Interest Rate Surprises: A Tale of Two Shocks

Ricardo Nunes, Ali Ozdagli and Jenny Tang
Interest Rate Surprises: A Tale of Two Shocks

Ricardo Nunes†, Ali Ozdagli‡ and Jenny Tang§

August 2022

Abstract

Interest rate surprises around FOMC announcements reveal both the surprise in the monetary policy stance (the pure policy shock) and interest rate movements driven by exogenous information about the economy from the central bank (the information shock). In order to disentangle the effects of these two shocks, we use interest rate changes on days of macroeconomic data releases. On these release dates, there are no pure policy shocks, which allows us to identify the impact of information shocks and thereby distill pure policy shocks from interest rate surprises around FOMC announcements. Our results show that there is a prominent central bank information component in the widely used high-frequency policy rate surprise measure. When we remove this central bank information component, the estimated effects of monetary policy shocks are more pronounced relative to those estimated using the entire policy rate surprise.

Keywords: Monetary policy; central bank information; high frequency identification; proxy structural VAR; external instruments

JEL Codes: C36, D83, E52, E58

†Ricardo Nunes, University of Surrey, ricardo.nunes@surrey.ac.uk.
‡Ali Ozdagli, Federal Reserve Bank of Dallas, ali.ozdagli@dal.frb.org.
§Jenny Tang, Federal Reserve Bank of Boston, jenny.tang@bos.frb.org.

*We thank Anna Cieslak, Karel Mertens, Olivier Coibion, and Jón Steinsson for helpful feedback. We thank Kurt Lunsford and participants at the Fall 2021 Federal Reserve System Macro Conference and SED 2022 meeting for valuable insights and suggestions. The views expressed in this paper are those of the authors and do not necessarily represent the views of the Federal Reserve Banks of Boston or Dallas or the Federal Reserve System. Keith Barnatchez, Noah Flater, and Nikhil Rao provided invaluable research assistance on this project.

†Ricardo Nunes, University of Surrey, ricardo.nunes@surrey.ac.uk.
‡Ali Ozdagli, Federal Reserve Bank of Dallas, ali.ozdagli@dal.frb.org.
§Jenny Tang, Federal Reserve Bank of Boston, jenny.tang@bos.frb.org.
1 Introduction

How to properly identify monetary policy shocks and their effects is a classic question in macroeconomics (Sims 1980; Bernanke and Blinder 1992; Christiano et al. 2005). To do so, one must first isolate the policy surprise by parsing out the anticipated component of policy changes. Second, it must be taken into account that such surprises in monetary policy rates are likely to stem from a combination of the policy stance itself and new information about the central bank’s outlook on the economy (Romer and Romer 2000), each of which can have a very different effect on the economy.

There is now a large literature using high-frequency interest rate changes measured around FOMC announcements in event-study frameworks to identify the effects of monetary policy shocks. This literature starts with Kuttner (2001) and Gürkaynak et al. (2005b,a). A more recent very important development in the literature involves using this method to construct external instruments to identify monetary policy shocks in vector autoregressions (VARs), as done in Gertler and Karadi (2015) based on the methodology of Montiel Olea et al. (2021) and Mertens and Ravn (2013). This methodology improves on previous structural decompositions of VAR residuals, including, for instance, the commonly used Cholesky decomposition. Other external instruments that have been used include those based on narrative approaches (for example, Romer and Romer 2004).¹

Despite the recent advances in the literature, these interest rate surprises can still capture both surprises to financial markets due to deviations of a central bank’s policy actions from ones that are consistent with its usual rule and surprises due to a central bank’s reactions to its private assessment of the economic outlook. In the former case, a negative interest rate surprise is expansionary, whereas in the latter case the same surprise can be contractionary, because the central bank communicates a negative economic outlook and the interest rate

¹Both of these types of instruments have been developed for other countries. For instance, for the United Kingdom, Cloyne and Hürtgen (2016) build a narrative measure, and Cesa-Bianchi et al. (2020) consider high-frequency identification.
must be reduced to combat economic weakness. Hence, the external instruments widely used in the literature do not distinguish between these two channels that lead to different effects on economic activity and can result in price and other empirical puzzles. The literature commonly refers to these two channels as central bank information versus pure monetary policy shocks, as well as Delphic versus Odyssean guidance.\(^2\)

This paper contributes to the recent literature on this topic by using information on changes in interest rate expectations around both FOMC announcements and macroeconomic data releases. We combine both types of events in order to distinguish between the information component and the pure monetary policy shock component in the same VAR framework. We have two objectives. First, we aim to obtain pure monetary policy shocks that are clean of central bank information and that can be directly compared with monetary policy shocks in standard models. Second, we aim to analyze the impact of macroeconomic news data releases on interest rates and, more broadly, on the overall economy.

When macroeconomic data are released, this information becomes public and markets parse out how the Federal Reserve will change monetary policy in response to the new data. Thus, market interest rates at maturities covering the subsequent FOMC meetings react immediately and unveil the typical reaction of monetary policy to developments in the economy. These macroeconomic data release dates offer two important advantages. First, on these release days, there are usually no FOMC meetings and, therefore, the movements in interest rates are due to the expected policy response to the data release itself; that is, we identify the endogenous (systematic) component of monetary policy.\(^3\) Second, a macro release day helps identify the effect of such information becoming public, and it is precisely this information effect that we are interested in. For instance, if a release announces that GDP is higher than expected, it is not because productivity jumped on that particular day;

\(^2\)The Delphic and Odyssean terminology is more commonly used in the context of forward guidance at the zero lower bound and the commitment issues that arise in that context. For a discussion, see Campbell et al. (2012), Bodenstein et al. (2012), Del Negro et al. (2012), and Andrade et al. (2019).

\(^3\)Some data releases coincide with FOMC meetings, and we exclude those from our analysis.
rather, productivity already was higher, and that was reflected in the economy. Importantly, however, the macro release day can isolate the effect of this information becoming public, which is analogous to the effect of the central bank’s private information about the economy becoming public. Using the interest rate surprises on macro release days, we can identify an information shock and use this shock to purge the information component from interest rate surprises on FOMC announcement days, leaving only the pure monetary policy shock.

Our results imply that interest rate surprises around FOMC announcements have both a pure monetary policy shock and an information shock confounded within them. After the two components are separated, the estimated effects of the pure monetary policy shock are more pronounced than the estimated response to the composite overall FOMC announcement interest rate surprise. We find that a properly identified contractionary monetary policy shock leads to lower inflation, lower economic activity, lower stock prices, and higher bond risk premia, with all of these effects being fairly precisely estimated. The information shock that manifests as a positive interest rate surprise leads to higher prices, higher activity, and dampened responses of bond risk premia and stock prices.

