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1 Introduction

The recent empirical macroeconomics literature has emphasized the importance of allowing for

nonlinearities when estimating the effects of exogenous shocks on macroeconomic variables of

interest. A key question in empirical work is how impulse response functions depend on the state

of the economy. For example, many studies estimating the government spending multiplier allow

for the possibility that this multiplier may be different during recessions and expansions (e.g.,

Auerbach and Gorodnichenko (2012, 2013a,b), Bachmann and Sims (2012), Owyang, Ramey

and Zubairy (2013), Caggiano, Castelnuovo, Colombo and Nodari (2015), Ramey and Zubairy

(2018), Alloza (2022), and Ghassibe and Zanetti (2020)). There is also a related literature

on the dependence of tax multipliers on the business cycle (e.g., Candelon and Lieb (2013),

Alesina, Azzalini, Favero, Giavazzi and Miano (2018), Sims and Wolff (2018), Eskandari (2019),

and Demirel (2021)). Similar questions arise in many other contexts including the analysis of

monetary policy shocks. For example, Santoro, Petrella, Pfajfar and Gaffeo (2014), Tenreyro

and Thwaites (2016), Angrist, Jordà and Kuersteiner (2018), Barnichon and Matthes (2018)

and Klepacz (2020) allow the responses to monetary policy shocks to vary as a function of the

state of the economy. Other studies allow responses to vary depending on whether the zero

lower bound is binding (e.g., Auerbach and Gorodnichenko (2016); Ramey and Zubairy (2018);

Mavroeidis (2021)). Yet another example of the estimation of state-dependent responses is

the work of Caggiano, Castelnuovo and Groshenny (2014) who examine the dependence of the

effects of uncertainty shocks on whether the economy is in recession or expansion.

Many of these studies rely on a variant of the local projection (LP) approach of Jordà

(2005, 2009) (see also Dufour and Renault (1998) and Chang and Sakata (2007)) to estimate

the state-dependent impulse response functions. For example, given an observed policy shock

series ε1t, a state-dependent local projection estimates the dynamic effect of ε1t on the scalar

variable yt+h conditionally on the state of the economy by a set of regressions for each horizon

h:

yt+h = Ht−1

[
bh (1) ε1t + π′

E,hzt−1

]
+ (1−Ht−1)

[
bh (0) ε1t + π′

R,hzt−1

]
+ vt+h, (1)

where Ht−1 takes the value 1 if the economy is in expansion and 0 if it is in recession. The least

squares estimate b̂h (1) of the slope coefficient associated with ε1tHt−1 is usually interpreted

as the impulse response of yt+h, conditionally on Ht−1 = 1, while b̂h (0) is interpreted as the

response of yt+h when conditioning on Ht−1 = 0. The regressor zt−1 includes lags of all model

variables.
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One argument for using state-dependent local projections rather than state-dependent struc-

tural vector autoregressive (VAR) models has been their computational simplicity. Estimating

impulse responses in state-dependent VAR models by numerical methods tends to be com-

putationally more challenging than the estimation of state-dependent local projections by the

method of least squares. A related argument has been that LP estimators dispense with the

need to estimate equations for dependent variables other than the outcome variable of inter-

est. Finally, unlike state-dependent VAR models, state-dependent local projections may be

estimated without having to specify the process governing the transition from one state to the

other. As a result, Ramey’s (2016) handbook chapter concludes that “if one is interested in

estimating state dependent models, the [...] local projection method is a simple way to estimate

such a model and calculate impulse response functions (p. 87)”.

Table 1 lists more than 50 journal articles published over the last ten years in general inter-

est journals and field journals in macroeconomics, public economics, international economics,

and applied econometrics that use this approach. State-dependent LP estimators are also dis-

cussed at length in book chapters (e.g., Auerbach and Gorodnichenko (2013b), Auerbach and

Gorodnichenko (2017), Ramey (2016)) and they continue to be used extensively in recent work-

ing papers (e.g., Ahir, Bloom and Furceri (2022), Alloza, Gonzalo and Sanz (2021), Cloyne,

Jordà and Taylor (2023), De Ridder, Hannon and Pfajfar (2020), Eskandari (2019), Ferriere

and Navarro (2020), Gourieroux and Jasiak (2022), Jo and Zubariry (2022), Klepacz (2021),

Zeev, Ramey and Zubairy (2023)).

Perhaps surprisingly, despite its widespread application, the validity of the LP approach to

estimating state-dependent impulse responses has not been established to date. It has been

taken as self-evident in applied work that the state-dependent LP estimator will be consistent.

In this paper, we clarify the conditions under which the state-dependent LP estimator can be

expected to recover the population impulse responses.1 This task is complicated by the fact

that for state-dependent processes there are alternative definitions of the population impulse

response one may have in mind. For example, one possible definition of the population response

is the average response of the outcome variable to a shock of magnitude δ, conditional on the

state of the economy at the time when this shock occurs, building on a large literature on

nonlinear impulse response analysis in time series econometrics (see, e.g., Gonçalves, Herrera,

1LPs have become an increasingly popular alternative to VAR based estimators of impulse responses. The
original LP estimator, as discussed in Jordà (2005, 2009) and Plagborg-Møller and Wolf (2021), did not allow
for the impulse response function to change depending on the state of the economy. In this paper we are not
concerned with linear approximations to nonlinear processes as in Plagborg-Møller and Wolf (2021), but with
approximations that are explicitly state dependent and hence nonlinear.
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Kilian and Pesavento (2022)). Another possible definition is the marginal response of the

outcome variable to an infinitesimal shock, conditional on the state of the economy at the time

of this shock.

We formally show that, depending on how the state of the economy is determined, the

state-dependent estimator may be able to recover the population response under one impulse

response definition, but not under the other. This result not only affects the interpretation

of the state-dependent LP estimator in applied work, but also the conditions for establishing

its asymptotic validity. Hence, users need to be explicit about which population response

they are interested in recovering. To the extent that this point has been discussed at all, the

presumption appears to be that the state-dependent LP estimator in the limit will recover the

same conditional response function as a state-dependent structural VAR estimator that allows

the state of the economy to evolve. Our analysis shows that this asymptotic equivalence does

not hold in general.

We find that the validity of the state-dependent estimator and its interpretation depends

on whether the state of the economy evolves exogenously with respect to the economy or

responds endogenously to macroeconomic shocks. In the former case, the two conditional

impulse response definitions above yield the same answer (up to scale). Given that the business

cycle is typically defined in terms of outcome variables such as real output or unemployment

that endogenously respond to all shocks in the economy, however, this result is of limited

applicability in macroeconomics. We show that, when the state of the economy is endogenous

with respect to macroeconomic variables as is typically the case in applied work, much depends

on the magnitude δ of the structural shock of interest. When δ is not arbitrarily close to zero,

the state-dependent LP estimator will not recover the conditional average response function.

However, as δ approaches zero, the state-dependent LP estimator under suitable additional

assumptions will recover the conditional marginal response function. Thus, the definition of

the population response of interest matters.

This raises the question of how comfortable we are with the assumption of infinitesimal δ

underlying the conditional marginal responses. The answer is likely to depend on the economic

context. For example, as we document, military spending news shocks in studies based on long-

run quarterly data such as Ramey and Zubairy (2018) can be as large as 12 standard deviations,

calling into question the use of response estimates and fiscal multipliers based on the assumption

of infinitesimal δ. Even in post-war quarterly data, historical military spending news shocks

have been as large as 13 standard deviations. Similarly, monetary policy shocks observed in
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post-war data may be as large as 11 standard deviations. Clearly, the state-dependent LP

estimator will not recover the population response when δ is far from zero. For example, we

present simulation evidence that fiscal multipliers in realistic settings may easily differ by as

much as 40% percent from the population multiplier.

As a result, state-dependent local projections do not seem suitable for studying the propa-

gation of large historical shocks such as the fiscal policy shocks associated with the two World

Wars and the Korean War. Similar concerns also apply to more recent episodes. For example,

few policymakers would consider infinitesimal fiscal policy shocks during recessions that are

large enough to prompt calls for fiscal interventions in the first place such as the Great Reces-

sion. We conclude that there are many empirically plausible settings in which state-dependent

LP estimators of impulse responses are not likely to provide economically meaningful estimates,

also calling into question estimates of fiscal and monetary multipliers reported in the empirical

literature. Our analysis, however, suggests an alternative nonparametric estimator of state-

dependent responses that remains valid even when δ is far from zero, regardless of whether the

state of the economy is endogenous or exogenous.

The remainder of the paper is organized as follows. In Section 2, we consider a stylized

bivariate parametric model for expository purposes. This model is chosen to make the analysis

as transparent as possible and to facilitate the derivation of analytical results. This section also

defines the population impulse responses of interest. In Section 3, we formally derive the limit of

the state-dependent LP estimator under exogenous and under endogenous states and we discuss

how these results change when allowing for higher model dimensions. We show that the state-

dependent LP estimator is valid when the state of the economy is exogenous regardless of the

magnitude δ of the structural shock.2 We furthermore show that this estimator remains valid

under suitable assumptions when the state of the economy is endogenous and δ is infinitesimal.

However, it is not valid in general when the state of the economy is endogenous and δ is

nonnegligible.

These conflicting results raise the question of how large δ is in practice. In Section 4, we

document that in typical applications the magnitude of δ tends to be far from zero, calling

into question response derivations based on the assumption of infinitesimal δ. As a result,

one would not expect the state-dependent LP estimator to be consistent in these applications.

2As shown in online Appendix B, this conclusion applies not only to the bivariate example in Section 2, but
extends to multivariate models whether the forcing variable is i.i.d., as in our analysis in this paper, or a serially
correlated exogenous process, as discussed in Alloza, Gonzalo, and Sanz (2021), or merely predetermined and
endogenous.
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Section 5 quantifies by simulation the asymptotic bias of the state-dependent LP estimator

of the impulse responses when δ is not close to zero. We also examine a representative em-

pirical model of macroeconomic responses to fiscal policy shocks and quantify the asymptotic

bias in the cumulative fiscal multiplier often reported as a summary statistic. We find that

the asymptotic biases are large enough to call into question the use of state-dependent LP

estimators in this case. Section 6 suggests an alternative estimation approach. We outline a

new nonparametric estimator that remains valid in applications when δ is not close to zero and

could replace state-dependent LP estimators in applied work. The concluding remarks are in

Section 7. The online appendix contains the proofs of the main propositions (Appendix A) and

additional theoretical results for a multivariate state-dependent structural VAR model when

Ht is exogenous (Appendix B). Finally, details of the simulation design and further simulation

results are contained in online Appendix C and D, respectively.

2 Framework

A useful benchmark for studying the properties of state-dependent local projections is a state-

dependent stationary structural VAR data generating process for zt ≡ (xt, yt)
′ that has been

discussed frequently in the literature. It takes the form
xt =

∑p
j=1 αj,t−1xt−j +

∑p
j=1 δj,t−1yt−j + ε1t,

yt =
∑p

j=0 βj,t−1xt−j +
∑p

j=1 γj,t−1yt−j + ε2t,

(2)

where the scalar xt is assumed to be predetermined with respect to yt and p denotes the lag

order.3 This process includes several empirically relevant special cases. For example, often xt

is simply a directly observed exogenous shock such as a monetary policy shock or a fiscal shock

(αj,t−1 = 0, δj,t−1 = 0, ∀j). Alternatively, xt may be an exogenous serially correlated process

(δj,t−1 = 0, ∀j). The i.i.d. error term εt = (ε1t, ε2t)
′ defines the vector of mutually independent

structural shocks. The variables yt and ε2t may be higher dimensional. We abstract from this

possibility for now, since allowing for higher dimensions would necessitate the use of matrix

notation, as in online Appendix B.

We are interested in the response over time of yt to a one-time shock in ε1t in this state-

dependent structural VAR model. The variable yt may be detrended or may be expressed in

3In practice, the order of the lag polynomials may differ, in which case p without loss of generality may be
interpreted as the highest lag order.
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growth rates, in which case the growth rate response is cumulated. These response functions

may also be used to derive multipliers of interest in macroeconomics, in which case yt includes

all variables needed to define the multiplier. Identification requires the structural model to be

block recursive with respect to yt.

The model coefficients evolve over time depending on the state of the economy. Unlike

in Markov switching models, the state of the economy is observed. In the simplest and most

common case, there are only two states (such as recession or expansion). An important feature

of the data generating process (1) is how this binary indicator is determined. For example, a

recession is often defined as the unemployment rate exceeding some threshold and an expansion

as the unemployment rate falling below that threshold. The unemployment rate in this example

in turn may be included in yt or not. More generally, the variable defining the state may be

exogenous with respect to zt, although that situation rarely arises in practice.

Thresholds in turn may be exogenously given or may refer to multiples of standard deviations

of the variable in question from its mean over the estimation period (or standard deviations

from zero, if that variable is always positive). Alternatively, the economy may be in recession

if real output is below some trend line and in expansion if it is above this trend line, where

the trend line may refer to a two-sided or a one-sided moving average filter or possibly some

higher-order deterministic trend. More generally, the states could depend on multiple binary

indicators such as whether economic uncertainty is high or low and whether the zero lower

bound on the interest rate is binding or not.

2.1 A stylized structural model

To illustrate our main results, we focus on a stylized structural data generating process for

zt = (xt, yt)
′ of the form {

xt = ε1t

yt = βt−1xt + γt−1yt−1 + ε2t,
(3)

that closely mimics key features assumed in many empirical applications. This process is a

special case of data generating process (1) that facilitates the analytical derivation of the limit

of the state-dependent LP estimator, allowing us to gain intuition for when the state-dependent

LP estimator is expected to be valid and when it is not.

Setting xt = ε1t corresponds to the empirically relevant situation of ε1t being identified

based on information extraneous to the model. A popular example is the narrative approach

to identifying monetary policy shocks (e.g., Romer and Romer (1989), Tenreyro and Thwaites
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(2016)) and fiscal policy shocks (e.g., Ramey and Shapiro (1998), Ramey (2011), Ramey (2016)).

