Olea and Pflueger (2013) and adopt a Nagar approximation to
h, which we denote by hn. For reasons that will be clear momentarily, we also reparametrize
the functional dependence of the bias on l through

l = S−1
√
K vec(L0D

1
2
ΛQ
′
Λ),(9)

where QΛ ∈ ON×N ,DΛ ∈ RN×N contain the eigenstructure of the concentration matrix

Λ = K−1
(
R′N,K(Sll′S ′ ⊗ IK)RN,K

)
∈ PN ,(10)

and L0 ∈ ON×K is an orthogonal matrix. By definition Λ = QΛDΛQ
′
Λ, where DΛ is a

diagonal matrix containing the eigenvalues λi > 0, i = 1, ..., N , and QΛQ
′
Λ = IN . The

reparametrization in (9) reformulates the choice of the NK parameters of l as an equivalent
choice of the N free parameters in DΛ, the N2 − (N + 1)N/2 free parameters of QΛ, and

3Note that S is in general non-symmetric, and that Tr(S) = Tr(SS ′) = NK.

10



the NK − (N + 1)N/2 free parameters of L0.

Let Bn(β,QΛ,DΛ, L0,W) denote the bias after the reparametrization and the Nagar ap-
proximation. Let B∗n(W, λmin) = sup

β,QΛ,DΛ,L0

{Bn(β,QΛ,DΛ, L0,W)} denote the sharp upper

bound on the Nagar bias over β ∈ RN , QΛ ∈ ON×N , L0 ∈ ON×K and DΛ in the set of all
diagonal matrices with no diagonal element smaller than λmin, the smallest eigenvalue of
the concentration matrix. The following theorem provides the generalization of the Nagar
approximation theorem in Montiel Olea and Pflueger (2013) to the general case with N ≥ 1

endogenous variables:

Theorem 1 (Nagar approximation).

i) The Nagar approximation of the bias in (1) is given by Bn(β,QΛ,DΛ, L0,W) = ||hnρ||2
where hn = QΛD

− 1
2

Λ M1(D−
1
2

Λ Q′Λ ⊗ L0 ⊗ L0)M2, with M1 = R′N,N (IN3 + (KN,N ⊗ IN))

and M2 = RN,KR
′
N,K/(1 +N)− INK2.

ii) The Nagar bias has the following bounds:

a) B∗n(W, λmin) = λ−1
minB(W) , B(W) = K−

1
2 sup
L0∈ON×K

{||M1(IN ⊗ L0 ⊗ L0)M2Ψ||2},

b) B∗n(W, λmin) ≤ λ−1
minBs(W) , Bs(W) = min{(2(N + 1)/K)

1
2 ||M2Ψ||2, ||Ψ||2},

where Ψ =
(
SW− 1

2
2 [W12 : W2]′ ⊗ IK)RN+1,K(R′N+1,K(W ⊗ IK)RN+1,K)−

1
2 .

Proof. See Appendix.

Part (i) of the theorem provides the generalized analytical expression for the Nagar bias.
Part (ii.a) characterizes the sharp upper bound for the Nagar bias, which only depends
on the minimum eigenvalue of the concentration matrix and the largest possible singular
value of a matrix that only depends on the NK − (N + 1)/2 nuisance parameters in L0. In
general, numerical optimization of Bn over β, QΛ and L0 is problematic because of the large
dimension and the presence of many local maxima. The proof in the Appendix shows that
(1) optimizing over β amounts to a straightforward maximum eigenvalue problem, (2) the
bias is decreasing in all eigenvalues of the concentration matrix such that the worst case bias
occurs when all eigenvalues of Λ equal λmin, and (3) in that case the bias no longer depends
on QΛ. The remaining problem over L0 in (ii.a) has smaller dimension and, importantly,
can exploit numerical techniques specialized for optimization over orthogonal matrices. In
the code accompanying this paper, we use the curvilinear search algorithm of Wen and Yin
(2013) which leads to trivial computation times even for relatively large N and K.4 Finally,
part (ii.b) of the theorem provides an alternative – but generally non-sharp – upper bound

4The algorithm does not always find the global optimum for any starting value for L0. Unless the user specifies
otherwise, our code takes the maximum over the optima found for 1000 starting values generated by N columns of K×K
matrices drawn from the Haar distribution, i.e uniformly sampled from the space of all orthogonal matrices.
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that requires no numerical optimization for cases where N and K are very large.

The practical implementation of our generalized and simplified test is in general based
on the bounds in part (ii) of Theorem 1. However, there are two special cases where we
choose to deviate from the Nagar bounds stated in the theorem when applying our test in
practice. First, when the degree of overidentification is zero or one (K ≤ N + 1), we set
B(W) = ||Ψ||2, which is more conservative. This choice is motivated by the sharp bound
on the Nagar bias in the conditionally homoskedastic and non-serially correlated model,
which simplifies in that model to B∗n(W, λmin) = λ−1

min|K − (N + 1)|/K. For K = N + 1,
this means that the Nagar approximation implausibly suggests that the 2SLS bias is always
zero in the homoskedastic model.5 The reason is that the threshold value for λmin at the
conventional τ = 0.10 level is in a range that is too small for the Nagar bias to continue to
provide a reasonable approximation when K = N + 1. This can be seen in Figure 1a (the
N = 1 case) from the sharply lower Montiel Olea and Pflueger (2013) critical value at K = 2

compared to the analytical value of Skeels and Windmeijer (2018).6 In the just-identified
case, K = N , the integral underlying the expectation in h in (1) does not converge. While
the Nagar approximation is not necessarily poor for K ≤ N + 1 when W does not have
the Kronecker form, out of an abundance of caution we prefer to set B(W) = ||Ψ||2. For
N = K = 1, this more conservative bound always coincides with the sharp bound, such that
the only case in which our test will in practice provide critical values that are meaningfully
different from Montiel Olea and Pflueger (2013) is when K = 2.

The other deviation from the bounds in Theorem 1 is more straightforward, and only
applies to the simplified (and weakly more conservative) test: when N = 1, Montiel Olea
and Pflueger (2013) prove that B(W) ≤ 1, and we therefore incorporate this additional
bound in our simplified test (although it is not necessarily always tighter). The same bound
does not generally hold when N > 1.

