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A Data Sources and Definitions

Main data sources:

• F-TFP: FRB San Francisco Total Factor Productivity, see also Fernald (2012)

• BEA-NIPA: U.S. Bureau of Economic Analysis National Income and Product Accounts
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• BEA-FA: U.S. Bureau of Economic Analysis Fixed Assets Accounts Tables

• NCSES: National Center for Science and Engineering Statistics,

– National Patterns of R&D Resources

– Survey of Federal Funds for Research and Development, pre-1999 data from the

NCSES/NSF archives

All additions and subtractions involving quantities in chained dollars are based on the

Divisia index approximation to chained aggregates, see Whelan (2002). All real quantities

are expressed in 2012 dollars using implicit deflators.

Capital stock variables: Quarterly real capital stocks are valued at real cost and con-

structed using the perpetual inventory method using quarterly NIPA data on real investment

and initial capital stocks (year-end 1946) from the BEA-FA tables. Depreciation rates are

quarterly interpolations of annual depreciation rates in the BEA-FA tables.

• Government R&D Capital: Chained sum of (i) federal nondefense R&D capital

stock, (ii) federal defense R&D capital stock, and (iii) state & local R&D capital stock.

R&D capital includes the BEA-NIPA categories ‘research and development’ and ‘soft-

ware development’. Investment series are lines 22, 30, and 38 in BEA-NIPA Table

3.9.3 (converted to 2012 dollars using Table 3.9.5). Depreciation rates are lines 35, 52,

and 72 in BEA-FA Table 7.4 (converted to 2012 dollars using Table 7.3) divided by

prior year capital stocks in the same lines of BEA-FA Table 7.2 (converted to 2012 dol-

lars using Table 7.1). Government Nondefense R&D Capital and Government

Defense R&D Capital are constructed analogously using the relevant subcategories.

• Public Infrastructure Capital: Chained sum of structures and equipment capital

stocks for (i) federal nondefense and (ii) state & local governments. Investment series

are lines 28, 29, 36, and 37 in BEA-NIPA Table 3.9.3 (converted to 2012 dollars using

Table 3.9.5). Depreciation rates are lines 39, 40, 56, and 57 in BEA-FA Table 7.4

(converted to 2012 dollars using Table 7.3) divided by prior year capital stocks in the

same lines of BEA-FA Table 7.2 (converted to 2012 dollars using Table 7.1).

• Defense Capital: Chained sum of defense structures and defense equipment capital

stocks. Investment series are lines 20 and 21 in BEA-NIPA Table 3.9.3 (converted to

2012 dollars using Table 3.9.5). Depreciation rates are lines 23 and 30 in BEA-FA Table

7.4 (converted to 2012 dollars using Table 7.3) divided by prior year capital stocks in

the same lines of BEA-FA Table 7.2 (converted to 2012 dollars using Table 7.1).

• Business-Sector R&D Capital: Aggregate of BEA-NIPA categories ‘research and

development’ and ‘software development’ for the business sector based on the weights

and growth rates in F-TFP (‘wgt_r_and_d’,‘dk_r_and_d’,‘wgt_software’, and

‘dk_software’), cumulated and converted to 2012 dollars using BEA-FA Table 7.1.
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• Total R&D Capital: Chained sum of the components of government R&D capital

and business-sector R&D capital.

• Total Public Capital: Chained sum of the components of government R&D capital,

public infrastructure capital and defense capital.

Other variables:

• Variables from F-TFP: Business-Sector TFP: utilization-adjusted total factor pro-

ductivity (F-TFP: ‘dtfp_util’); Capacity utilization: (F-TFP: ‘dutil’); Labor

Productivity: (F-TFP: ‘dLP’); Log-level variables are obtained as cumulative sums

of the annualized growth rates in the F-TFP dataset after dividing by 400.

• Potential Output: CBO estimate of potential real GDP. From 1949Q1 onward,

‘GDPPOT’ from FRED. Observations before 1949Q1 are from the replication files of

Ramey and Zubairy (2018).

• Stock market returns: Average of the cumulative sums of the equally weighted re-

turns for manufacturing (‘R_EW_Manuf’), high tech (‘R_EW_HiTec’), and health indus-

tries (‘R_EW_Hlkth’) from the Kenneth French Data Library (5 Industry Portfolios).