All model coefficients evolve over time depending on the state of the economy. In the simplest

case, there are only two states (such as a recession and an expansion). Accordingly, let βt−1 =

βEHt−1 + βR (1−Ht−1) and define γt−1 similarly, where Ht−1 is a binary stationary time series

that takes the value 1 if the economy is in expansion and 0 otherwise. In particular, we assume

that Ht is an observed (binary) deterministic function of elements of
{
ws = (xs, ys, qs)

′ : s ≤ t
}
,

a set which contains the random variables used to construct Ht. These include potentially the

endogenous variables in the system zt = (xt, yt)
′ and their lags, as well as a third variable qt

(and its lags). We assume that qt is determined outside the model and is assumed to be strictly

exogenous with respect to εt. An example for such a variable would be a measure of “animal

spirits” or “sentiment” that acts like a sunspot driving the business cycle (e.g., Blanchard

(1993), Hall (1993), Barsky and Sims (2012)). For example, Blanchard (1993) suggests that

the 1990-91 recession was caused by an exogenous increase in pessimism that caused a sharp

reduction in aggregate demand. More specifically, let

Ht = η (ws : s ≤ t) , (4)

where η (·) is the composition of the indicator function and the function of {ws : s ≤ t} used

to indicate that Ht equals 1 or 0. For instance, if Ht is 1 whenever yt > 0 and is 0 otherwise,

then Ht = η (yt) ≡ 1 (yt > 0), in which case wt = yt.

We make the following additional assumptions.

Assumption 1 {ε1t} and {ε2t} are mutually independent structural shocks such that εt ≡
(ε1t, ε2t)

′ ∼ i.i.d.(0,Σ), where Σ is a diagonal matrix with diagonal elements given by σ2
i for

i = 1, 2. In addition, yt is strictly stationary and ergodic.

Assumption 2 {qt} is independent of {ε1t} and {ε2t}.

Assumption 1 is stricter than a martingale difference sequence assumption on εt and rules

out conditional heteroskedasticity, but is standard in the nonlinear structural VAR literature.

In addition, we assume that the process for yt is strictly stationary and ergodic. Assumption 2

formalizes the idea that qt is a strictly exogenous process that is determined outside the economic

system. Note that this assumption does not rule out temporal dependence in qt. For instance,

if qt captures exogenous consumer or investor sentiment, we are not assuming that qt is i.i.d.

However, we are assuming that it is strictly exogenous with respect to model variables such
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as inflation or output. The main reason we introduce this exogenous random variable qt is

because the limit of the state-dependent LP estimator depends on whether Ht is endogenous or

exogenous. The latter case corresponds to setting η as a function of qt (and its lagged values)

only.

Next, we introduce two possible definitions of the impulse response function conditional on

the state of the economy.

2.2 Conditional impulse response functions

Our goal is to define the causal effect on yt+h of a one-time shock in ε1t, conditionally on Ht−1,

the state of the economy at time t − 1. The latter conditioning set has been standard in the

literature on state-dependent LP regressions since Auerbach and Gorodnichenko (2013a,b), who

in turn build on the assumptions in the state-dependent structural VAR model in Auerbach

and Gorodnichenko (2012). The state dependence of the population process has implications

for the definition of the conditional impulse response function. A common approach inspired

by the literature on nonlinear impulse response functions (e.g., Gallant, Rossi and Tauchen

(1993), Koop, Pesaran and Potter (1996), Potter (2000), Gourieroux and Jasiak (2005), Kilian

and Vigfusson (2011), Gonçalves, Herrera, Kilian and Pesavento (2021, 2022)) is to compare,

all else equal, two sample paths for the outcome variable of interest, one where ε1t is subject

to a one-time shock at time t and another one where no such shock is present. We follow this

approach here, but formalize it using a potential outcomes framework. Although the latter

approach is common in the microeconometric literature on treatment effects, it only gradually

has gained traction in macroeconometrics (e.g., White (2006), White and Kennedy (2009),

Angrist and Kuersteiner (2011), Angrist, Jordà, and Kuersteiner (2018), and most recently

Rambachan and Shephard (2021) and Cloyne, Jordà and Taylor (2023)).

A potential outcome model is a model that tells us the observed value of yt+h for any fixed

value of ε1t. To distinguish between the random variable ε1t and any fixed value it might take,

we denote the latter by e. Thus, if ε1t takes on values in a set A, then e ∈ A. For instance, if ε1t

is a binary treatment, we have only two possible values for e, 0 and 1, in which case A = {0, 1}.
In the macroeconomic setting considered here, ε1t is a continuous random variable.

Let yt+h (e) define the potential outcome associated with fixing ε1t at any possible value e

in the support of ε1t. When e = ε1t, we obtain the observed value of yt+h, i.e., yt+h (ε1t) = yt+h.

Our definition of the conditional impulse response function is based on comparing this baseline

value with yt+h (ε1t + δ), the counterfactual value of y at t+ h that would have been observed
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if ε1t had been subject to a shock of discrete size δ (see, e.g., Potter (2000)).

Definition 1 (Conditional average response) The conditional average response function

of yt+h to a one-time shock of fixed size δ in ε1t is defined as

CARh

(
δ, h̄

)
= E

(
yt+h (ε1t + δ)− yt+h (ε1t) |Ht−1 = h̄

)
where h̄ ∈ {0, 1}.

In our setup, the potential outcome yt+h (e) is a random variable obtained by solving the

structural model (3) and (4) forward, letting ε1t = e. This defines yt+h (e) = mh (e, Ut+h),

where mh is a potentially complicated function of e and Ut+h, and Ut+h contains the structural

shocks on the two variables up to time t + h, except for ε1t which is set at e, as well as

the values of q between t − 1 and t + h − 1, and the initial condition zt−1. The conditional

average response function (CAR) is the expectation of yt+h (ε1t + δ)− yt+h (ε1t) with respect to

(ε1t, Ut+h), conditionally on Ht−1. We call this object the conditional average response function

by analogy to the notion of a (conditional) average treatment effect.

Definition 1 is similar but not identical to the definition of a conditional nonlinear response

function in Gallant, Rossi and Tauchen (1993), Koop, Pesaran and Potter (1996), Potter (2000),

Gonçalves, Herrera, Kilian and Pesavento (2021), and Rambachan and Shephard (2021), among

others. One difference is that earlier studies conditioned on the entire information set known

at time t − 1 (i.e. the filtration F t−1 generated by the past of (yt, xt, qt) in our framework).

Instead, we condition on a much smaller information set, consisting of Ht−1 only. The reason

for conditioning on Ht−1 only and not on F t−1 is that this corresponds to empirical practice.

Notably, most applied researchers are interested in the impulse response function of an out-

come variable conditional on being in an expansion or in a recession. The second difference

is that some studies compare two potential outcomes: yt+h (e) and yt+h (e
′), where e and e′

are fixed. We instead are comparing yt+h (ε1t + δ) against yt+h (ε1t), where ε1t is the actual

random variable that has generated the data yt+h. Thus, we are comparing the observed value

yt+h = yt+h (ε1t) against a counterfactual value yt+h (ε1t + δ) that is not observed. Since ε1t is

random, the conditional expectation in Definition 1 averages over all possible realizations of

ε1t (in addition to the other sources of randomness that enter into the potential outcomes),

conditionally on Ht−1.

Another possible definition of a conditional impulse response function is one where the size

of the shock is infinitesimal. This corresponds to a conditional marginal treatment effect in
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microeconometrics and for this reason we will call it a “conditional marginal response” (CMR).

In the following, for any function m (e), we use m′ (e) to denote ∂
∂e
m (e).

Definition 2 (Conditional marginal response) The conditional marginal response func-

tion of yt+h to an infinitesimal shock in ε1t is defined as

CMRh

(
h̄
)
= E

(
y′t+h (ε1t) |Ht−1 = h̄

)
,

for any value of h̄ ∈ {0, 1}.

Definition 2 corresponds to the derivative of the nonlinear impulse response function defined

in Potter (2000, p. 1431), if we do not condition on Ht−1. Definition 2 is also a version of

Definition 3 in Rambachan and Shephard (2021). Specifically, it corresponds to their definition

of the marginal filtered treatment effect E
(
y′t+h (e) |F t−1

)
when we replace e with ε1t and F t−1

by Ht−1.

Although considering the effect of an infinitesimal shock on an outcome variable of interest

is not as popular in macroeconomics as considering the effect of a shock of fixed magnitude δ,

we consider both the conditional marginal and conditional average response functions because

local projection estimands may relate to either of these two definitions. In particular, as we

will show next, state-dependent local projections identify the conditional marginal response

function when Ht is exogenous under Assumptions 1 and 2. Under these assumptions, the LP

estimand is also equal to the conditional average response function for δ = 1. In contrast, when

Ht is endogenous, the state-dependent LP estimator is inconsistent for the conditional average

response function, although it may still recover the conditional marginal response function

under additional assumptions (see Assumption 3 below).

Before we proceed, note that the conditional marginal response function can be written as

the limit of the ratio of the conditional average response function and the size of the shock δ,

as δ → 0, when ε1t and Ut+h are conditionally independent. This conditional independence

assumption holds under our assumptions, as proved in Lemma A.1 in online Appendix A. We

state this result next, assuming that the conditions required to interchange the order of the

integration and the limit apply.

Lemma 2.1 Under the structural model (3) and (4), assuming that Assumptions 1 and 2 hold,

lim
δ→0

CARh

(
δ, h̄

)
δ

= CMRh

(
h̄
)
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for any h̄ ∈ {0, 1}.

3 State-dependent local projections

Recall that a state-dependent local projection estimates the dynamic effect of ε1t on yt+h con-

ditionally on the state of the economy by a set of regressions for each horizon h:

yt+h = Ht−1

[
bh (1) ε1t + π′

E,hzt−1

]
+ (1−Ht−1)

[
bh (0) ε1t + π′

R,hzt−1

]
+ vt+h, (5)

where Ht−1 takes the value 1 if the economy is in expansion and 0 if it is in recession. The least

squares estimate b̂h (1) of the slope coefficient associated with ε1tHt−1 is usually interpreted as

the impulse response of yt+h, conditionally on Ht−1 = 1, whereas b̂h (0) is interpreted as the

response of yt+h when conditioning on Ht−1 = 0. The main goal of this section is to clarify the

interpretation of this LP estimator and the conditions required for a causal interpretation of

the estimates. Specifically, we derive the probability limits of b̂h (1) and b̂h (0) and relate these

estimands to the two definitions of the conditional impulse response function given above. We

derive results for two scenarios: one in which Ht is exogenous and another one in which Ht is

endogenous with respect to εt.

3.1 Exogenous Ht

We assume that (4) holds with ws = qs such that Ht = η (qs : s ≤ t) . This corresponds to the

case of Ht being constructed using only information on the variable qt. Given Assumption 2,

this implies that Ht is exogenous with respect to ε1t and ε2t.

We first derive the conditional impulse response functions CARh

(
δ, h̄

)
and CMRh

(
h̄
)
for

this model. Under our assumptions, the potential outcome model yt+h (e) is

yt+h (e) = (γt+h−1 · · · γt) βt−1e+ Vt+h ≡ mh (e, Ut+h) , (6)

where (γt+h−1 · · · γt) and Vt+h are both functions of Ut+h ≡ (εt+h, . . . , εt+1, ε2t, qt+h−1, . . . , qt−1, zt−1)
′.

This follows easily by iterating on the model equation for yt in (3) fixing ε1t = e and using the

fact that Ht is exogenous (and, hence, not affected by e). Thus, for any e,

yt+h (e+ δ)− yt+h (e) = [(γt+h−1 · · · γt) βt−1] δ,
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and

CARh

(
δ, h̄

)
= E

[
(γt+h−1 · · · γt) βt−1|Ht−1 = h̄

]
δ.

Next we use (6) to obtain the conditional marginal response function for this model. Since mh

is a linear function of e, it follows that

y′t+h (e) ≡
∂

∂e
mh (e, Ut+h) = (γt+h−1 · · · γt) βt−1.

This implies that

CMRh

(
h̄
)
= E

[
(γt+h−1 · · · γt) βt−1|Ht−1 = h̄

]
= CARh

(
1, h̄

)
,

and shows that the conditional marginal response function coincides with the conditional aver-

age response function CARh

(
δ, h̄

)
for a shock of size δ = 1.

We summarize these results in the next proposition. Let βh̄ = βE if h̄ = 1 and βh̄ = βR if

h̄ = 0.

Proposition 3.1 Assume the structural process is (3) and (4) with Ht = η (qs : s ≤ t). Under

Assumptions 1 and 2, the following results hold for h̄ ∈ {0, 1}:

(i) For any fixed δ, CAR0

(
δ, h̄

)
= βh̄δ, and for any h ≥ 1,

CARh

(
δ, h̄

)
= E

[
γt+h−1 · · · γt|Ht−1 = h̄

]
βh̄δ.

(ii) CMR0

(
h̄
)
= βh̄, and for any h ≥ 1,

CMRh

(
h̄
)
= E

[
γt+h−1 · · · γt|Ht−1 = h̄

]
βh̄.

Part (i) of Proposition 3.1 gives the conditional average response function for any shock

of size δ, where δ is fixed. For h = 0, the impact response function of yt to a shock of size

δ = 1 in ε1t is βh̄, which is either βE or βR depending on whether we were in an expansion

(h̄ = 1) or in a recession (h̄ = 0) prior to the shock. For longer horizons, the conditional average

response function depends on the state of the economy at time t − 1, but not on the current

or future states of the economy. Nor do we condition on the history of states prior to t − 1.

Rather, we average them out and condition only on the most recent state. This corresponds

to the standard approach in estimating state-dependent responses in applied macroeconomics,

12



when interest centers on the question of how the impulse response function differs, depending

on whether the economy was in expansion or recession prior to the shock.

Part (ii) of Proposition 3.1 gives the conditional marginal response function in Definition

2. This response function traces the dynamic causal effect of an infinitesimal shock in ε1t on

yt+h. Since CMRh

(
h̄
)
= limδ→0CARh

(
δ, h̄

)
/δ (as stated in Lemma 2.1), part (ii) follows

immediately from part (i) after dividing CARh

(
δ, h̄

)
by δ. Thus, if Ht is exogenous, the

conditional average response function for a shock of magnitude δ in proportion to δ equals the

conditional marginal response function. This is true for any fixed δ and hence also for δ → 0.

Next, we derive the probability limits of the state-dependent LP estimates b̂h (1) and b̂h (0).

We can obtain each of these separately, by restricting the sample to Ht−1 = 1 and Ht−1 =

0, respectively. For instance, b̂h (1) can be obtained by a regression of yt+h on ε1tHt−1 and

zt−1Ht−1 (omitting ε1t (1−Ht−1) and zt−1 (1−Ht−1) from the regression). This follows because

Ht−1 (1−Ht−1) = 0 for all t.