We conclude this section by defining the null and alternative hypotheses as

H0 : λmin ∈ H(W) vs. H1 : λmin 6∈ H(W),(11)

where H(W) = {λmin ∈ R+ : B∗n(λmin,W) > τ},

which are identical to those underlying the tests of Stock and Yogo (2005) and Montiel Olea
and Pflueger (2013). Under the null hypothesis, the worst-case bias B∗n(λmin,W) exceeds a

5The matrix M2 in the Nagar approximation loses rank when K = N + 1, which translates to a Nagar bias of zero
when W has the Kronecker form.

6See Skeels and Windmeijer (2018) for a detailed discussion of the homoskedastic model with N = 1 and K ≤ 2, and
Kinal (1980), Phillips (1980), and Basmann (1961) for earlier results. The Stock and Yogo (2005) tables do not report
critical values for K ≤ N + 1.
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tolerance level τ for at least some values of β. Under the alternative, the worst-case bias is
at most τ for any value of β.

3.3 Test Statistic and Critical Values

Given a bias tolerance level τ , Theorem 1 implies that a test of the null hypothesis of weak
instruments can be based on a test of whether the minimum eigenvalue of Λ is smaller or
equal to the threshold value B(W)/τ (or Bs(W)/τ in the case of the simplified test).

Our test statistic extends the Cragg and Donald (1993) statistic in the same way that
the effective F -statistic in Montiel Olea and Pflueger (2013) extends the regular F -statistic.
Specifically, under weak instrument asymptotics

Γ = Φ−
1
2 (Y ′PZY )Φ−

1
2

d→ R′N,K(W ⊗ IK)RN,K/K,(12)

gmin = mineval{Γ} d→ mineval{R′N,K(W ⊗ IK)RN,K/K},(13)

where Φ = R′N,K(W2⊗ IK)RN,K and the random matrix W = S(l+ψ)(l+ψ)′S ′ has a non-
central Wishart distribution, W ∼ W(1,Σ,Ω), with 1 degree of freedom, covariance matrix
Σ = SS ′ ∈ PNK , and a matrix of noncentrality parameters Ω = Σ−1Sll′S ′, where we have
used the notation in Muirhead (1982). WhileW has a noncentral Wishart distribution, crit-
ical values for the test statistic gmin require the distribution of mineval{R′N,K(W⊗IK)RN,K},
or the smallest eigenvalue of the N ×N matrix consisting of the traces of the K ×K parti-
tions of W . The distribution of this function of W is unknown, and depends in general on
all parameters in Σ and Ω, not just on the threshold for λmin.

In practice, we obtain critical values from a bounding distribution of gmin. Specifically,
we first derive upper bounds for the cumulants of gmin that only depend on λmin and W2,
and then we show that a distribution proposed by Imhof (1961) that matches the upper
bounds for the first three cumulants is a conservative limiting distribution for gmin in the
right tail.

To understand our approach, consider first the case with N = 1, such that R′N,K(W ⊗
IK)RN,K = Tr(W ) is a scalar. The trace of a noncentral Wishart W is a linear combination
of noncentral χ2 variables. While there is no tractable formula for its probability distribution
that we are aware of, Mathai (1980) provides an analytical expression for the n-th order
cumulant of Tr(W ),

κn = 2n−1(n− 1)!
(

Tr(Σn) + nTr(ΣnΩ)
)
.(14)

The mean is κ1 = K(1 + λmin), since Tr(Σ) = K and Tr(ΣΩ) = K Tr(Λ) = KΛ = Kλmin
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when N = 1. The cumulants for n > 1 are bounded by

κn ≤ 2n−1(n− 1)!
(

Tr(Σn) + nKλmin maxeval{Σ}n−1
)
,(15)

where we have used that for a positive semi-definite matrix V , |Tr(UV )| ≤ maxeval{U}Tr(V ),
see Fact 8.12.29 in Bernstein (2009), and that Tr(ΣnΩ) ≥ 0.

Next, consider the general case with N ≥ 1 such that gmin is distributed as the mini-
mum eigenvalue of a matrix with elements that are traces of the K × K subpartitions of
a noncentral Wishart matrix W ∼ W(1,Σ,Ω). Analogously to Stock and Yogo (2005),
we use the distribution of γ′R′N,K(W ⊗ IK)RN,Kγ ≥ mineval{R′N,K(W ⊗ IK)RN,K} as a
bounding distribution, where γ is the eigenvector associated with the minimum eigenvalue
of Λ = R′N,K(ΣΩ⊗IK)RN,K/K and γ′γ = 1. In Appendix D, we extend the results in Mathai
(1980) to obtain an analytical expression for the n-th order cumulant of the distribution of
γ′R′N,K(W ⊗ IK)RN,Kγ,

κn = 2n−1(n− 1)!
(

Tr
(
((γγ′ ⊗ IK)Σ)n

)
+ nTr

(
((γγ′ ⊗ IK)Σ)nΩ

))
.(16)

For the mean, we have

κ1 = Tr
(
(γγ′ ⊗ IK)Σ

)
+ Tr

(
(γγ′ ⊗ IK)ΣΩ

)
= K(1 + λmin),(17)

since Tr
(
(γγ′⊗IK)Σ

)
= Tr(Σ)/N = K and Tr

(
(γγ′⊗IK)ΣΩ

)
= γ′R′(ΣΩ⊗IK)Rγ = Kλmin.

We show in Appendix E that the higher-order cumulants have the following upper bounds,

κn ≤ 2n−1(n− 1)!
(

maxeval{R′N,K(Σn ⊗ IK)RN,K}+ nKλmin maxeval{Σ}n−1
)
.(18)

The bounds in (18) nest those of the model with a single endogenous variable in (15). Im-
portantly, the mean and the upper bounds for the higher cumulants depend only λmin and
W2 through Σ.