• Military News: ‘news’ in replication files of Ramey and Zubairy (2018) converted

to 2012 dollars by the implicit GDP deflator, divided by potential output.

• Patent Innovation Index: Quarterly version of the patent innovation index of Kogan

et al. (2017), from the replication files of Cascaldi-Garcia and Vukotić (2022).

• New PhDs in STEM: Total number of doctoral recipients in science and engineering.

Data for 1947-1957 is from the Historical Statistics of the U.S. (Colonial Times to

1970), series H766-787. Data from 1958 onward is from the NCSES Survey of Earned

Doctorates. Quarterly interpolation of annual data.

• Researchers: Total researchers (full-time equivalents), from the OECD Main Science

and Technology Indicators. Pre-2000 data is obtained from the replication files of

Bloom et al. (2020). Quarterly interpolation of annual data.

• Technology Books: Books published in the field of technology, constructed Alexopou-

los (2011) and obtained from the replication files of Kogan et al. (2017). Quarterly

interpolation of annual data.

B Narrative Appropriations Shocks by Agency

Figure B.1 depicts the narrative R&D appropriations changes separately for each agency,

before aggregation to nondefense versus defense R&D policy changes, as depicted in Figure

5 of the main text. The top four panels of Figure B.1 depict the R&D appropriations shocks

for nondefense expenditures, with NASA in panel (a), NIH in panel (b), NSF in panel (c),
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Figure B.1: Changes in R&D Appropriations by Federal Agency

(a) NASA (b) National Institutes of Health

(c) National Science Foundation (d) Department of Energy: Nondefense

(e) Department of Defense (f) Department of Energy: Defense

Notes: See Fieldhouse and Mertens (2023). Sample: 1947Q1–2019Q4.

and the nondefense functions of DOE in panel (d). The bottom two panels depict the
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Figure C.1: Role of Narrative Classification

a. Nondefense R&D Shock

Business-Sector TFP

b. Defense R&D Shock

Business-Sector TFP

Notes: Estimates based on (2) using the measures of changes in federal nondefense (left panel) and defense
(right panel) R&D appropriations, see (1). ‘Exogenous Changes Only’ uses the orthogonalized narratively
identified measures as in the baseline specification described in the main text. ‘All Changes’ uses orthogo-
nalized measures based on all changes in appropriations. Lazarus et al. (2018) HAR bands are for 95 percent
confidence levels. Impulses are scaled to imply a 1 percent peak increase in government R&D capital. Sam-
ple: 1948Q1–2021Q4.

R&D appropriations shocks for defense expenditures, with DOD in panel (e) and the nuclear

security functions of DOE in panel (f). Appropriations shocks classified as exogenous are

depicted in blue, and those classified as endogenous (or too small to classify) are in red; all

R&D appropriations shown are measured in real dollars per capita.

C Impulse Responses: Robustness and Additional Results

C.1 Robustness: Role of the Narrative Identification Step

This section discusses the role of the narrative classification of the changes in federal R&D

appropriations as ‘exogenous’ or ‘endogenous’ for the impulse response estimates. Figure

C.1 replicates the baseline impulse responses of TFP to nondefense and defense shocks from

Figure 6 in the main text. The figure also shows estimates for the same specifications, but

using all changes in R&D appropriations rather than just those identified as ‘exogenous’ in

the narrative analysis. In this case, the zit variables in (2) contain all changes in appropria-

tions shown in Figure 5, after orthogonalizing defense to nondefense appropriations and vice

versa, as in (1). Both the point estimates and confidence intervals for the TFP responses to

both the defense and nondefense R&D shocks are very similar when additionally using the

endogenous and smaller, unclassified changes in appropriations in the regressions.

5



Figure C.2: Role of Orthogonalization of the Narrative Measures

a. Nondefense R&D Shock

Business-Sector TFP

b. Defense R&D Shock

Business-Sector TFP

Notes: Estimates based on (2) using the measures of changes in federal nondefense (left panel) and defense
(right panel) R&D appropriations. Lazarus et al. (2018) HAR bands are for 95 percent confidence levels.
Impulses are scaled to imply a 1 percent peak increase in government R&D capital. Sample: 1948Q1–
2021Q4.

