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1 INTRODUCTION

The importance of distinguishing between exogenous shocks to expectations about future realiza-

tions of macroeconomic variables and exogenous shocks to current realizations of these variables

not driven by expectations is widely recognized in the literature (see, e.g., Beaudry and Portier,

2014; Kilian and Murphy, 2014; Mertens and Ravn, 2012). This distinction has received particular

attention in studies of the effects of shocks to total factor productivity (TFP) on economic activity.

Building on Uhlig (2004) and Francis et al. (2014), Barsky and Sims (2011, henceforth, BS)

introduced the max-share approach to identifying anticipated shocks to TFP (“news shocks”) and

unanticipated shocks to TFP (“surprise shocks”) using a structural vector autoregressive (VAR)

model. Their estimator of these shocks is based on selecting parameters for the structural impact

multiplier matrix of the VAR model that maximize the sum of the forecast error variance shares of

TFP over a ten-year horizon subject to the restriction that the news shock is orthogonal to current

TFP. The latter assumption can be traced to Cochrane (1994) and Beaudry and Portier (2006) and

has been central to most identification strategies seeking to recover TFP news shocks.1

As recently stressed by Barsky et al. (2015) and Kurmann and Sims (2021, henceforth, KS), the

assumption that news shocks affect TFP only with a delay is hard to defend on a priori grounds.

One reason is that new technologies may affect TFP immediately, even though their main effect

on TFP takes many years due to the slow diffusion of those technologies. Another reason is that

changes in measured TFP are difficult to distinguish from changes in factor utilization. This fact

calls into question any identification strategy involving restrictions on the short-run response of

TFP.

In response to these concerns, KS proposed an alternative approach to the estimation of TFP

news shocks that is conceptually similar to BS with two important differences. First, they al-

low news shocks to have contemporaneous effects on TFP. Second, they construct the shock that

1Variations of this max-share approach have been widely used in applied work in a variety of economic contexts
(e.g., Angeletos et al., 2020; Ben Zeev and Khan, 2015; Benhima and Cordonier, 2022; Bouakez and Kemoe, 2022;
Carriero and Volpicella, 2022; Chen and Wemy, 2015; Fève and Guay, 2019; Forni et al., 2014; Francis and Kindberg-
Hanlon, 2022; Görtz et al., 2022a,b; Levchenko and Pandalai-Nayar, 2020; Nam and Wang, 2015).
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accounts for the maximum forecast error variance share at a given long horizon rather than max-

imizing the sum of the forecast error variance shares from the impact period up to that horizon.

They interpret that shock as a news shock if it causes TFP to increase gradually, while causing TFP

news indicators to jump on impact. KS show that their alternative max-share estimates are robust

to revisions in the widely used measure of TFP developed by Fernald (2015), whereas the BS esti-

mates are not. The central insight of KS is that one should not take measures of TFP at face value

in empirical work. A related point has also been made by Bouakez and Kemoe (2022). The point

of our paper is not to question the potential importance of TFP measurement error, but to draw

attention to a separate practical issue that has not been recognized in this literature to date—the

sensitivity of the KS estimator of news shocks to how much TFP is driven by surprise shocks (or

other non-news shocks), not only at long horizons but also at shorter horizons.

Our first contribution is to clarify how TFP measurement error affects the identification of news

and surprise shocks when using the max-share approach. KS stress that TFP measurement error

prevents them from separately identifying surprise shocks to current TFP from news shocks about

future TFP. We analytically show that the inability of the KS max-share estimator to identify the

surprise shock is not a consequence of dropping the exclusion restriction in BS or of focusing only

on longer horizons. Rather, it is the result of dropping the additional restriction underlying the

BS estimator that no shock other than the news shock and surprise shock affects TFP on impact.

When TFP innovations are explained by news and surprise shocks only, the impact of the surprise

shock is directly implied by the impact response of the news shock without further identifying

assumptions.

Even if these surprise shocks are not identified, however, their presence matters for the reli-

ability of the KS estimator. Indeed, KS state that their approach works well “as long as news

shocks account for a large part of the unpredictable variation in adjusted TFP at long horizons.”

Our second contribution is to show that this condition is not sufficient to ensure the accuracy of

the estimator. This conclusion is based on a detailed study of the ability of the KS estimator to re-

cover responses to news shocks from data generated by New Keynesian dynamic stochastic general
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equilibrium (DSGE) models, both with and without TFP measurement error.

We first examine the accuracy of the KS estimator under ideal conditions in the absence of TFP

measurement error in a conventional DSGE model. We demonstrate that even when virtually all

variation in TFP at the 80-quarter horizon is explained by news shocks, the KS estimator may fail

to recover the responses to news shocks in the asymptotic limit. This example illustrates that the

accuracy of the KS estimator not only depends on the quantitative importance of news shocks at

long horizons but also at shorter horizons.

Our conclusion may seem at odds with simulation evidence reported by KS that their estimator

comes somewhat close to the population responses to a news shock when T = 10,000 quarters.

While we can replicate these findings under their parameterization of the TFP process, which

implies that surprise shocks are not an important determinant of TFP at any horizon, our evidence

suggests that this parameterization is at odds with the data. When the parameters in our DSGE

model are set to match the TFP moments in the data, impulse responses based on the KS estimator

are strongly biased, even asymptotically. This bias worsens for realistically small samples such

as T = 240, and in addition the estimator becomes highly variable. We trace this problem to the

inability of the KS estimator to distinguish the effects of news and non-news shocks at shorter

horizons.2

We then examine the accuracy of the KS estimator using the larger-scale DSGE model devel-

oped by KS, which allows for TFP measurement error. Setting the parameters of this model to

match the TFP moments in the data reveals another potential problem with the KS estimator, in

addition to the problem already encountered in the baseline model. We find that in this case the

maintained assumption in KS that news shocks explain virtually all long-run variation in measured

TFP no longer obviously holds. This fact further helps explain why the bias of the KS estimator in

this model persists even asymptotically.

These results raise the question of what alternative methods are available to applied researchers.

2We also show that when TFP is measured correctly, the same model may be estimated by maximizing the forecast
error variance at short horizons to obtain an estimate of the surprise shock, from which the news shock may be derived.
This alternative estimator is even less accurate than the original KS estimator.

3



KILIAN, PLANTE & RICHTER: MACROECONOMIC NEWS AND SURPRISE SHOCKS

Our third contribution is to show that adding a direct measure of TFP news to the VAR model and

adapting the identification strategy accordingly, as suggested in some recent empirical studies, will

substantially reduce the asymptotic bias, assuming that the news are measured reasonably accu-

rately.3 We discuss two such identification strategies. One is based on maximizing the variance

share of the news variable to TFP on impact and is new to the literature. The other treats news vari-

able innovations as predetermined as in Cascaldi-Garcia and Vukotić (2022). The latter estimator

may also be given an instrumental variable (IV) interpretation, and hence allows for measurement

error in the TFP news variable. In practice, these estimators tend to produce similar estimates.

While we are not the first to employ direct measures of TFP news for identifying news shocks,

we are the first to examine the ability of these estimators to recover the population responses

from data generated by DSGE models. We first show that appropriately constructed estimators

based on news variables have substantially lower bias and root mean squared error (RMSE) than

the KS estimator in the absence of TFP measurement error. Our evidence suggests that estimators

based on TFP news variables avoid the identification problems of the KS estimator we documented

earlier. Moreover, under the maintained assumption that only news and surprise shocks affect TFP

innovations, news variable based estimators of the news shock may be used to recover estimates of

the surprise shock, much like the KS estimator. We then compare the news variable VAR estimators

to the KS estimator in the presence of TFP measurement error. We document that these methods,

while not immune from TFP measurement error, still substantially reduce the RMSE of output and

TFP responses to news shocks in that case compared to the KS estimator.

Finally, we illustrate the use of TFP news for identifying news shocks using a range of al-

ternative measures of TFP news that have been used in other studies. We find that two of these

specifications generate economically plausible results in light of the underlying economic theory,

suggesting that this approach may work not only in simulations but also in practice.

The remainder of the paper is organized as follows. In Section 2, we review the estimation

of news shocks obtained by maximizing the contribution of the news shock to the forecast error

3Examples of studies employing measures of TFP news include Shea (1999), Christiansen (2008), Alexopoulos
(2011), Baron and Schmidt (2019), Cascaldi-Garcia and Vukotić (2022), and Miranda-Agrippino et al. (2022).
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variance of TFP at long, but finite horizons, and derive the identification conditions for the surprise

shock. In Section 3, we use data generated from a conventional DSGE model to examine the ac-

curacy of the KS estimator. In Section 4, we extend the analysis to models with TFP measurement

error. In Section 5, we use these DSGE models to examine the accuracy of two alternative iden-

tification strategies that accommodate TFP measurement error by including a direct measure of

TFP news in the VAR model. In Section 6, we examine the plausibility of the empirical responses

to news shocks from a range of models based on alternative measures of TFP news. Section 7

contains the concluding remarks.

2 IDENTIFICATION PROBLEM

KS observe that TFP mismeasurement makes it impossible to separately identify news shocks

and surprise shocks. However, the basis of this conclusion is not made explicit. In this section

we clarify how measurement error affects the identification of surprise shocks and formally show

that, in the absence of TFP measurement error, the KS estimator identifies both news and surprise

shocks. This result also applies to the alternative estimators based on directly observable news

variables discussed in Section 5.

KS stress that imperfect measurement of factor utilization causes the BS estimator of the news

shock to produce misleading results. Their alternative estimator is intended to be robust to TFP

mismeasurement, at the cost of not being able to identify the surprise shock. KS emphasize that

the key difference is that their estimator does not impose the restriction that news shocks do not

affect TFP on impact and it only focuses on longer horizons. The inability of the KS estimator

to identify the surprise shock, however, is not a consequence of these differences. As shown in

this section, it is the result of dropping the additional restriction underlying the BS estimator that

no shock other than the news shock or surprise shock can affect TFP on impact. This third key

difference from the BS estimator is not discussed in KS.

Thus, the method employed by KS to estimate the news shock does not by itself prevent us from

identifying the surprise shock. In fact, the estimate of the news shock in KS directly implies an
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estimate of the surprise shock, as long as TFP is measured correctly, given the exclusion restriction

in the orthogonal matrix used in constructing the estimator. The identification of the surprise shock

breaks down only when TFP is mismeasured.

While we are not questioning that TFP measurement error is likely in empirical work, this

result is important for two reasons. First, it implies that these estimators will be able to deliver

estimates of the surprise shock if the accuracy of TFP measures can be improved. Second, and

more importantly, this result allows us to shed light on the ability of the KS estimator to recover

the population responses to news and surprise shocks under ideal conditions in a model without

TFP measurement error. The advantage of focusing on this ideal setting is that it clarifies that the

inability of the KS estimator to identify news shocks (and therefore surprise shocks) we document

in Section 3 is not related to TFP measurement error, but is more fundamental.

2.1 NOTATION Consider a VAR model with K variables, where yt is a K×1 vector that collects

the model variables. The reduced-form moving average representation of the VAR model is given

by yt = Φ(L)ut, where Φ(L) = IK +Φ1L+Φ2L
2 + · · · , IK is a K-dimensional identity matrix,

L is a lag operator, and ut is a K × 1 vector of reduced-form shocks. The variance-covariance

matrix of ut is given by Σ = E[utu
′
t].