Literature Review — Our paper is related to the literature using interest rate futures and financial data to identify monetary policy shocks. This approach was introduced by Kuttner (2001), Cochrane and Piazzesi (2002), Bernanke and Kuttner (2005), and Gürkaynak et al. (2005b,a), among others. More recently, Gertler and Karadi (2015), Campbell et al. (2017), Nakamura and Steinsson (2018), and Paul (2020) extended this type of analysis by embedding the framework into VARs, making use of more financial data, examining the effects on more variables, and estimating effects over different subsamples.

The literature examining the effect of various macroeconomic announcements on financial markets and the economy is vast (for example, Boyd et al. 2005; Gürkaynak et al. 2005a; Rudebusch (1998) also proposed using futures data to measure monetary shocks. Ozdagli (2017) examines the effects on the cross section of firms. Hamilton et al. (2011) estimate directly the policy rule that agents use to form their expectations by linking the effects of news on forecasts of both economic conditions and monetary policy. Gilchrist et al. (2015) and Caldara and Herbst (2019) further stress changes in corporate credit spreads and borrowing costs in the transmission of monetary policy.
Andersen et al. 2007; Faust et al. 2007; Savor and Wilson 2013; Tang 2017; Gürkaynak et al. 2020, among others). We contribute to this literature by introducing the use of interest rate movements around these events, not the surprises in the macro announcements themselves, to flexibly identify the effects of exogenous shocks to information about the systematic component of monetary policy. By using this macro announcement interest rate surprise measure in an external instruments VARs, we can decompose monetary and information shocks that occur with policy announcements, an application of macro announcements that is new to the literature.

Our work is also related to the empirical literature on information asymmetry between the central bank and private agents. Romer and Romer (2000) show compelling evidence that the Federal Reserve may have more updated, private information on the economy and that the private sector may try to infer such information. Barakchian and Crowe (2013) show evidence that the public can use FOMC policy actions to infer the Federal Reserve’s private information. Ellingsen and Soderstrom (2001), Tang (2015), Mertens (2016), and Melosi (2017) provide theoretical models that explore the information channel (also referred to as the signaling channel).

Several recent papers provide empirical methodologies for separating information and monetary policy shocks. Cieslak and Schrimpf (2019), Jarociński and Karadi (2020), Andrade and Ferroni (2021) use sign restrictions to disentangle the two shocks. Miranda-Agrippino and Ricco (2021) project the high-frequency surprises on observable measures of central bank information to obtain a pure monetary policy surprise.

6Blinder et al. (2008) provide an excellent survey on central bank communication. Hansen and McMahon (2016) and Lunsford (2020) examine the linguistic aspects of central bank announcements. Lunsford (2020) and Stavrakeva and Tang (2021) identify periods during which information shocks were prominent, namely the early 2000s and the Great Recession, respectively. See also Mankiw and Reis (2010) and Gaspar et al. (2010) for a review of models of imperfect information.

7See also Thapar (2008), Barakchian and Crowe (2013), and Lakdawala (2019) for works using central bank’s information and forecasts. Altavilla et al. (2019) use factor analysis to measure monetary policy and quantitative easing in the euro area.
information shocks and monetary policy shocks have been shown to be of ambiguous sign or to be state-dependent (Boyd et al. 2005; Galí 2014; Galí and Gambetti 2015; Lakdawala and Schaffer 2019; Yaron et al. 2019; Gardner et al. 2021). More generally, restrictions on these responses of stock prices require certain conditions that may not be met in the data. Relative to the literature making use of central bank forecasts, we do not need to assume that FOMC statements accurately inform the public of the FOMC’s expectations.\footnote{Section 2.2 contains more in-depth discussion comparing our method with the ones that use central bank forecasts.} These works are complementary to ours, and our work differs from them by making use of the information content of macro releases.

The remainder of the paper proceeds as follows. In Section 2, we describe the identification method and the data. Section 3 presents the estimated impulse responses along with some robustness checks. Section 4 concludes.

2 Identification Method

This section describes how we estimate responses to FOMC information shocks and monetary shocks using a VAR identified with high-frequency external instruments. Before presenting our methodology, we first illustrate the identification problem and provide a brief discussion of methods used previously in the literature.

To start, consider the following expression describing the behavior of policy rates:

$$i_t = \phi'X_t + \varepsilon_t^m.$$ (1)

The first term reflects the systematic policy response to a set of economic fundamentals X_t, while the second term is an exogenous shock to the policy rate that is orthogonal to the systematic response. The fundamentals driving the systematic response can include indicators of current or past economic outcomes or current assessments of future fundamentals. According to standard theories, a positive shock to ε_t^m should have a contractionary effect
on the economy, while a positive shock to beliefs about the economic fundamentals in X_t may have an expansionary effect.

Some of the earliest works using high-frequency identification to estimate the response of economic variables to the shock ε^m_t do so by estimating responses to measures that capture changes in expected policy rates that are measured in tight windows around FOMC announcements.\(^9\) Because it’s measured around the announcement of a policy decision, the policy shock ε^m_t is certainly reflected in these high-frequency interest rate surprises. However, one assumption that is crucially needed in this case is that these interest rate surprises do not also contain a change in beliefs about the systematic response component of policy, $\phi'X_t$, or the so-called information component of interest rate surprises. Despite the measurement of these surprises in a tight window around FOMC announcements, the interest rate surprises can contain an information component if financial market participants interpret the announcement itself as revealing information about the systematic component of monetary policy. Indeed, several recent papers present evidence suggesting that this information component is present in the form of estimated responses to interest rate surprises that are opposite of those predicted by theory.\(^{10}\)

One proposed solution to this problem is to proxy FOMC information shocks using the part of interest rate surprises that is correlated with changes in central bank forecasts and/or private forecasts, and to proxy the monetary shock using the orthogonal residual component of interest rate surprises (see Campbell et al. 2017; Miranda-Agrippino and Ricco 2021). This approach presumes that FOMC announcements accurately communicate central bank forecasts to markets. Another strategy for dealing with this issue, proposed by Jarociński and Karadi (2020), is to use both interest rate surprises and stock price changes over the same narrow windows around FOMC announcements in combination with sign restrictions.

\(^9\)See Kuttner (2001), Bernanke and Kuttner (2005), and Gürkaynak et al. (2005b). Gertler and Karadi (2015) and Nakamura and Steinsson (2018) are two more recent examples.