C.2 Robustness: Role of the Orthogonalization

This section discusses the role of mutually orthogonalizing the narrative measures of ex-

ogenous changes in defense and nondefense R&D appropriations for the impulse response

estimates, as in equation (1) in the main text. Figure C.2 replicates the baseline impulse

responses of TFP to nondefense and defense shocks from Figure 6 in the main text. The

figure also shows estimates for the same specifications, but using all the raw changes in R&D

appropriations ∆aexo,it /Ki
t−4, i = D,ND as the zit in the local projections in (2) rather the

residuals in (1). As the figure shows, the point estimates and confidence intervals for the

TFP responses to both the defense and nondefense R&D shocks are very similar.

C.3 Robustness: Additional Control Variables

Figure 6 in the main text shows that including lags of the baseline set of controls xt reduces

the variance of the impulse response estimates to a nondefense R&D shock, but has otherwise

no major qualitative effects on the point estimates. This suggests that the controls do

not capture any important simultaneous influences on both the narrative measures and

future TFP that would threaten the causal interpretation of the estimates in the simpler

specification. Here, we consider a number of additions to the baseline set of controls to gain

further confidence in the causal interpretation of the positive TFP response to nondefense

R&D shocks. Panel (a) of Figure C.3 plots the impulse responses of business-sector TFP
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Figure C.3: TFP Impact of Nondefense R&D Shock, Robustness

(a) Additional Control Variables (b) Model Specification

Notes: Estimates based on (2) using the narrative measure of federal nondefense R&D appropriations.
Lazarus et al. (2018) 95 percent HAR confidence bands are for the baseline impulse responses. Impulses
scaled to imply a 1 percent peak increase in government R&D capital. Sample: 1948Q1–2021Q4 (specifica-
tion with patent-based innovation index, 1949Q1–2010Q4).

to nondefense R&D shocks for these various additions. For reference, the figure repeats the

baseline estimates and the associated 95 percent confidence bands from Figure 6 in the main

text. Rows [2]-[11] in Table C.1 report the impulse response coefficients at horizons of 5,

10, and 15 years with HAR confidence bands in parentheses.

As mentioned in the main text, the baseline controls include capacity utilization to

capture possible business cycle influences. The first two expanded control sets each add

an alternative cyclical indicator: The headline unemployment rate or the output gap (the

percentage difference between real GDP and CBO potential output). Neither one has much

effect on the estimated TFP response to a nondefense R&D shock, and the TFP response

remains highly statistically significant at longer horizons (see rows [2]-[3] in Table C.1).

Replacing the utilization rate with either of these alternative cyclical indicators or adding

them both at the same time similarly has no major effect on the estimates (these results

are not reported).

It is possible that R&D appropriations, despite accounting for only a small share of the

federal budget, are predictable by other tax and spending policies that may have indepen-

dent long-run effects on productivity. For instance, Antolin-Diaz and Surico (2022) find

that government spending shocks raise long-run TFP, Cloyne et al. (2022) find that tem-

porary tax cuts have long-run effects on TFP, and Croce et al. (2019) find that the public

debt-to-GDP ratio significantly influences the cost of capital for R&D-intensive firms and

productivity growth. The baseline controls include lags of cumulative nondefense appro-

priations, government R&D capital, and the Ramey and Zubairy (2018) military spending
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news variable. As these variables may not be sufficient to capture all relevant information

about fiscal policy, the next three expanded control sets add information about fiscal pol-

icy. In turn, we add log cumulative appropriations for defense R&D, the log of the public

infrastructure capital stock, and a set of broader fiscal policy indicators. The latter includes

the log of total real government consumption expenditures, the ratio of government debt

to GDP (based on the Market Value of U.S. Government Debt constructed by the Federal

Reserve Bank of Dallas), and the measures of average federal personal and corporate income

tax rates from Mertens and Ravn (2013). The addition of defense appropriations has no ma-

jor impact on the estimates, and the TFP response remains highly statistically significant

(row [4] in Table C.1). Adding public infrastructure capital induces a more front-loaded

TFP response that is somewhat more muted at longer horizons. The TFP response remains

highly statistically significant at longer horizons (see row [5] in Table C.1). Controlling for

lags of a broader set of fiscal policy indicators also leads to somewhat smaller TFP responses

at longer horizons, but they nevertheless remain highly significant (see row [6] in Table C.1).