Under the assumed stationarity and ergodicity of ε1t and yt, it can be shown easily that

b̂h
(
h̄
)
→p bh

(
h̄
)
=

E
(
yt+hε1t|Ht−1 = h̄

)
E
(
ε21t|Ht−1 = h̄

) ,

where the LP estimand bh
(
h̄
)
can be interpreted as the population OLS coefficient associated

with ε1t in a linear regression of yt+h on ε1t which conditions on Ht−1 = h̄.

Proposition 3.2 Consider the structural process (3) and (4) with Ht = η (qs : s ≤ t). If As-

sumptions 1 and 2 hold, then for h̄ ∈ {0, 1},

bh
(
h̄
)
= CMRh

(
h̄
)
=

CARh

(
δ, h̄

)
δ

= CARh

(
1, h̄

)
.

The main implication of Proposition 3.2 is that state-dependent local projections “work”

whenHt is strictly exogenous with respect to the structural shocks in the model, as would be the

case when qt represents an exogenous measure of “sentiment”. Under these conditions, bh
(
h̄
)

is equal to the conditional marginal response function, which gives the effect of an infinitesimal

size shock in ε1t on yt+h. However, Proposition 3.2 also shows that another valid interpretation

of bh
(
h̄
)
is that it gives the conditional average response of yt+h to a shock of fixed size δ, in

proportion to δ. When δ = 1, bh
(
h̄
)
captures the conditional average effect of a shock of size 1

in ε1t on yt+h. Both interpretations are correct and coincide with each other under the assumed

exogeneity of Ht.
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The equation for yt+h helps illustrate why the exogeneity of Ht is important for deriving

this result. To see this, condition on Ht−1 = 1 being an expansion such that h̄ = 1. At horizon

h = 0, the model implies that

yt = βEε1t + γEyt−1 + ε2t︸ ︷︷ ︸
=vt

,

where the underlying error term vt is independent of ε1t under Assumptions 1 and 2, condition-

ally on Ht−1 = 1. Thus, the state-dependent LP estimand is b0 (1) = βE and the LP regression

recovers both of the conditional average and marginal impulse response functions on impact.

For horizon h = 1, conditionally on Ht−1 = 1, the equation for yt+1 is

yt+1 = βtε1t+1 + γt (βEε1t + γEyt−1 + ε2t) + ε2t+1 = γtβEε1t + vt+1,

where vt+1 = γtγEyt−1+γtε2t+βtε1t+1+ε2t+1. This model has a heterogeneous slope coefficient

γtβE because γt is a function of the state indicator Ht. The regression of yt+1 on ε1t recovers

the conditional expectation of γtβE, conditionally on Ht−1 = 1, provided vt+1 is conditionally

independent of ε1t. Setting Ht = η (qs : s ≤ t) with qs satisfying Assumption 2, the LP estimand

for h = 1 reduces to

b1 (1) = E (γt|Ht−1 = 1) βE.

For general values of h, we can write yt+h as a function of ε1t and an error term that

depends on Ht+h−1, . . . , Ht−1. Conditionally on Ht−1, this equation is state-dependent, as it

depends on Ht+h−1, . . . , Ht. A linear local projection of yt+h on ε1t which conditions only on

Ht−1 = 1 recovers the conditional average and marginal response functions provided the error

term is orthogonal to ε1t, conditionally on Ht−1. Since this error depends on Ht+h−1, . . . , Ht, we

require that ε1t be independent of Ht+h−1, . . . , Ht, conditionally on Ht−1. This independence

condition holds under the assumption that Ht = η (qs : s ≤ t) and the process qt is independent

of εt, as assumed in Assumption 2.4

While this result was derived in the simplest possible setting, in online Appendix C we show

that the validity of the state-dependent LP estimator, when Ht is exogenous generalizes to a

multivariate state-dependent structural VAR process for zt = (xt, y
′
t)

′, where yt is an n × 1

vector of endogenous variables and xt is predetermined with respect to yt.

4A milder sufficient assumption is that the conditional first two moments of εt are independent of
Ht+h−1, . . . ,Ht, conditionally on the available information at time t− 1.
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3.2 Endogenous Ht

We now characterize the state-dependent LP estimand when Ht is endogenous with respect to

the structural shocks of the system εt. To facilitate the derivation of analytical results, we add

the following assumption:

Assumption 3 (a) Ht = η (ε1t) = 1 (ε1t > c), where c is any constant. (b) ε1t ∼ i.i.d.

N (0, σ2
1).

Although assuming that Ht is a function of the outcome variable yt would be more realistic,

we focus on a simpler process in which Ht depends on ε1t because this greatly simplifies the

mathematical derivations.5

In order to derive the conditional (average and marginal) impulse response functions in

this model, we first derive the potential outcomes yt+h (e). As previously, they are obtained

by iterating forward the equation for yt given in (3), fixing ε1t = e. In contrast to the earlier

case in which Ht was exogenous, the endogeneity of Ht creates a nonlinearity in the function

mh that defines yt+h (e) = mh (e, Ut+h). In particular, for h = 0, yt (e) = βt−1e + V0t, where

V0t = γt−1yt−1 + ε2t, a function of Ut = (ε2t, zt−1). This is still a linear function of e, as was the

case for Ht exogenous. However, for horizon h = 1, we now obtain that

yt+1 (e) = γ (e) βt−1e+ Vt+1 (e) ≡ m1 (e, Ut+1) ,

where Vt+1 (e) = γ (e)V0t + β (e) ε1t+1 + ε2t+1 ≡ V1 (e, Ut+1), is a nonlinear function of e and

Ut+1 = (εt+1, ε2t, zt−1)
′. More generally, for any h > 1, it can be shown that

yt+h (e) = [γt+h−1 · · · γt+1γ (e)] βt−1e+ Vt+h (e) ≡ mh (e, Ut+h) , (7)

where Vt+h (e) is a nonlinear function of e and Ut+h ≡ (εt+h, . . . , εt+1, ε2t, zt−1)
′. There are

two important differences from the potential outcome model derived under the assumption of

exogenous Ht (see eq. (6)). First, since γ (e) = γR + (γE − γR) η (e), where η (e) = 1 (e > c)

is a nonlinear function of e, the first term of (7) is nonlinear in e. Second, as shown in online

Appendix A, the term Vt+h (e) is also a nonlinear function of e (whereas Vt+h did not depend

on e in (6)). This makes yt+h (e) a nonlinear function of e.

5In particular, under Assumption 3(a) Ht is i.i.d. since ε1t is i.i.d. This implies that a shock on ε1t only
impacts the date t coefficients in the model for yt. Nevertheless, all the conditional impulse response functions
are affected by this shock. The Gaussianity assumption on ε1t is also instrumental to obtain the closed form
expression for the local projection estimands in this setting.

15



Using the potential outcomes (7), we obtain the following result. As before, let βh̄ =

βE if h̄ = 1 and βh̄ = βR if h̄ = 0, and define γh̄ similarly. Also let γ̄ ≡ E (γt) = γR +

(γE − γR) Φ (−c/σ1) and vh̄ ≡ γh̄E
(
yt−1|Ht−1 = h̄

)
, where we let Φ (·) and ϕ (·) denote the

cumulative density function (cdf) and probability density function (pdf) of a standard normal

distribution.

Proposition 3.3 Assume the structural process is (3) and (4) with Ht = η (ε1t). Under As-

sumptions 1 and 3, we have that for h̄ ∈ {0, 1}:

(i) CAR0

(
1, h̄

)
= βh̄, and for h ≥ 1, CARh

(
1, h̄

)
= (γ̄)h−1CAR1

(
δ, h̄

)
, where

CAR1

(
δ, h̄

)
= {γR + (γE − γR) Φ(−c/σ1)}βh̄δ

+{γR + (γE − γR) [Φ(−c/σ1 + δ/σ1)− Φ(−c/σ1)]}βh̄δ

+{(γE − γR)σ1[ϕ(−c/σ1 + δ/σ1)− ϕ(−c/σ1)]}βh̄

+{(γE − γR) [Φ(−c/σ1 + δ/σ1)− Φ(−c/σ1)]}vh̄.

(ii) CMR0

(
1, h̄

)
= βh̄, and for any h ≥ 1, CMRh

(
h̄
)
= (γ̄)h−1CMR1

(
h̄
)
, where

CMR1

(
h̄
)
= {γR + (γE − γR) Φ (−c/σ1)}βh̄ + {(γE − γR)σ

−1
1 ϕ (c/σ1)} (cβh̄ + vh̄) .

As the proof of Proposition 3.3 in the online Appendix A reveals, we can decompose

CAR1

(
δ, h̄

)
into the sum of a direct effect and an indirect effect given by

Direct effect = E(γ (ε1t))βh̄δ

Indirect effect = E [(γ (ε1t + δ)− γ (ε1t))] (βh̄δ + vh̄) + E [(γ (ε1t + δ)− γ (ε1t)) ε1t] βh̄.

The direct effect can also be written as E (γt) βh̄δ (since γ (ε1t) = γt), which coincides with what

was derived in Proposition 3.1 for exogenous Ht. It captures the effect of a change in ε1t on

yt+h that keeps γt constant, as would have been the case if Ht had been exogenous. However,

in the current model, Ht = η (ε1t). Thus, perturbing ε1t by δ also has an impact on the

model parameters at time t. This indirect effect depends on the difference between γ (ε1t + δ)

and γ (ε1t). The expressions provided in Proposition 3.3 are the result of evaluating these

expectations under the Gaussianity assumption on ε1t. Note that part (ii) of Proposition 3.3

follows from part (i) by considering the limit of δ−1CARh

(
δ, h̄

)
as δ → 0. More generally,
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Proposition 3.3 shows that the conditional average response function no longer coincides with

the conditional marginal response function when Ht is endogenous.

Next, we derive the state-dependent local projection estimands bh
(
h̄
)
and show that they

coincide with CMRh

(
h̄
)
.

Proposition 3.4 Assume the structural model is (3) and (4) where Ht = η (ε1t). Under As-

sumptions 1 and 3, we have that for h̄ ∈ {0, 1}, for any h ≥ 0, bh
(
h̄
)
= CMRh

(
h̄
)
.

Given Proposition 3.3, Proposition 3.4 has two main implications. First, the state-dependent

LP estimator is consistent for the conditional marginal response function at all horizons h ≥ 0.

This holds under Assumptions 1 and 3, which allows Ht to be endogenous of the form Ht =

1 (ε1t > c), where ε1t ∼ N (0, σ2
1). Thus, the state-dependent LP estimand can be interpreted

as giving the effect of an infinitesimally sized shock ε1t on yt+h under these simplified assump-

tions. The second implication is that, in general, the state-dependent LP does not recover

the conditional average response function. In particular, the asymptotic bias of LP, when the

target impulse response function is given by the conditional average response for δ = 1, is the

difference between CMRh

(
h̄
)
in part (b) of Proposition 3.3 and CARh

(
1, h̄

)
. More generally,

LP does not consistently estimate the dynamic causal effect of a perturbation by a fixed δ in

ε1t on yt+h.

Assumption 3 is a simplifying assumption that allowed us to obtain the analytical results

in Propositions 3.3 and 3.4. An alternative approach would have been to obtain the state-

dependent LP estimand bh
(
h̄
)
using high-level assumptions on the potential outcomes, as

in Rambachan and Shephard (2021) (see the assumptions underlying their Theorem 3, for

example). We conjecture that, under such assumptions, bh
(
h̄
)
could be written as a weighted

average of E
(
y′t+h (e) |Ht−1 = h̄

)
with non-negative weights ω (e) that integrate to 1. We do not

pursue this approach here for two reasons. One reason is that specifying a class of parametric

models that is well accepted in the literature makes it easier to relate our analysis to existing

work. Second, specifying (3) and imposing Assumptions 1 and 3 allows us to show that bh
(
h̄
)

is equal to the conditional marginal response function CMRh

(
h̄
)
. We believe the former is

easier to interpret for applied users than a weighted average of marginal response functions

would have been.

Our proof of the invalidity of the LP estimator when Ht is endogenous and δ is not close

to zero clearly illustrates the essence of the problem in the context of a stylized model. The

analysis of more general models tends to become analytically intractable whenHt is endogenous.

17



However, as shown in Sections 4 and 5, simulation evidence for such models tends to support

the results we analytically derived for our simpler model.

4 Which asymptotic result is more relevant for applied

work?

When Ht is endogenous, as is typically the case in practice, the researcher needs to decide

whether the object of interest is the conditional average response or the conditional marginal

response. If the latter is the object of interest, state-dependent LP estimators provide an easy

and consistent way of estimating this impulse response. In contrast, if the researcher is inter-

ested in estimating the effect of a shock of fixed size δ, consistent estimation of the conditional

average response is required. Ultimately, this choice should be guided by the research question

the practitioner is interested in.

4.1 Evidence on the magnitude of shocks

For example, consider the response of government spending and GDP to the quarterly military

spending news shock studied in Ramey (2011) and Ramey and Zubairy (2018).6 The data span

the period from 1890Q1 to 2015Q4. The standard deviation of this shock series is 0.0597. The

maximum value is 0.692 and is observed in 1941Q4. This realization amounts to almost twelve

times the standard deviation of the shock series. Thus, if we interpret xt as an i.i.d. shock

series, as Ramey and Zubairy did, World War II was associated with a military spending news

shocks of 12 standard deviations, calling into question response estimates based on the premise

of an infinitesimal δ. The shock associated with World War I was only slightly smaller. Even

in post-war quarterly data, there are large shocks. For example, the shock associated with the

Korean War in 1950Q3 was about thirteen times this subsample’s standard deviation. Thus,

given the results in Section 3, state-dependent local projections should not be used to study

the propagation of the large historical shocks such as the fiscal policy shocks associated with

the two World Wars and the Korean War.

What about the analysis of fiscal interventions in more recent decades? While military

buildups of the size observed during these three wars are rare, military spending shocks that

6The defense spending news series originally constructed by Ramey (2011) and then expanded by Ramey
and Zubairy(2018) is defined as the change in the expected present discounted value of government spending
for events that were related to political or military events. The nominal value of these changes are then divided
by nominal GDP lagged one quarter.
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exceed one standard deviation were quite common even in recent decades. This is also true for

fiscal spending shocks more broadly. An obvious concern is that countercyclical fiscal policy

is explicitly designed to move the economy from a recession to an expansion suggesting that

the indirect effect of fiscal policy shocks matters. Indeed, few policymakers would consider

infinitesimal fiscal policy interventions during recessions that are large enough to prompt calls

for fiscal action such as the Great Recession. Thus, fiscal policy analysis almost invariably is

about large fiscal policy shocks the dynamic effects of which state-dependent local projections

are unlikely to capture.