Let wt be a K× 1 vector of structural shocks with E[wtw
′
t] = IK . Under suitable normalizing

assumptions, ut = B−1
0 wt, where the K × K structural impact multiplier matrix B−1

0 satisfies

B−1
0 (B−1

0 )′ = Σ. The impact effect of shock j on variable i is given by the jth column and

the ith row of B−1
0 . Let P denote the lower triangular Cholesky decomposition of Σ with the

diagonal elements normalized to be positive and let Q be a K × K orthogonal matrix. Since

Q′Q = QQ′ = IK and hence (PQ)(PQ)′ = PP ′ = Σ, we can express the set of possible

solutions for B−1
0 as PQ. Identification involves pinning down some or all columns of Q.

One way of proceeding is to observe that the h-step ahead forecast error is given by

yt+h − Et−1yt+h =
h∑

τ=0

ΦτPQwt+h−τ ,

where Φτ is the reduced-form matrix for the moving average coefficients, which may be con-
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structed following Kilian and Lütkepohl (2017) with Φ0 = IK . As a result, the share of the

forecast error variance of variable i that is attributed to shock j at horizon h is given by

Ωi,j(h) =

∑h
τ=0Φi,τPγjγj′P

′Φ′
i,τ∑h

τ=0Φi,τΣΦ′
i,τ

,

where Φi,τ is the ith row of the lag polynomial at lag τ and γj is the jth column of Q. A unique

estimate of the impact effect of structural shock j may be obtained by choosing the values of γj to

maximize Ωi,j(h) for some horizon h (or its average over selected horizons).

2.2 KURMANN-SIMS APPROACH For expository purposes, consider a stylized macroeconomic

model of the effects of shocks to TFP with K = 3. Without loss of generality, the TFP variable is

ordered first. Then the orthogonal rotation matrix is given by

Q =


γs,1 γn,1 γℓ,1

γs,2 γn,2 γℓ,2

γs,3 γn,3 γℓ,3

 , (1)

where γs,j and γn,j are elements associated with the impact of the surprise and news shock, respec-

tively, on variable j = 1, 2, 3. γℓ,j are the elements associated with an unnamed third shock. KS

construct an estimate of the news shock based on

γn = argmax Ω1,2(Hn) = argmax

∑Hn

τ=0Φ1,τPγnγ
′
nP

′Φ′
1,τ∑Hn

τ=0Φ1,τΣΦ′
1,τ

, (2)

subject to the restriction that γ′
nγn = 1, where γn = (γn,1, γn,2, γn,3)

′ denotes the second column

in Q and Hn denotes a 20-year horizon. KS stress the importance of validating the model estimate

by showing that selected news indicators respond positively to the news shock in the short run.

One key difference between the BS estimator and the KS estimator is that BS restricted γn,1

and γℓ,1 to zero, which implies that γs,1 = 1 given the orthogonality of Q. This follows from their

assumption that TFP innovations are fully explained by the surprise shock. The KS estimator, in

contrast, allows news shocks to affect TFP contemporaneously and hence leaves γn,1 unrestricted.

This leaves open the question of what to do about the additional restriction γℓ,1 = 0 maintained
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in BS. Although KS do not directly address this question, it is readily apparent that the existence

of TFP measurement error necessitates dropping the restriction that only news and surprise shocks

affect TFP contemporaneously. This creates a third important difference between the BS estimator

and the KS estimator in addition to the differences discussed in KS.

Whether one imposes the added restriction γℓ,1 = 0 or not does not affect the estimate of the

new shock proposed by KS, but determines whether the surprise shock can be identified in this

model. As long as TFP innovations are fully explained by news and surprise shocks, as would be

the case in DSGE models without TFP measurement error, it has to be the case that γℓ,1 = 0. The

latter case is of independent interest as a benchmark when studying the ability of the KS estimator

to recover the population responses. If the KS estimator does not work in this ideal setting, clearly

it would not be expected to work in less than ideal settings with TFP measurement error. Next,

we formally show that the absence of measurement error yields an additional restriction on the KS

model such that the KS estimator of the news shock implies an estimator of the surprise shock

without further identifying restrictions. This result will be used in Section 3 and Section 5 in the

evaluation of the KS estimator and related VAR estimators based on direct measures of TFP news.

2.3 IDENTIFICATION CONDITIONS We now examine in more detail the identification condi-

tions when TFP is affected only by news and surprise shocks so γℓ,1 = 0. For concreteness, con-

sider the same VAR model with three variables outlined in Section 2.2. The matrix Q is orthogonal

if and only if Q′Q = QQ′ = I3. This yields the restrictions
γs,1 γs,2 γs,3

γn,1 γn,2 γn,3

0 γℓ,2 γℓ,3



γs,1 γn,1 0

γs,2 γn,2 γℓ,2

γs,3 γn,3 γℓ,3

 =


1 0 0

0 1 0

0 0 1

 , (R1)


γs,1 γn,1 0

γs,2 γn,2 γℓ,2

γs,3 γn,3 γℓ,3



γs,1 γs,2 γs,3

γn,1 γn,2 γn,3

0 γℓ,2 γℓ,3

 =


1 0 0

0 1 0

0 0 1

 . (R2)
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Restriction R1 implies

γ2
n,1 + γ2

n,2 + γ2
n,3 = 1, (R1-1)

γs,2γℓ,2 + γs,3γℓ,3 = 0, (R1-2)

γn,2γℓ,2 + γn,3γℓ,3 = 0, (R1-3)

γ2
s,1 + γ2

s,2 + γ2
s,3 = 1, (R1-4)

γ2
ℓ,2 + γ2

ℓ,3 = 1, (R1-5)

γs,1γn,1 + γs,2γn,2 + γs,3γn,3 = 0. (R1-6)

Restriction R2 implies

γ2
s,1 + γ2

n,1 = 1, (R1-1)

γs,1γs,2 + γn,1γn,2 = 0, (R1-2)

γs,1γs,3 + γn,1γn,3 = 0, (R1-3)

γ2
s,2 + γ2

n,2 + γ2
ℓ,2 = 1, (R1-4)

γ2
s,3 + γ2

n,3 + γ2
ℓ,3 = 1, (R1-5)

γs,2γs,3 + γn,2γn,3 + γℓ,2γℓ,3 = 0. (R1-6)

Following KS, γn is obtained by maximizing the forecast error variance share of the news shock

subject to (R1-1). Given γn, (R1-1)-(R1-5) imply

γs,1 = ±
√

1− γ2
n,1, γs,2 = −γn,1γn,2

γs,1
, γs,3 = −γn,1γn,3

γs,1
,

γℓ,2 = ±
√
1− γ2

s,2 − γ2
n,2, γℓ,3 = ±

√
1− γ2

s,3 − γ2
n,3.

Thus, for K = 3 the identifying restrictions uniquely identify all three structural response functions

up to their sign. This means that all that is required to recover the news and surprise shocks is a

normalizing assumption to the effect that the surprise shock has a positive impact effect on TFP

and the news shock has a positive effect on TFP at Hn. For K > 3 only the news and surprise

shocks are identified. This result means it is sufficient to compare the explanatory power of both
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TFP shocks without having to take a stand on the identification of the other K−2 structural shocks.

While our illustrative example is for K = 3, the following proposition shows that the KS

estimator of the news shock in the absence of TFP measurement error also identifies the surprise

shock more generally.

Proposition 1. In the absence of TFP measurement error, γs will be uniquely identified for any

given estimate of γn obtained using the KS estimator. In particular, γs,1 = ±
√

1− γ2
n,1 and

γs,j = −γn,1γn,j/γs,1 for j ∈ {2, . . . , K}.

The proof immediately follows from a generalization of the analysis for K = 3. Note that there

are multiple solutions for Q, some of which will satisfy the orthogonality conditions R1 and R2

and some of which may not. For K = 3, for example, there are 23 possible solutions. The validity

of the estimator requires the existence of an orthogonal Q matrix. In Appendix B, we show that

when solving for γn and γs, γℓ can always be chosen such that Q is orthogonal.

3 ASSESSING THE ACCURACY OF THE KS ESTIMATOR

3.1 DATA GENERATING PROCESS A useful starting point is a model in which there is no TFP

measurement error. In this section, we investigate the properties of the KS max-share identifica-

tion strategy given the added restriction γℓ,1 = 0 using data generated from a conventional New

Keynesian model (henceforth, the “baseline model”), which is a simplified version of the model

used by KS. The key difference is that we abstract from time-varying factor utilization, which only

matters when modeling TFP measurement error. The full KS model will be examined in Section 4.

Households The representative household solves the Bellman equation

Jt = max
ct,nt,bt,ii,kt

log ct − χn1+η
t /(1 + η) + βEtJt+1

subject to

ct + it + bt = wtnt + rkt kt−1 + rt−1bt−1/πt + dt,

kt = (1− δ)kt−1 + µtit,
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where β ∈ (0, 1) is the subjective discount factor, χ > 0 is a preference parameter, 1/η is the Frisch

elasticity of labor supply, ct is consumption, nt is labor hours, bt is the real value of a privately-

issued one-period nominal bond, it is investment, kt is the stock of capital that depreciates at rate

δ, rkt is the real rental rate of capital, wt is the real wage rate, dt is real dividends rebated from

intermediate goods firms, πt = pt/pt−1 is the gross inflation rate, rt is the gross nominal interest

rate set by the central bank, and µt is an investment efficiency shock that evolves according to

lnµt = ρµ lnµt−1 + σµεµ,t, − 1 < ρµ < 1, εµ,t ∼ N(0, 1).

The representative household’s optimality conditions imply

wt = χnη
t ct,

1/µt = Et

[
xt+1

(
rkt+1 + (1− δ)/µt+1

)]
,

1 = Et[xt+1rt/πt+1],

where xt+1 ≡ βct/ct+1 is the pricing kernel between periods t and t+ 1.

Firms The production sector consists of a continuum of monopolistically competitive intermedi-

ate goods firms and a final goods firm. Intermediate firm i ∈ [0, 1] produces a differentiated good

yt(i) = atkt−1(i)
αnt(i)

1−α, where kt−1(i) and n(i) are the capital and labor inputs. Following the

literature, TFP (at) has a transitory component (st) and a permanent component (zt) that evolve

according to

ln at = ln st + ln zt,

ln zt = ln gt + ln zt−1,

ln st = ρs ln st−1 + σsεs,t, − 1 < ρs < 1, εs,t ∼ N(0, 1),

ln gt = (1− ρg) ln ḡ + ρg ln gt−1 + σgεg,t, − 1 < ρg < 1, εg,t ∼ N(0, 1).
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Each intermediate firm chooses its inputs to minimize costs, wtnt(i) + rkt kt−1(i), subject to the

production function. After aggregating across intermediate firms, the optimality conditions imply

rkt = αmctatk
α−1
t−1 n

1−α
t ,

wt = (1− α)mctatk
α
t−1n

−α
t ,

where mct is the real marginal cost of producing an additional unit of output.

The final-goods firm purchases yt(i) units from each intermediate-goods firm to produce the

final good, yt ≡ [
∫ 1

0
yt(i)

(ϵp−1)/ϵpdi]ϵp/(ϵp−1), where ϵp > 1 measures the elasticity of substitution

between intermediate goods. It then maximizes dividends to determine the demand function for

good i, yt(i) = (pt(i)/pt)
−ϵpyt, where pt = [

∫ 1

0
pt(i)

1−ϵpdi]1/(1−ϵp) is the aggregate price level.