Note that in the conditionally homoskedastic and serially uncorrelated model, Σ = S =

INK , and the bounds in (18) simplify to

2n−1(n− 1)!
(
K + nKλmin

)
.(19)

These are the cumulants of a non-central chi-squared distribution with K degrees of free-
dom and non-centrality Kλmin, which is the exact bounding distribution in the conditionally
homoskedastic and serially uncorrelated model, see Stock and Yogo (2005). We therefore
know that in that model, the inequalities in (18) hold with equality.
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Using the mean and the upper bounds for the second and third cumulant, we construct
the Imhof (1961) distribution,

Pr(χ2
ν < (x− κ1)4ω + ν), ν = 8κ2ω

2, ω = κ2/κ3,(20)

where χ2
ν has a central chi-squared distribution with ν degrees of freedom. In Appendix F

we show that this approximation is conservative in the right tail when using upper bounds
for the second and third cumulants as opposed to the exact cumulants.

The end result is a bounding limiting distribution for gmin that is free of nuisance pa-
rameters, and leads to a straightforward calculation of the critical values after replacing W2

with a consistent estimate. As in Stock and Yogo (2005), the use of a bounding limiting
distribution means the critical values are conservative in the sense that the null hypothesis
is incorrectly rejected with probability less than or equal to α. Figure 1 showed that our
critical values are essentially the same as those of Montiel Olea and Pflueger (2013) when
N = 1, except when K = 2 where we opt to be more conservative as explained above. Our
critical values are also close to those in the Stock and Yogo (2005) tables – only available
for K > N + 1 – in the conditionally homoskedastic and serially uncorrelated model. The
numerical differences with the Stock and Yogo (2005) values are almost entirely due to the
Nagar approximation, since the differences between the Imhof approximation with the exact
cumulants and the noncentral chi-squared bounding distribution are very small.

4 Empirical Application

We illustrate our testing procedure in an application by Ramey and Zubairy (2018), who
use instrumental variables in local projections to estimate government spending multipliers,
using a measure of news about military spending and estimated government spending shocks
from Blanchard and Perotti (2002) as instruments. Their key innovation is to allow the
effects of government spending to depend on the state of the business cycle, or alternatively
on the monetary policy regime. To this end, the authors interact government spending with
an indicator for whether the economy is in a period of slack, or an indicator for whether the
policy rate is constrained at the zero lower bound (ZLB). Using their notation, Ramey and
Zubairy (2018) estimate cumulative multipliers for h = 0, 1, . . . based on

h∑
j=0

yt+j =It−1

[
γA,h + φA,h(L)zt−1 +mA,h

h∑
j=0

gt+j

]
(21)

+ (1− It−1)

[
γB,h + φB,h(L)zt−1 +mB,h

h∑
j=0

gt+j

]
+ ωt+h,
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where h is the horizon in quarters, yt is GDP divided by trend GDP, It−1 is the regime in-
dicator, zt−1 is a vector of controls, φA,h(L), φA,h(L) are polynomials in the lag operator, gt
is government spending divided by trend GDP, and mA,h,mB,h are the cumulative spending
multipliers over h quarters in the respective states. The use of interaction terms involving
endogenous regressors is quite common, and is one example of how multiple endogenous
regressors often arise in practical applications.

To assess instrument relevance, Ramey and Zubairy (2018) apply the Montiel Olea and
Pflueger (2013) test to the individual subsamples implied by the regime indicators, as for
each such subsample there is only a single endogenous regressor. However, to assess whether
the multiplier estimates are statistically different across regimes, government spending ulti-
mately has to be interacted with the indicators in a single specification as in (21), in which
there are not one but two endogenous regressors (N=2). As autocorrelated errors are an
inherent feature of local projections such as (21), Ramey and Zubairy (2018) can unfortu-
nately not rely on the Stock and Yogo (2005) test to assess instrument strength for their
regression of interest. Our robust test, in contrast, allows for a direct test of instrument
relevance for the specifications in (21). We therefore implement our test as described in
Section 2 for τ = 0.10 and α = 0.05, and using the same Newey and West (1994) automatic
bandwidth HAR estimation procedure as Ramey and Zubairy (2018). The instruments are
the military news measure and Blanchard and Perotti (2002) shocks interacted with the
regime indicator as instruments, such that K = 4.

Figure 2 reports the results for the main specifications and sample periods discussed in
Ramey and Zubairy (2018). The first row is for specifications that interact government
spending with a measure of slack based on the unemployment rate.7 The starred blue
line plots the difference between our robust test statistic and the associated critical value,
capped at 30 for visibility across horizons. Although not reported by Ramey and Zubairy
(2018), for illustrative purposes the circled red line plots the difference between the Cragg
and Donald (1993) test statistic and the Stock and Yogo (2005) critical value. The sec-
ond row in Figure 2 shows the corresponding results for specifications where government
spending is interacted by an indicator of whether monetary policy is constrained by the ZLB.

Similar to the regime-specific results reported by Ramey and Zubairy (2018), our robust
test rejects that the instruments are weak at relatively short horizons across all samples.
According to our test, issues with instrument relevance start to arise in the specifications
with the slack indicator after horizons between 5 to 8 quarters depending on the sample pe-

7The results in the first row of Figure 2 can be compared to the Montiel Olea and Pflueger (2013) test results with
the combined instruments in the second and third column of Figure 4 in Ramey and Zubairy (2018), which report the
individual test results for the regressions in the regime-determined subsamples. The results in the second row can similarly
be compared to Figure 10 in Ramey and Zubairy (2018).
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Figure 2: Test Results for Ramey and Zubairy (2018) Specifications Across Horizons
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Notes: The top row reports the difference between test statistics and critical values for τ = 0.10 and α = 0.05
across horizons for specifications with government spending interacted with an indicator for whether the
economy was in a state of slack for different sample periods: 1890-2015, 1947-2015 (post-WWII), and
1890-2015 excluding WWII. The second row reports the same difference for specifications with government
spending interacted with an indicator for whether monetary policy is constrained by the zero lower bound
for different sample periods (1890-2015 and 1890-2015 excluding WWII.). The starred blue line shows the
difference between our robust test statistic and the associated critical values across horizons. The circled
red line shows the difference between the Cragg and Donald (1993) statistic and critical values from Stock
and Yogo (2005). As in Ramey and Zubairy (2018), we cap the results at 30 for visibility.