\(^{10}\)See Campbell et al. (2012), Tang (2015), Nakamura and Steinsson (2018), and Stavrakeva and Tang (2021), among others.
to separately identify the effects of monetary shocks and the information component of interest rate surprises. One drawback to this approach is that it requires an assumption that a positive information shock increases stock prices. Standard theory does not necessarily imply that this would be the case, because even if there is a positive effect of good news about economic fundamentals on expected future dividends, the positive reaction of the policy rate also increases the real interest rate applied in discounting those dividends.

Our proposed identification strategy does not rely on these assumptions. Instead it relies on just an assumption that the monetary shock, ε_m^t, does not occur outside of FOMC announcements. With this assumption, we can use changes in expected policy rates measured around major macroeconomic news events—specifically, data releases for important economic variables—as external instruments for exogenous changes in only the systematic component of monetary policy. This then allows us to isolate the effects of FOMC information shocks from the effects of monetary shocks, both of which enter into interest rates surprises around FOMC announcements.

To be more precise, we estimate a structural VAR that contains both macroeconomic and financial variables. The reduced form of the VAR is:

$$y_t = \lambda_1 y_{t-1} + \ldots + \lambda_p y_{t-p} + u_t,$$

where the residuals u_t are mean zero with covariance matrix $\Sigma \equiv E[u_t u_t']$. These reduced-form residuals are linear in the structural shocks,

$$u_t = [B_p \ B_{-p}] [\varepsilon_t^p \ \varepsilon_t^{-p}]',$n

where we’ve partitioned the shocks into a vector, ε_t^p, which contains our FOMC information and monetary shocks, and a vector of the remaining shocks ε_t^{-p}. In order to identify the effects of the shocks ε_t^p, we need to obtain estimates of B_p.

To do so, we use a method that relies on two main assumptions:

1. We have a vector of two instrumental variables Z_t that satisfies the relevance and
exclusion conditions of being correlated with the shocks of interest ε_t^p and uncorrelated with the remaining shocks ε_t^{-p}:

\[
E[Z_t\varepsilon_t^p] = \psi \quad (2)
\]

\[
E[Z_t\varepsilon_t^{-p}] = 0 \quad (3)
\]

2. The monetary shock does not affect one of the instrumental variables Z_t. That is, ψ contains one zero.

These two assumptions are sufficient for us to recover an estimate of B_p based on estimates of $E[Z_t u_t]$ and Σ. In fact, we show in Appendix A that, with a normalization of the shocks so that they have a contemporaneous effect of 1 on one of the variables in the VAR, the estimates for B_p can be obtained from IV regressions involving the reduced-form residuals, analogous to the case of a single shock in Gertler and Karadi (2015) or Miranda-Agrippino and Ricco (2021).

More specifically, suppose that, without loss of generality, we arrange the structural shocks, instrumental variables, and VAR variables such that (1) the first shock is the information shock and the second is the monetary shock, (2) $Z_{1,t}$ is the instrument that is uncorrelated with the monetary shock, and (3) $y_{1,t}$ is the variable upon which the shocks have a contemporaneous effect of 1. Then the response of variable $j \neq 1$ to the information shock is given by the following IV estimates of reduced-form residual j regressed on the first residual instrumented by $Z_{1,t}$:

\[
B_{j1} = \frac{E[Z_{1,t} u_{j,t}]}{E[Z_{1,t} u_{1,t}]}.
\]

This is just as in the single shock case.

The response of variable j to the monetary shock is given by the following IV estimates of reduced-form residual j regressed on the first residual now instrumented by a transformed

11 This method was used to decompose interest rate surprises into shocks to the current policy rate (“target” shocks) and to expected future policy rates (“path” shocks) in Lakdawala (2019).
instrumental variable \(\tilde{Z}_{2,t} \) that is \(Z_{2,t} \) purged of the identified information shock:

\[
B_{j2} = \frac{E_t \left(\tilde{Z}_{2,t} u_{j,t} \right)}{E_t \left(\tilde{Z}_{2,t} u_{1,t} \right)}
\]

where \(\tilde{Z}_{2,t} \equiv Z_{2,t} - \frac{E \left[Z_{2,t} \epsilon_{1,t} \right]}{E \left[\epsilon_{2,1,t} \right]} \epsilon_{1,t} \).

The identified information shock itself is given by:

\[
\epsilon_{1,t} = \frac{B_1' \Sigma^{-1} B_1' \Sigma^{-1} B_1 \epsilon_{1,t}}{B_1' \Sigma^{-1} B_1 \epsilon_{1,t}}.
\]

We now describe how we construct instrumental variables that satisfy our two main assumptions.

2.1 High-Frequency Instruments

The first instrument is the change in the three-month-ahead federal funds rate future (FF4) in the one-hour window around scheduled FOMC announcements. This instrument captures the change in the expected average federal funds rate level over the third calendar month out from the day of the announcement, a horizon that typically also covers the following FOMC meeting and thus captures near-term forward guidance.\(^{12}\) As discussed above, this instrumental variable is correlated with both the information shock and monetary shock.

The second instrument is the change in the same FF4 future on the days of releases of two major labor market reports: the Bureau of Labor Statistics’ monthly employment report, which contains the unemployment rate and the widely followed change in nonfarm payrolls, and the Department of Labor’s weekly unemployment claims report.\(^{13}\) To maintain our assumption that monetary shocks do not enter into these labor market news interest rate surprises, we exclude days on which there were coincident FOMC announcements. Instead, the interest rate surprises that occur during these labor market announcements reflect the

\(^{12}\) The choice of this particular interest rate future follows Gertler and Karadi (2015) and Jarociński and Karadi (2020). These futures also contain risk premia but Piazzesi and Swanson (2008) show that using high-frequency differences in these prices effectively cleans out risk premia, which predominantly vary at lower frequencies.

\(^{13}\) Note that we are not using the commonly used surprises in these macroeconomic data releases themselves, but rather the interest rate changes around these announcements.
change in the expected policy rate as a result of new information about the economy in the form of this macro release. Importantly, despite being driven by news about other economic variables, we argue, this instrument is not correlated with other shocks to the economy, such as direct shocks to labor markets, because these announcements merely reveal information about labor market outcomes that had already occurred over the past month.

We focus on labor market news because this contains the change in nonfarm payrolls, which is one of the most watched indicators by financial markets, on par with FOMC announcements (see Table A1 in Appendix B). We later present results of robustness checks in which we include a wider range of macro announcements, including those for GDP, inflation indicators, business and consumer confidence indicators, and house sales (see again Table A1 for the full list).