Following Calvo (1983), a fraction, θp, of intermediate firms cannot choose their price in a

given period. Those firms index their price to steady-state inflation, so pt(i) = π̄pt−1(i). A firm that

can set its price at t chooses p∗t to maximize Et

∑∞
k=t θ

k−t
p xt,kd

∗
k, where xt,t ≡ 1, xt,k ≡

∏k>t
j=t+1 xj ,

and d∗k = [(π̄k−tp∗t/pk)
1−ϵp −mck(π̄

k−tp∗t/pk)
−ϵp ]yk. Letting pf,t ≡ p∗t/pt, optimality implies

pf,t =
ϵp

ϵp−1
(f1,t/f2,t),

f1,t = mctyt + θpEt[xt+1(πt+1/π̄)
ϵ
pf1,t+1],

f2,t = yt + θpEt[xt+1(πt+1/π̄)
ϵp−1f2,t+1].

The price level, price dispersion (∆p
t ≡

∫ 1

0
(pt(i)/pt)

−ϵpdi), and the aggregate production function

are given by

1 = (1− θp)p
1−ϵp
f,t + θp(πt/π̄)

ϵp−1,

∆p
t = (1− θp)p

−ϵp
f,t + θp(πt/π̄)

ϵ
p∆

p
t−1,

∆p
tyt = atk

α
t−1n

1−α
t .

Equilibrium The central bank sets the nominal interest rate according to a Taylor rule given by

rt = r̄(πt/π̄)
ϕπ ,

12
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where ϕπ controls the response to deviations of inflation from its steady-state level.

The aggregate resource constraint is given by

ct + it = yt.

Due to the permanent component of TFP, we detrend the model by dividing trended variables by

z
1/(1−α)
t . The detrended equilibrium system is provided in Appendix C. We solve the log-linearized

model using Sims (2002) gensys algorithm.

Each period in the model is one quarter. The discount factor, β = 0.995, implies an annual

real rate of interest of 2%. The Frisch elasticity of labor supply, 1/η = 0.5, is set to the intensive

margin estimate in Chetty et al. (2012). The steady-state inflation rate, π̄ = 1.005, is consistent

with a 2% annual inflation target. The elasticity of substitution between goods, ϵp = 11, the degree

of price stickiness, θp = 0.75, and the monetary response to inflation, ϕπ = 1.5, are set to the

values in KS. The capital depreciation rate, δ = 0.025, matches the annual average rate on private

fixed assets and durable goods over 1960 to 2019. The average growth rate of TFP, ḡ = 1.0026,

and the income share of capital, α = 0.3343, are based on the latest vintage of TFP data produced

by Fernald.

Finally, we set the parameters of the TFP and marginal efficiency of investment (MEI) pro-

cesses to match six moments in the data: the standard deviation and autocorrelation of TFP

growth (SD(∆ ln a), AC(∆ ln a)), the standard deviation and autocorrelation of detrended TFP

(SD(∆ ln ã), AC(∆ ln ã)), and the standard deviations of detrended output and detrended invest-

ment (SD(ln ỹ), SD(ln ı̃)).4 This yields ρg = 0.6, ρs = 0.8, ρµ = 0.9, σg = 0.003, σs = 0.007,

and ρµ = 0.0075. Table 1 shows that these parameters imply a good model fit, suggesting that this

model is a useful laboratory for evaluating the KS identification strategy.

3.2 SIMULATION EVIDENCE ON THE ACCURACY OF THE KS ESTIMATOR Since there are

three structural shocks in the DSGE model, we fit a three-dimensional structural VAR model. We
4We use the Hamilton (2018) filter with 4 lags and a delay of 8 quarters to detrend the data. Hodrick (2020)

shows that this method is more accurate than using a Hodrick and Prescott (1997) filter when log series are difference
stationary.
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Table 1: Data moments and model-implied moments from the baseline DSGE model

Baseline Model with
Moment Data Baseline Model KS TFP Parameterization

SD(ã) 2.01 2.31 1.45
SD(∆a) 0.80 0.83 0.30
AC(ã) 0.87 0.88 0.88
AC(∆a) −0.09 0.04 0.67
SD(ỹ) 3.13 2.88 1.79
SD(̃ı) 9.63 9.62 7.20

Note: A tilde denotes a detrended variable and ∆ is a log change.

work with a VAR(4) model with intercept for yt = (at, yt, it)
′, given that investment has a strong

connection with the MEI shock. All variables enter in logs, and the lag order matches that used

by KS. We generate 1,000 realizations of log-level data of length T for TFP, output, and invest-

ment by simulating the DSGE model, fit the VAR model on each of these data realizations, and

construct the impulse responses. Figure 1 reports the expected value of these responses, the under-

lying population response, and 68% quantiles of the distribution of the impulse response estimates,

following KS. The distance between the expected value and the population value measures the bias

of the estimator. The 68% quantiles provide a measure of the variability of the estimates.5

It is useful to start with results for T = 10,000. The top row shows that in this case the

responses of TFP and output to a news shock are strongly biased downwards relative to the pop-

ulation responses. The responses to the surprise shock shown in the second row are also biased

downwards with the TFP response exhibiting the wrong sign at many horizons. This evidence calls

into question the ability of the KS estimator to recover the population responses, even asymptoti-

cally. The concern here is not only that the signs of the responses and the shapes of the response

functions may differ systematically from the population responses, but also the magnitude, which

in turn is expected to affect the quantitative importance of the news shock in explaining the vari-

ability of the model data, as reported in KS.

While our results for T = 10,000 are informative about the asymptotic properties of the es-

5It can be shown that the sufficient condition for invertibility derived in Fernández-Villaverde et al. (2007) is met
in both the baseline model and in the KS DSGE model introduced in Section 4. This implies that both DSGE models
have a VAR(∞) representation, as assumed by KS.
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Figure 1: KS max-share identified impulse responses based on the baseline DSGE model

(a) News shock, T = 10,000
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(b) Surprise shock, T = 10,000
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(c) News shock, T = 240
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(d) Surprise shock, T = 240
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Notes: Based on a VAR(4) model for yt = (at, yt, it)
′. The responses have been scaled so the

impact response of TFP matches the population value.
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timator, they do not speak to the properties of the KS estimator for sample sizes encountered in

applied work. Therefore, we also examine the performance of the KS estimator for T = 240 (60

years of quarterly data), which is a reasonably long estimation period in practice. The bottom two

rows of Figure 1 show that the bias of the impulse response estimator is exacerbated, while the

variability of the estimator increases substantially. Thus, the KS estimator cannot be trusted to

recover the population responses, even in the ideal setting without TFP measurement error. This is

particularly true for the estimator of the responses to news shocks.6

3.3 COMPARISON WITH KS SIMULATION EVIDENCE Contrary to our findings, KS report hav-

ing some success identifying the news shock in a Monte Carlo exercise with T = 10,000 based

on a larger-scale DSGE model. The key difference is not the inclusion of additional DSGE model

features or that KS allow for TFP measurement error, but that they use a different parameterization

for the TFP process (ρg = 0.7, ρs = 0.9, σg = 0.002125 and σs = 0.000425). KS note that

their TFP parameterization is based on “standard values” in the literature. However, most DSGE

models feature either a stationary or a permanent TFP shock process. When a model features both

processes—as is the case in their model—standard values from models with only one process can

lead to TFP moments that are at odds with actual data. The most notable difference from our cali-

bration is that the standard deviation of their surprise shock is only about 6% of our baseline value.

The last column of Table 1 shows the implied model moments when using their parameterization

of the TFP process in our model. The table illustrates that the KS specification is clearly at odds

with the data.

The unrealistically high persistence of the KS TFP growth process (0.67 compared to about

zero in the data) is important for understanding their findings because it drives the forecast error

variance decomposition of the TFP variable in the DSGE model, as shown in Table 2. Under our

baseline calibration, the news shock plays an important role only at longer horizons. Under the KS

parameterization, the news shock explains most of the variance at all horizons, which effectively

6It can be shown that imposing additional theoretically motivated sign and magnitude restrictions, as discussed in
Francis and Kindberg-Hanlon (2022), does not help address these identification problems.
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Table 2: Forecast error variance decompositions for TFP based on the baseline DSGE model

Baseline Model with
Baseline Model KS TFP Parameterization

h News Shock Surprise Shock MEI Shock News Shock Surprise Shock MEI Shock

1 15.5 84.5 0.0 96.2 3.8 0.0
8 70.5 29.5 0.0 99.7 0.3 0.0
20 87.9 12.1 0.0 99.9 0.1 0.0
40 93.9 6.1 0.0 99.9 0.1 0.0
80 97.0 3.0 0.0 100.0 0.0 0.0

Notes: h is the horizon of the variance decomposition and MEI denotes marginal efficiency of investment.

eliminates the surprise shock and makes it easier for the KS procedure to identify the news shock.

This explains the comparatively high accuracy of the KS estimator in their simulation analysis.

In contrast, when the surprise shock has nontrivial effects, the procedure tends to capture linear

combinations of responses to surprise shocks and news shocks, as illustrated in Figure 1.

Our analysis suggests that the KS method will not work unless the role of the surprise shock

is negligible at all horizons, rendering the identification of the news shock trivial. This conclusion

differs materially from that in KS who state that “the max-share identification performs well as

long as news shocks account for a large part of the unpredictable variation in adjusted TFP at long

horizons.” As Table 2 shows, even when surprise shocks only account for 3% of the variation in

TFP growth at h = 80, the KS estimator fails to identify the response to the news shock. In other

words, the success of the KS estimator hinges on the surprise shock playing a small role even at

horizons much shorter than h = 80.

Intuitively, when surprise shocks are nontrivial in population, the estimator proposed by KS

will confound surprise and news shocks. Focusing on models without TFP measurement error

makes this point especially clear. Since one does not know how important surprise shocks are

in applied work, this result cautions against the use of the KS estimator. After all, the objective

of KS is to quantify the importance of news shocks, so a procedure that only works when news

shocks are known a priori to explain nearly all of the variation in TFP at all horizons is of limited

use in applied work. In the latter case, one could dispense with the max-share VAR approach and
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estimate the news shock directly from the TFP data.

These results are not specific to the DSGE model specification we employ. We show in Sec-

tion 4 that the invalidity of the KS estimator also extends to the DSGE model analyzed in KS,

when replacing the parameters in their TFP process with calibrated parameters set to match TFP

moments.

3.4 AN ALTERNATIVE ESTIMATOR It should be noted that this is not the only way to estimate

this VAR model in the absence of TFP measurement error. A direct implication of our analysis in

Section 2.2 is that we can either estimate γs given an estimate of γn obtained by maximizing the

TFP forecast error variance share at a long horizon or, alternatively, we can estimate γn given an

estimate of γs obtained by maximizing the TFP forecast error variance share at a short horizon. In

other words, the estimator of γn is not unique. This raises the question of which estimator should

be used. We already showed that the accuracy of the original KS estimator is low in practice. In

this section, we show that the alternative max-share estimator focusing on short horizons is even

less accurate when the data are generated from the baseline DSGE model in Section 3.1.