The baseline controls include cumulative real stock returns in R&D-intensive industries

to capture any broad advanced information about future technological developments. Next,

we add a broader set of financial indicators. Financial conditions could matter for several

reasons, for instance, by determining the relative attractiveness of long-horizon investments

in R&D, by summarizing additional forward-looking economic information with an influence

on both productivity and government R&D, or more generally by capturing additional types

of disturbances with potential effects on long-run productivity. We add the 3-month and

10-year Treasury rates, the log real S&P500 index, and the spread between BAA- and AAA-

rated corporate bonds to the controls (obtained from FRED and Shiller (2015)). As can

be seen from panel (a) in Figure C.3, these additional financial controls attenuate the TFP

response somewhat at horizons beyond eight years. The TFP response at longer horizons

remains highly statistically significant (see row [7] in Table C.1).

The next four specifications each, in turn, rotate in a number of additional variables

that conceivably could contain important independent information about future productiv-

ity: Non-R&D capital in the business sector, the Fernald (2012) measure of labor quality,

the patent-based innovation index of Cascaldi-Garcia and Vukotić (2022), and the relative

price of R&D from the NIPA data. Including non-R&D capital leads to somewhat smaller

estimates of the TFP response in the longer run, while including the relative price of R&D

leads to estimates that are considerably larger. The addition of the indices for labor quality

or innovation do not have any major impact on the estimates. As rows [8]-[11] in Table

C.1 show, the estimates of the TFP response at longer horizons remain highly statistically

significant in each case.
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Table C.1: TFP Impact of Nondefense R&D Shock, Robustness

% Impact After

5 years 10 years 15 years

[1] Baseline 0.05
(−0.05,0.15)

0.18∗∗∗
(0.09,0.27)

0.24∗∗∗
(0.13,0.36)

[2] + Unemployment Rate 0.03
(−0.07,0.13)

0.20∗∗∗
(0.08,0.32)

0.29∗∗∗
(0.13,0.44)

[3] + Output Gap 0.05
(−0.06,0.17)

0.20∗∗∗
(0.10,0.31)

0.28∗∗∗
(0.13,0.42)

[4] + Defense R&D Appropriations 0.06
(−0.12,0.24)

0.22∗∗∗
(0.06,0.38)

0.19∗∗
(0.00,0.37)

[5] + Public Infrastructure Capital 0.08∗
(−0.01,0.18)

0.15∗∗∗
(0.06,0.25)

0.14∗∗∗
(0.06,0.22)

[6] + Other Fiscal Variables 0.06
(−0.09,0.20)

0.07
(−0.05,0.19)

0.18∗∗∗
(0.06,0.30)

[7] + Financial Variables 0.04
(−0.05,0.13)

0.11∗∗
(0.02,0.20)

0.18∗∗∗
(0.09,0.27)

[8] + Non R&D Capital 0.04
(−0.06,0.14)

0.08∗∗
(0.01,0.15)

0.16∗∗∗
(0.07,0.25)

[9] + Labor Quality 0.03
(−0.08,0.13)

0.16∗∗∗
(0.09,0.24)

0.24∗∗∗
(0.12,0.37)

[10] + Patent-Based Innovation Index 0.00
(−0.11,0.12)

0.18∗∗∗
(0.06,0.30)

0.28∗∗∗
(0.14,0.43)

[11] + Relative Price of R&D −0.00
(−0.14,0.14)

0.24∗∗∗
(0.09,0.39)

0.42∗∗∗
(0.16,0.68)

[12] Two Lags of Controls 0.07∗∗
(0.00,0.13)

0.16∗∗
(0.03,0.29)

0.16∗
(−0.01,0.34)

[13] Six Lags of Controls 0.19
(−0.07,0.45)

0.45∗∗∗
(0.22,0.67)

0.26∗∗∗
(0.06,0.45)

[14] Excluding Space 0.08
(−0.25,0.41)

0.20∗∗
(0.00,0.41)

0.25∗∗
(0.04,0.47)

[15] Including Lags of Narrative Shock 0.07
(−0.05,0.19)

0.22∗∗∗
(0.12,0.33)

0.24∗∗∗
(0.16,0.32)

[16] Balanced Sample 0.04
(−0.07,0.15)

0.17∗∗∗
(0.08,0.25)

0.22∗∗∗
(0.12,0.32)

Notes: Estimates are based on (2) using the narrative measure of federal nondefense R&D appropriations.
Numbers in parentheses are 95 percent HAR confidence bands based on Lazarus et al. (2018). Stars ∗, ∗∗ and
∗∗∗ denote statistical significance at 10, 5, and 1 percent significance levels, respectively. Impulses scaled to
imply a 1 percent peak increase in government R&D capital. Sample: 1948Q1–2021Q4 (specification with
patent-based innovation index: 1949Q1–2010Q4).