17



riod. In the specifications with the ZLB indicator, instrument relevance becomes a concern
for horizons as short as 2 quarters. Comparison with the results from the Stock and Yogo
(2005) test demonstrates the importance of allowing for heteroskedasticity and autocorre-
lation in the first-stage testing procedures. For three of the five specifications considered
in Figure 2, the Stock and Yogo (2005) test leads to a rejection of weak instruments at all
horizons considered. For the remaining two specifications, the Stock and Yogo (2005) test
rejects weak instruments for an additional 2-4 quarters compared to the robust test. Our
robust test results also vary meaningfully from the regime-specific robust tests reported by
Ramey and Zubairy (2018) from subsample regressions with N = 1 and K = 2, which either
reject weak instruments across all forecast horizons considered, or else fail to reject only for
substantially longer forecast windows. The main implication is that researchers interested
in estimating longer horizon state-dependent multipliers as in Ramey and Zubairy (2018)
should consider robust inference procedures.

5 Concluding Remarks

First-stage tests as those proposed in Stock and Yogo (2005) or, more recently, Montiel
Olea and Pflueger (2013), are a widely-used diagnostic tool to assess instrument relevance
in empirical applications that involve instrumental variables. When researchers are not
comfortable imposing homoskedasticity assumptions for second stage inference, they should
also avoid imposing such assumptions in first-stage testing procedures. In this paper, we
generalize the testing approach of Montiel Olea and Pflueger (2013) to provide a first-stage
test that is valid under heteroskedasticity and autocorrelation regardless of the number of
endogenous regressors. The computer code accompanying this paper provides empirical
researchers with an easy-to-use bias-based first-stage test under assumptions that match
those imposed for second-stage inference. Our generalization of the Nagar aproximation
to the 2SLS bias should also permit extensions to the methods in Ganics et al. (2021) to
construct confidence intervals for the 2SLS bias, which we leave for future work.
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A Many-Weak-Instruments Limit

Define σ2
1 = lim

K→∞
Tr(S1)/K ∈ R, Σ2 = lim

K→∞
R′N,K(S2 ⊗ IK)RN,K/K ∈ RN×N , σ21 =

lim
K→∞

R′N,K vec(S12)/K ∈ RN , and the concentration matrix Λ = K−1
(
R′N,K(Sll′S ′ ⊗ IK)RN,K

)
∈

RN×N .

Consider the limits

L1 = plim
K→∞

K−1
(
R′N,K(S(l + ψ)(l + ψ)′S ′ ⊗ IK)RN,K

)
= lim

K→∞
K−1

(
R′N,K(SS ′ ⊗ IK)RN,K

)
+ lim

K→∞
Λ

= lim
K→∞

K−1(KIN) + lim
K→∞

Λ

= IN + lim
K→∞

Λ

L2 = plim
K→∞

K−1
(
R′N,K(S(l + ψ)ψ′S−1 ⊗ IK)

)
(Φ−

1
2 ⊗ IK2) vec (S12)

= lim
K→∞

K−1R′N,K((KΣ2)−
1
2 ⊗ IK2) vec (S12)

= lim
K→∞

K−
3
2 Σ
− 1

2
2 R′N,K vec (S21)

= K−
1
2 Σ
− 1

2
2 σ21

Given the definitions of ρ and h in Appendix B, the bias relative to the benchmark is

plim
K→∞

ρ′h′hρ = K−1

(
L−1

1 L2/
√
σ2

1

)′(
L−1

1 L2/
√
σ2

1

)
= K−1

(
Σ
− 1

2
2 σ21σ

−1
1

)′ (
IN + lim

K→∞
Λ
)−2 (

Σ
− 1

2
2 σ21σ

−1
1

)
.

As in Montiel Olea and Pflueger (2013), the worst-case of this bias occurs when lim
K→∞

Λ =

0, with the remaining expression maximized when first-stage and reduced-form errors are
perfectly correlated, in which case it is equal to 1. This shows that the benchmark is equal
to the worst-case many instruments 2SLS bias.

B Derivation of B = ||hρ||2

Recall the expression for β∗2SLS in equation (5) in the main text,

β∗2SLS =
(
R′N,K(γ2γ

′
2 ⊗ IK)RN,K

)−1
R′N,K vec(γ1γ

′
2).
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From Assumption 2.b it follows that γ1 = S12S
−1
2 (γ2 − c) + ε, where ε is mean zero and

independent of γ2. Substituting into (5) and taking expectations yields

E [β∗2SLS] = E
[(
R′N,K(γ2γ

′
2 ⊗ IK)RN,K

)−1
R′N,K vec(S12S

−1
2 (γ2 − c)γ′2)

]
.(B.1)

Defining l = S
− 1

2
2 c, ψ = S

− 1
2

2 (γ2− c) ∼ N (0, INK) and using vec(UV ) = (V ′⊗ I) vec(U), the
bias in (B.1) can be rewritten as

E [β∗2SLS] = E

[(
R′N,K(S

1
2
2 (l + ψ)(l + ψ)′(S

1
2
2 )′ ⊗ IK)RN,K

)−1

(B.2)

×R′N,K
(
S

1
2
2 (l + ψ)ψ′S

− 1
2

2 ⊗ IK
)]

vec (S12) .

Define Φ = R′N,K(S2 ⊗ IK)RN,K , the matrix S = ((Φ/K)−
1
2 ⊗ IK)S

1
2
2 , and ρ =

(
(R′N,K(S2 ⊗

IK)RN,K)−
1
2 ⊗ IK2

)
vec (S12) /

√
Tr(S1). The unweighted bias becomes

E [β∗2SLS] = KΦ−
1
2E
[ (
R′N,K(S(l + ψ)(l + ψ)′S ′ ⊗ IK)RN,K

)−1(B.3)

×R′N,K
(
S(l + ψ)ψ′S−1 ⊗ IK

) ]
ρ
√

Tr(S1).

Using the definition of the bias criterion in (1),

B2 =
E [β∗2SLS]′R′N,K(S2 ⊗ IK)RN,KE [β∗2SLS]

Tr(S1)
= ρ′h′hρ,(B.4)

where h = KE
[(
R′N,K(S(l + ψ)(l + ψ)′S ′ ⊗ IK)RN,K

)−1
R′N,K (S(l + ψ)ψ′S−1 ⊗ IK)

]
. There-

fore, B = ||hρ||2.