More formally, this alternative estimator is defined as

γs = argmax Ω1,1(Hs) = argmax

∑Hs

τ=0Φ1,τPγsγ
′
sP

′Φ′
1,τ∑Hs

τ=0Φ1,τΣΦ′
1,τ

(3)

subject to the restriction that the responses of selected variables to the surprise shock match patterns

that would be expected of a surprise shock and that γ′
sγs = 1, where Hs is set to a one-year horizon

and γs = (γs,1, γs,2, γs,3)
′ denotes the first column in the orthogonal rotation matrix Q in (1).

Figure 2 shows that not only is the alternative estimator much more biased than the original

estimator in large samples, but it also tends to generate impulse responses that are increasing

when the population response is declining and that are declining when the population response is

increasing. In fact, responses to these surprise shocks look much like one would expect responses

to a news shock to look like. Moreover, the responses to the news shock are of the opposite sign of

the population responses. Thus, this alternative estimator should not be used in practice.
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Figure 2: Impulse responses from two max-share estimators based on the baseline DSGE model

(a) News shock, T = 10,000

0 10 20 30 40
-1

-0.5

0

0.5

1

1.5

0 10 20 30 40
-1

-0.5

0

0.5

1

1.5

(b) Surprise shock, T = 10,000
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Notes: Based on a VAR(4) model for yt = (at, yt, it)
′.

4 THE ROLE OF TFP MEASUREMENT ERROR

Our analysis so far has focused on DSGE models without unobserved changes in factor utilization.

Of course, a key point of KS is that one needs to be concerned about measurement error driving

a wedge between measured and true TFP. In this section, we consider an environment with TFP

measurement error and discuss to what extent this changes our findings.

One key difference is that the adding-up constraint no longer holds in this case, so identifying

surprise TFP shocks is not possible without further assumptions. However, the news shock can

be identified as before. Our main finding in this section is that the presence of measurement error

does not invalidate the result that the KS estimator is unable in general to recover the population

responses to news shocks. The estimator works reasonably well under the KS TFP parameteri-

zation, but the impulse responses have large bias when the TFP parameters are calibrated so that
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measured TFP matches key moments in the data.

To illustrate this point, we evaluate the KS estimator based on data generated from the larger-

scale DSGE model employed by KS, allowing for TFP measurement error.7 There are only two

differences, which are made so the results are directly comparable to the baseline model. One is

that we turn off the preference and monetary policy shocks in the simulations. The other is that

the shock in the TFP growth process is contemporaneous, whereas in the KS model it is lagged

by one period. Our specification imposes that TFP news has a contemporaneous effect on TFP,

consistent with the specification of the empirical model in KS. Appendix D shows that the timing

of the shock has very little impact on the results.

We begin by briefly discussing how TFP is measured. Our approach mirrors that in KS. Their

model allows for factor utilization, denoted by u, to vary over time due to changes in capital

utilization and worker effort. The econometrician observes neither of these but does observe output

(y), the capital stock (k), hours worked (h) and employment (n). The growth in (log) unadjusted

TFP is

∆ lnTFPt = yt − (1− ωℓ,t)∆ ln kt−1 − ωℓ,t(∆ lnht +∆ lnnt),

where ωℓ,t is the labor share. Changes in factor utilization are assumed to be proportional to

changes in de-trended hours worked,

∆ ln ût = β̂∆ ln ĥt,

where β̂ is a proportionality factor and ĥt is detrended hours worked. Following KS, we set β̂ =

3. Hours worked are detrended using a biweight filter, consistent with the latest vintages of the

Fernald TFP measure (see Fernald, 2015). The growth in utilitzation-adjusted TFP is given by

∆ lnTFPu
t = ∆ lnTFPt−∆ ln ût.

7The parameter choices KS used in their replication code differ slightly from those stated in the appendix of their
article. We rely on the parameter values in their code. We also corrected a few errors in their derivation of the
equilibrium system. The corrected equations can be found in Appendix D. These corrections do not change the main
point in KS that TFP measurement error is potentially important, but they affect some of the quantitative results.
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Table 3: Data moments and model-implied moments from the KS DSGE model

KS Model with
KS Model KS Model Calibrated Shock Processes

No Measurement Error Measurement Error Measurement Error
Moment Data (1) (2) (3)

SD(ã) 2.01 1.44 2.60 2.31
SD(∆a) 0.80 0.30 0.55 0.73
AC(ã) 0.87 0.88 0.88 0.87
AC(∆a) −0.09 0.67 0.52 0.02
SD(ỹ) 3.13 5.22 5.22 3.99
SD(̃ı) 9.63 11.79 11.79 9.36

Note: A tilde denotes a detrended variable and ∆ is a log change. In the data, a is Fernald utilization-
adjusted TFP. In the model, a is true TFP when there is no TFP measurement error and utilization-adjusted
TFP (TFPu) when there is measurement error.

In our simulations, we produce a series for the (log) level of utilitzation-adjusted TFP, lnTFPu
t , by

cumulating the growth rates over time. This series represents measured TFP in the model.

In the previous section, we highlighted that the moments of the TFP process in KS are at odds

with the data. This continues to be the case even when we allow for TFP measurement error

and work with measured TFP rather than true TFP in the VAR model. Column (1) in Table 3

confirms that the KS model implies similar TFP moments as the baseline model in the absence of

measurement error. Column (2) shows that the fit of the model does not substantially improve when

incorporating measurement error. While the 0.52 autocorrelation of the growth rate of measured

TFP is lower than what is reported in Column (1), it remains well above the data. Given this

poor fit, we calibrate the shock processes to fit the data moments shown in Table 3. This exercise

implies that ρg = 0.5, ρs = 0.45, ρµ = 0.95, σg = 0.0025, σs = 0.0065, σµ = 0.004. Column (3)

shows that using the calibrated parameters improves the fit along all dimensions, particularly for

the autocorrelation of TFP growth, which drops to 0.02.

As discussed in Section 3, the KS estimator may be biased even asymptotically when the vari-

ance contribution of the surprise TFP shock at shorter horizons is non-trivial. Table 4a examines

whether the same problem arises in the full-fledged KS model. The left side shows the fore-

cast error variance decomposition for measured TFP under the KS parameterization of the shock
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Table 4: Forecast error variance decompositions for TFP in the KS DSGE model

(a) Measured TFP (lnTFPu)

KS Model with
KS Model Calibrated Shock Processes

Measurement Error Measurement Error

h News Shock Surprise Shock MEI Shock News Shock Surprise Shock MEI Shock

1 71.5 1.7 26.7 15.5 81.7 2.8
8 83.9 0.4 15.7 50.6 41.3 8.0
20 61.4 0.3 38.3 53.2 10.4 36.4
40 86.1 0.2 13.7 64.8 2.3 32.9
80 94.8 0.1 5.1 76.0 1.0 23.0

(b) True TFP (ln a)

KS Model with
KS Model Calibrated Shock Processes

Measurement Error Measurement Error

h News Shock Surprise Shock MEI Shock News Shock Surprise Shock MEI Shock

1 96.2 3.8 0.0 12.9 87.1 0.0
8 99.7 0.3 0.0 75.0 25.0 0.0
20 99.9 0.1 0.0 89.6 10.4 0.0
40 99.9 0.1 0.0 94.8 5.2 0.0
80 100.0 0.0 0.0 97.4 2.6 0.0

Notes: h is the horizon of the variance decomposition and MEI is the marginal efficiency of investment.

processes, while the right side shows the corresponding results when the shock processes are cal-

ibrated to the data. Under the KS parameterization, the news shock plays a substantial role at all

horizons, so one would expect the KS estimator to perform well. In contrast, under the calibrated

parameterization, the relative importance of news shocks is diminished at all horizons, while that

of surprise and MEI shocks increases. This would lead one to expect much lower accuracy from

the KS estimator than under the KS parameterization, much like in the baseline model.

Figure 3 plots the responses of output and measured TFP under alternative parameterizations

of the KS DSGE model for T = 10,000. The top panel shows the results in the absence of mea-

surement error. As expected, the KS estimator does an excellent job at recovering the population

responses when the sample size is sufficiently large. The middle panel shows the results with mea-
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Figure 3: KS max-share identified responses to news shocks based on the KS DSGE model

(a) KS model without measurement error, T = 10,000

0 10 20 30 40
-1

0

1

2

0 10 20 30 40
-1

0

1

2

VAR Mean
Population

(b) KS model with measurement error, T = 10,000
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(c) KS model with calibrated shock processes and measurement error, T = 10,000
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Notes: Based on a VAR(4) model for yt = (at, yt, it)
′ when there is no measurement error and yt =

(TFPu
t , yt, it)

′ where there is measurement error. The responses from models with measurement
error are not scaled given that the impact responses of TFP are very close to zero.

surement error under the KS TFP parameterization. While the bias of the output response is slightly

larger, the fit remains quite good. However, there is a notable discrepancy between the response

of measured TFP to a news shock and the population response of true TFP, which is also apparent

in the simulation evidence reported in KS. This result is not surprising, because with measurement

23



KILIAN, PLANTE & RICHTER: MACROECONOMIC NEWS AND SURPRISE SHOCKS

error there is no reason to expect the VAR to recover the TFP response, since the VAR is estimated

with measured TFP and the population response is based on true TFP. The bottom panel reports

results for the same model after calibrating the shock processes. Not only do the discrepancies be-

tween the TFP responses remain, but there now is strong bias in the output responses, sometimes

in the positive direction and sometimes in the negative direction. As expected, the variance of the

estimator increases when T = 240, but the impulse response patterns are similar.8

One might argue that this result is not surprising given that KS stipulated that news shocks must

account for a large part of the unpredictable variation in measured TFP at long horizons for their

estimator to perform well. Of course, technically, we have no way of judging how important news

shocks are for measured TFP. All we know is that news shocks are expected to explain most of

the long-run variation in true TFP. As shown in Table 4b, it remains true under our calibration that

news shocks explain 97% of the long-run variability of true TFP, but this does not mean that they

are nearly as important a determinant of measured TFP. Table 4a shows that news shocks explain

only 76% of the long-run variation in measured TFP, which is almost identical to the share KS

obtained when applying their estimator to actual data. This example illustrates that DSGE models

that are consistent with the data need not obviously satisfy one of the maintained assumptions

required for the KS estimator to perform well, which provides another possible explanation of the

bias in the KS estimator in Figure 3.

5 ALTERNATIVE ESTIMATORS INVOLVING DIRECT MEASURES OF TFP NEWS

KS concede that nothing guarantees that their max-share identification captures news shocks as

opposed to other shocks driving TFP in the long run. Given that the responses to surprise shocks

are mean reverting, it seems unlikely that surprise TFP shocks would account for a large fraction of

the lower-frequency variation in TFP, but there could conceivably be non-technology shocks that

affect TFP in the long run. KS therefore validate their model estimate by showing that measures

8Throughout the paper, we followed KS in setting the lag order of the VAR to 4. For T = 10,000, the accuracy of
the KS estimator can be improved by increasing the lag order up to a certain point. This, however, comes at the cost
of substantially increasing the variability of the estimator for T = 240.
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of TFP news and other forward-looking variables jump in response to news shocks. Given that the

KS estimator does not properly identify the news shock, as shown in Section 3 and Section 4, a

natural alternative approach is to base the identification of the news shock on the response of the

news variables that KS use to validate their model.