Nor are large shocks uncommon in other applications. A case in point is the narrative

monetary policy shock series of Romer and Romer (2004), as updated by Wieland and Yang

(2020). Given data from January 1969 to December 2007, the monthly series of monetary policy

shocks has a standard deviation of σ = 0.296. Policy shocks range from −3.25 in April 1980 to

1.86 in November 1980, which implies shocks with magnitudes of between −11 and 6 standard

deviations. After aggregating these data to quarterly frequency, the magnitude of the policy

shocks ranges from −7 to 4 standard deviation. More generally, monetary policy shocks that

exceed one standard deviation are common.

4.2 How much does the choice of δ matter?

This evidence motivates a closer look at the mechanism that makes state-dependent local pro-

jections fail when δ is large and Ht is endogenous. Intuitively, given the analysis in Section 3,

one would expect the LP estimator to provide a good approximation as long as the economy

remains in the same state following a shock. All else equal, this is more likely to be the case

when δ is close to zero. Figure 1 illustrates this point for δ ∈ {0.25, 1, 5}. It shows the asymp-

totic bias of the impulse responses obtained by state-dependent local projections (expressed

in percent deviations from the population response). For illustrative purposes, all results are

generated from the data generating process (DGP)

xt = ρxt−1 + ε1t (8)

yt = βt−1xt + αt−1xt−1 + γt−1yt−1 + ε2t,
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where

αt−1 = αEHt−1 + αR(1−Ht−1)

βt−1 = βEHt−1 + βR(1−Ht−1),

γt−1 = γEHt−1 + γR(1−Ht−1), (9)

εt = (ε1t, ε2t)
′ ∼ N (0, I2) and Ht is an indicator function for the state of the economy. When

Ht = 1, the economy is in expansion, and, when Ht = 0, the economy is in recession. The state

of the economy is endogenously determined as Ht = 1 (yt > 0). We consider two special cases

of this process. DGP 1 sets ρ = 0 such that xt is a directly observed i.i.d. shock, as is often

the case in applied work. Furthermore, we set βE = 2.5, βR = 3.5, γE = 0.7, γR = 0.1 and

αt−1 = 0. In DGP 2, xt follows an AR(1) process with ρ = 0.8, motivated by the analysis in

Alloza, Gonzalo and Sanz (2021), and αt−1 ̸= 0, given αE = 1.2 and αR = 0.9. The population

response is evaluated as CARh

(
δ, h

)
= E (yt+h (ε1t + δ)− yt+h (ε1t) |Ht−1) , whereas the LP

estimands are evaluated as bh (1) =
E(xtHt−1yt+h)

E(x2
tHt−1)

and bh (0) =
E(xt(1−Ht−1)yt+h)

E(x2
t (1−Ht−1))

.7 The number of

draws used to compute these conditional expectations is 50 million, which ensures that the LP

impact response matches the population response.

Figure 1 confirms that the size of the asymptotic bias at longer horizons declines as δ → 0,

but can be substantial for large δ, as predicted by Propositions 3.3 and 3.4. The bias can be as

large as 82 percent for δ = 5 and as large as 23 percent for δ = 0.25. This result is qualitatively

robust to the use of alternative DGPs.

Further insight may be gained by decomposing CAR
(
δ, h

)
into the direct effect of the shock

and the indirect effect (obtained as the difference between the population response and the

direct effect). Figure 2 shows this decomposition for δ = 5 in DGP 1 and DGP 2. It is readily

apparent that the LP estimator closely tracks the direct effect, which would be sufficient if Ht

were exogenously determined with respect to the macroeconomy, but does not fully capture the

indirect effect of perturbing ε1t by δ on the model parameters that arises whenHt is endogenous,

as suggested by the analysis in Section 3.2. Since larger positive δ values make it more likely

that a policy shock would catapult the economy from recession to expansion, conditional on

being in a recession, the LP estimator becomes increasingly inaccurate. Additional simulation

results in online Appendix D show that the magnitude of this indirect effect, and hence the

7The state-dependent LP estimator implicitly sets the shock size δ to unity, which in general differs from one
standard deviation of the structural error. However, given that δ in our data generating process is a multiple of
the standard deviation of ε1t, responses to δ standard deviations may be constructed by scaling the estimated
LP response function by a factor of δ.
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asymptotic bias, increases with γE − γR and could be even larger than in the examples shown

here.

5 Revisiting the government spending multiplier

What matters from an applied point of view is not only that the state-dependent LP estimator is

inconsistent when Ht is endogenous and δ is non-negligible, as we have shown, or how large the

asymptotic bias of the LP response estimator is, but also how large the bias of the corresponding

cumulative multipliers is. In this section, we quantify this bias for δ ∈ {1, 5, 10}, given a

prototypical data generating process motivated by Ramey and Zubairy’s (2018) widely cited

study of the government spending multiplier in good times and bad times. Given that Ramey

and Zubairy employed state dependent local projections, they did not specify the underlying

DGP, but the following process is one empirically plausible representation of such as DGP.

Let zt = (xt, gt, yt)
′ where xt denotes Ramey and Zubairy’s military spending news measure

in period t relative to potential GDP in period t− 1, gt is real government spending in period

t relative to potential GDP in period t− 1, and yt is real GDP in period t relative to potential

GDP in period t − 1. The data are quarterly. Consider a trivariate state-dependent data

generating process given by

Ct−1

 xt

gt

yt

 = kt−1+Bt−1(L)

 xt−1

gt−1

yt−1

+

 ε1t

ε2t

ε3t

 (10)

where

kt−1 = Ht−1kE + (1−Ht−1) kR, (11)

Ct−1 = Ht−1CE + (1−Ht−1)CR,

Bt−1(L) = Ht−1BE(L) + (1−Ht−1)BR(L),

εt is a vector of mutually independent N(0, 1) population innovations, BE(L) and BR(L) are

lagged polynomials, and the coefficient matrices are of suitable dimensions. Thus, δ = 1 cor-

responds to a one standard-deviation shock. The model allows for four autoregressive lags.

We obtain the parameter values by fitting the model to the historical data used by Ramey

and Zubairy (2018). To conserve space, the parameter values used in the simulation study are

reported in online Appendix C.
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Ramey and Zubairy (2018) considered several alternative definitions of economic expansions

including periods when the unemployment rate is below the sample mean, positive deviations

from the Hodrick-Prescott trend of the unemployment rate, and expansion dates determined by

the NBER business cycle committee.8 Here we consider two expansion indicators for expository

purposes. In one DGP, expansions are defined as periods when output exceeds potential output

in period t− 1,

Ht =

{
1 if yt > 1

0 otherwise,

whereas the other DGP defines expansions as periods where real GDP in t, relative to potential

GDP in period t− 1, exceeds a twelve-quarter trailing average,

Ht =

{
1 if yt >

1
12

∑12
i=1 yt−i

0 otherwise.
.

These definitions are similar to those used in Alloza (2022), for example. We further assume

that xt follows an AR(4) process to account for serial correlation in Ramey and Zubairy’s

military spending news measure (see Alloza, Gonzalo and Sanz (2021).

Consider the dynamic effects of a shock of magnitude δ in ε1t on gt+h and yt+h. Recall that

the population impulse response is defined as CARg,i

(
δ, h

)
= E

(
gt+i (ε1t + δ)− gt+i (ε1t) |Ht−1 = h

)
and CARy,i

(
δ, h

)
= E

(
yt+i (ε1t + δ)− yt+i (ε1t) |Ht−1 = h

)
, whereas the LP estimands bg,i

(
h
)

and by,i
(
h
)
are defined as previously. In this section, we follow Ramey and Zubairy (2018) in

focusing on the implied fiscal multipliers, defined as the relative response of output and gov-

ernment spending to a military spending news shock. The cumulative fiscal multiplier over the

h-quarter horizon is defined as

Mh

(
δ, h

)
=

∑h
i=0 CARy,i

(
δ, h

)∑h
i=0 CARg,i

(
δ, h

) ,
in population, whereas the corresponding fiscal multiplier based on the LP estimates is

Mh

(
h
)
=

∑h
i=0 by,i

(
h
)∑h

i=0 bg,i
(
h
) .

The number of draws used to compute these conditional expectations is 120 million to ensure

that the multiplier on impact matches the population multiplier.

8Since the NBER business cycle dates are based on data that are correlated with the endogenous model
variables, this approach does not avoid the concerns discussed in Section 3.
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Figure 3 contains the results for Ht−1 depending on the deviation from potential output

in the previous period, while Figure 4 contains the results for Ht−1 defined as a function of

the one-sided MA(12) filter. The plots illustrate that, at horizon h = 0, the LP estimator

of the fiscal multiplier recovers the population response for all values of δ, even when Ht is

endogenous, consistent with Proposition 4. However, for larger h, the LP estimator diverges

from the population multiplier, especially when the economy is in recession. There is clear

evidence of large asymptotic bias (expressed in percentage deviations from the population

cumulative multiplier) that is increasing in δ, reaching 45 percent in some cases. In general,

the extent of the asymptotic bias depends on the parameter values, the functional form of Ht,

the magnitude and sign of the shock δ, and the state of the economy at the time of the policy

shock.

Applied researchers most commonly report the two-year and four-year cumulative fiscal

multiplier. Table 2 summarizes, for each DGP, the asymptotic bias of these cumulative mul-

tipliers for various δ. Whereas for δ = 1 the asymptotic bias of the LP estimator is at most

4% in absolute terms, the bias tends to increases with the magnitude of δ, especially when the

economy is in a recession at the time of the government spending shock. When Ht = 1(yt > 1),

given a 5 standard deviation shock, the asymptotic bias of the LP estimator is 18% for the

four-year cumulative multiplier, conditional on being in a recession, and 7% conditional on the

economy being in expansion. Broadly similar results are obtained for Ht = 1(yt > MA(12)).

For example, the bias of the LP estimator of the four year integral is as large as 11% conditional

on a recession and as large as 8% conditional on an expansion. For the two-year cumulative

multiplier the biases are more modest. Given a 10 standard deviation shock, the asymptotic

bias of the state-dependent LP estimator of the four-year cumulative fiscal multiplier reaches

close to 40 percent, given a recession. This evidence suggests that the asymptotic bias of the

LP estimator can be large enough in realistic settings to be a concern for applied work.9 We

also examined analogous results for δ ∈ {−1,−5,−10}, which are reported in Appendix D, and

found asymptotic biases in the cumulative fiscal multiplier that were larger than those for the

corresponding positive δ conditional on expansions, and somewhat smaller, but still substantial,

conditional on recessions.

9One might have expected that the bias in the numerator and denominator of the multiplier would offset,
leaving the multiplier largely unaffected. Our simulations show this not need be the case in general. The
asymptotic biases in the responses of GDP and government spending have the same sign at some horizons,
but opposite signs at other horizons. Moreover, even when the bias in the LP estimator of the government
spending and GDP responses are of the same sign, their magnitude differs and, hence. the bias in the cumulative
responses typically does not cancel.
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It may be tempting to argue that our evidence that the asymptotic bias is at most 4 percent

for δ = 1 suggests that as long as δ is not too large, the state-dependent LP estimator will get

the multiplier right at least approximately. That appears true in this example, but we cannot

rule out that for other specifications of the data generating process this bias could be larger.

As we discuss in the next section, a better option would be to replace the state-dependent LP

estimator by an alternative estimator that remains asymptotically valid in this setting.

6 An alternative to state-dependent local projections

As we demonstrated, state-dependent local projections do not in general recover the conditional

average response function of yt+h to a shock in ε1t of fixed size δ, yet macroeconomists often care

about the impact of large shocks. This poses a quandary for applied researchers. In this section,

we propose an alternative approach that can be used when the conditional average response

function is the impulse response function of interest. While fully developing the theoretical

foundations of this estimator (or examining its finite-sample accuracy) is beyond the scope of

this paper, we outline the central idea underlying this proposal. Let

gh
(
e, h̄

)
≡ E

(
yt+h|ε1t = e,Ht−1 = h̄

)
,

define the expectation of yt+h, conditional on ε1t = e and Ht−1 = h̄ for any fixed values e and

h̄ in the support of ε1t and Ht−1, respectively.

Then, under our model assumptions (i.e., model (3) and (4) and Assumptions 1 and 2), we

can write CARh

(
δ, h̄

)
as E

(
gh

(
ε1t + δ, h̄

)
− gh

(
ε1t, h̄

))
. To see this, note that by the law of

iterated expectations,

E
[
yt+h (e+ δ)− yt+h (e) |Ht−1 = h̄

]
= E

[
yt+h (e+ δ) |ε1t = e+ δ,Ht−1 = h̄

]
− E

[
yt+h (e) |ε1t = e,Ht−1 = h̄

]
= E

[
yt+h|ε1t = e+ δ,Ht−1 = h̄

]
− E

[
yt+h|ε1t = e,Ht−1 = h̄

]
≡ gh

(
e+ δ, h̄

)
− gh

(
e, h̄

)
,

where the second equality follows by the independence between the potential outcomes yt+h (e)

and ε1t (see Lemma A.1 in online Appendix A), and the third equality follows because yt+h (e) =
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yt+h when ε1t = e and yt+h (e+ δ) = yt+h when ε1t = e+ δ. It follows that

CARh

(
δ, h̄

)
≡ E

(
yt+h (ε1t + δ)− yt+h (ε1t) |Ht−1 = h̄

)
= E

(
gh

(
ε1t + δ, h̄

)
− gh

(
ε1t, h̄

)
|Ht−1 = h̄

)
= E

(
gh

(
ε1t + δ, h̄

)
− gh

(
ε1t, h̄

))
,

where the last equality follows because ε1t is independent of Ht−1 = η (ws : s ≤ t− 1) under

Assumptions 1 and 2.

This result suggests the following approach to estimating CARh

(
δ, h̄

)
. First, we estimate

gh
(
e, h̄

)
= E

(
yt+h|ε1t = e,Ht−1 = h̄

)
consistently using the observed sample {yt+h, ε1t, Ht−1}.

When xt = ε1t, as in the narrative approach to identification, gh
(
e, h̄

)
is identified from data

for these three variables. Since this function is generally a complicated nonlinear function

of e and h̄ when Ht is endogenous, we can use a nonparametric regression of yt+h on ε1t

and Ht−1 in this step. Letting ĝh
(
e, h̄

)
denote this estimator, we then average the difference

ĝh
(
ε1t + δ, h̄

)
− ĝh

(
ε1t, h̄

)
over the realizations of ε1t in the sample.