C.4 Robustness: LP Model Specification

This section reports impulse response estimates of TFP to a nondefense R&D shock under

several additional alterations to the baseline specification in (2). Panel (b) in Figure C.3

plots the impulse responses along with the baseline estimates and their 95 percent confidence

bands from Figure 6 in the main text. Rows [12]-[15] in Table C.1 report the coefficient

estimates for the various alterations at horizons of 5, 10, and 15 years with HAR confidence

bands in parentheses.

The baseline specification uses p = 4 lags of all control variables. The first two robustness

checks consider shortening or lengthening the number of lags to p = 2 and p = 6, respectively.

As Panel (b) in Figure C.3 shows, reducing lag length from four to two quarters leads to
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somewhat smaller TFP responses at horizons beyond 10 years; the long-run TFP responses

remain statistically significant at the 5 or 10 percent levels (see row [12] of Table C.1).

Increasing the lag length from four to six quarters makes the TFP response somewhat more

volatile, but the response at the end of the forecast horizon is very similar to the baseline

specification and also remains highly significant (see row [13] of Table C.1).

As discussed in the main text, the rapid expansion of government R&D expenditures

during the early stages of the space race is important for the precision of the estimates of

the production function elasticities and rates of return reported in Tables 1 and 2. Our

next robustness check analogously verifies the role of the early NASA R&D appropriations

for the estimated TFP response to a nondefense R&D shock. We remove the influence

of the early expansion during the space race by orthogonalizing the narrative measure of

exogenous nondefense R&D shocks not only to the defense R&D measure, but also to all

appropriations for NASA over the 1958–1963 period. Figure C.3b shows that the gradual rise

in TFP following a nondefense R&D shock is robust to excluding the space race episode.

Row [14] of Table C.1 shows that the long-run TFP response also remains significant at

conventional levels, even though the confidence bands become notably wider.

The baseline set of controls includes four lags of the (log) of cumulative nondefense

R&D appropriations, but not lags of the (orthogonalized) narrative R&D measures them-

selves. Figure C.3b shows that additionally including these lags has very little effect on the

estimated TFP response and the associated confidence bands (see row [15] in Table C.1).

Finally, the inference formulas for SP-IV developed in Lewis and Mertens (2023) require

a balanced sample. The impulse responses in Section 3 are instead estimated iteratively,

i.e., using the largest possible estimation sample for each horizon h. Figure C.3b provides

the estimated TFP response in the balanced sample, which leads to only relatively minor

differences with the baseline estimates. As seen in row [16] of Table C.1, the estimates also

remain highly statistically significant in the balanced sample.

C.5 Robustness: VAR-based Impulse Responses Estimates

Asymptotically, local projections estimate approximately the same impulse response as Vec-

tor Autoregressive Models (VARs) up to the lag length of the VAR model, see Plagborg-

Møller and Wolf (2021). An advantage of LPs is that they avoid misspecification in finite-

order VAR-based impulse response estimators at horizons beyond the lag length. In small

samples, however, this advantage generally comes at the cost of greater variance, as shown

for instance in the simulations of Li et al. (2022). In practice, VAR and LP impulse response

estimates can differ meaningfully in small samples, raising questions about robustness.

Figure C.4 presents estimates of the TFP response to a nondefense R&D shock based

on a VAR model, together with 95 percent confidence bands obtained using the wild boot-

strap procedure described in Montiel Olea and Plagborg-Møller (2021). The estimates are
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Figure C.4: TFP Impact of Nondefense R&D Shock, VAR Model Estimates

Notes: Estimates are based on an eight-variable VAR(4) model that includes all the variables from the
baseline specification: the orthogonalized nondefense narrative measure, cumulative appropriations, (log)
utilization-adjusted TFP, and the additional baseline controls described in the main text). VAR impulses
are to an innovation in the narrative measure, scaled to imply a 1 percent peak increase in government R&D
capital. The 95 percent confidence bands for the VAR impulse are percentile intervals based on the wild
bootstrap described in Section 5 of Montiel Olea and Plagborg-Møller (2021). Sample: 1948Q1-2021Q4.

obtained from an ‘internal instrument’ VAR with four lags in eight variables: the orthogo-

nalized nondefense narrative measure, (log) utilization-adjusted TFP, (log) cumulative sum

of past changes in real nondefense R&D appropriations, and the additional controls of the

baseline specification described in the main text. For comparison, the figure also shows the

point estimates from the corresponding LP model.