In this section, we consider identifying a TFP news shock by incorporating an observed mea-

sure of TFP news into the VAR model and adapting the identification strategy accordingly. Similar

approaches have been employed in a number of recent studies. For example, Shea (1999) considers

models that incorporate a measure of either R&D spending or patent applications. Other examples

include Christiansen (2008, patent applications), Alexopoulos (2011, new book titles in the fields

of technology and computer science), Baron and Schmidt (2019, counts of new information and

communication technology standards), Cascaldi-Garcia and Vukotić (2022, patent applications),

and Miranda-Agrippino et al. (2022, patent applications). The premise of all these studies is that

measures of TFP news should increase immediately as a positive news shock is realized, facilitat-

ing identification strategies based on short-run restrictions.

Despite the popularity of these identification strategies, there does not exist simulation evidence

that quantifies the ability of these VAR models to recover news shocks (or for that matter surprise

shocks) generated by DSGE models. Moreover, the potential of these methods to recover not only

news shocks, but also surprise shocks, under suitable conditions, has not been recognized. In this

section, we examine two such identification strategies, first in our baseline model without TFP

measurement error and then in the KS model with measurement error.

5.1 IDENTIFICATION STRATEGIES BASED ON TFP NEWS One strategy is to identify the news

shock as the shock that maximizes the forecast error variance contribution of the news variable on

impact (or, more generally, at short horizons). In practice, we set Hn = 4 (a one-year horizon),

but our results are robust to smaller values for Hn. Another strategy is to treat the news measure

as predetermined with respect to TFP, resulting in a block recursive VAR model with the news

variable ordered first and TFP second. This approach is equivalent to using TFP news as an internal

instrument, which is particularly appealing when TFP news is measured with error, as is likely to
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be the case in practice.

An alternative approach to dealing with TFP news measurement error would be to use the

news variable as an external instrument in a VAR model excluding the TFP news variable (e.g.,

Montiel Olea et al., 2021; Stock and Watson, 2018). This proxy VAR approach has been used, for

example, by Cascaldi-Garcia and Vukotić (2022) and Miranda-Agrippino et al. (2022). Like the

methods discussed in this section and like the KS approach, the use of proxy VAR models allows

the user to dispense with the assumption that news shocks do not affect TFP contemporaneously.

As shown in Plagborg-Møller and Wolf (2021), the advantage of the strategy of ordering the

instrument first in a block recursive VAR model is that it yields valid impulse response estimates

even if the shock of interest is non-invertible. In contrast, the proxy VAR approach that uses the

instrument as an external instrument is invalid in that case.9

5.2 SIMULATION EVIDENCE ON THE ACCURACY OF THE NEWS VARIABLE ESTIMATORS

We start by using the baseline DSGE model from Section 3.1 to compare the accuracy of esti-

mators based on news variables to that of the original KS estimator. We fit a VAR(4) model with

intercept for yt = (zt, at, yt)
′.10 The variables enter the VAR in logs and are directly observable

in the DSGE model. The choice of these variables is dictated by our interest in constructing the

responses of TFP and output.

Table 5 compares the RSME of these impulse response estimators to that of the KS estimator

based on yt = (at, yt, it)
′.11 The first four columns show the sum of the RMSEs over horizons

9Invertibility here refers to the ability to recover the structural shock of interest as a function of only current and
past VAR model variables. When agents anticipate future changes, as is the premise in models with TFP news shocks,
the maintained assumption that the VAR prediction errors are linearly related to the contemporaneous structural shocks
fails whenever agents have more information than is contained in the reduced-form VAR model (for related discussion
see, e.g., Leeper et al., 2013; Mertens and Ravn, 2014). This renders the VAR model nonfundamental and distorts the
impulse response estimates (see, e.g., Kilian and Lütkepohl, 2017). While this problem may be addressed by including
additional variables in the reduced-form VAR model that capture the expected path of TFP, finding such variables is
nontrivial. For example, stock price indices or measures of consumer sentiment, are not likely to be a good measures
of expected TFP. The Cholesky approach avoids these complications.

10When yt = (zt, at, yt)
′, the Q matrix is written as in (1), except that the zero restriction is in the second row of

the matrix on γℓ,2. More generally, adding zt as an additional variable in a VAR where at is ordered as the jth variable
requires adding a column and row to Q and placing the zero restrictions in the jth row.

11It might seem more appropriate to compare the max-share news and Cholesky news estimator with a two-variable
VAR that includes only TFP (at) and output (yt) but this would be inappropriate because the data-generating process
has three unique shocks. Therefore, for the KS max-share estimator, as before, we consider a three-variable VAR
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Table 5: Sum of the RMSE over 40 quarters for each estimator based on the baseline DSGE model

(a) T = 10,000

TFP Response Output Response

Estimator News Shock Surprise Shock News Shock Surprise Shock Total

KS Max Share 11.3 2.6 14.5 2.3 30.7
Max Share News 1.4 0.8 1.9 1.1 5.2
Cholesky 1.0 0.9 1.5 1.2 4.6

(b) T = 240

TFP Response Output Response

Estimator News Shock Surprise Shock News Shock Surprise Shock Total

KS Max Share 15.5 3.5 19.2 5.2 43.3
Max Share News 11.3 4.7 14.4 6.4 36.8
Cholesky 7.8 5.5 10.1 7.3 30.7

Notes: The VAR includes yt = (at, yt, it) for the KS max-share estimator and yt = (zt, at, yt) for the
max-share news and Cholesky estimators.

0 through 40 for selected impulse response functions. The last column shows the sum of these

entries across the four response functions. There is compelling evidence that the max-share news

estimator has substantially lower RMSE than the KS estimator not only for T = 10,000 (83%

reduction in the RMSE), but in realistically small samples (15% reduction in the RMSE). The

RMSE reductions obtained based on the Cholesky identification are even larger with 85% for

T = 10,000 and 29% for T = 240. These improvements in accuracy are mainly due to RMSE

reductions for the responses to news shocks.

Table 5 suggests that identification strategies based on TFP news variables perform much better

than the KS estimator when both TFP and TFP news are accurately measured. This does not mean

that these estimates should be taken at face value, however. For illustrative purposes, Figure 4

plots the responses of TFP and output to news and surprise shocks obtained using the max-share

news estimator. The top two rows show the results for T = 10,000. Both shocks appear properly

identified by the max-share approach with very little bias in the mean estimates and small variance.

model that includes investment, since it has a strong connection with the MEI shock.

27



KILIAN, PLANTE & RICHTER: MACROECONOMIC NEWS AND SURPRISE SHOCKS

Figure 4: Max-share news identified impulse responses based on the baseline DSGE model

(a) News shock, T = 10,000
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(b) Surprise Shock, T = 10,000
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(c) News shock, T = 240
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(d) Surprise Shock, T = 240
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Notes: Based on a VAR(4) model for yt = (zt, at, yt)
′. The responses have been scaled so the

impact response of TFP matches the population value.
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The bottom two rows show the corresponding results for T = 240. There is some bias in the

responses in this case, but more importantly there is a dramatic increase in the variability of the

estimator, as measured by the 68% quantiles of the distribution of VAR estimates. Thus, one would

not necessarily expect the max-share news estimator to be reliable in small samples. Qualitatively

similar results hold for the Cholesky approach, as shown in Appendix E.

In our analysis above, we assumed that the econometrician perfectly observes the permanent

component of TFP. However, the external measures of news used in empirical research are not

perfectly correlated with the permanent component of TFP. To address this concern, we allow for

the TFP news variable in the VAR to be an imperfect measure of the permanent component of

TFP news by introducing additive Gaussian noise. Specifically, we replace zt in the VAR model

with zt + σnϵ
n
t , where ϵn,t ∼ N(0, 1) is the noise. While there is no way of knowing the extent

of measurement error in TFP news, Appendix D shows that our news variable results are robust

to modestly large additive Gaussian measurement error in TFP news. For example, even with

a 20% measurement error, expressed as a percentage of the standard deviation of the true news

shock (σn = 0.2σg), both the Cholesky and max-share news estimators are considerably more

accurate than the original KS estimator with T = 10,000, indicating substantial robustness to TFP

measurement error.

5.3 THE MAX-SHARE NEWS ESTIMATOR IN THE PRESENCE OF TFP MEASUREMENT ERROR

An important question is whether adding a news variable can also reduce impulse response bias

in the presence of TFP measurement error. We explore this question by fitting VAR(4) models

to data for yt = (zt, at, yt, it) simulated from the KS model for T = 10,000, either under their

parameterization or under our alternative parameterization discussed in Section 4.

The top panel of Figure 5 plots the impulse responses under the KS parameterization for the

max-share identification method. It can be seen that this produces a very good fit, except for

the response of measured TFP, for the reasons discussed in Section 4.12 The bottom panel plots

12It can be shown that when TFP is observed without measurement error the VAR can identify the response of TFP
to the news shock almost perfectly.

29



KILIAN, PLANTE & RICHTER: MACROECONOMIC NEWS AND SURPRISE SHOCKS

Figure 5: Max-share news identified responses to news shocks based on the KS DSGE model

(a) KS model with measurement error, T = 10,000
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(b) KS model with measurement error and our calibrated shock processes, T = 10,000
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Notes: Based on a VAR(4) model for yt = (zt,TFP
u
t , yt, it)

′. The responses are not scaled given
that the impact responses of TFP are very close to zero.
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Table 6: Sum of the RMSE over 40 quarters for each estimator based on the KS DSGE model

(a) T = 10,000

KS Model with
KS Model Calibrated Shock Processes

Measurement Error Measurement Error

Estimator TFP Output Investment Total TFP Output Investment Total

KS Max Share 10.9 5.4 8.7 25.0 10.2 11.3 20.9 42.4
Max Share News 8.4 2.6 5.0 16.0 6.1 3.0 8.3 17.4
Cholesky 8.4 2.6 4.9 15.9 6.1 3.0 8.2 17.3

(b) T = 240

KS Model with
KS Model Calibrated Shock Processes

Measurement Error Measurement Error

Estimator TFP Output Investment Total TFP Output Investment Total

KS Max Share 10.7 15.0 27.6 53.4 10.4 16.3 34.1 60.9
Max Share News 12.6 22.8 36.5 71.9 9.0 14.0 23.8 46.9
Cholesky 12.6 23.2 36.7 72.5 8.6 13.5 22.7 44.9

Notes: The VAR includes yt = (TFPu
t , yt, it) for the KS max-share estimator and yt = (zt,TFP

u
t , yt, it)

for the max-share news and Cholesky estimators.

the impulse responses under the alternative calibration. In that case, there is modest bias in the

responses of output and investment. The Cholesky news estimator produces very similar results, as

shown in Appendix E. This raises the question of how the Cholesky and max-share news estimators

compare to the KS estimator.