C Proof of Theorem 1

Define the function h : RNK 7→ RN×NK2

h(ψ) = (R′(S(l + ψ)(l + ψ)′S ′ ⊗ IK)R)
−1
R′
(
S(l + ψ)ψ′S−1 ⊗ IK

)
.(C.1)

The Nagar approximation hn of h as defined in (1) is the expectation of the second-order
Taylor expansion of Kh(ψ) evaluated at ψ = 0, which is given in vectorized form by

vec(hn) =
K

2
(1′NK ⊗ I(NK)2)

(
KN∑
j=1

(
eNKj (eNKj )′ ⊗ I(NK)2

)
(O2h(0))j

)
,(C.2)

where 1m is the m×1 vector of ones, emj the m×1 vector with j-th element equal to one and
zeros in all other rows, and O2h(ψ) is (NK)3 × NK second matrix derivative of h. Using
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the matrix differentiation rules in Magnus and Neudecker (2019), O2h(ψ) is given by

O2h(ψ) = (INK ⊗ A3(ψ))OA1(ψ) + (A1(ψ)′ ⊗ I(NK)2)OA3(ψ)

+(INK ⊗ A4(ψ))OA2(ψ) + (A2(ψ)′ ⊗ I(NK)2)OA4(ψ),

where

A1(ψ) = −(C1(ψ)⊗ C1(ψ))B1 ((S ⊗ S(l + ψ)) + (S(l + ψ)⊗ S))

A2(ψ) = B2

((
(S−1)′ ⊗ S(l + ψ)

)
+
(
(S−1)′ψ ⊗ S

))
A3(ψ) =

(
S(l + ψ)ψ′S−1 ⊗ IK

)′
RN,K ⊗ IN

A4(ψ) = INK2 ⊗ C1(ψ)

OA1(ψ) =
(
((S ⊗ S(l + ψ)) + (S(l + ψ)⊗ S))′B′1 ⊗ IN2

)
C2(ψ)− (INK ⊗ (C1(ψ)⊗ C1(ψ)))B3

OA2(ψ) = (INK ⊗B2)
(
(vec((S−1)′)⊗ INK)S + (KNK,NK ⊗ INK)(INK ⊗ vec(S))(S−1)′

)
OA3(ψ) = (IN ⊗KN,NK2 ⊗ IN)(I(NK)2 ⊗ vec(IN))KN,NK2A2(ψ)

OA4(ψ) = (INK2 ⊗KN,NK2 ⊗ IN)(vec(INK2)⊗ IN2)A1(ψ)

B1 = (R′N,K ⊗R′N,K)(INK ⊗KK,NK ⊗ IK)
(
I(NK)2 ⊗ vec(IK)

)
B2 = (INK2 ⊗R′N,K)(INK ⊗KK,NK ⊗ IK)

(
I(NK)2 ⊗ vec(IK)

)
B3 = (INK ⊗B1) (vec(S ⊗ INK)S + (KNK,NK ⊗ INK)(INK ⊗ vec(S))S)

C1(ψ) =
(
R′N,K(S(l + ψ)(l + ψ)′S ′ ⊗ IK)RN,K

)−1

C2(ψ) = (IN ⊗KN,N ⊗ IN) [vec(A0(ψ))⊗ IN2 : IN2 ⊗ vec(A0(ψ))] [A1(ψ)′ : A1(ψ)′]′.

Writing (C.2) in matrix form and simplifying yields

hn = Λ−1
(
R′N,K − (vec(Λ−1)⊗ IN

)′
(IN ⊗KN,N)

(
(IN2 +KN,N)(IN ⊗ L)⊗ L

))
,(C.3)

where L =
√
KR′N,K(Sl⊗ IK) and Λ is the concentration matrix defined in (10). Using the

eigenvalue decomposition Λ = QΛDΛQ
′
Λ, and the fact that (9) implies L0 = Q′ΛΛ−

1
2L, (C.3)

can be rewritten as

hn = QΛD
− 1

2
Λ M1(D−

1
2

Λ QΛ ⊗ L0 ⊗ L0)M2,(C.4)

where M1 = R′N,N (IN3 + (KN,N ⊗ IN)) and M2 = RN,KR
′
N,K/(1 +N)− INK2 , which proves

Part (i).

Recall the definition of ρ in (1) in the main text

ρ = ((R′(S2 ⊗ IK)R)−
1
2 ⊗ IK2) vec (S12) /

√
Tr(S1).
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Using the definitions of S1, S2 and S12 in (6),

Tr(S1) = Tr((β̃′ ⊗ IK)W(β̃ ⊗ IK)) = β̃′R′N+1,K(W ⊗ IK)RN+1,K β̃,(C.5)

vec(S12)′ = vec((β̃′ ⊗ IK)[W12 : W2])′ = vec(β̃′R′N+1,K([W12 : W2]⊗ IK))′,(C.6)

where β̃ = [1 : −β′]′. Substituting into the definition of ρ yields

ρ = K−
1
2 Ψx/

√
x′x,(C.7)

where x = (R′N+1,K(W⊗IK)RN+1,K)
1
2 β̃ and Ψ =

(
SW− 1

2
2 [W12 : W2]′⊗IK)RN+1,K(R′N+1,K(W⊗

IK)RN+1,K)−
1
2 . Since,

sup
β∈RN
||hnρ||2 = K−

1
2 sup
x∈RN+1

||hnΨx||2
||x||2

= K−
1
2 ||hnΨ||2,(C.8)

the optimization of the Nagar bias over β amounts to the taking the largest singular value
of the matrix hnΨ.