Algorithm 6.1 (Nonparametric CAR) Given a sample {yt, ε1t, q, : t = 1, . . . , T}, proceed

in two steps:

1. Obtain the nonparametric estimator ĝh
(
e, h̄

)
≡ Ê

(
yt+h|ε1t = e,Ht−1 = h̄

)
of gh

(
e, h̄

)
.

2. Estimate CARh

(
δ, h̄

)
as

ĈARh

(
δ, h̄

)
=

1

T

T∑
t=1

(ĝh (ε1t + δ)− ĝh (ε1t)) .

This proposal provides a constructive alternative to the use of state-dependent LP estimators

in applied work, when δ is not negligible and the state of the economy is endogenous. How well

this new nonparametric estimator of the population response works in practice is the subject

of ongoing research.

7 Conclusion

When the state of the economy evolves independently of macroeconomic shocks, state-dependent

local projections recover in the limit the conditional response function to a shock of size δ,

whether δ is fixed or infinitesimal. More typically, the state of the economy is defined in
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terms of endogenous model variables such as real output or unemployment. A case in point

are recessions as defined by the NBER business cycle committee or the rule of thumb defining

recessions as two consecutive quarters of negative output growth. Other typical examples in-

clude recessions defined as negative deviations of real output from a moving-average trend or

Hodrick-Prescott filter (HP) trend or recessions defined as unemployment rates exceeding some

threshold.

When the state of the economy is endogenous with respect to macroeconomic shocks, state-

dependent local projections under suitable assumptions will recover the conditional marginal

response function with respect to an infinitesimal structural shock. However, they will not

recover the response of the economy to larger structural shocks, conditional on being in a re-

cession or an expansion at the time of this shock. As a result, state-dependent local projections

should not be used to quantify the importance of large historical fiscal policy shocks, for exam-

ple. Nor do they seem well suited for analyzing the impact of major fiscal policy interventions

during the Great Recession or the Covid-19 Recession. Analogous statements apply to studies

of monetary policy shocks or uncertainty shocks based on state-dependent local projections.

These problems may in principle be overcome by the use of state-dependent structural VAR

models at the cost of added complexity. We noted that our analysis suggests an alternative

nonparametric approach that retains the parsimony and ease of estimation of LP estimators,

yet preserves the ability to recover the average response of the outcome variable, conditional on

the state of the economy at the time of the shock. How well this new nonparametric estimator

of the population response works in practice is the subject of ongoing research.
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Figure 1: Asymptotic bias of LP response when Ht = 1 (yt > 0)
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Table 1: Selected journal articles that employ state-dependent local projections

Fiscal policy Fiscal policy (continued)
Alesina et al., 2018 Riera-Crichton, Vegh, Vuletin, 2015
Alesina, Favero, Giavazzi, 2019 Sheremirov, Spirovska, 2022
Alloza, 2022
Auerbach, Gorodnichenko, 2013 Monetary policy
Auerbach, Gorodnichenko, 2016 Albrizio et al., 2020
Bachmann, Sims, 2012 Albuquerque, 2019
Berge, De Ridder, Pfajfar, 2021 Alpanda, Granziera, Zubairy, 2021
Bernardini, Peersman, 2018 Angrist, Jordà, Kuersteiner, 2018
Bernardini, De Schryder, Peersman, 2020 Ascari, Haber, 2022
Biolsi, 2017 Auer, Bernardini, Cecioni, 2021
Boehm, 2020 Barnichon, Matthes, 2018
Born, Müller, Pfeifer, 2020 El Herradi, Leroy, 2021
Caggiano et al., 2015 Falck, Hoffmann, Hürtgen, 2021
Candelon, Lieb, 2013 Furceri, Loungani, Zdzienicka, 2018
Choi, Shin, Yoo, 2022 Jorda, Schularick, Taylor, 2020
Demirel, 2021 Santoro et al., 2014
El-Shagi, von Schweinitz, 2021 Tenreyro, Thwaites, 2016
Eminidou, Geiger, Zachariadis, 2023
Ghassibe, Zanetti, 2022 Uncertainty
Jorda, Taylor, 2016 Cacciatore, Ravenna, 2021
Klein, 2017 Caggiano, Castelnuovo, Groshenny, 2014
Klein, Polattimur, Winkler, 2022 Tillmann, 2020
Klein, Winkler, 2021
Leduc, Wilson, 2012 Other
Liu, 2022 De Haan, Wiese, 2022
Liu, 2023 Duval, Furceri, 2018
Miyamoto, Nguyen, Segeyev, 2018 Lastauskas, Stakenas, 2020
Miyamoto, Nguyen, Sheremirov, 2019 Loipersberger, Matschke, 2022
Owyang, Ramey, Zubairy, 2013 Sheng, Sukaj, 2021
Ramey, Zubairy, 2018

Note: The articles listed above appeared in: American Economic Review, American Economic Journal:

Macroeconomics, Economic Journal, European Economic Review, IMF Economic Review, International

Economic Review, International Journal of Central Banking, Journal of Applied Econometrics, Journal of

Economic Dynamics and Control, Journal of Economic Perspectives, Journal of International Economics,

Journal of International Money and Finance, Journal of Monetary Economics, Journal of Money, Credit

and Banking, Journal of Political Economy, Journal of Public Economics, NBER Macroeconomics Annual,

Review of Economics and Statistics.
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Table 2: Asymptotic bias in the cumulative multiplier

DGP1 DGP2

Expansion Recession Expansion Recession

δ = 1
Bias in 2 year integral 1.5 1.6 0.3 0.7

Bias in 4 year integral 2.3 3.7 1.1 2.2

δ = 5
Bias in 2 year integral 2.5 6.9 4.3 3.3

Bias in 4 year integral 6.6 17.9 7.7 11.1

δ = 10
Bias in 2 year integral 1.7 13.0 5.5 5.7

Bias in 4 year integral 10.2 36.6 12.5 21.1
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Figure 2: LP response and decomposition of CAR when Ht = 1 (yt > 0) and δ = 5
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Figure 3: Cumulative spending multiplier when Ht = 1 (yt > 1)
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A Proofs of the main propositions

The proof of our results relies on the independence between the potential outcomes yt+h (e) and the

structural error ε1t. This independence condition follows straightforwardly from our assumptions

and is instrumental in providing a causal interpretation to the state-dependent LP estimands. We

summarize this result in the following lemma.

Lemma A.1 Consider the structural process defined by equations (3) and (4) in the main text. Under

Assumptions 1 and 2, ε1t is independent of {yt+h (e) , e ∈ A}, where A is the support of ε1t.

Proof of Lemma A.1. This proof is obvious given the definitions of yt+h (e) derived in the main

text.

Proof of Lemma 2.1. Let yt+h (e) = mh (e, Ut+h). For given e, we can write

E
(
yt+h (e+ δ)− yt+h (e) |Ht−1 = h̄

)
=

∫
[mh (e+ δ, U)−mh (e, U)] f

(
U |h̄

)
dU,

where f
(
U |h̄

)
denotes the conditional density function of Ut+h given Ht−1 = h̄. Dividing by δ and

integrating with respect to e yields∫
A
δ−1E

(
yt+h (e+ δ)− yt+h (e) |Ht−1 = h̄

)
f
(
e|h̄
)
de =

∫
A

∫
δ−1 [mh (e+ δ, U)−mh (e, U)] f

(
U |h̄

)
f
(
e|h̄
)
dU ,

where f
(
e|h̄
)
denotes the conditional density function of ε1t given Ht−1 = h̄. Under the assump-

tion that ε1t and Ut+h are independent, conditionally on Ht−1 = h̄, we have that f
(
e, U |h̄

)
=

f
(
U |h̄

)
f
(
e|h̄
)
. Moreover, for fixed e and U , by the definition of a derivative,

limδ→0 δ
−1 [mh (e+ δ, U)−mh (e, U)] = m′

h (e, U), assuming the derivative of mh with respect to e

exists. Thus,

lim
δ→0

δ−1CARh

(
δ, h̄
)

= lim
δ→0

∫
A
δ−1E

(
yt+h (e+ δ)− yt+h (e) |Ht−1 = h̄

)
f
(
e|Ht−1 = h̄

)
de

=

∫
A

∫
U
m′

h (e, U) f
(
e, U |h̄

)
dedU

= E
(
m′

h (ε1t, Ut+h) |Ht−1 = h̄
)
= E

(
y′t+h (ε1t) |Ht−1 = h̄

)
≡ CMRh

(
h̄
)
,

where the last equality follows by definition of yt+h = mh (ε1t, Ut+h).

Proof of Proposition 3.1. The proof is in the text.

Proof of Proposition 3.2. The proof is in the text.

Proof of Proposition 3.3. We start by deriving the potential outcomes yt+h (e) for this model.
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For any e, define

β (e) = βR + (βE − βR) η (e) and γ (e) = γR + (γE − γR) η (e) ,

with η (e) = 1 (e > c) for any fixed e. Let V0t ≡ γt−1yt−1 + ε2t be a function of (ε2t, yt−1, ε1t−1) =(
ε2t, z

′
t−1

)
≡ U ′

t , since xt = ε1t and z′t = (xt, yt). With this notation, for h = 0, yt = βt−1ε1t + V0t.

The potential outcome for h = 0 is obtained from this equation by fixing ε1t = e:

yt (e) = βt−1e+ V0t ≡ m0 (e, Ut) ,

with Ut ≡
(
ε2t, z

′
t−1

)′
. For h = 1, yt+1 = βtε1t+1 + γtyt + ε2t+1, where yt = yt (ε1t), βt = β (ε1t) and

γt = γ (ε1t). Hence, upon fixing ε1t = e, we have that

yt+1 (e) = β (e) ε1t+1 + γ (e) yt (e) + ε2t+1,

which shows that yt+1 (e) can be obtained from yt (e). Replacing yt (e) = βt−1e+ V0t,

yt+1 (e) = γ (e)βt−1e+ Vt+1 (e) ≡ m1 (e, Ut+1) , (1)

where

Vt+1 (e) = γ (e)V0t + β (e) ε1t+1 + ε2t+1 ≡ V1 (e, Ut+1)

with

Ut+1 =
(
ε′t+1, ε2t, z

′
t−1

)′ ≡ (ε′t+1, U
′
t

)
.

For h = 2, writing βt+1 ≡ β (ε1t+1) and γt+1 ≡ γ (ε1t+1), it follows that

yt+2 (e) = βt+1ε1t+2 + γt+1yt+1 (e) + ε2t+2

= βt+1ε1t+2 + γt+1 [γ (e)βt−1e+ Vt+1 (e)] + ε2t+2

= γt+1γ (e)βt−1e+ Vt+2 (e) ≡ m2 (e, Ut+1) ,

where

Vt+2 (e) ≡ γt+1Vt+1 (e) + βt+1ε1t+2 + ε2t+2

= γt+1 [γ (e)V0t + β (e) ε1t+1 + ε2t+1] + βt+1ε1t+2 + ε2t+2

= γt+1γ (e)V0t + γt+1β (e) ε1t+1 + ε2t+1 + βt+1ε1t+2 + ε2t+2,

which is a function of Ut+2 ≡
(
ε′t+2, ε

′
t+1, ε2t, z

′
t−1

)′
=
(
ε′t+2, U

′
t+1

)′
. For any h > 1,

yt+h (e) = γt+h−1 · · · γt+1γ (e)βt−1e+ Vt+h (e) ≡ mh (e, Ut+h) ,
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where

Vt+h (e) ≡ γt+h−1Vt+h−1 (e) + βt+h−1ε1t+h + ε2t+h,

and Ut+h ≡
(
ε′t+h, U

′
t+h−1

)′
.

Next, we show part (i) of the proposition, which derives the conditional average response function

for any fixed δ. For h = 0, yt (e+ δ)− yt (e) = βt−1δ, which does not depend on e. Hence,

CAR0

(
δ, h̄
)
= E

(
yt (ε1t + δ)− yt (ε1t) |Ht−1 = h̄

)
= E

(
βt−1|Ht−1 = h̄

)
δ = βh̄δ.

For h = 1, by Definition 1,

CAR1

(
δ, h̄
)
= E

(
yt+1 (ε1t + δ)− yt+1 (ε1t) |Ht−1 = h̄

)
,

where yt+1 (ε1t) is equal to yt+1 (e) with e = ε1t (and similarly for yt+1 (ε1t + δ)). We will evaluate

CAR1

(
δ, h̄
)
below, but note that under the simplified Assumption 3, for any h > 1, we can write

CARh

(
δ, h̄
)
as a function of CAR1

(
δ, h̄
)
. Specifically, for h = 2, we have that

yt+2 (e+ δ)− yt+2 (e) = γt+1yt+1 (e+ δ) + βt+1ε1t+2 + ε2t+2 − (γt+1yt+1 (e) + βt+1ε1t+2 + ε2t+2)

= γt+1 [yt+1 (e+ δ)− yt+1 (e)] ,

and more generally for any h > 1,

yt+h (e+ δ)−yt+h (e) = γt+h−1 [yt+h−1 (e+ δ)− yt+h−1 (e)] = (γt+h−1 · · · γt+1) [yt+1 (e+ δ)− yt+1 (e)] .

By Definition 1, for any h > 1,

CARh

(
δ, h̄
)

= E
[
yt+h (ε1t + δ)− yt+h (ε1t) |Ht−1 = h̄

]
= E (γt+h−1 · · · γt+1)E

[
yt+1 (ε1t + δ)− yt+1 (ε1t) |Ht−1 = h̄

]
= (γ̄)h−1CAR1

(
δ, h̄
)
, (2)

where we let γ̄ ≡ E (γt+1) for any t. The last equality follows from the fact that γt is a function

of ε1t and ε1t is i.i.d. This implies that we only need to evaluate CAR1

(
δ, h̄
)
and γ̄ to obtain the

entire conditional average response function. Under Assumption 3(a) and (b), where the Gaussianity

assumption is instrumental in deriving the closed form expressions for γ̄ and CAR1

(
δ, h̄
)
, using (1),

3



for any fixed e,

yt+1 (e+ δ)− yt+1 (e) = γ (e)βt−1δ

+[γ (e+ δ)− γ (e)]βt−1δ

+ [γ (e+ δ)− γ (e)]βt−1e

+ [γ (e+ δ)− γ (e)]V0t

+ [β (e+ δ)− β (e)] ε1t+1.