Table 6 shows the RMSE of the impulse response estimator associated with each method. The

left side of the table shows the RMSE under the KS parameterization and the right side the RMSE

under the alternative calibration. As in the case of no measurement error, adding the TFP news

variable and adapting the identification produces substantial improvements in the accuracy of the

impulse response estimator relative to the KS approach. For example, based on the calibrated

KS DSGE model, the RMSE is reduced by 59% for T = 10,000 and by between 23% and 26%,

depending on the method, for T = 240.
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6 EMPIRICAL ILLUSTRATIONS

Our simulation evidence suggest that incorporating a measure of TFP news into the VAR model

may improve the identification of the news and surprise TFP shocks. In practice, however, this ap-

proach will only be as good as the underlying measure of TFP news. In this section, we therefore

consider a range of VAR models that include one of four alternative news variables: (1) R&D:

real R&D expenditures, as used in KS and Shea (1999); (2) ICT: the new information and com-

munications technologies standards index introduced in Baron and Schmidt (2019); (3) CGV: the

patent series used in Cascaldi-Garcia and Vukotić (2022); and (4) MAHB: the exogenous patent-

innovation series in Miranda-Agrippino et al. (2022), which is based on quarterly total patent

applications from the “USPTO Historical Patent Data File” in Marco et al. (2015).13

For each series, we estimate a 9-variable VAR(4) model that includes one of the four news

variables in addition to the 8 variables from the empirical VAR model used by KS.14 The sample

for each VAR varies due to differences in the availability of the news variables. We identify the

structural shocks based on the two methods introduced in Section 5. Both approaches generate

remarkably similar results.

There are two natural criteria for judging whether the news shocks have been properly identified

in a given VAR model. These criteria are suggested by the population responses in the DSGE

models used in Section 3 and Section 4, and by many other business cycle models. First, while

the identification does not constrain the short-run response of TFP and output to a news shock, its

13Baron and Schmidt (2019) treat technological standardization as a prerequisite for new technologies to be im-
plemented and show that shocks to the ICT series lead to increases in TFP, output, and investment over medium-run
horizons. Cascaldi-Garcia and Vukotić (2022) use a quarterly version of the patent series introduced by Kogan et al.
(2017). This series weights patents by their value, measured as the response of each company’s stock price due to
news about the patent grant. The USPTO series is monthly and provides a record of all patent applications filed at the
U.S. Patents and Trademark Office (USPTO) since 1981. The exogenous patent series is the residual from regressing
the quarterly growth rate of total patent applications on lags of itself and a set of control variables that can include SPF
forecasts and exogeonous policy shocks. See section 2.2 of Miranda-Agrippino et al. (2022) for specific details. To
provide the longest sample possible, we consider the regression where the control variables exclude exogenous policy
shocks. Miranda-Agrippino et al. (2022) note that their identification is robust to excluding these policy shocks.

14Cascaldi-Garcia and Vukotić (2022) use the same variables in their VAR model, except they also include a measure
of consumer sentiment. Our results are robust to including this additional variable. There are also some differences in
the data sources. Most notably, they use output from the nonfarm business sector, instead of real GDP. When we use
this alternative definition of output, the impulse responses to a news shock are closer to what they report.
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Table 7: Empirical results from VAR models including alternative measures of TFP news.

Criterion R&D ICT CGV MAHB

Cholesky-identified VAR model
Max response at longer horizons Y Y N N
Positive long-run responses Y Y N N

Max-share identified VAR model
Max response at longer horizons Y Y N N
Positive long-run responses Y Y N N

Notes: The Cholesky model is identified with the news variable ordered first and TFP second. The max-
share model maximizes the variance contribution of the news variable at Hn = 4.

effect on TFP and output should peak at horizons longer than 12 quarters. This criterion allows for

weakly increasing as well as hump-shaped response functions. A peak at horizons shorter than 12

quarters would clearly be incompatible with the notion that the impact of news is largest at long

horizons. This criterion is satisfied in all DSGE models we considered, even in the presence of

TFP measurement error. Second, the news shock should have positive effects in the long run on

TFP and output.

It is understood that sampling error and small-sample biases may cause slight violations of

these criteria. For example, a response may turn marginally negative a longer horizons. Our

concern in this section are strong violations of these criteria. Table 7 summarizes the results based

on a maximum horizon of 40 quarters. The full set of impulse responses is provided in Appendix

E. We find that only the R&D and ICT models satisfy the two criteria. This is true regardless of

whether we use the Cholesky or the max-share new approach.15

The responses of other key variables also look reasonable, particularly for the ICT model, as

shown in Appendix E. The news shock increases both consumption and investment in the long

run, and the peak effects occur after 12 quarters. Hours increase over the first 12 quarters, so

there is positive comovement between real GDP, consumption, and investment. This finding is

15The estimates for the MAHB specification differ somewhat from those reported in Miranda-Agrippino et al.
(2022). One likely reason is that they combine their estimate of the impact of news with a longer sample for the
reduced-form model than the instrument is available for. One key difference between the MAHB instrument and the
other measures of TFP news is that Miranda-Agrippino et al. (2022) purge their instrument of all dynamics. We also
produced results based on an instrument that does not control for lags of the patent series. This does not affect the
results reported in Table 7.
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consistent with the results in Beaudry and Portier (2006, 2014). Inflation declines in the short-

run, consistent with the interpretation of the news shock as a positive supply shock. Finally, the

real S&P 500 index increases on impact and over the long-run, reflecting positive expectations of

future economic conditions. While our empirical results are necessarily tentative because they may

change with the choice of VAR variables and estimation period, this evidence suggests that VAR

models based on TFP news may work well not only in simulations but also in practice.

7 CONCLUSION

There has been much interest in the literature in distinguishing news shocks from surprise shocks

to TFP. Most of these studies rely on variations of the max-share approach pioneered by Uhlig

(2004) and Francis et al. (2014). The state of the art in this literature is an identification strategy

recently proposed by KS, designed to generalize earlier approaches such as BS that postulated that

only surprise shocks affect TFP contemporaneously. KS suggest that TFP mismeasurement makes

it impossible for their estimator to separately identify news shocks and surprise shocks, but are not

explicit about their reasoning.

In this paper, we started by clarifying the conditions under which the KS procedure not only

identifies the impact of news shocks, but also identifies the impact of surprise shocks. We show

that these conditions are not related to the two differences between the BS and KS estimators

emphasized by KS, but relate to an adding up constraint imposed by BS. This constraint fails when

TFP innovations depend on shocks other than news and surprise shocks, as would be the case when

TFP is subject to measurement error. In the latter case, the surprise shock cannot be identified.

We used these results to examine the accuracy of the KS estimator of the responses to news

and surprise shocks in an ideal setting that abstracts from TFP measurement error. Simulation

evidence based on data generated from a DSGE model suggests that the KS estimator may not

work well in practice, even in the absence of TFP measurement error. The KS impulse response

estimator of the effects of surprise and news shocks tends to be heavily biased, even in very large

samples, and highly variable in small samples, suggesting caution in interpreting the estimates.
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This is particularly true for the responses to the news shock.

We reconciled our findings with the large-sample simulation evidence reported in KS that paints

a more favorable picture. A key difference between our analysis and that in KS is that we calibrate

the TFP growth process in the DSGE model to actual data, whereas KS use an ad hoc specification.

While the responses to the news shock in large samples tend to be closer to the population responses

when adopting the KS parameterization of the TFP growth process, we show that this result is not

driven by the fact that their DSGE model allows for TFP measurement error. Rather it is driven

by the fact that news shocks are the dominant driver of TFP at all horizons in their DSGE model,

which renders the identification of the news shock trivial. In contrast, in our baseline DSGE model

surprise shocks explain a sizable share of the variation in TFP at short horizons, which causes the

KS estimator to fail. We showed that the inability of the KS estimator to recover the population

responses to news shocks also extends to alternative DSGE models that allow for unobserved

changes in factor utilization to cause TFP measurement error.

This evidence raises the question of how to proceed in applied work. We discussed how in-

cluding direct measures of TFP news in VAR models and adapting the identification strategy helps

reduce the bias and RMSE of the impulse response estimator. We examined two such approaches

to identifying news shocks, one of which is new to the literature, that avoid the identification issues

with the KS estimator. In our simulations, in the absence of TFP measurement error, both of these

estimators have between 83% and 85% lower RMSE than the KS estimator for T = 10,000 and

between 15% and 29% lower RMSE for T = 240. They also perform much better than the KS

estimator when applied to data generated from DSGE models with TFP measurement error with

RMSE reductions of 59% for T = 10,000 and between 23% and 26% for T = 240.

Of course, how accurate commonly used measures of TFP news are in practice is an open

question. We therefore reported empirical estimates of the responses to news shocks for a range

of alternative TFP news measures and found that two of these specifications appear economically

plausible in light of the underlying theory. While necessarily tentative, our evidence suggests that

VAR models based on TFP news may work well not only in simulations but also in practice.
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KILIAN, L. AND H. LÜTKEPOHL (2017): Structural Vector Autoregressive Analysis, Cambridge
University Press, New York.

KILIAN, L. AND D. P. MURPHY (2014): “The Role Of Inventories And Speculative Trading In
The Global Market For Crude Oil,” Journal of Applied Econometrics, 29, 454–478.

KOGAN, L., D. PAPANIKOLAOU, A. SERU, AND N. STOFFMAN (2017): “Technological
Innovation, Resource Allocation, and Growth,” Quarterly Journal of Economics, 132, 665–712.

KURMANN, A. AND E. SIMS (2021): “Revisions in Utilization-Adjusted TFP and Robust
Identification of News Shocks,” Review of Economics and Statistics, 103, 216–235.

LEEPER, E. M., T. B. WALKER, AND S.-C. S. YANG (2013): “Fiscal Foresight and Information
Flows,” Econometrica, 81, 1115–1145.

LEVCHENKO, A. A. AND N. PANDALAI-NAYAR (2020): “TFP, News, and “Sentiments”: the
International Transmission of Business Cycles,” Journal of the European Economic
Association, 18, 302–341.

MARCO, A., M. CARLEY, S. JACKSON, AND A. F. MYERS (2015): “The USPTO Historical
Patent Data Files Two Centuries of Innovation,” USPTO Economic Working Paper No. 2015-1.

MERTENS, K. AND M. O. RAVN (2012): “Empirical Evidence on the Aggregate Effects of
Anticipated and Unanticipated US Tax Policy Shocks,” American Economic Journal:
Economic Policy, 4, 145–181.

——— (2014): “A Reconciliation of SVAR and Narrative Estimates of Tax Multipliers,” Journal
of Monetary Economics, 68, 1–19.

MIRANDA-AGRIPPINO, S., S. H. HOKE, AND K. BLUWSTEIN (2022): “Patents, News, and
Business Cycles,” Manuscript, Bank of England.

37



KILIAN, PLANTE & RICHTER: MACROECONOMIC NEWS AND SURPRISE SHOCKS

MONTIEL OLEA, J. L., J. H. STOCK, AND M. W. WATSON (2021): “Inference in Structural
Vector Autoregressions identified with an external instrument,” Journal of Econometrics, 225,
74–87.

NAM, D. AND J. WANG (2015): “The Effects of Surprise and Anticipated Technology Changes
on International Relative Prices and Trade,” Journal of International Economics, 97, 162–177.

PLAGBORG-MØLLER, M. AND C. K. WOLF (2021): “Local Projections and VARs Estimate the
Same Impulse Responses,” Econometrica, 89, 955–980.

SHEA, J. (1999): “What Do Technology Shocks Do?” in NBER Macroeconomics Annual 1998,
volume 13, ed. by B. S. Bernanke and J. Rotemberg, MIT Press, 275–322.

SIMS, C. A. (2002): “Solving Linear Rational Expectations Models,” Computational Economics,
20, 1–20.

STOCK, J. H. AND M. W. WATSON (2018): “Identification and Estimation of Dynamic Causal
Effects in Macroeconomics Using External Instruments,” Economic Journal, 128, 917–948.