2.2 Intuition and Comparison with Previous Literature

With the instruments defined, we can now provide some clear economic intuition for this identification strategy. Recall that the main problem faced when using methods involving high-frequency interest rate surprises around FOMC announcements to identify monetary shocks is that these surprises are contaminated by shocks to information about the systematic component of policy. Rather than using proxies for FOMC private information to “clean” the information shock from FOMC announcement interest rate surprises, as is done by, for example, Campbell et al. (2017) and Miranda-Agrippino and Ricco (2021), we clean an identified information shock out of these FOMC announcement surprises, where the information shock is itself identified using high-frequency macro announcement interest rate surprises.

Finally, we highlight a few key aspects of this identification strategy. First, unlike the earlier literature that examines the response of variables to macroeconomic surprises, defined as the actual releases of macroeconomic variables less forecasts for those variables, we do not use these surprises in the macroeconomic variables as our instruments. Our measure
instead captures the movements in market expectations of future interest rates around these announcements. And to our knowledge, this measure is not used in previous work that identifies the effects of either pure policy or information shocks.\footnote{Ozdagli and Velikov (2020) use the change in policy expectations around inflation and employment data releases in a study of the monetary policy exposure of firms’ stock prices.} This, in our view, is a more direct and flexible measure of changes in expectations of the systematic component of policy whose validity does not rely on particular assumptions about the functional form of this systematic response.

Second, our estimated responses to the information shock implicitly assume that the information shock is one dimensional in the sense that, regardless of whether the information about the systematic component of policy comes from the FOMC announcement or labor market news, this information has the same effect on the rest of the economy. This implies that we are identifying the responses to exogenous changes in a one-dimensional composite measure of the systematic monetary policy response, which in actuality can be driven by separate shocks, such as those to demand or supply. This means that the responses that we identify will be an average of the responses to shocks to information about each individual underlying shock.\footnote{As will be presented later, the responses to information shocks have properties similar to responses to demand shocks, suggesting that demand shocks have a dominant role in this composite.}

In order to identify multiple information shocks using our strategy, we could isolate events during which only information about specific economic shocks is conveyed. Then, we would use these events to expand our set of instrumental variables and to make further zero assumptions on the ψ matrix in equation (2) that are analogous to Assumption 2 above. However, this is difficult to achieve with announcements of macroeconomic outcomes, since measured outcomes tend to be equilibrium variables—such as employment, output, or various prices—that are affected by all economic shocks. Instead, it may be better to expand the set of interest rate surprises to more macro announcements while incorporating a sign restriction on the ψ matrix in equation (2) rather than adding further zero restrictions, thus creating a
hybrid method that incorporates the ones in this paper and in Jarociński and Karadi (2020). We leave this approach for future work.

3 Impulse Responses

This section summarizes the results from our benchmark VAR model and robustness tests. Our benchmark model uses the identification method discussed in the preceding section with both FOMC announcement and labor market news interest rate surprises as instrumental variables. This VAR includes the one-year Treasury yield, the personal consumption expenditures price index (PCE) in logarithms, the industrial production index in logarithms, the excess bond premium (EBP) from Gilchrist and Zakrajšek (2012), and cumulative (dividend-inclusive) returns on the S&P 500 index in logarithm. These last two variables summarize financial conditions in the economy. The EBP is the component of the average spread between corporate bond yields and matched-duration synthetic risk-free rates that remains after the contribution of expected default risk is removed. Accordingly, Gertler and Karadi (2015) interpret the EBP as a measure of the spread between yields on private versus public debt that is due purely to financial market frictions. Gilchrist and Zakrajšek (2012) show that the EBP has strong forecasting ability for economic activity. The reaction of stock prices to monetary policy has become a very popular research topic in macroeconomics and finance since the publishing of work by Bernanke and Kuttner (2005). Moreover, we use the responses of stock prices to the information and monetary shocks to compare our identification method with the sign restrictions imposed in Jarociński and Karadi (2020).

We estimate the VAR at a monthly frequency with 12 lags using Bayesian methods with standard macroeconomic priors whose tightness is chosen by the procedure of Giannone et al. (2015), as in Miranda-Agrippino and Ricco (2021).\footnote{More specifically, this procedure uses Minnesota, sum-of-coefficients, and dummy-initial-observation priors. The hyperparameters are chosen to maximize the marginal likelihood. Giannone et al. (2015) show that this method improves the accuracy of impulse response estimates relative to a VAR estimated with a flat (uninformative) prior.} We aggregate our high-frequency
instruments to the monthly frequency using the method of Gertler and Karadi (2015), which takes into account the timing of the surprise within the month.\footnote{More specifically, the monthly surprises are an average over the month of a 31-day moving sum of daily surprises.} The VAR is estimated over the January 1980 through January 2019 period, while the instrument sample is February 1990 through January 2019.

The left (right) panel of Figure 1 shows the dynamic response of the variables in our VAR to a pure policy (information) shock that increases the one-year Treasury yield by 1 percentage point. As a check to ensure that the instruments are relevant, we present the F-statistics from the first-stage regressions of the one-year Treasury yield reduced-form VAR residuals on labor market news interest rate surprise and the FOMC announcement surprise cleaned of the identified information shock. We find F-statistics of 10 and 142, respectively. Both of these values are at least as high as the threshold of 10 suggested by Stock et al. (2002), thus indicating that the instruments are not overly weak.

Overall, these impulse responses are very intuitive: Both the pure policy shock and the information shock lead to higher short-term Treasury yields. However, their effects on other variables differ significantly. The pure policy shock decreases consumer prices and production, consistent with the conventional implications of a tighter monetary policy. The EBP increases substantially in response to a pure policy shock, which is consistent with the argument that such a shock would tighten the credit market conditions. Lastly, stock prices react very negatively to pure policy shocks, which is expected because pure policy shocks increase the discount rate and decrease future cash flows (Bernanke and Kuttner 2005). On the other hand, the information shock reveals new positive information about the economy, which leads to increases in consumer prices and production. The EBP response is slightly negative, as the increased optimism about economic conditions more than offsets the tighter credit conditions generated by higher interest rates. Lastly, stock prices have a small positive reaction to the information shock because the negative effect of higher discount rates is
Figure 1: Impulse responses to monetary and information shocks

Note: Shaded areas denote posterior coverage bands for the 16th to 84th percentiles (darker gray) and the 5th to 95th percentiles (lighter gray). Responses to the information shock are identified using an instrument based on changes in the FF4 futures price on the days of labor market news (excluding days that overlap with FOMC announcements). Responses to the monetary shock are identified using an instrument based on the component in changes in the FF4 futures price over a one-hour window around FOMC announcements that is orthogonal to the identified information shock.
slightly dominated by the higher expected future cash flows due to positive news about the economy. Note that we obtain this result without imposing the restriction of a positive stock price response to identify information shocks, the method of Jarociński and Karadi (2020).