Next, evaluate this difference at e = ε1t and take the expectation, conditionally on Ht−1 = h̄. It

follows that for any fixed δ,

CAR1

(
δ, h̄
)

≡ E
[
yt+1 (ε1t + δ)− yt+1 (ε1t) |Ht−1 = h̄

]
= E

[
γ (ε1t) |Ht−1 = h̄

]
βh̄δ + {E

[
(γ (ε1t + δ)− γ (ε1t)) |Ht−1 = h̄

]
βh̄δ

+E
[
(γ (ε1t + δ)− γ (ε1t)) ε1t|Ht−1 = h̄

]
βh̄ + E

[
(γ (ε1t + δ)− γ (ε1t))V0t|Ht−1 = h̄

]
+E[(β (ε1t + δ)− β (ε1t))ε1t+1|Ht−1 = h̄]} (3)

Note that the last term in (3) has conditional mean zero. This follows by the law of iterated expec-

tations, using the fact that ε1t is an i.i.d. zero mean random variable which is independent of ε2t.

Under these assumptions, V0t is independent of ε1t, and the second-to-last term can be written as

E (γ (ε1t + δ)− γ (ε1t))]vh̄ (where vh̄ = E
(
V0t|Ht−1 = h̄

)
= γh̄E(yt−1|Ht−1 = h̄)). By using similar

arguments, we can decompose CAR1

(
δ, h̄
)
into the sum of

Direct effect = E(γ (ε1t))βh̄δ.

Indirect effect = E [(γ (ε1t + δ)− γ (ε1t))]βh̄δ

+E [(γ (ε1t + δ)− γ (ε1t)) ε1t]βh̄

+E [γ (ε1t + δ)− γ (ε1t)] vh̄.

This decomposition shows that the first component of CAR1

(
δ, h̄
)
captures the direct effect of a shock

of size δ in ε1t on yt+h. Since γ (ε1t) = γt, this is the effect of a change in ε1t on yt+h that keeps γt

constant, as when Ht is exogenous. However, in the current model, Ht = η (ε1t), which means that

when we perturb ε1t by δ, this also impacts the model parameters at time t. The last three terms

in CAR1

(
δ, h̄
)
capture this “indirect effect” since they depend on the wedge between γ (ε1t + δ) and

γ (ε1t).
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Suppose now that ε1t ∼ N
(
0, σ2

1

)
, as in Assumption 3(b). Then,

E (η (ε1t + δ)) = E (1 (ε1t + δ > c)) = P (ε1t/σ1 > (c− δ) /σ1) = 1−Φ ((c− δ) /σ1) = Φ (−c/σ1 + δ/σ1) .

and

E (γ (ε1t + δ)) = γR + (γE − γR) Φ (−c/σ1 + δ/σ1) .

Also, we can show that

E [(γ (ε1t + δ)− γ (ε1t)) ε1t] = (γE − γR)E [(η (ε1t + δ)− η (ε1t)) ε1t]

= (γE − γR)E [(1 (ε1t + δ > c)− 1 (ε1t > c)) ε1t]

= (γE − γR)E

[
(1 ((c− δ) /σ1 < ε1t/σ1 < c/σ1))

ε1t
σ1

]
σ1

= (γE − γR)σ1 [ϕ ((c− δ) /σ1)− ϕ (c/σ1)]

= (γE − γR)σ1 [ϕ (−c/σ1 + δ/σ1)− ϕ (−c/σ1)] .

It follows that

CAR1

(
δ, h̄
)

= E [γ (ε1t + δ)]βh̄δ + E [(γ (ε1t + δ)− γ (ε1t)) ε1t]βh̄ − E [γ (ε1t + δ)− γ (ε1t)] vh̄

= {γR + (γE − γR) Φ(−c/σ1 + δ/σ1)}βh̄δ + (γE − γR)σ1[ϕ (−c/σ1 + δ/σ1)− ϕ (−c/σ1))]βh̄

+{(γE − γR) [Φ (−c/σ1 + δ/σ)− Φ (−c/σ1)]vh̄}

= {γR + (γE − γR) Φ(−c/σ1)}βh̄δ︸ ︷︷ ︸
=E(γt)βh̄δ=Direct effect

+ {γR + (γE − γR) [Φ(−c/σ1 + δ/σ1)− Φ(−c/σ1)]}βh̄δ

+ {(γE − γR)σ1(ϕ(−c/σ1 + δ/σ1)− ϕ(−c/σ1))}βh̄ (4)

+ {(γE − γR) [Φ (−c/σ1 + δ/σ1)− Φ (−c/σ1)]} vh̄,

where the last three terms define the “Indirect effect”. Plugging this expression into (2) gives the

formula for CARh

(
δ, h̄
)
for any h > 1 and any fixed δ. Note that

γ̄ = E (γt) = γR + (γE − γR) Φ(−c/σ1) for all t.

To prove part (ii), we use the fact that

CMRh

(
h̄
)

= lim
δ→0

[δ−1CARh

(
δ, h̄
)
]

= (γ̄)h−1 lim
δ→0

[δ−1CAR1

(
δ, h̄
)
]

= (γ̄)h−1CMR1

(
h̄
)
,

5



where CMR1

(
h̄
)
= limδ→0CAR1

(
δ, h̄
)
/δ. In particular, by dividing (4) by δ and taking the limit as

δ → 0, we get

CMR1

(
h̄
)
= {γR + (γE − γR) Φ(−c/σ1)}βh̄ + I0 + I1 + I2,

where

I0 = lim
δ→0

δ−1 {γR + (γE − γR) [Φ(−c/σ1 + δ/σ1)− Φ(−c/σ1)]}βh̄δ = 0

I1 = lim
δ→0

δ−1 {(γE − γR)σ1(ϕ(−c/σ1 + δ/σ1)− ϕ(−c/σ1))}βh̄

I2 = lim
δ→0

[δ−1 (γE − γR) [Φ (−c/σ1 + δ/σ1)− Φ (−c/σ1)]]vh̄.

We can evaluate I1 and I2 by using the following two Taylor expansions of the Gaussian pdf and cdf,

ϕ(−c/σ1 + δ/σ1) = ϕ(−c/σ1) + ϕ′(−c/σ1)
δ

σ1
+O

(
δ2
)
,

Φ(−c/σ1 + δ/σ1) = Φ(−c/σ1) + Φ′(−c/σ1)
δ

σ1
+O

(
δ2
)
,

where Φ′(−c/σ1) = ϕ(−c/σ1) = ϕ(c/σ1) and ϕ′ (−c/σ1) = − (−c/σ1)ϕ (−c/σ1) = ϕ(c/σ1)c/σ1 by the

properties of the Gaussian pdf and cdf (in particular, note that Φ′ (x) = ϕ (x), ϕ (x) = ϕ (−x) and

ϕ′ (x) = −xϕ (x)). Hence,

I1 = (γE − γR)σ1ϕ(c/σ1)c/σ
2
1βh̄ = (γE − γR)ϕ(c/σ1)c/σ1βh̄,

and

I2 = (γE − γR)σ
−1
1 ϕ (c/σ1) vh̄.

Thus,

CMR1

(
h̄
)
= {γR + (γE − γR) Φ(−c/σ1)}βh̄ + (γE − γR)ϕ (c/σ1)σ

−1
1 (cβh̄ + vh̄) .

Proof of Proposition 3.4. The result for h = 0 is immediate, so we focus on h ≥ 1. For any

such value of h, we can show that

bh
(
h̄
)
=

E
(
yt+hε1t|Ht−1 = h̄

)
E
(
ε21t|Ht−1 = h̄

) = (γ̄)h−1 b1
(
h̄
)
,

using the fact that γt is i.i.d. since it is a function of ε1t. Thus, we focus on deriving b1
(
h̄
)
=

E(yt+1ε1t|Ht−1=h̄)
E(ε21t|Ht−1=h̄)

. Note that the denominator of b1
(
h̄
)
is equal to σ2

1 under our assumptions, so it is

sufficient to derive E
(
yt+1ε1t|Ht−1 = h̄

)
. Replacing yt+1 by equation (3) in the main text, we write

E
(
yt+1ε1t|Ht−1 = h̄

)
= E

(
(βtε1t+1 + γtyt + ε2t+1) ε1t|Ht−1 = h̄

)
= E(γtytε1t|Ht−1 = h̄),

6



since E
(
βtε1t+1ε1t|Ht−1 = h̄

)
= E

(
ε2t+1ε1t|Ht−1 = h̄

)
= 0. But since γt = γR + (γE − γR)Ht,

E(γtytε1t|Ht−1 = h̄) = (γE − γR)E
(
Htytε1t|Ht−1 = h̄

)
+γRE

(
ytε1t|Ht−1 = h̄

)
≡ (γE − γR)A1+γRA2.

It follows that

A1 ≡ E
(
ε1tHtyt|Ht−1 = h̄

)
= E

(
ε1tHt (βt−1ε1t + γt−1yt−1 + ε2t) |Ht−1 = h̄

)
= E

(
ε21tHt|Ht−1 = h̄

)
βh̄ + E

(
ε1tHtγt−1yt−1|Ht−1 = h̄

)
+ E

(
ε1tε2tHt|Ht−1 = h̄

)
= E

(
ε21tHt

)
βh̄ + E (ε1tHt)E

(
γt−1yt−1|Ht−1 = h̄

)︸ ︷︷ ︸
≡vh̄

+ 0,

where E
(
ε1tε2tHt|Ht−1 = h̄

)
= 0 by the fact that ε1tHt is independent of ε2t under Assumptions 1 and

3. Similarly, we can write E
(
ε1tHtγt−1yt−1|Ht−1 = h̄

)
= E (ε1tHt) vh̄, where vh̄ ≡ E

(
V0t|Ht−1 = h̄

)
=

E(γt−1yt−1|Ht−1 = h̄). Next, we compute E (ε1tHt) and E
(
ε21tHt

)
using the fact that ε1t is Gaussian.

By definition of Ht = 1 (ε1t > c), and the truncated moments of the Gaussian distribution, we obtain

that

E (ε1tHt) = σ1E (ε1t/σ11 (ε1t/σ1 > c/σ1)) = σ1ϕ (c/σ1) .

Similarly,

E
(
ε21tHt

)
= E

(
ε21t1 (ε1t > c)

)
= σ2

1[Φ (−c/σ1) + c/σ1ϕ (c/σ1)].

Thus
A1

σ2
1

= [Φ (−c/σ1) + c/σ1ϕ (c/σ1)]βh̄ + σ−1
1 ϕ (c/σ1) vh̄.

Since we can also show that

A2

σ2
1

= σ−2
1 E

(
ytε1t|Ht−1 = h̄

)
= σ−2

1 E
(
(βt−1ε1t + γt−1yt−1 + ε2t)ε1t|Ht−1 = h̄

)
= βh̄,

it follows that

b1
(
h̄
)

= (γE − γR)
A1

σ2
1

+ γR
A2

σ2
1

= (γE − γR) {[Φ (−c/σ1) + c/σ1ϕ (c/σ1)]βh̄ + σ−1
1 ϕ (c/σ1) vh̄}+ γRβh̄

= {γRβh̄ + (γE − γR) Φ (−c/σ1)}βh̄ + (γE − γR)σ
−1
1 ϕ (c/σ1) (cβh̄ + vh̄)

= CMR1

(
h̄
)
.
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B Generalization of Propositions 3.1 and 3.2

Here, we show that the results in Section 3.1 extend to a multivariate version of our model for

zt = (xt, y
′
t)
′ when Ht is exogenous.

B.1 Multivariate state-dependent structural VAR model

Let zt ≡ (xt, y
′
t)
′ denote an n × 1 vector of strictly stationary time series, where yt is k × 1 with

k = n− 1. We consider a structural state-dependent VAR process of the form

Ct−1zt = µt−1 +Bt−1 (L) zt−1 + εt, (5)

where εt = (ε1t, ε
′
2t)

′ defines the vector of mutually independent structural shocks. Let

Bt−1 (L) = B1,t−1 +B2,t−1L+ . . .+Bp,t−1L
p−1,

where p denotes the polynomial lag order. For later convenience, we partition Bt−1 (L) conformably

with zt as

Bt−1 (L) =

(
B11,t−1 (L) B12,t−1 (L)

B21,t−1 (L) B22,t−1 (L)

)
where Aij denotes the (i, j) block of any partitioned matrix A.

All model coefficients evolve over time depending on the state of the economy. In particular, as in

the main text, we let

µt−1 = µEHt−1 + µR (1−Ht−1) ,

Ct−1 = CEHt−1 + CR (1−Ht−1) , and

Bj,t−1 = BjEHt−1 +BjR (1−Ht−1) for j = 1, . . . , p,

where Ht−1 is a binary stationary time series that takes the value 1 if the economy is in expansion

and 0 otherwise. To identify the conditional impulse response function of yt+h to a shock in ε1t, we

assume that

Ct−1 =

(
1 0

−C21,t−1 C22,t−1

)
, (6)

where C21,t−1 is k × 1 and C22,t−1 is a k × k non-singular matrix whose diagonal elements are 1 by a

standard normalization condition. Under these assumptions, xt is predetermined with respect to yt.

Note that we do not restrict C22,t−1 to be lower triangular, which allows Ct−1 to be block recursive.

Hence, the model is only partially identified in that only the responses to ε1t are identified.

Model (5) covers several empirically relevant strategies for identifying the structural shock ε1t (and
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the corresponding conditional response function for yt+h with respect to ε1t). One is the narrative

approach to identification which uses information extraneous to the model to measure ε1t, in which

case xt = ε1t (as in the main text). Alternatively, the structural shock ε1t may be identified via an

exclusion restriction that precludes xt from responding contemporaneously to the structural shocks in

the remaining variables of the system. In this case, the structural shock ε1t is identified within the

nonlinear structural VAR model by analogy to Blanchard and Perotti (2002), whose exogenous shocks

to government spending (ε1t) are identified by assuming that government spending (xt) does not react

within the period to shocks to output and tax revenues (yt). Finally, note that our general model also

accommodates the special case of xt being an exogenous serially correlated observable variable, as in

Alloza, Gonzalo and Sanz (2021).

The structural model for zt can be written as
xt = µ1,t−1 +B11,t−1 (L)xt−1 +B12,t−1 (L) yt−1 + ε1t

C22,t−1yt = µ2,t−1 + C21,t−1xt +B21,t−1 (L)xt−1 +B22,t−1 (L) yt−1 + ε2t.