As Figure C.4 shows, the VAR-based impulse response confirms our key finding: after a

substantial delay, a positive shock to nondefense R&D appropriations leads to a gradual in-

crease in business-sector TFP that becomes statistically significant in the long run. Overall,

the magnitude of the VAR response is also similar to the LP response. The restrictions on

the dynamics implied by the VAR do lead to some qualitative differences with the LP-based

estimates. Specifically, the increase in TFP starts somewhat earlier and is hump-shaped.

Despite these differences, we conclude that the positive long-run TFP response is robust to

the choice of a VAR or LP-based impulse response estimator.

C.6 Robustness: Alternative LP Inference Procedures

The confidence intervals for the impulse responses are based on the equal-weighted cosine

(EWC) test recommended by Lazarus et al. (2018). Herbst and Johanssen (2022) show

in simulations that EWC delivers better empirical coverage than heteroskedasticity-and-

autocorrelation robust (HAR) inference based on Newey and West (1987) or heteroskedastic-

robust inference based on Ecker-Huber-White. Montiel Olea and Plagborg-Møller (2021)
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show that accounting for autocorrelation is redundant in lag-augmented LPs and that it

suffices to use Ecker-Huber-White standard errors. The same authors also describe a wild

bootstrap procedure that—in simulations of AR(1) models—delivers better coverage in small

samples, especially at longer horizons and when the data is highly persistent.

Figure C.5 compares various inference procedures for the impulse response of utilization-

adjusted TFP based on the (orthogonalized) narrative measure for nondefense R&D ap-

propriations. The left panel shows Ecker-Huber-White intervals and the simple intervals

assuming homoscedasticity, along with the Lazarus et al. (2018) intervals, for the baseline

specification with additional controls (same as in the bottom left panel of Figure 6). To cap-

ture a longer history of appropriations for R&D, the baseline specification includes lags of

cumulative appropriations as controls rather than lags of the narrative measures. The right

panel shows point estimates and confidence intervals based on specifications that addition-

ally include four lags of the narrative measure, i.e., the explicit lag-augmented specification

considered in Montiel Olea and Plagborg-Møller (2021). Apart from the Lazarus et al.

(2018) intervals, the right panel again shows the Ecker-Huber-White intervals as well as the

intervals based on the Montiel Olea and Plagborg-Møller (2021) wild bootstrap procedure.

The main conclusion from Figure C.5 is that the choice of inference procedures is rel-

atively unimportant. The homoscedastic and Ecker-Huber-White bands are similar to the

Lazarus et al. (2018) EWC bands. The wild bootstrap bands are meaningfully wider, but

the increase in coverage lies mostly to the north of the Lazarus et al. (2018) region. Espe-

cially at longer horizons, the lower bootstrap band is relatively close to the Lazarus et al.

(2018) band. Importantly, the finding that a shock to nondefense appropriations leads to a

statistically significant long-run increase in business-sector TFP is not affected by the choice

of inference procedures.

C.7 Impact of a Defense R&D Shock on Other Productivity/Innovation

Indicators

Figure 7 in the main text reports the impact of a nondefense R&D shock on various pro-

ductivity measures and innovation indicators. Figure C.6 reports the impact of a defense

R&D shock on the same variables. Whereas a positive nondefense R&D shock consistently

leads to increases in all productivity and innovation indicators, the same is not the case for

defense R&D shocks. Figure C.6 shows a hump-shaped transitory decline in labor produc-

tivity and no statistically or economically significant impact on potential output. There also

are transitory declines in the patent innovation index and the number of Ph.D. recipients

in STEM fields. The number of R&D researchers increases in the short run, but declines in

the longer run. There is no meaningful change in the number of technology publications,

except perhaps at longer horizons.
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Figure C.5: TFP Impact of Nondefense R&D Shock, Alternative Inference Procedures

Notes: All confidence intervals are for the 95 percent level. Left Panel : Point estimates and shaded con-
fidence intervals (Lazarus et al. (2018) HAR) are identical to those in the bottom left panel of Figure 6
(baseline specification). Right Panel : Point estimates and shaded confidence intervals (Lazarus et al. (2018)
HAR) are based on the baseline specification with four lags of the nondefense narrative measure added
to the controls. The figure also shows bootstrap intervals as described in Section 5 of Montiel Olea and
Plagborg-Møller (2021), based on 10,000 samples. Impulses are scaled to imply a 1 percent peak increase
in government R&D capital. Sample: 1948Q1-2021Q4.