UHLIG, H. (2004): “Do Technology Shocks Lead to a Fall in Total Hours Worked?” Journal of
the European Economic Association, 2, 361–371.

38



Online Appendix:
Estimating Macroeconomic
News and Surprise Shocks*

Lutz Kilian† Michael D. Plante‡ Alexander W. Richter§

October 13, 2023

*The views expressed in this paper are our own and do not necessarily reflect the views of the Federal Reserve
Bank of Dallas or the Federal Reserve System.

†Research Department, Federal Reserve Bank of Dallas, 2200 N Pearl Street, Dallas, TX 75201, and CEPR (lkil-
ian2019@gmail.com).

‡Research Department, Federal Reserve Bank of Dallas, 2200 N Pearl Street, Dallas, TX 75201
(michael.plante@dal.frb.org).

§Corresponding author: Research Department, Federal Reserve Bank of Dallas, 2200 N Pearl Street, Dallas, TX
75201 (alex.richter@dal.frb.org).



KILIAN, PLANTE & RICHTER: MACROECONOMIC NEWS AND SURPRISE SHOCKS

A DATA SOURCES

We use the following time-series from 1960Q1-2019Q4 provided by Haver Analytics:

1. Civilian Noninstitutional Population: 16 Years & Over
Not Seasonally Adjusted, Quarterly, Thousands (LN16N@USECON)

2. Gross Domestic Product: Implicit Price Deflator
Seasonally Adjusted, Quarterly, 2012=100 (DGDP@USNA)

3. Real Gross Domestic Product
Seasonally Adjusted, Quarterly, Billions of Chained 2012$ (GDPH@USECON)

4. Real Personal Consumption Expenditures
Seasonally Adjusted, Quarterly, Billions of Chained 2012$ (CH@USECON))

5. Real Private Fixed Investment
Seasonally Adjusted, Quarterly, Billions of Chained 2012$ (FH@USECON)

6. Hours: Private Sector, Nonfarm Payrolls
Seasonally Adjusted, Quarterly, Billions of Hours (LHTPRIVA@USECON)

7. Utilization-Adjusted Total Factor Productivity
Quarterly, Percent, Annual Rate (TFPMQ@USECON)

8. Capital Share of Income, Quarterly (TFPJQ@USECON)

9. Effective Federal Funds Rate
Quarterly Average, Annual Percent (FFED@USECON)

10. S&P 500 Stock Price Index, Quarterly Average (SP500@USECON)

11. Real Research and Development
Seasonally Adjusted, Quarterly, Billions of Chained 2012$ (FNPRH@USECON)

12. Net Stock: Private Fixed Assets, Annual, Billions of Dollars (EPT@CAPSTOCK)

13. Net Stock: Durable Goods, Annual, Billions of Dollars (EDT@CAPSTOCK)

14. Depreciation: Private Fixed Assets, Annual, Billions of Dollars (KPT@CAPSTOCK)

15. Depreciation: Durable Goods, Annual, Billions of Dollars (KDT@CAPSTOCK)

We also used the following data from other sources:

1. Information & Communication Technologies Standards Index, from Baron and Schmidt
(2019). The series is available at https://justusbaron.org/data/.

1
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2. Patent-Based Innovation Index, from Cascaldi-Garcia and Vukotić (2022). This is a quar-
terly version of the Kogan et al. (2017) annual index, which is based on counts of patents
where each patent is weighted by its impact on the firm’s stock price. The series is available
at https://sites.google.com/site/cascaldigarcia/research.

3. U.S. Patent & Trade Office Patent Count, from Marco et al. (2015). This is a quar-
terly count of new patent applications, excluding those classified as “missing” and “not
classified”. See https://www.uspto.gov/ip-policy/economic-research/
research-datasets/historical-patent-data-files.

4. Macroeconomic Forecasts, from the Survey of Professional Forecasters (SPF). We use the
one and four-quarter ahead mean predictions for the unemployment rate (UNEMP), the GDP
deflator (PGDP), real non-residential fixed investment (RNRESIN), and corporate profits
(CPROF). These are used to construct the exogenous patent-innovation series of Miranda-
Agrippino et al. (2022) that controls for SPF forecasts but not for exogenous policy shocks.
Details about the construction are in section 2.2 of Miranda-Agrippino et al. (2022). For
the SPF data, see https://www.philadelphiafed.org/surveys-and-data/
real-time-data-research/survey-of-professional-forecasters.

B ORTHOGONALITY CONDITIONS

Observe that either γn,2γn,3 > 0 and γℓ,2γℓ,3 < 0 or γn,2γn,3 < 0 and γℓ,2γℓ,3 > 0. Using (R1-1)
and the solution for γs, γℓ,2, and γℓ,3 in Section 2.2 of the main text implies

γ2s,1 + γ2s,2 + γ2s,3 = 1− γ2n,1 + (γn,1γn,2/γs,1)
2 + (γn,1γn,3/γs,1)

2

= 1− γ2n,1 + (γ2n,1/γ
2
s,1)(γ

2
n,2 + γ2n,3)

= 1

γ2ℓ,2 + γ2ℓ,3 = 1− γ2s,2 − γ2n,2 + 1− γ2s,3 − γ2n,3

= γ2s,1 + γ2n,1

= 1

γs,1γn,1 + γs,2γn,2 + γs,3γn,3 = γs,1γn,1 − γn,1γ
2
n,2/γs,1 − γn,1γ

2
n,3/γs,1

= γs,1γn,1 − (γ2n,2 + γ2n,3)γn,1/γs,1

= 0

γn,2γℓ,2 + γn,3γℓ,3 = γn,2(±
√

1− γ2ℓ,3) + γn,3(±
√

1− γ2ℓ,2)

= γn,2(±
√
γ2s,3 + γ2n,3) + γn,3(±

√
γ2s,2 + γ2n,2)

= γn,2(±
√

(γ2n,1/γ
2
s,1 + 1)γ2n,3) + γn,3(±

√
(γ2n,1/γ

2
s,1 + 1)γ2n,2)
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= γn,2(±
√
γ2n,3/γ

2
s,1) + γn,3(±

√
γ2n,2/γ

2
s,1)

=



1√
γ2s,1

(
γn,2

√
γ2n,3 + γn,3

√
γ2n,2

)
if γℓ,2 > 0 and γℓ,3 > 0

1√
γ2s,1

(
−γn,2

√
γ2n,3 − γn,3

√
γ2n,2

)
if γℓ,2 < 0 and γℓ,3 < 0

1√
γ2s,1

(
−γn,2

√
γ2n,3 + γn,3

√
γ2n,2

)
if γℓ,2 < 0 and γℓ,3 > 0

1√
γ2s,1

(
γn,2

√
γ2n,3 − γn,3

√
γ2n,2

)
if γℓ,2 > 0 and γℓ,3 < 0

=



0 if γn,2γn,3 < 0

0 if γn,2γn,3 < 0

0 if γn,2γn,3 > 0

0 if γn,2γn,3 > 0

γs,2γℓ,2 + γs,3γℓ,3 = (γn,1/γs,1)(γn,2γℓ,2 + γn,3γℓ,3)

= 0

γs,2γs,3 + γn,2γn,3 + γℓ,2γℓ,3 = (γ2n,1/γ
2
s,1 + 1)γn,2γn,3 − (γn,2/γn,3)γ

2
ℓ,2

= γn,2γn,3/γ
2
s,1 − (γn,2/γn,3)(γ

2
n,3/γ

2
s,1)

= 0

since γ2s,1 = 1− γ2n,1 = γ2n,2 + γ2n,3. Thus, (R1-1)-(R1-6) and (R2-1)-(R2-6) are satisfied, and there
exists a Q that is orthogonal.

C BASELINE DSGE MODEL

We detrend the model by writing trending variables in terms of TFP, x̃t ≡ xt/z
1/(1−α)
t . The

equilibrium system is given by

rkt = αmctstgt(k̃t−1/nt)
α−1 (C.1)

w̃t = (1− α)mctstg
−α/(1−α)
t (k̃t−1/nt)

α (C.2)

∆p
t ỹt = stg

−α/(1−α)
t k̃αt−1n

1−α
t (C.3)

w̃t = χnηt c̃t (C.4)

1 = Et[xt+1rt/πt+1] (C.5)

c̃t + ı̃t = ỹt (C.6)

k̃t = (1− δ)k̃t−1/gy,t + µtı̃t (C.7)

1/µt = Et[xt+1(r
k
t+1 + (1− δ)/µt+1)] (C.8)

pf,t =
ϵp
ϵp−1

(f̃1,t/f̃2,t) (C.9)
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f̃1,t = mctỹt + θpEt[gy,t+1xt+1(πt+1/π̄)
ϵp f̃1,t+1] (C.10)

f̃2,t = ỹt + θpEt[gy,t+1xt+1(πt+1/π̄)
ϵp−1f̃2,t+1] (C.11)

∆p
t = (1− θp)p

−ϵp
f,t + θp(πt/π̄)

ϵp∆p
t−1 (C.12)

1 = (1− θp)p
1−ϵp
f,t + θp(πt/π̄)

ϵp−1 (C.13)

xt = βc̃t−1/(c̃tgy,t) (C.14)

rt = r̄(πt/π̄)
ϕπ (C.15)

gy,t = g
1/(1−α)
t (C.16)

ln st = ρs ln st−1 + σsεs,t (C.17)

ln gt = (1− ρg) ln ḡ + ρg ln gt−1 + σgεg,t (C.18)

lnµt = ρµ lnµt−1 + σµεµ,t (C.19)

Table 1: Baseline DSGE model calibration at quarterly frequency.