(7)

Without further restrictions (such as postulating that C22,t−1 is lower triangular), the parameters in

the equations for yt are not identified. However, the fact that ε1t is identified suffices to identify the

conditional response function of yt to a one-time shock in ε1t.

As in Section 3.1, we assume that Ht−1 is a function only of qt (and its lags), where qt is assumed

to be exogenous with respect to the structural shocks ε1t and ε2t. More specifically, to complete the

model, we let

Ht = η (qs : s ≤ t) . (8)

We make the following additional assumptions.

Assumption B.1 {ε1t} and {ε2t} are mutually independent structural shocks such that εt ≡ (ε1t, ε
′
2t)

′ ∼

i.i.d.(0,Σ), where Σ is a diagonal matrix with diagonal elements given by σ2
i for i = 1, . . . , n. In ad-

dition, yt is strictly stationary and ergodic.

Assumption B.2 {qt} is independent of {ε1t} and {ε2t}.

Assumption B.1 is the generalization of Assumption 1 in Section 3.1 to the multivariate model

where ε2t is a k × 1 vector. Assumption B.2 is the analogue of Assumption 2.

B.2 Conditional impulse response functions

In this section, we derive the analogue of Proposition 3.1 in the main text for the multivariate model

considered in (7) and (8). We obtain this result by first deriving the potential outcomes yt+h (e) and

9



then using these to obtain closed-form expressions for CARh

(
δ, h̄
)
and CMRh

(
δ, h̄
)
.

B.2.1 Potential outcomes

To derive the potential outcomes yt+h (e), we first obtain the reduced-form model corresponding to our

structural model (7) (which is given by (5) with the identification restriction that xt is predetermined

with respect to ε1t). Since Ct−1 satisfies the identification condition (6), the inverse matrix of Ct−1

exists and is given by

C−1
t−1 =

(
1 0

C−1
22,t−1C21,t−1 C−1

22,t−1

)
≡

(
1 0

C21
t−1 C22

t−1

)
,

where for any matrix A, we let Aij denote the block (i, j) of A−1.

Pre-multiplying (5) by C−1
t−1 yields

zt = C−1
t−1µt−1 + C−1

t−1Bt−1 (L) zt−1 + C−1
t−1εt,

which we rewrite as

zt = bt−1 +At−1 (L) zt−1 + ηt, (9)

where ηt ≡ C−1
t−1εt, bt−1 ≡ C−1

t−1µt−1, and

At−1 (L) ≡ C−1
t−1Bt−1 (L) = A1,t−1 +A2,t−1L+ . . .+Ap,t−1L

p−1,

with Aj,t−1 ≡ C−1
t−1Bj,t−1.

The potential outcome value of yt+h (e) (for any fixed e) can be obtained from the companion-form

representation of the reduced-form model (9) by iteration, fixing ε1t = e. Since only ε1t is fixed at e,

the following decomposition of the reduced-form errors ηt is useful:

ηt ≡ C−1
t−1εt =

(
1

C21
t−1

)
ε1t +

(
0

C22
t−1

)
ε2t ≡ C−1

t−1e1,nε1t + C−1
t−1I2:nε2t,

where e1,n ≡ (1, 0′)′ is n × 1 and I2:n is k × n and is equal to the n × n identity matrix with its first

column removed:

I2:n =
(

e2,n · · · en,n

)
.

We let

ηt (e) = C−1
t−1

(
e

ε2t

)
= C−1

t−1e1,ne+ C−1
t−1I2:nε2t

10



denote the counterfactual value of ηt for ε1t = e. Similarly, we denote by

zt (e) =

(
xt (e)

yt (e)

)

the counterfactual values of xt and yt. With this notation, we can write the potential outcome analogue

of (9) as

Zt (e) = at−1 +At−1Zt−1 (e) + ξt (e) . (10)

Here,

Zt
np×1

(e) =
(
z′t (e) , z

′
t−1 (e) , . . . , z

′
t−p+1 (e)

)′
, ξt (e)

np×1
=
(
η′t (e) , 0

′)′ , at−1
np×1

=
(
b′t−1, 0

′)′ ,
and

At−1
np×np

=


A1,t−1 A2,t−1 · · · Ap−1,t−1 Ap,t−1

In 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · In 0

 .

Note that at−1 and At−1 are not indexed by e because these matrices depend only on Ht−1, which

does not change with e under the exogeneity assumption on Ht. To obtain yt (e) from Zt (e), let

Sk
k×np

=
(

0k×1 Ik 0k×n(p−1)

)
denote a k× np selection matrix (with k = n− 1 equal to the number of variables in yt) which selects

the subvector yt from the vector Zt. With this notation,

yt (e) = SkZt (e) ,

and, more generally, for any h,

yt+h (e) = SkZt+h (e) .

Note that for k = 1 (i.e., for a bivariate system with n = 2), Sk = e′2,2p, where e2,2p = (0, 1, 0′) is a

2p× 1 vector whose only non-zero element is equal to 1 and occurs in position 2. More generally, we

let ej,m denote an m× 1 vector with 1 in position j and 0 elsewhere.

Next, we use the companion form (10) to obtain yt+h (e) for different values of h. Starting with

h = 0, we set Zt−1 (e) = Zt−1 since Zt−1 depends on values of zt that occur prior to the shock in ε1t.

Hence, these values do not depend on e and it follows that

yt (e) = SkZt (e) = Skat−1 + SkAt−1Zt−1 + Skξt (e) .
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By the definition of ξt (e), we can write

ξt (e) =

(
ηt (e)

0

)
=

(
C−1
t−1e1,ne+ C−1

t−1I2:nε2t

0n(p−1)×1

)
= e1,p ⊗

(
C−1
t−1e1,ne+ C−1

t−1I2:nε2t
)
.

Hence,

Skξt (e) = Sk[e1,p ⊗
(
C−1
t−1e1,ne+ C−1

t−1I2:nε2t
)
]

= Sk[e1,p ⊗
(
C−1
t−1e1,n

)
e] + Sk[e1,p ⊗ (C−1

t−1I2:n)ε2t].

This implies that

yt (e) = Sk[e1,p ⊗
(
C−1
t−1e1,n

)
]e+ Vt,

where Vt ≡ Skat−1 + SkAt−1Zt−1 + Sk[e1,p ⊗ (C−1
t−1I2:n)ε2t] is a function of Ut ≡

(
ε′2t, qt−1, Z

′
t−1

)
. We

can obtain yt+h (e) for larger values of h using a similar approach. In particular, for h = 1, we have

that

Zt+1 (e) = at +AtZt (e) + ξt+1,

where ξt+1 =
(
η′t+1, 0

′)′ = ((
C−1
t εt+1

)′
, 0′
)′

and at, At and Ct do not depend on e. This is true

because the model coefficients depend on Ht, which is not a function of e when Ht is exogenous, and

εt+1 is independent of e since e is the fixed value of ε1t. Thus,

yt+1 (e) = SkZt+1 (e)

= Skat + SkAtZt (e) + Skξt+1

= Skat + SkAt(at−1 +At−1Zt−1 + ξt (e)) + Skξt+1

= Skat + SkAtat−1 + SkAtAt−1Zt−1 + SkAtξt (e) + Skξt+1,

where ξt (e) = [e1,p ⊗
(
C−1
t−1e1,n

)
]e + Sk[e1,p ⊗ (C−1

t−1I2:n)ε2t]. Inserting ξt (e) into the equation above

and collecting the terms that not depend on e into Vt+1 yields

yt+1 (e) = SkAt[e1,p ⊗
(
C−1
t−1e1,n

)
]e+ Vt+1,

where Vt+1 is a function of Ut+1 ≡
(
εt+1, ε

′
2t, qt, qt−1, Z

′
t−1

)′
. This result shows that the potential

outcome value yt+1 (e) is linear in e, as in the main text. This result generalizes to any value of h ≥ 1

as follows:

yt+h (e) = SkAt+h−1 · · ·At[e1,p ⊗
(
C−1
t−1e1,n

)
]e+ Vt+h ≡ mh (e, Ut+h) , (11)

where Vt+h depends on Ut+h ≡
(
εt+h, . . . , εt+1, ε

′
2t, qt+h−1, . . . , qt, qt−1, Z

′
t−1

)′
.

Equation (11) defines the potential outcomes for the vector of dependent variables yt. It represents
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a linear function of e under the assumption that Ht = η (qs : s ≤ t) and qs is strictly exogenous with

respect to ε1t and ε2t.

B.2.2 Closed-form expressions for the conditional response functions

Next, we use (11) to generalize Proposition 3.1 to the multivariate state-dependent structural VAR

model given in (7). For any e,

yt+h (e+ δ)− yt+h (e) = SkAt+h−1 · · ·At[e1,p ⊗
(
C−1
t−1e1,n

)
]δ,

which implies that letting e = ε1t, and taking the conditional expectation, conditionally on Ht−1 =

h̄ ∈ {0, 1},

CARh

(
δ, h̄
)

≡ E
(
yt+h (ε1t + δ)− yt+h (ε1t) |Ht−1 = h̄

)
= SkE

(
At+h−1At+h−2 . . . At|Ht−1 = h̄

) (
e1,p ⊗ C−1

h̄
e1,n

)
δ.

We can also use (11) to obtain the conditional marginal response function for this model. Since yt+h (e)

is a linear function of e, it follows that

y′t+h (e) ≡
∂

∂e
mh (e, Ut+h) = SkAt+h−1 · · ·At[e1,p ⊗

(
C−1
t−1e1,n

)
].

This implies that

CMRh

(
h̄
)

≡ E
(
y′t+h (ε1t) |Ht−1 = h̄

)
= SkE

(
At+h−1At+h−2 . . . At|Ht−1 = h̄

) (
e1,p ⊗ C−1

h̄
e1,n

)
= CARh

(
1, h̄
)
,

showing that the conditional marginal response function coincides with the conditional average re-

sponse function CARh

(
δ, h̄
)
for a shock of size δ = 1.

The following proposition summarizes these results and is the analogue of Proposition 3.1 for the

multivariate model considered in (7). We let C−1
h̄

= C−1
E if h̄ = 1 and C−1

h̄
= C−1

R if h̄ = 0.

Proposition B.1 Assume the structural process is (7) and (8) with Ht = η (qs : s ≤ t). Under As-

sumptions B.1 and B.2 for h̄ ∈ {0, 1}:

(i) For any fixed δ, CAR0

(
δ, h̄
)
= Sk

(
e1,p ⊗ C−1

h̄
e1,n

)
δ, and for any h ≥ 1,

CARh

(
δ, h̄
)
= SkE

(
At+h−1At+h−2 . . . At|Ht−1 = h̄

) (
e1,p ⊗ C−1

h̄
e1,n

)
δ.

(ii) For any h ≥ 0, CMRh

(
h̄
)
= CARh

(
δ, h̄
)
.
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As in the simpler model considered in the main text, Proposition B.1 shows that when Ht depends

only on {qs : s ≤ t}, i.e., when Ht is exogenous with respect to the structural shocks εt, the two

definitions of the conditional impulse response function coincide. Next, we show that the state-

dependent local projection estimator recovers asymptotically these two notions of conditional impulse

response functions when Ht is exogenous.

B.3 Local projections estimands

A state-dependent LP regression is a direct regression of yt+h onto a constant, xt and Zt−1, each

interacted withHt−1 and 1−Ht−1. The slope coefficients associated with xtHt−1 are usually interpreted

as the CAR of yt+h, conditionally on Ht−1 = 1, whereas the slope coefficients associated with xt(1−

Ht−1) are interpreted as the CAR of yt+h when we condition on Ht−1 = 0. The goal of this section is

to derive the probability limits of these slope coefficients and show that they equal CARh

(
δ, h̄
)
when

δ = 1, which is equal to the CMRh

(
h̄
)
for h̄ ∈ {0, 1}.

Let Wt−1 ≡ (1, Z ′
t−1)

′ denote an (np+ 1)× 1 vector of control variables which include a constant

and p lags of zt. A state-dependent LP for identifying the causal effect on yt+h of a one-time shock in

ε1t of size δ = 1 can be written as

yt+h = bh (1)xtHt−1 +ΠE,hWt−1Ht−1 + bh (0)xt(1−Ht−1) + ΠR,hWt−1(1−Ht−1) + vt+h, (12)

where the k × 1 vectors bh (1) and bh (0) contain the main parameters of interest. The LP regression

for variable yj,t+h is

yj,t+h = bh,j (1)xtHt−1+π′
E,j,hWt−1Ht−1+ bh,j (0)xt(1−Ht−1)+π′

R,j,hWt−1(1−Ht−1)+ vj,t+h, (13)

where j = 2, . . . , n. The scalar coefficients bh,j (1) and bh,j (0) are the (j − 1)th elements of bh (1) and

bh (0), respectively. Similarly, π′
E,j,h and π′

R,j,h are the corresponding rows of ΠE,h and ΠR,h.

Since Ht is observed, the coefficients in the multivariate state-dependent LP regression (12) can

be obtained by running a multivariate LS regression of yt+h onto xtHt−1, Wt−1Ht−1, xt (1−Ht−1)

and Wt−1 (1−Ht−1). Note that this is equivalent to running a regression of yj,t+h onto xtHt−1,

Wt−1Ht−1, xt (1−Ht−1) and Wt−1 (1−Ht−1), for each j = 2, . . . , n. Put differently, the multivariate

LS regression (12) is equivalent to the k univariate OLS regressions (13), equation-by-equation.

Let b̂h (1) and b̂h (0) denote the LS estimators of bh (1) and bh (0) in (12) based on a sample of size

T given by {yt+h, xt, Zt−1, Ht−1 : t = 1, . . . , T}. We can estimate each of these vectors separately, by

restricting the sample to Ht−1 = 1 and Ht−1 = 0, respectively. For instance, b̂h (1) can be obtained

from a regression of yt+h on xtHt−1 and Wt−1Ht−1 (omitting xt (1−Ht−1) and Wt−1 (1−Ht−1) in
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the regression). This follows because Ht−1 (1−Ht−1) = 0 for all t. Similarly, we can obtain b̂h (0)

from a regression of yt+h on xt (1−Ht−1) and Wt−1 (1−Ht−1) (omitting xtHt−1 and Wt−1Ht−1 in

this regression).

Our next result generalizes Proposition 3.2. to the multivariate structural VAR model given in (7)

and (8).

Proposition B.2 Consider the structural process (7) and (8) with Ht = η (qs : s ≤ t). If Assumptions

B.1 and B.2 hold, then for h̄ ∈ {0, 1},

bh
(
h̄
)
≡ p lim

T→∞
b̂h
(
h̄
)
= CMRh

(
h̄
)
= CARh

(
1, h̄
)
,

where CARh

(
1, h̄
)
is the conditional average response function in Definition 1 with δ = 1.