3.1 Comparison with Alternative Methods

As the next step, we compare the impulse responses to the pure policy shock we have identified with the impulse responses to the overall interest rate surprise used in Gertler and Karadi (2015), which is not purged of the information effect. The left panel of Figure 2 reproduces the effect of pure policy shock from Figure 1, while the right panel of Figure 2 is the impulse response to the overall interest rate surprise.

We see that the peak effects of the pure policy shock on consumer prices, production, EBP, and stock prices are all more than two times as large as the effect of the policy shock that is identified without taking the information effect into account. Our estimated initial stock price response to the total interest rate surprise is a 12.3 percent increase, also in line with the results from the finance literature that uses similar high-frequency monetary policy surprises, such as Bernanke and Kuttner (2005) and Gürkaynak et al. (2005b,a).

These studies find that a surprise increase of 1 percentage point in the federal funds rate would reduce stock prices by about 4 to 5 percent within minutes. Ozdagli (2013) finds that such a surprise would increase the two-year (six-month) Treasury yield by about 38 (51) basis points. This implies a range of estimates in our setting with the shock normalized to move the one-year Treasury yield by 1 percentage point of (4%/0.51=7.8% to 5%/0.38=13.2%).

18These studies find that a surprise increase of 1 percentage point in the federal funds rate would reduce stock prices by about 4 to 5 percent within minutes. Ozdagli (2013) finds that such a surprise would increase the two-year (six-month) Treasury yield by about 38 (51) basis points. This implies a range of estimates in our setting with the shock normalized to move the one-year Treasury yield by 1 percentage point of (4%/0.51=7.8% to 5%/0.38=13.2%).
Figure 2: Comparison of impulse responses to standard external instruments identification

Note: Shaded areas denote posterior coverage bands for the 16th to 84th percentiles (darker gray) and the 5th to 95th percentiles (lighter gray). Responses to the information shock are identified using an instrument based on the component in changes in the FF4 futures price over a one-hour window around FOMC announcements that is orthogonal to the identified information shock. Responses to the interest rate surprise are estimated using the overall changes in the FF4 futures price over a one-hour window around FOMC announcements.
3.2 Responses of Additional Variables

While it is customary in this literature to examine the responses of prices and activity to these shocks, a reasonable alternative VAR specification is to use a labor market variable as a measure of activity instead of industrial production, since we are using labor market news to identify the information shock. For this, we examine a specification using an index of aggregate weekly hours for production and nonsupervisory employees in the private nonfarm sector (in logarithms). We choose this measure rather than a measure of employment (or unemployment) since it more comprehensively captures variation in both the intensive and extensive margins of labor. Figure 3 shows that the negative response to pure monetary shocks and positive response to information shocks that we observed with industry production are also reflected in the responses of hours.

As another check on the mechanism, we can additionally examine the response of growth forecasts, as theory predicts that these should rise with a shock delivering positive information about the economy and fall with a contractionary monetary shock. Figure 4 shows that this is indeed the case.

3.3 Robustness

3.3.1 Using a larger set of macro announcements

Our results so far are based on the scheduled FOMC announcement dates and the dates of labor market news releases by the Bureau of Labor Statistics and the Department of Labor. Figure 5 shows our results when we use a broader set of macroeconomic news announcements detailed in Table A1 of Appendix B instead of only labor market news. Using more macro news announcements effectively identifies an information shock that captures interest rate reactions to a broader array of exogenous information about the macroeconomy. We see that the effects of both the information and pure policy shocks are qualitatively similar to those

\[^{19}\text{Using all of the additional news announcements except for labor market news days leads to nearly identical results.}\]
Figure 3: Impulse responses to monetary and information shocks

Note: Shaded areas denote posterior coverage bands for the 16th to 84th percentiles (darker gray) and the 5th to 95th percentiles (lighter gray). Responses to the information shock are identified using an instrument based on changes in the FF4 futures price on the days of labor market news (excluding days that overlap with FOMC announcements). Responses to the monetary shock are identified using an instrument based on the component in changes in the FF4 futures price over a one-hour window around FOMC announcements that is orthogonal to the identified information shock.
Figure 4: Impulse responses to monetary and information shocks

Note: Shaded areas denote posterior coverage bands for the 16th to 84th percentiles (darker gray) and the 5th to 95th percentiles (lighter gray). Responses to the information shock are identified using an instrument based on changes in the FF4 futures price on the days of labor market news (excluding days that overlap with FOMC announcements). Responses to the monetary shock are identified using an instrument based on the component in changes in the FF4 futures price over a one-hour window around FOMC announcements that is orthogonal to the identified information shock.
reported in Figure 1. The responses to information shocks remain largely the same.

There are, however, two striking differences. First, there is more information content in these more broadly defined macro announcement interest rate surprises for the information shock, as seen in the increase in the F-statistic for this instrument from 142 to 224, and less remaining information content for the one-year yield after the identified (more broadly defined) information shock is purged from the FOMC announcement surprise, as seen in the fall in the F-statistic for this instrument from 10 to 7.5. This weakening of the monetary shock instrument leads to larger posterior coverage bands for the estimates. However, the estimated responses to the pure monetary shocks are also now slightly larger for all variables so that a zero response remains outside the 90 percent posterior coverage band in the short or medium term.

3.3.2 Using different interest rate futures

As an additional robustness check, we substitute the three-quarter-ahead euro dollar future (ED4) for FF4 when constructing our labor market news interest rate surprise in our benchmark VAR model. The results are presented in Figure 6. We see that the effects of both information shocks and pure policy shocks are again qualitatively similar to those reported in our benchmark model in Figure 1. However, as with the case involving additional macro announcements, the responses to pure monetary shocks again become larger and with wider posterior coverage bands, as the F-statistic for the (still FF4-based) FOMC announcement surprise purged of the signaling shock falls to about 3.3. In some ways, a mechanism similar to the case of using more macro announcements may be at work here. Using a longer-dated interest rate future allows labor market news surprise in ED4 futures to capture expected future endogenous responses of policy to current labor-market-related shocks, thereby capturing more of a “path” component of the information shock, so to speak, compared with the version constructed using FF4 futures.
Figure 5: Impulse responses to monetary and information shocks identified using a wider set of macro announcements.