Next, note that hnh
′
n = QΛDhQ′Λ where Dh = (K − 2(1 + N))D−2

Λ + D−
1
2

Λ M1(D−1
Λ ⊗

IN2)M ′
1D
− 1

2
Λ is a diagonal matrix, such that QΛ are eigenvectors of hnh′n and Dh contains

the eigenvalues. The i-th diagonal element of Dh is

1

λ2
i

(
K −N + 1 +

N∑
j 6=i

λi
λj

)
> 0,(C.9)

where λi > 0 is the i-th eigenvalue of Λ. Each eigenvalue of hnh
′
n is decreasing in all

eigenvalues of Λ. Making the dependence on DΛ explicit by the notation hn(DΛ) and
fixing QΛ, it is therefore the case that λ−2

minhn(IN)′hn(IN) − hn(DΛ)′hn(DΛ) is positive
semidefinite for all DΛ with λmin as the smallest diagonal element. This in turn implies
that λ−2

minΨ′hn(IN)′hn(IN)Ψ − Ψ′hn(DΛ))′hn(DΛ))Ψ is positive semidefinite, see Proposi-
tion 8.1.2 in Bernstein (2009). It follows from Weyl’s inequality that λ−1

min||hn(IN)Ψ||2 ≥
||hn(DΛ))Ψ||2, see for example Theorem 8.4.9 in Bernstein (2009). Therefore,

sup
DΛ:λi≥λmin

K−
1
2 ||hn(DΛ)Ψ||2 = K−

1
2λ−1

min||QΛM1(QΛ ⊗ L0 ⊗ L0)M2Ψ||2,(C.10)

which states that largest bias occurs when all eigenvalues of the concentration matrix are
equal to the smallest eigenvalue, and therefore when DΛ = λminIN . Finally, QΛM1(QΛ ⊗
L0 ⊗ L0)M2Ψ = M1(IN ⊗ L0 ⊗ L0)M2Ψ for any QΛ, and therefore the sharp upper bound
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for the bias does not depend on QΛ. This means the sharp upper bound is

B∗n(W, λmin) = λ−1
minK

− 1
2 sup
L0∈ON×K

{||M1(IN ⊗ L0 ⊗ L0)M2Ψ||2},(C.11)

which concludes the proof of Part (ii.a)

Turning to Part (ii.b), the upper bound B∗(W, λmin)n ≤ λ−1
min(2(N+1)/K)

1
2 ||M2Ψ||2 fol-

lows from K−
1
2 ||hn(λminIN)Ψ||2 ≤ K−

1
2λ−1

min||M1||2||(IN ⊗ L0 ⊗ L0)||2||M2Ψ||2 and the fact
that ||M1||2 = (2(N +1))

1
2 and ||(IN ⊗L0⊗L0)||2 = 1. The inequality follows from Proposi-

tion 9.6.1 in Bernstein (2009). Finally, the upper bound, B∗n(W, λmin) ≤ λ−1
min||Ψ||2, follows

from K−
1
2 ||hn(λminIN)Ψ||2 ≤ K−

1
2 ||hn(λminIN)||2||Ψ||2 = λ−1

min||Ψ||2 since ||hn(λminIN)||2 =

K
1
2λ−1

min, see (C.9).

D Cumulants of Traces of Partitions of a Non-Central Wishart Matrix

In this section, we derive expressions for cumulants of the matrix of the traces of K × K
partitions of a non-central Wishart matrix.

The Laplace transform of the trace of a non-central Wishart distribution is given in
Mathai (1980), equation (1.6), from which it follows immediately that the cumulant gener-
ating function is

(D.12) KTr(W )(t) = −1

2
Tr (Ω)− K

2
ln |INK − 2Σ|+ 1

2
Tr ((INK − 2Σ)−1Ω).

However, we are interested in the traces of each K×K block ofW . We follow e.g., Muirhead
(1982) or Kollo and Rosen (1995) in evaluating the cumulant generating function for a
submatrix,

(D.13) KTr(W )(TN) = −1

2
Tr (Ω)−K

2
ln |INK−2M(TN)Σ|+ 1

2
Tr ((INK − 2M(TN)Σ)−1Ω),

where TN is a N ×N matrix and

(D.14) M(TN) =
∑

i,j=1,...,N

tijMij, Mij = eje
′
i,

where ei is the ith block of K columns of the matrix INK , so thatMijW is matrix containing
the ith block of K rows of W in its jth block of K rows, and zero otherwise. Indexing each
selection matrixMij to a scalar value tij yields the cumulant generating function of the trace
of MijW , analogously to Mathai (1980), when the remainder of TN is set to zero. Note that
Tr(MijW ) = Tr(Wij), since the jth diagonal block of MijW is Wij, and all other diagonal
blocks are zero.
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The ij entry of R′N,K(W ⊗ IK)RN,K corresponds to the trace of the ij K ×K block of
W . Thus, the nth cumulants of R′N,K(W ⊗ IK)RN,K are obtained by taking the coefficients
on TnN

n!
in the Taylor expansion of KTr(W )(TN), evaluated at TN = 0. Let ι(i) denote the

index of some K ×K block of a NK ×NK matrix. Then κn(W )ι(1),ι(2),... denotes the nth
cumulant of Tr(Wι(1)) with Tr(Wι(2)) . . . (i.e. the covariance for n = 2, etc.). Taking such
partial derivatives yields the following expressions:

κ
ι(1)
1 (W ) =

K

2
Tr(2Mι(1)Σ) +

1

2
Tr(2Mι(1)ΣΩ)(D.15)

κ
ι(1),ι(2)
2 (W ) =

K

2
Tr(22Mι(2)ΣMι(1)Σ) +

1

2

∑
p∈P(ι(1),ι(2))

Tr(22Mp(1)ΣMp(2)ΣΩ)(D.16)

κ
ι(1),ι(2),ι(3)
3 (W ) =

K

2

∑
p∈P(ι(2),ι(3))

Tr(23Mp(1)ΣMp(2)ΣMι(1)Σ)(D.17)

+
1

2

∑
p∈P(ι(1),ι(2),ι(3))

Tr(23Mp(1)ΣMp(2)ΣMp(3)ΣΩ)

κι(1),ι(2),...
n (W ) =2n−1

K ∑
p∈P(ι(2),ι(3),...)

Tr(Mp(1)ΣMp(2)Σ . . .Mp(n−1)ΣMι(1)Σ)(D.18)

+
∑

p∈P(ι(1),ι(2),ι(3),...)

Tr(Mp(1)ΣMp(2)ΣMp(3)Σ . . .Mp(n)ΣΩ)

 ,

where P() denotes the set of all permutations of the indices in the argument and p(i) denotes
the ith index in a given permutation. Note that for N = 1, the formulas collapse to those
for the trace in Mathai (1980).

We next prove a lemma relating Tr(Mι(1)ΣMι(2)ΣMι(3)Σ . . .Mι(n)Σ) to Tr(Σι(1)Σι(2)Σι(3) . . .Σι(n)).
For this purpose, denote the row block index of ι(i) as ι(i)1 and the column block index
as ι(i)2, so Mι(i) = Mι(i)1,ι(i)2 . Additionally, let Bi• denote the ith block of K rows of the
matrix B, and similarly B•i for the block of columns.