B.4 Proofs of Propositions B.1 and B.2

Proof of Proposition B.1. The proof for h = 0 and h = 1 is in the text. We omit the proof for

general h since it follows from similar arguments.

Proof of Proposition B.2. We focus on h̄ = 1. To define b̂h (1), let

Y
T×k

=


y′1+h
...

y′T+h

 , X1
T×1

=


x1H0

...

xTHT−1

 , and X2
T×(np+1)

=


W ′

0H0

...

W ′
T−1HT−1

 ,

and define M2 = IT −X2 (X
′
2X2)

−1X ′
2.

By the Frisch-Waugh-Lovell (FWL) Theorem, b̂h (1)
′ = (X ′

1M2X1)
−1X ′

1M2Y, or

b̂h (1) = T−1(Y ′M2X1)
(
T−1X ′

1M2X1

)−1 ≡ Q̂1y.2,hQ̂
−1
11.2.

A similar expression holds for b̂h (0) with the difference that the regressors xt and Wt−1 are interacted

with 1−Ht−1 rather than Ht−1.

Our goal is to derive the probability limit of b̂h (1) (and b̂h (0)) as T → ∞. We can write

Q̂11.2 = T−1X ′
1X1 − T−1X ′

1X2

(
T−1X ′

2X2

)−1
T−1X ′

2X1, and

Q̂1y.2,h = T−1Y ′X1 − T−1Y ′X2

(
T−1X ′

2X2

)−1
T−1X ′

2X1.
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If a law of large numbers applies to each term1,

Q̂11.2
p→ Q11.2 ≡ E

(
x2tHt−1

)
− E

(
xtHt−1W

′
t−1

)
[E
(
Wt−1W

′
t−1Ht−1

)
]−1E (Wt−1Ht−1xt) , and

Q̂1y.2,h
p→ Q1y.2,h ≡ E (yt+hxtHt−1)− E

(
yt+hHt−1W

′
t−1

)
[E
(
Wt−1W

′
t−1Ht−1

)
]−1E (Wt−1Ht−1xt) .

We distinguish two cases: (i) xt = ε1t, and (ii) xt = µ1,t−1+B11,t−1 (L)xt−1+B12,t−1 (L) yt−1+ε1t =

α′
t−1Wt−1+ε1t (where αt−1 is a state-dependent vector that collects the coefficients of µ1,t−1, B11,t−1 (L)

and B12,t−1 (L)).

In case (i), it is easy to see that E
(
xtHt−1W

′
t−1

)
= 0 under the assumption that xt = ε1t is i.i.d.

and independent of ε2t. Thus,

Q11.2 = E
(
x2tHt−1

)
and Q1y.2,h = E (yt+hxtHt−1) ,

implying that2

b̂h (1)
p→ bh (1) ≡ E (yt+hxtHt−1) [E

(
x2tHt−1

)
]−1 = E (yt+hxt|Ht−1 = 1) [E

(
x2t |Ht−1 = 1

)
]−1.

In case (ii), we can show that

Q11.2 = E
(
ε21tHt−1

)
= Pr (Ht−1 = 1)E

(
ε21t|Ht−1 = 1

)
and

Q1y.2,h = E (yt+hε1tHt−1) = Pr (Ht−1 = 1)E (yt+hε1t|Ht−1 = 1) ,

implying that b̂h (1) = E (yt+hε1t|Ht−1 = 1) [E
(
ε21t|Ht−1 = 1

)
]−1. Heuristically, this follows because

by the FWL theorem, and conditioning on Ht−1 = 1, the slope coefficient associated with xt from

regressing yt+h on xt and Wt−1 can be obtained in two steps. First, we regress xt on Wt−1 (interacted

with Ht−1) and obtain the residual. Under our identification condition, this is ε1t. Then, we regress

yt+h on ε1t (interacted with Ht−1). More specifically, note that

E
(
xtHt−1W

′
t−1

)
= E

(
α′
t−1Wt−1W

′
t−1Ht−1

)
+ E

(
ε1tHt−1W

′
t−1

)
= E

(
α′
t−1Wt−1W

′
t−1Ht−1

)
,

1This follows under the assumption that zt is strictly stationary and ergodic and that the usual moment and rank
conditions on the regressors are satisfied. We leave these as implicit high level assumptions since our focus here is on
the conditions that Ht needs to satisfy in order for the LP estimator to be consistent. Kole and van Dijk (2021) (and
references therein) provide primitive conditions for stationarity and ergodicity of a Markov Switching SVAR model when
the states Ht are assumed to be a first-order exogenous Markov process. Deriving analogous primitive conditions for our
setting, when the process for the exogenous Ht is not specified, is beyond the scope of this paper.

2This result is consistent with the fact that when xt is a directly observed shock we can simply regress yt+h onto
xtHt−1 to obtain a consistent estimator of bE,h. When xt = ε1t, adding the controls Wt−1Ht−1 is not required for
consistency, but can be important for efficiency.
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since E
(
ε1tHt−1W

′
t−1

)
= 0 by Assumption B.1. It follows that

E
(
xtHt−1W

′
t−1

)
= α′

EE
(
Wt−1W

′
t−1|Ht−1 = 1

)
Pr (Ht−1 = 1) .

Hence, the term E
(
xtHt−1W

′
t−1

)
[E
(
Wt−1W

′
t−1Ht−1

)
]−1E (Wt−1Ht−1xt) equals

α′
EE

(
Wt−1W

′
t−1|Ht−1 = 1

)
[E
(
Wt−1W

′
t−1|Ht−1 = 1

)
]−1E

(
Wt−1W

′
t−1|Ht−1 = 1

)
αE Pr (Ht−1 = 1)

= α′
EE

(
Wt−1W

′
t−1|Ht−1 = 1

)
αE Pr (Ht−1 = 1)

= E
(
α′
t−1Wt−1W

′
t−1αt−1|Ht−1 = 1

)
Pr (Ht−1 = 1) .

Since x2t =
(
α′
t−1Wt−1 + ε1t

)2
= α′

t−1Wt−1W
′
t−1αt−1 +2α′

t−1Wt−1ε1t + ε21t, where the second term has

a conditional mean of zero, it follows that

Q11.2 = Pr (Ht−1 = 1)E
(
ε21t|Ht−1 = 1

)
.

One can use similar arguments to show that

Q1y.2,h = Pr (Ht−1 = 1)E (yt+hε1t|Ht−1 = 1) .

Thus, both in cases (i) and (ii), we conclude that

b̂h (1)
p→ bh (1) = E (yt+hε1t|Ht−1 = 1) [E

(
ε21t|Ht−1 = 1

)
]−1 ≡ NhD,

where Nh stands for numerator and D is the denominator. Next, we express Nh and D in terms of

the model parameters. To evaluate Nh, we use the fact that for any h, yt+h = SkZt+h, where Zt+h is

obtained from the companion-form representation of the model given by (10).

Consider first h = 0. Then

Zt = at−1 +At−1Zt−1 + ξt,

where

ξt =

(
ηt

0

)
=

(
C−1
t−1e1,nε1t + C−1

t−1I2:nε2t

0

)
= (e1,p ⊗ C−1

t−1e1,n)ε1t + e1,p ⊗ C−1
t−1I2:nε2t,

given that ηt = C−1
t−1εt and εt = C−1

t−1e1,nε1t + C−1
t−1I2:nε2t, where e1,n and I2:n are as defined in

Section B.2. Hence,

yt = SkZt = Sk(e1,p ⊗ C−1
t−1e1,n)ε1t + Sk(at−1 +At−1Zt−1) + Sk(e1,p ⊗ C−1

t−1I2:nε2t). (14)
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Using this decomposition of yt, we can write N0 = E (ytε1t|Ht−1 = 1) = N0,1 +N0,2 +N0,3, where

N0,1 = E[Sk(e1,p ⊗ C−1
t−1e1,n)ε

2
1t|Ht−1 = 1],

N0,2 = E[Sk(at−1 +At−1Zt−1)ε1t|Ht−1 = 1], and

N0,3 = E[Sk(e1,p ⊗ C−1
t−1I2:nε2t)ε1t|Ht−1 = 1].

Under Assumption 1 and applying repeatedly the law of iterated expectations (LIE), it can be shown

that N0,2 = N0,3 = 0, implying that N0 ≡ E (ytε1t|Ht−1 = 1) = N0,1. Thus,

N0 = Sk(e1,p ⊗ C−1
E e1,n)E

(
ε21t|Ht−1 = 1

)
.

Since bh (1) ≡ N0D, for h = 0, where D ≡ [E
(
ε21t|Ht−1 = 1

)
]−1, this implies the result. A similar

argument shows that

b̂h (0)
p→ bh (0) = Sk(e1,p ⊗ C−1

R e1,n) for h = 0.

Next, we consider h = 1. Now,

b̂h (1)
p→ bh (1) ≡ E (yt+1ε1t|Ht−1 = 1) [E

(
ε21t|Ht−1 = 1

)
]−1 ≡ N1D when h = 1.

To obtain N1, we can use the fact that

yt+1 = SkZt+1 = Sk(at +AtZt + ξt+1)

= Sk(at +At(at−1 +At−1Zt−1 + ξt) + ξt+1)

= SkAtξt + Sk(at +At(at−1 +At−1Zt−1)) + Skξt+1, (15)

where ξs = (e1,p ⊗ C−1
s−1e1,n)ε1s + e1,p ⊗ C−1

s−1I2:nε2s for s = t, t + 1. This implies that N1 ≡

E (yt+1ε1t|Ht−1 = 1) = N1,1 +N1,2 +N1,3, where

N1,1 = E(SkAtξtε1t|Ht−1 = 1),

N1,2 = E[Sk(at +At(at−1 +At−1Zt−1))ε1t|Ht−1 = 1], and

N1,3 = E[Skξt+1ε1t|Ht−1 = 1].

Given the definition of ξt+1, we can easily see that N1,3 = 0 by Assumption B.1, since it implies that

E
(
ξt+1|F t

)
= 0. To conclude that N1,2 = 0, we use the exogeneity condition on Ht, i.e. the fact

that Ht = η (qs : s ≤ t) with qs satisfying Assumption B.2. Under these assumptions, Ht and ε1t are

mutually independent, implying that by the LIE, we can write

N1,2 = E[Sk(at +At(at−1 +At−1Zt−1))E
(
ε1t|F t−1, Ht

)
|Ht−1 = 1],

18



where F t−1 = σ (zt−1, Ht−1, zt−2, Ht−2, . . .). Since E
(
ε1t|F t−1, Ht

)
= E (ε1t) = 0, we obtain that

N1,2 = 0. Hence, N1 = N1,1. The result follows because we can show that

N1,1 = E[SkAt(e1,p ⊗ C−1
t−1e1,n)ε

2
1t|Ht−1 = 1],

under Assumption B.1 and B.2. More specifically, using the definition of ξt, N1,1 can be decomposed

as follows:

N1,1 = E[SkAt(e1,p ⊗ C−1
t−1e1,n)ε

2
1t|Ht−1 = 1] + E[SkAt(e1,p ⊗ C−1

t−1I2:nε2tε1t)|Ht−1 = 1],

where E
(
ε1tε2t|Ht,F t−1

)
= E (ε1tε2t) = 0 under our assumptions. This implies that

bh (1)=
E[SkAt(e1,p ⊗ C−1

t−1e1,n)ε
2
1t|Ht−1 = 1]

E
(
ε21t|Ht−1 = 1

) .

The result follows because the numerator simplifies to E[SkAt(e1,p⊗C−1
t−1e1,n)|Ht−1 = 1][E

(
ε21t|Ht−1 = 1

)
]

under the assumption that ε1t is i.i.d.
(
0, σ2

1

)
. A similar result holds for bh (0) when h = 1. The proof

for other values of h follows from similar arguments.
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C Parameters for the data generating process in Section 5

The data generating process in Section 5 uses the following parameter values obtained by fitting the

model to the quarterly data used in Ramey and Zubairy (2018), assuming that a recession corresponds

to periods when unemployment is above the historical mean:

CE=

 1 0 0

−0.0097 1 0

0.0056 0.0371 1

 , CR =

 1 0 0

−0.0495 1 0

−0.0510 −0.2134 1

 , kE =

 0

0.0034

0.0177

, kR =

 0

0.0145

0.1007

 ,

AE,1 = C−1
E BE,1 =

 −0.1741 0 0

0.0317 0.8185 −0.0437

−0.0586 0.7540 1.4140

 , AE,2 =

 0.4266 0 0

0.1107 −0.0105 0.1177

0.0296 −0.7467 −0.4706

 ,

AE,3 =

 0.4065 0 0

0.0889 0.2965 −0.1358

0.0168 −0.3586 0.0918

 , AE,4 =

 0.3633 0 0

0.0774 −0.1165 0.0595

0.0535 0.3428 −0.0505

 ,

AR,1 =

 0.2952 0 0

0.0088 1.6449 0.1237

0.0098 0.0450 1.4823

 , AR,2 =

 −0.0854 0 0

0.0463 −0.8551 −0.1995

−0.0051 −0.0752 −0.7047

 ,

AR,3 =

 0.1670 0 0

0.0107 0.2722 0.0245

−0.0154 0.0911 0.2347

 , AR,4 =

 −0.0331 0 0

−0.0019 −0.0869 0.0410

0.0476 −0.0333 −0.1174

 .
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D Additional simulation results

This appendix contains additional simulation results. Figures D.1 and D.2 report simulation results

when γE = 0.9, γR = −0.1 in DGP 1 and DGP 2. Figures D.3 and D.4 report the cumulative

government spending multiplier for δ ∈ {−1,−5,−10}.
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Figure D.1: Asymptotic bias of LP response when Ht = 1 (yt > 0)
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Figure D.2: LP response and decomposition of CAR when Ht = 1 (yt > 0) and δ = 5
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Figure D.3: Cumulative spending multiplier when Ht = 1 (yt > 1)

23



0 5 10 15 20

0.6

0.8

1

0 5 10 15 20
1

1.2

1.4

1.6

0 5 10 15 20

0.6

0.8

1

0 5 10 15 20
1

1.5

2

0 5 10 15 20

0.6

0.8

1

0 5 10 15 20
1

1.5

2

2.5

Figure D.4: Cumulative spending multiplier when Ht = 1 (yt > MA(12))
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