Note: Shaded areas denote posterior coverage bands for the 16th to 84th percentiles (darker gray) and the 5th to 95th percentiles (lighter gray). Responses to the information shock are identified using an instrument based on changes in the FF4 futures price on the days of labor market news in addition to the days of releases of jobless claims, advance GDP estimates, CPI, the ISM Report on Business, Conference Board Consumer Confidence, retail sales, new home sales, the Conference Board Leading Economic Index, the employment cost index, PPI, and capacity utilization (excluding days that overlap with FOMC announcements). Responses to the monetary shock are identified using an instrument based on the component in changes in the FF4 futures price over a one-hour window around FOMC announcements that is orthogonal to the identified information shock.
Figure 6: Impulse responses to monetary and information shocks identified using an alternative futures contract.

MP Shock

1-Year Rate

Log PCE

Log IP

Excess Bond Premium

Log S&P 500

Information Shock

1-Year Rate

Log PCE

Log IP

Excess Bond Premium

Log S&P 500

First-Stage F Stats: 3.2699 112.4795

First-Step Instrument: ED4-U-ICL

Note: Shaded areas denote posterior coverage bands for the 16th to 84th percentiles (darker gray) and the 5th to 95th percentiles (lighter gray). Responses to the information shock are identified using an instrument based on changes in the ED4 futures price on the days of labor market news (excluding days that overlap with FOMC announcements). Responses to the monetary shock are identified using an instrument based on the component in changes in the FF4 futures price over a one-hour window around FOMC announcements that is orthogonal to the identified information shock.
3.3.3 Excluding the Zero Lower Bound Period

Lastly, to ensure that our estimates are not unduly influenced by the period when short-term interest rates were constrained by the zero lower bound, we exclude the December 2008–November 2015 period, when the federal funds rate target was at zero. Though excluding seven years from our sample does result in slightly less precise estimates, the results remain qualitatively the same, as shown in Figure 7.
Figure 7: Impulse responses to monetary and information shocks (excluding the period from Dec 2008 through Nov 2015)

Note: Shaded areas denote posterior coverage bands for the 16th to 84th percentiles (darker gray) and the 5th to 95th percentiles (lighter gray). Responses to the information shock are identified using an instrument based on changes in the FF4 futures price on the days of labor market news (excluding days that overlap with FOMC announcements). Responses to the monetary shock are identified using an instrument based on the component in changes in the FF4 futures price over a one-hour window around FOMC announcements that is orthogonal to the identified information shock.
4 Conclusion

This paper introduces a novel method for separating the pure policy shocks and central bank information shocks that jointly enter into interest rate surprises commonly used to identify the effect of monetary policy shocks. The key to this method is the use of high-frequency instruments that enable information shocks to be cleanly identified in isolation, which thereby allows us to parse these shocks out of high-frequency interest rate surprises. Relative to previously introduced methods, our method does not require assumptions about the signs of responses to either of these shocks nor assumptions about the nature of the central bank private information that is conveyed to the public during policy announcements.

Applying our method produces estimated responses to pure policy shocks and information shocks that are consistent with standard theories. The responses to pure policy shocks tend to be stronger than those identified using interest rate surprises without taking into account the presence of information shocks. Moreover, though we do not impose the sign restrictions used to achieve identification in some previous studies, we still find a clear positive response of stock prices to expansionary information shocks. This is consistent with the negative effects of higher discount rates (due to systematic policy response to this information) being slightly lower than the positive effects of higher expected future cash flows (due to good economic news).
References

Alan S. Blinder, Michael Ehrmann, Marcel Fratzscher, Jakob De Haan, and David-

Lawrence J. Christiano, Martin Eichenbaum, and Charles L. Evans. Nominal rigidities and

Jordi Galí and Luca Gambetti. The effects of monetary policy on stock market bub-

Appendix

A Identifying multiple shocks in an external instruments SVAR

This section provides the derivations underlying the identification scheme in our SVAR.\(^{20}\)

Consider the reduced-form representation of a structural VAR:

\[
y_t = \psi_1 y_{t-1} + \ldots + \psi_p y_{t-p} + u_t,
\]

where the reduced-form residuals are linear in a set of structural shocks,

\[
u_t = B\varepsilon_t, \quad \text{with } \Sigma \equiv E[u_t'u_t'].
\]

This can be written in a one-lag companion form by stacking lags of \(y\) as follows:

\[
\begin{bmatrix}
y_t \\
y_{t-1} \\
\vdots \\
y_{t-p+1}
\end{bmatrix} = \begin{bmatrix}
\psi_1 & \ldots & \psi_p \\
I & 0 & 0 \\
0 & I & 0 \\
\end{bmatrix} \begin{bmatrix}
y_{t-1} \\
y_{t-2} \\
\vdots \\
y_{t-p}
\end{bmatrix} + \begin{bmatrix}
u_t \\
0 \\
0
\end{bmatrix}
\]

Impulse responses to shock \(j\) are given by:

\[
\frac{\partial y_{t+h}}{\partial \varepsilon_{j,t}} = \Psi^h B_j.
\]

where \(B_j\) is the \(j\)-th column of \(B\).

Estimates of \(\{\Psi, \Sigma\}\) can be obtained using a variety of methods including standard OLS or Bayesian estimation. The classic SVAR identification issue is that we have \(E[u_t'u_t'] = BB' = \Sigma\), but since this matrix is symmetric, we don’t have enough equations to identify all the elements of the matrix \(B\). Therefore, we need to impose additional restrictions to obtain the structural coefficients.

For the derivations, we partition variables and matrices into policy and non-policy blocks:

\[
u_t = \begin{bmatrix} u^p_t \\ u^q_t \end{bmatrix}, \quad \varepsilon_t = \begin{bmatrix} \varepsilon^p_t \\ \varepsilon^q_t \end{bmatrix}, \quad \text{and } B = \begin{bmatrix} B_p & B_q \end{bmatrix},
\]

with \(B_p = \begin{bmatrix} B_{pp} \\ B_{qp} \end{bmatrix}\) and \(B_q = \begin{bmatrix} B_{qp} \\ B_{qq} \end{bmatrix}\).

The variables \(u^p_t\) and \(u^q_t\) are reduced-form residuals from the equations for policy indicators and the remaining variables, respectively, and \(\varepsilon^p_t\) and \(\varepsilon^q_t\) are our policy shocks of interest and the remaining shocks, respectively. We will apply this same partitioning convention later to

\(^{20}\)One version of this method is also outlined in Lakdawala (2019).
other related matrices as well.