Lemma 1. Tr(Mι(1)ΣMι(2)Σ . . .Mι(n)Σ) = Tr(Σι(1)1,ι(2)2Σι(2)1,ι(3)2 . . .Σι(n)1,ι(1)2).

Proof. For a general symmetric matrix B, the matrix Mι(1)B has the ι(1)1 block of K rows
of B transferred to its ι(1)2 block of rows, with the remainder zeros. The product of a
sequence of such matrices, Mι(1)B . . .Mι(n−1)B contains zeros except for the ι(1)1 block of
K rows. Suppose that this block of rows can be written as Bι(1)1,ι(2)2Bι(2)1,ι(3)2 . . . Bι(n−1)1•.
Then the product of Mι(1)B . . .Mι(n−1)BMι(n)B is also a matrix of zeros except for the
ι(1)2 block of K rows, which are equal to Bι(1)1,ι(2)2Bι(2)1,ι(3)2 . . . Bι(n−1)1ι(n)2Bι(n)1•. Con-
sider as a base case Mι(1)BMι(2)B. The product is zeros except for the ι(1)2 block of K
rows, which is equal to Bι(1)1,ι(2)2Bι(2)1•. Thus, by induction, it follows that the prod-
uct of Mι(1)B . . . BMι(n)B is a matrix of zeros, except for the ι(1)2 block of K rows,
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which are equal to Bι(1)1,ι(2)2Bι(2)1,ι(3)2 . . . Bι(n)1•, for all n. As an immediate consequence,
Tr(Mι(1)B . . . BMι(n)B) = Tr(Bι(1)1,ι(2)2Bι(2)1,ι(3)2 . . . Bι(n)1,ι(1)2), since the latter argument is
the single non-zero diagonal block. Letting B = Σ and applying the preceding result yields
the stated lemma.

Applying Lemma 1 to the above cumulants yields,

κ
ι(1)
1 (W ) =

K

2
Tr(2Σι(1)) +

1

2
Tr(2Σι(1)Ω)

(D.19)

κ
ι(1),ι(2)
2 (W ) =

K

2
Tr(22Σι(2)1,ι(1)2Σι(1)1,ι(2)2) +

1

2

∑
p∈P(ι(1),ι(2))

Tr(22Σp(1)1,p(2)2Σp(2)1,p(1)2Ω)

(D.20)

κ
ι(1),ι(2),ι(3)
3 (W ) =

K

2

∑
ι∈P(ι(2),ι(3))

Tr(23Σp(1)1,p(2)2Σp(2)1,ι(1)2Σι(1)1,p(1)2)

(D.21)

+
1

2

∑
ι∈P(ι(1),ι(2),ι(3))

Tr(23Σp(1)1,p(2)2Σp(2)1p(3)2Σp(3)1,p(1)2Ω)

κι(1),ι(2),...
n (W ) =2n−1

K ∑
p∈P(ι(2),ι(3),...)

Tr(Σp(1)1,p(2)2Σp(2)1,p(3)2 . . .Σp(n−1)1,ι(1)2Σι(1)1,p(1)2)

(D.22)

+
∑

p∈P(ι(1),ι(2),...)

Tr(Σp(1)1,p(2)2Σp(2)1,p(3)2 . . .Σp(n)1,p(1)2Ω)

 .

We ultimately need the cumulants of γ′R′N,K(W ⊗ IK)RN,Kγ. Using the preceding ex-
pressions for cumulants of R′N,K(W ⊗ IK)RN,K , we can compute the cumulants of such
quadratic forms. The nth cumulant of the quadratic form γ′Aγ for a random matrix A is
given by

(D.23) κn(γ′A′γ) =
N∑

ι(1)1=1

N∑
ι(1)2=1

. . .

N∑
ι(n)1=1

N∑
ι(n)2=1

(
n∏
j=1

γι(j)1γι(j)2

)
κι(1),...,ι(n)
n (A),

where ι(i) denote indices of individual elements of A. Given the previously derived ex-
pressions for the cumulants of the entries of R′N,K(W ⊗ IK)RN,K , we can now compute the
cumulants of γ′R′N,K(W ⊗ IK)RN,Kγ, noting that the cumulants for the ij entry are equal
to those for the trace of the ij K ×K block of W , Tr(Wij).
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Plugging in the first summation in κι(1),...ι(n)
n (W ), equation (D.22),

N∑
ι(1)1=1

N∑
ι(1)2=1

. . .
N∑

ι(n)1=1

N∑
ι(n)2=1

(
n∏
j=1

γι(j)1γι(j)2

) ∑
p∈P(ι(2),ι(3),...)

Tr
(
Σp(1)1,p(2)2Σp(2)1,p(3)2 . . .

(D.24)

Σp(n−1)1,ι(1)2Σι(1)1,p(1)2

)
=

∑
p∈P(ι(2),ι(3),...)

N∑
ι′(1)1=1

N∑
ι′(1)2=1

. . .
N∑

ι′(n)1=1

N∑
ι′(n)2=1

(
n∏
j=1

γι′(j)1γι′(j)2

)
Tr(Σι′(1) . . .Σι′(n))

=(n− 1)!
N∑

ι′(1)1=1

N∑
ι′(1)2=1

. . .

N∑
ι′(n)1=1

N∑
ι′(n)2=1

(
n∏
j=1

γι′(j)1γι′(j)2

)
Tr(Σι′(1) . . .Σι(n)′),

where we used a change of indices to move from the first line to the second (recognizing
that each set of permuted indices on the blocks of Σ is just the index for some other block
of Σ indexed by ι′(i)) and in moving to the third observed that the summand of the outer
summation does not depend on the indices of that summation. Note that, by definition,

Tr(((γγ′ ⊗ IK)B)n) =
N∑

ι(1)1=1

N∑
ι(1)2=1

. . .
N∑

ι(n)1=1

N∑
ι(n)2=1

(
n∏
j=1

γι(j)1γι(j)2)

)
Tr(Bι(1) . . . Bι(n)).

Thus, the expression further simplifies to

(D.25) (n− 1)! Tr(((γγ′ ⊗ IK)Σ)n).