Parameter Value Parameter Value

Discount Factor (β) 0.995 Steady-State Hours (n̄) 0.3333
Cost Share of Capital (α) 0.3343 Steady-State TFP Growth Rate (ḡ) 1.0026
Capital Depreciation Rate (δ) 0.025 TFP News Shock Persistence (ρg) 0.6
Frisch Labor Supply Elasticity (1/η) 0.5 TFP Surprise Shock Persistence (ρs) 0.8
Goods Elasticity of Substitution (ϵp) 11 MEI Shock Persistence (ρµ) 0.9
Calvo Price Stickiness (θp) 0.75 TFP News Shock SD (σg) 0.003
Taylor Rule Inflation Response (ϕπ) 1.5 TFP Surprise Shock SD (σs) 0.007
Steady-State Inflation Rate (π̄) 1.005 MEI Shock SD (σµ) 0.0075

D KS DSGE MODEL

We detrend in the same way as our baseline model except λ̃t ≡ λtz
1/(1−α)
t , f̃w1,t ≡ fw1,t/z

(1+ϵw)/(1−α)
t ,

and f̃w2,t ≡ fw2,t/z
ϵw/(1−α)
t . The equilibrium system is given by

rk,t = αmctst(k̃s,t/ls,t)
α−1 (D.1)

w̃ℓ,t = (1− α)mctst(k̃s,t/ls,t)
α (D.2)

∆p
t ỹt = stk̃

α
s,tl

1−α
s,t − F̄ (D.3)

λ̃t = (c̃t − bc̃t−1/gy,t)
−1 − βbEt[(c̃t+1gy,t+1 − bc̃t)

−1] (D.4)

1 = Et[xt+1rt/πt+1] (D.5)

rk,t = γ1 + γ2(ut − 1) (D.6)

θκ3e
κ4−1
t = λ̃tw̃tht (D.7)
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θκ1h
κ2−1
t = λ̃tw̃tet (D.8)

θ(κ0 + (κ1/κ2)h
κ2
t + (κ3/κ4)e

κ4
t )

= λ̃tw̃t
[
etht − ψ

2
(nt/nt−1 − 1)2 − ψ(nt/nt−1 − 1)(nt/nt−1)

]
+βψEt

[
λ̃t+1w̃t+1(nt+1/nt − 1)(nt+1/nt)

2
] (D.9)

k̃t = (1− δ)k̃t−1/gy,t + µtı̃t (D.10)

µtqt = 1 + φ(Φt − δ̃) (D.11)

qt = Et[xt+1(rk,t+1ut+1 − γ1(ut+1 − 1)− γ2
2
(ut+1 − 1)2

−φ
2
(Φt+1 − δ̃)2 + φ(Φt+1 − δ̃)Φt+1 + (1− δ)qt+1)]

(D.12)

Φt = ı̃tgy,t/k̃t−1 (D.13)

lt = ethtnt (D.14)

lt = ∆w
t ls,t (D.15)

k̃s,t = utk̃t−1/gy,t (D.16)

xt = βλ̃t/(λ̃t−1gy,t) (D.17)

p̃t =
ϵp

ϵp − 1

f̃p1,t

f̃p2,t
(D.18)

f̃p1,t = mctỹt + θpEt[xt+1π
−ϵpγp
t π̄−ϵp(1−γp)π

ϵp
t+1f̃

p
1,t+1gy,t+1] (D.19)

f̃p2,t = ỹt + θpEt[xt+1π
(1−ϵp)γp
t π̄(1−ϵp)(1−γp)π

ϵp−1
t+1 f̃

p
2,t+1gy,t+1] (D.20)

∆p
t = (1− θp)p̃

−ϵp
t + θpπ

−ϵpγp
t−1 π̄−ϵp(1−γp)π

ϵp
t ∆

p
t−1 (D.21)

1 = (1− θp)p̃
1−ϵp
t + θpπ

(1−ϵp)γp
t−1 π̄(1−ϵp)(1−γp)π

ϵp−1
t (D.22)

w̃∗
ℓ,t =

ϵw
ϵw − 1

f̃w1,t

f̃w2,t
, (D.23)

f̃w1,t = w̃ϵwℓ,t w̃tls,t + θwḡyEt[xt+1π
ϵw
t+1π

−ϵwγw
t π̄−ϵw(1−γw)f̃w1,t+1(gy,t+1/ḡy)

1+ϵw ] (D.24)

f̃w2,t = w̃ϵwℓ,t ls,t + θwḡyEt[xt+1π
ϵw−1
t+1 π

(1−ϵw)γw
t π̄(1−ϵw)(1−γw)f̃w2,t+1(gy,t+1/ḡy)

ϵw ] (D.25)

∆w
t = (1− θw)

(
w̃∗
ℓ,t

w̃ℓ,t

)−ϵw
+ θwπ

−ϵwγw
t−1 π̄−ϵw(1−γw)πϵwt

(
w̃ℓ,t−1ḡy
w̃ℓ,tgy,t

)−ϵw
∆w
t−1 (D.26)

w̃1−ϵw
ℓ,t = (1− θw)(w̃

∗
ℓ,t)

1−ϵw + θwπ
γw(1−ϵw)
t−1 π̄(1−γw)(1−ϵw)πϵw−1

t

(
w̃ℓ,t−1ḡy
gy,t

)1−ϵw
(D.27)

rt = rρrt−1(r̄(πt/π̄)
ϕπ(ỹtgy,t/(ỹt−1ḡy))

ϕy)1−ρr exp(σrεr,t) (D.28)

c̃t + ı̃t +
ψ
2
(nt/nt−1 − 1)2w̃tnt +

φ
2
(Φt − δ̃)2k̃t−1/gy,t

+(γ1(ut − 1) + γ2
2
(ut − 1)2)k̃t−1/gy,t = ỹt

(D.29)

gy,t = g
1/(1−α)
t (D.30)
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ln st = ρs ln st−1 + σsεs,t (D.31)

ln gt = (1− ρg) ln g + ρg ln gt−1 + σgεg,t (D.32)

lnµt = ρµ lnµt−1 + σµεµ,t (D.33)

where the labor share ωℓ,t = wℓ,tls,t/yt.

Table 2: KS DSGE model parameterization at quarterly frequency.

Parameter Value Parameter Value

Discount Factor (β) 0.99 Taylor Rule Inflation Response (ϕπ) 1.5
Cost Share of Capital (α) 0.3333 Taylor Rule Output Response (ϕy) 0.5
Capital Depreciation Rate (δ) 0.025 Taylor Rule Smoothing (ρr) 0.8
Utilization Function Curvature (γ2) 0.01 Steady-State Inflation Rate (π̄) 1
Internal Habit Persistence (b) 0.8 Steady-State Employment Share (n̄) 3/5
Capital Adjustment Cost (φ) 2 Steady-State Labor Preference (Ḡ) 1/3
Employment Adjustment Cost (ψ) 2 Steady-State Effort (ē) 5
Frisch Elasticity of Hours (η) 1 Steady-State Hours (h̄) 1/3
Elasticity of Effort to Hours (ϵeh) 4 Steady-State Output Growth Rate (ḡy) 1.0026
Goods Elasticity of Substitution (ϵp) 11 TFP News Shock Persistence (ρg) 0.7
Labor Elasticity of Substitution (ϵw) 11 TFP Surprise Shock Persistence (ρs) 0.9
Calvo Price Stickiness (θp) 0.75 MEI Shock Persistence (ρµ) 0.8
Calvo Wage Stickiness (θw) 0.9 TFP News Shock SD (σg) 0.002125
Price Indexation (γp) 0 TFP Surprise Shock SD (σs) 0.000425
Wage Indexation (γw) 1 MEI Shock SD (σµ) 0.00425

E ADDITIONAL RESULTS

This section presents several additional results:
• Impulse responses based on the KS max share estimator and yt = (at, yt, it)

′ using data sim-
ulated from our baseline DSGE model with the KS TFP process and T = 10,000 (Figure 1).

• Root mean squared errors based on the KS max share estimator and yt = (at, yt, it)
′ using

data simulated from the KS DSGE model with contemporaneous or lagged growth shocks in
the TFP news process (Table 3).

• Impulse responses based on the KS max share estimator and yt = (at, yt, it)
′ using data

simulated from the KS DSGE model with T = 240 (Figure 2).

• Impulse responses based on the Cholesky news estimator and yt = (zt, at, yt)
′ using simu-

lated data from our baseline DSGE model with T = 10,000 and T = 240 (Figure 3).

• Impulse responses based on the Cholesky news estimator and yt = (zt, at, yt, it)
′ using

simulated data from the KS DSGE model with T = 10,000 (Figure 4).

6
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• Empirical impulse responses from 9-variable VAR models with alternative TFP news series
of different lengths (Figure 5-Figure 8).

• Full set of empirical max-share identified impulse responses from the 9-variable VAR model
with the ICT index (Figure 9)

Figure 1: KS max-share identified responses based on the baseline DSGE model with KS TFP

(a) News shock, T = 10,000
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(b) Surprise shock, T = 10,000
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Notes: Based on a VAR(4) model for yt = (at, yt, it)
′. The responses have been scaled so the

impact response of TFP matches the population value.

Table 3: Sum of the RMSE over 40 quarters for the KS estimator based on the KS DSGE model

KS Model with
KS Model Calibrated Shock Processes

Measurement Error Measurement Error

Shock TFP Output Investment Total TFP Output Investment Total

εg,t 10.9 5.4 8.7 25.0 10.2 11.3 20.9 42.4
εg,t−1 11.3 4.9 7.6 23.8 10.3 10.5 19.5 40.4

Notes: Results based on T = 10,000. The VAR includes yt = (TFPut , yt, it). All of the results in the
paper use a contemporaneous new shock, εg,t, while KS use a lagged news shock, εg,t−1.
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Figure 2: KS max-share identified responses to news shocks based on the KS DSGE model

(a) KS model without measurement error, T = 240
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(b) KS model with measurement error, T = 240
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(c) KS model with calibrated shock processes and measurement error, T = 240
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Notes: Based on a VAR(4) model for yt = (at, yt, it)
′ when there is no measurement error and yt =

(TFPut , yt, it)
′ where there is measurement error. The responses from models with measurement

error are not scaled given that the impact responses of TFP are very close to zero.
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Figure 3: Cholesky news identified impulse responses based on the baseline DSGE model

(a) News shock, T = 10,000

0 10 20 30 40
0

0.2
0.4
0.6
0.8

1
1.2

0 10 20 30 40
0

0.2
0.4
0.6
0.8

1
1.2

0 10 20 30 40
0

0.2
0.4
0.6
0.8

1
1.2

VAR Mean
Population

(b) Surprise shock, T = 10,000
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(c) News shock, T = 240
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(d) Surprise shock, T = 240
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Notes: Based on a VAR(4) model for yt = (zt, at, yt)
′. The responses have been scaled so the

impact response of TFP matches the population value.
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Table 4: Sum of the RMSE over 40 quarters for each estimator based on the baseline DSGE model

TFP Response Output Response

News Surprise News Surprise
Estimator Shock Shock Shock Shock Total

KS Max Share 11.3 2.6 14.5 2.3 30.7
Max Share News (σn = 0) 1.4 0.8 1.9 1.1 5.2
Max Share News (σn = 0.1σg) 1.4 0.8 2.0 1.1 10.4
Max Share News (σn = 0.2σg) 1.6 0.8 2.4 1.1 16.4
Cholesky (σn = 0) 1.0 0.9 1.5 1.2 4.6
Cholesky (σn = 0.1σg) 1.2 0.9 1.8 1.3 9.8
Cholesky (σn = 0.2σg) 2.3 1.1 3.2 1.5 18.0

Notes: Results based on T = 10,000. The VAR includes yt = (at, yt, it) for the KS max-share estimator
and yt = (zt, at, yt) for the max-share news and Cholesky estimators.
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Figure 4: Cholesky news identified responses to news shocks based on the KS DSGE model

(a) KS model with measurement error, T = 10,000
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(b) KS model with measurement error and our calibrated shock processes, T = 10,000
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Notes: Based on a VAR(4) model for yt = (zt,TFP
u
t , yt, it)

′. The responses are not scaled given
that the impact responses of TFP are very close to zero.
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Figure 5: Impulse responses with real R&D expenditures

(a) Cholesky identified VAR model
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(b) Max-share identified VAR model
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Figure 6: Impulse responses with the ICT index

(a) Cholesky identified VAR model
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(b) Max-share identified VAR model
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Figure 7: Impulse responses with the CGV series

(a) Cholesky identified VAR model
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(b) Max-share identified VAR model
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Figure 8: Impulse responses with the MAHB series

(a) Cholesky identified VAR model

0 10 20 30 40
-0.4

-0.2

0

0.2

0.4

0.6

0.8

0 10 20 30 40
-0.4

-0.2

0

0.2

0.4

0.6

0.8

(b) Max-share identified VAR model
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Figure 9: Max-share identified impulse responses with the ICT index
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