To identify the impulse responses to any of the structural shocks, ε_t, we need to identify the columns B_p of the matrix B. We use external instruments as in Mertens and Ravn (2013), Gertler and Karadi (2015), and more recently Lakdawala (2019). Let Z_t denote the set of instruments that satisfy:

$$E[Z_t\varepsilon_t'] = \psi$$

We denote the diagonal shock variance-covariance matrix by $\Omega \equiv E[\varepsilon_t\varepsilon_t']$. We also denote the number of VAR variables with n where we have $n_p = 2$ policy variables/shocks and n_q remaining variables.

Note that given the conditions above, we have

$$E[Z_tu_t'] = E[Z_t(B_p\varepsilon_t' + B_q\varepsilon_q')] = \psi B_p' \quad (5)$$

$$E[Z_tu_t'] (E[u_tu_t'])^{-1} E[u_tZ_t'] = \psi B_p' (E[B\varepsilon_t')(B\varepsilon_t')]^{-1} B_p \psi' = \psi B_p' (B')^{-1} \Omega^{-1} B^{-1} B_p \psi' = \psi \Omega^{-1}_{pp,\text{root}} \psi' \quad (6)$$

since $B^{-1} B = [B^{-1} B_p \ B^{-1} B_q] = I_n \Rightarrow B^{-1} B_p = \begin{bmatrix} I_{n_p} & 0_{n_q \times n_p} \end{bmatrix}$,

where I_j denotes an identity matrix of size j, and $0_{i \times j}$ denotes a zero matrix of size $i \times j$.

Equations (5) and (6) together add up to $\frac{n_p(n_p+2n+1)}{2}$ equations with $(n + n_p) n_p$ unknowns. Thus, we need $\frac{n_p(n_p-1)}{2}$ additional restrictions.

Our assumption that the macro news interest rate surprise does not correlate with the monetary shock amounts to restricting one of the elements of ψ to be zero. We can then order variables and shocks such that ψ is lower triangular. Then, $\tilde{\psi} \equiv \psi \Omega^{-1}_{pp,\text{root}}$, where $\Omega_{pp,\text{root}}$ denotes an element-wise square root of the diagonal variance matrix Ω_{pp}, will also be lower-triangular and can therefore be obtained by a Cholesky decomposition of $E[Z_tu_t'] (E[u_tu_t'])^{-1} E[u_tZ_t']$.

Using $\tilde{\psi}$, we can obtain the following:

$$B_p \Omega_{pp,\text{root}} = E[u_tZ_t'] (\tilde{\psi}')^{-1}.$$

Lastly, we normalize the shocks so that each has a unit effect on one of the VAR variables such that B_p has a row of ones. Since $\Omega_{pp,\text{root}}$ is diagonal, the above expression becomes a system of n_p^2 equations with n_p^2 unknowns, thus allowing us to solve for the shock variances and the response matrix B_p. \[\text{21}\]
A.1 Historical Decomposition

Using this identification procedure, we are able to obtain the historical series of the identified structural shocks.

To see this, first note that we can obtain the variance of the \(j \)-th structural shock using the following relationship:

\[
B_j' \Sigma^{-1} B_j = B_j' \left(B \Omega B' \right)^{-1} B_j = B_j' B' \Omega^{-1} B^{-1} B_j = e'_j \Omega^{-1} e_j = \frac{1}{\omega_j^2},
\]

where \(e_j \) is a column selection vector with a one in the \(j \)-th position and zeros elsewhere, and we again use the fact that \(B^{-1} B_j = e_j \) since \(B^{-1} B = I_n \).

We can obtain the standardized structural shock as follows:

\[
B_j' \Sigma^{-1} u_t = B_j' \left(B \Omega B' \right)^{-1} u_t = B_j' B' \Omega^{-1} B^{-1} u_t = e'_j \Omega^{-1} \varepsilon_t = \varepsilon_{j,t} \omega_j^2,
\]

and therefore,

\[
\varepsilon_{j,t} = \frac{B_j' \Sigma^{-1} B_j u_t}{B_j' \Sigma^{-1} B_j}.
\] (7)

A.2 IV interpretation

In this section, we derive the IV interpretation of our identification. We do so for our specific case of \(n_p = 2 \), though we note that this method can be extended to the case of more shocks. For notational simplicity and without loss of generality, we also assume that the vector of structural shocks is ordered such that our two shocks of interest are the first two; that is, that \(B_p = [B_1 B_2] \).

Then, using our assumption of \(\psi \) being lower triangular and our unit-effect normalizations of \(B_{11} = B_{12} = 1 \), we obtain the following relationship:

\[
E[Z_t u'_t] = \psi B_p = \begin{bmatrix} \psi_{11} & 0 \\ \psi_{21} & \psi_{22} \end{bmatrix} \begin{bmatrix} B'_1 \\ B'_2 \end{bmatrix}.
\] (8)

normalization that scales shocks such that the diagonal elements of \(\Omega_{pp} \) are just alternate ways to scale the structural shocks and, correspondingly, the impulse responses.
Focusing first on the first rows of the matrices in this expression, we have:

\[
E[Z_{1,t}u_t] = \psi_{11}B_1'
\]

\[
\Rightarrow \psi_{11} = E[Z_{1,t}u_{1,t}] \quad \text{and} \quad B_{j1} = \frac{E[Z_{1,t}u_{j1,t}]}{E[Z_{1,t}u_{1,t}]}.
\]

Thus, the contemporaneous response of variable \(j \) to the first shock, \(B_{j1} \), can be interpreted as IV estimates of the \(j \)-th reduced-form residual regressed on the first reduced-form residual instrumented by \(Z_{1,t} \). This is the same as in the single shock, single instrument case, as we assume that \(Z_{1,t} \) is correlated only with the first shock.

To derive the responses to the second shock, \(B_2 \), we use the second row from equation (8) and the following additional equations coming from the relationship between the variances of the shocks and reduced-form residuals.

\[
E[Z_t'u_t']^{-1}E[u_tZ_t'] = \begin{bmatrix} \psi_{11} & 0 \\ \psi_{21} & \psi_{22} \end{bmatrix} \begin{bmatrix} B_1' \\ B_2' \end{bmatrix} \Sigma^{-1} \begin{bmatrix} B_1 & B_2 \end{bmatrix} \begin{bmatrix} \psi_{11} & \psi_{21} \\ 0 & \psi_{22} \end{bmatrix}
\]

\[
= \psi\Omega_{pp}^{-1}\psi
\]