Next, we can apply the same steps to the second summation in the cumulants to obtain

(D.26) n! Tr(((γγ′ ⊗ IK)Σ)nΩ).

Combining both terms yields the expression (16) in the main text.

E Upper Bounds on the Cumulants of gmin

Recall the expression for the cumulants in the main text

κn = 2n−1(n− 1)!
(

Tr
(
((γγ′ ⊗ IK)Σ)n

)
+ nTr

(
((γγ′ ⊗ IK)Σ)nΩ

))
,

with γ′γ = 1, and note that we are proving upper bounds for cumulants of order n > 1.

Using the fact that for a positive semi-definite matrix V , |Tr(UV )| ≤ maxevalU Tr(V ),
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see Fact 8.12.29 in Bernstein (2009), and the fact that Tr
(
((γγ′ ⊗ IK)Σ)nΩ

)
≥ 0, we have

Tr
(
((γγ′ ⊗ IK)Σ)nΩ

)
≤ maxeval{((γγ′ ⊗ IK)Σ)n−1}Tr

(
(γγ′ ⊗ IK)ΣΩ

)
(E.27)

= Kλmin maxeval{((γγ′ ⊗ IK)Σ)n−1},

where the last step follows from Tr
(
(γγ′ ⊗ IK)ΣΩ

)
= γ′R′(ΣΩ⊗ IK)Rγ = Kλmin.

Next note that

maxeval{((γγ′ ⊗ IK)Σ)n−1} = (maxeval{(γγ′ ⊗ IK)Σ})n−1(E.28)

=
(

maxeval{Σ
1
2 (γγ′ ⊗ IK)Σ

1
2}
)n−1

≤ (maxeval{Σ}maxeval{(γγ′ ⊗ IK)})n−1

= maxeval{Σ}n−1,

where the inequality follows from Ostrowski’s theorem, see for example Theorem 4.5.9 in
Horn and Johnson (2013), and the last step is due to the fact that the matrix γγ′ has only
one non-zero eigenvalue that is equal to one. We therefore have the inequality

Tr
(
((γγ′ ⊗ IK)Σ)nΩ

)
≤ Kλmin maxeval{Σ}n−1.(E.29)

Using the Lieb-Thirring inequality for positive semi-definite matrices, see Bernstein
(2009) Fact 8.12.17,

Tr(((γγ′ ⊗ IK)Σ)n) ≤ Tr((γγ′ ⊗ IK)nΣn) = Tr(((γγ′)n ⊗ IK)Σn) = Tr((γγ′ ⊗ IK)Σn),

where the last equality results from the fact that the matrix γγ′ has only one non-zero
eigenvalue that is equal to one. Since Tr((γγ′ ⊗ IK)Σn) = γ′R′(Σn ⊗ IK)Rγ with γ′γ = 1,
we have

Tr(((γγ′ ⊗ IK)Σ)n) ≤ maxeval{R′(Σn ⊗ IK)R}.(E.30)

Applying the two inequalities (E.29) and (E.30) leads to the upper bounds in (18) of the
main text.
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F Conservative Imhof Approximation

In the general case with Σ 6= INK , we use the approximation in Imhof (1961) for the cdf of
quadratic forms in normal variables,

Pr(F < x) ≈ Pr(χ2
ν < (x− κ1)4ω + ν) =

∫ x

κ1−ν(4ω)−1

φ(z)dz ,where(F.31)

ν = 8κ2ω
2 ; ω = κ2/κ3 ; φ(z) =

(
1 +

z − κ1

2κ2ω

)ν/2−1

e
− ν

2

(
1+

z−κ1
2κ2ω

)
(ν/2)ν/2−1ω

2ν/2−2Γ(ν/2)
.

This approximation matches the first three central moments of the true distribution of F .

The pdf φ(z) has a mode at zm = κ1 − (2ω)−1 if ν ≥ 2, and at zero otherwise. The critical
value associated with the upper α-percentile is implicitly defined by α =

∫∞
x(α)

φ(z)dz. To
find the largest possible critical value among all possible distributions, we solve the following
optimization problem:

max
κ1,κ2,κ3

x(α) s.t. κn ≤ κ̄n for n = 1, 2, 3 .(F.32)

The Kuhn-Tucker conditions are1 ∫ ∞
x(α)

∂φ(z)

∂κn
dz = µn,(F.33)

together with µn ≥ 0, n = 1, 2, 3, the constraints and the complementary slackness condi-
tions, where µn are the multipliers times φ(x(α)) > 0. The partial derivatives are

∂φ(z)

∂κ1

=
1 + (z − κ1)2ω

2κ2ω

(
1 +

z − κ1

2κ2ω

)−1

φ(z),(F.34)

∂φ(z)

∂κ2

=
φ(z)

κ2

G1 ((z − κ1)4ω + ν) ,(F.35)

∂φ(z)

∂κ3

=
φ(z)

κ3

G2 ((z − κ1)4ω + ν) ,(F.36)

where

G1(y) = −1

2
(y − 2ν(ν − 2)/y + ν) + 3/2(ln(y/2)− ψ(ν/2))ν,(F.37)

G2(y) =
1

2
(y − ν(ν − 2)/y)− (ln(y/2)− ψ(ν/2))ν,(F.38)

1This follows from the implicit function theorem and Leibniz’s rule: 1 = −φ(x(α))∂x(α)∂y +
∫∞
x(α)

∂φ(z)
∂y dz ⇒ ∂x(α)

∂y =∫∞
x(α)

∂φ(z)
∂y dz/φ(x(α)) with φ(x(α)) > 0 for α ∈ (0, 1).
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and ψ(x) = Γ′(x)/Γ(x) is the digamma function (the logarithmic derivative of the gamma
function Γ(x)). From Alzer (1997) (equation 2.2), we know that

1/ν < ln (ν/2)− ψ(ν/2) < 2/ν.(F.39)

For n = 1, the LHS of (F.33) is always positive to the right of the mode, which means
the constraint on the mean (n = 1) is always binding. The Alzer bounds imply that in
the right tail of any optimal distribution, the LHS of (F.33) is always strictly positive for
n = 2, 3, which means that the constraints are also binding as long as α is sufficiently small.
In other words, the Imhof approximation matching the upper bounds for the cumulants is
a conservative approximation for the right tail of the true distribution of gmin.
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