This relationship between symmetric matrices yields three scalar equations that give the following solutions for the variances of the two shocks and another condition involving \(B_2 \):

\[
\omega_{11}^{-2} = B_1'\Sigma^{-1}B_1
\]

\[
\psi_{11}\psi_{21}\omega_{11}^{-2} = \psi_{11}\left[\psi_{21}B_1'\Sigma^{-1}B_1 + \psi_{22}B_1'\Sigma^{-1}B_2\right]
\]

\[
= \psi_{11}\psi_{21}\omega_{11}^{-2} + \psi_{11}\psi_{22}B_1'\Sigma^{-1}B_2
\]

\[
\Rightarrow B_1'\Sigma^{-1}B_2 = 0
\]

\[
\psi_{21}^2\omega_{11}^{-2} + \psi_{22}^2\omega_{22}^{-2} = \psi_{21}^2B_1'\Sigma^{-1}B_1 + 2\psi_{21}\psi_{22}B_1'\Sigma^{-1}B_2 + \psi_{22}^2B_2'\Sigma^{-1}B_2
\]

\[
\Rightarrow \omega_{22}^{-2} = B_2'\Sigma^{-1}B_2
\]

Combining equation (9) with the second row of equation (8) and using our solution for the first structural shock in equation (7) gives

\[
\psi_{21} = \frac{B_1'\Sigma^{-1}E[u_tZ_{2,t}] - \psi_{22}B_2'\Sigma^{-1}B_1}{B_1'\Sigma^{-1}B_1} = \frac{E[Z_{2,t}B_1'\Sigma^{-1}u_t]}{B_1'\Sigma^{-1}B_1} = E[Z_{2,t}\varepsilon_{1,t}].
\]

From here, we can substitute this solution for \(\psi_{21} \) into each element in the second row of equation (8) to obtain the following solutions for \(\psi_{22} \) and the remaining responses \(B_{j2} \) for
\[
\begin{align*}
\psi_{22} &= E[Z_{2,t}u_{1,t}] - \psi_{21} \\
&= E[Z_{2,t}u_{1,t}] - E[Z_{2,t}\varepsilon_{1,t}], \\
B_{j2} &= \frac{\psi_{22}}{\psi_{22}} = \frac{E[Z_{2,t}u_{j,t}] - E[Z_{2,t}\varepsilon_{1,t}] B_{j1}}{E[Z_{2,t}u_{1,t}] - E[Z_{2,t}\varepsilon_{1,t}]} \\
&= \frac{E[Z_{2,t}u_{j,t}] - E[Z_{2,t}\varepsilon_{1,t}] E_t[\varepsilon_{1,t}u_{j,t}]}{E[Z_{2,t}u_{1,t}] - E[Z_{2,t}\varepsilon_{1,t}] E_t[\varepsilon_{2,1,t}]} \\
&= \frac{E_t[Z_{2,t}u_{j,t}]}{E_t[\tilde{Z}_{2,t}u_{1,t}]} \text{ where } \tilde{Z}_{2,t} = Z_{2,t} - E[Z_{2,t}\varepsilon_{1,t}] E_t[\varepsilon_{1,t}].
\end{align*}
\]

To obtain the final expression, we use the fact that \(B_{j1} = \frac{E_t[\varepsilon_{1,t}u_{j,t}]}{E_t[\varepsilon_{1,t}^2]}\) based on the relationship defined in (4) and that \(B_{11} = 1\) based on our unit effect normalization. Note that this final expression shows that \(B_{j2}\) is the population IV estimate of \(u_{j,t}\) regressed on \(u_{1,t}\) instrumented by an instrumental variable that is constructed as the residual of \(Z_{2,t}\) regressed on the identified shock \(\varepsilon_{1,t}\).

In other words, we can identify the first structural shock \(\varepsilon_{1,t}\) using an instrument correlated only with that shock. Then using this estimate, we can purge the shock from the instrumental variable \(Z_{2,t}\) that is correlated with both shocks of interest. Doing so creates an instrument that is valid for identifying the second shock of interest \(\varepsilon_{2,t}\) using the same IV method as the single shock case.

Note that equation (7) yields the solution for any shock \(j\) once its response vector \(B_j\) is identified. Thus, this method can be extended sequentially to an arbitrary number of shocks as long as \(\psi\) is triangular.

This method parallels the case of assumptions that yield zero restrictions on \(B\), which then allows internal instruments for structural shocks to be created using the reduced-form VAR residuals.
B Data details

Table A1: Macro news indicator Bloomberg relevance indices

<table>
<thead>
<tr>
<th>Event</th>
<th>Bloomberg Ticker</th>
<th>Relevance Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>Change in Nonfarm Payrolls</td>
<td>NFP TCH Index</td>
<td>99.2</td>
</tr>
<tr>
<td>Initial Jobless Claims</td>
<td>INJCJC Index</td>
<td>98.4</td>
</tr>
<tr>
<td>FOMC Rate Decision</td>
<td>FDTR Index</td>
<td>97.6</td>
</tr>
<tr>
<td>GDP Annualized QoQ</td>
<td>GDP CQOQ Index</td>
<td>96.9</td>
</tr>
<tr>
<td>CPI MoM</td>
<td>CPI CHNG Index</td>
<td>96.1</td>
</tr>
<tr>
<td>ISM Manufacturing</td>
<td>NAPMPMI Index</td>
<td>95.3</td>
</tr>
<tr>
<td>Conference Board Consumer Confidence</td>
<td>CONCCONF Index</td>
<td>93.7</td>
</tr>
<tr>
<td>Retail Sales Advance MoM</td>
<td>RSTAMOM Index</td>
<td>92.9</td>
</tr>
<tr>
<td>New Home Sales</td>
<td>NHSLTOT Index</td>
<td>90.6</td>
</tr>
<tr>
<td>Unemployment Rate</td>
<td>USURTOT Index</td>
<td>89.3</td>
</tr>
<tr>
<td>Leading Index</td>
<td>LEI CHNG Index</td>
<td>83.5</td>
</tr>
<tr>
<td>CPI Ex Food and Energy MoM</td>
<td>CPUPXCHG Index</td>
<td>76.9</td>
</tr>
<tr>
<td>Employee Cost Index QoQ</td>
<td>ECI SA% Index</td>
<td>74.8</td>
</tr>
<tr>
<td>PPI Ex Food and Energy MoM</td>
<td>FDIDSGMO Index</td>
<td>66.1</td>
</tr>
<tr>
<td>Capacity utilization</td>
<td>CPTICHNG Index</td>
<td>63.9</td>
</tr>
</tbody>
</table>

Note: This table contains Bloomberg relevance indices for the full set of macroeconomic announcements that we consider in constructing our macro news interest rate surprise instrumental variable. The FOMC rate decision (italicized) is included for reference only and is not in our set of macroeconomic announcements. These relevance indices are the percentage of Bloomberg users that signed up for automatic notifications of the release of each macro indicator.