C.8 Responses of Private Labor and non-R&D Capital Inputs

Figure C.7 shows estimates of the responses of other private factor inputs following positive

shocks to nondefense (panel a) and defense (panel b) R&D appropriations. The measures

of private factor inputs are from Fernald (2012). The estimates are obtained from local

projections as in (2) in the main text, with the same baseline controls and four lags of each

outcome variable added as additional controls. As in Figures 6 and 7 in the main text, the

impulse responses are scaled to imply a one percent peak increase in the total government

R&D capital stock. The first row in Figure C.7 depicts responses of labor input adjusted

for labor quality (cumulative sum of ‘dhours’ + ‘dLQ’ in F-TFP, see Appendix A). The

second row shows the responses of the business-sector non-R&D capital stock, which consists

of all types of capital excluding R&D and software (nonresidential equipment and structures,

residential business structures, and non-R&D intellectual property).

The first row in Figure C.7 shows that a nondefense R&D shock leads to little change in

(quality-adjusted) labor input in the business sector at most horizons. Towards the end of

the 15-year forecast horizon, there is a decline in labor input that is marginally statistically

significant at one or two horizons. The response of labor input to a defense R&D shock

is somewhat volatile and imprecisely estimated, with none of the estimates statistically

significantly different from zero at the 5 percent level.

The second row in Figure C.7 shows that, with a long delay, a nondefense shock leads to

a gradual and persistent increase in the business-sector non-R&D capital stock that is highly
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Figure C.6: Impact of a Defense R&D Shock on Other Productivity/Innovation Indicators

(a) Labor Productivity (b) CBO Potential Output (c) Patent Innovation Index

(d) STEM Ph.D. Recipients (e) Researchers (f) Technology Books

Notes: Estimates based on (2) using the orthogonalized narrative measure of changes in defense R&D
appropriations, see (1). Lazarus et al. (2018) HAR bands are for 95 percent confidence levels. Impulses
scaled to imply a 1 percent peak increase in government R&D capital. Sample: (a),(b),(d): 1948Q1–2021Q4;
(c): 1949Q1–2010Q4; (e): 1951Q1–2019Q4; (f): 1956Q1–1997Q4. See Appendix A for variable definitions.

statistically significant at horizons between 6 to 14 years. The peak increase in non-R&D

capital is roughly 0.2 percent and occurs after about 13 years. The response of non-R&D

capital to a defense R&D shocks shows some evidence of a transitory decline in the short

run but is overall imprecisely estimated.

The final row in Figure C.7 shows the responses of real GDP. A nondefense shock does

not lead to any economically or statistically significant change in real GDP in the short

run. In the longer run, real GDP increases by around 0.2 to 0.35 percent. The timing

and magnitude of the GDP response are overall similar to that of business-sector labor

productivity or potential output, see Figure 7 in the main text. The response of real GDP

to a defense R&D shock is positive and marginally significant at a few horizons over the first

five years, but the point estimates are imprecisely estimated at longer horizons and oscillate

between positive and negative. Consistent with the impulses to defense shocks shown in

Figures 6 and C.7, there is no evidence that defense shocks lead to a significant long-run

increase in real GDP.
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Figure C.7: Labor and non-R&D Capital Following an Increase in R&D Appropriations

a. Nondefense R&D Shock

Quality-Adjusted Labor

Non-R&D Capital

Real GDP

b. Defense R&D Shock

Quality-Adjusted Labor

Non-R&D Capital

Real GDP

Notes: Estimates based on (2) using the orthogonalized narrative measure of changes in federal nondefense
(left panel) and defense (right panel) R&D appropriations, see (1). ‘Baseline’ includes additional lagged
controls described in the main text. Lazarus et al. (2018) HAR bands are for 95 percent confidence levels.
Impulses scaled to imply a 1 percent peak increase in government R&D capital. Sample: 1948Q1–2021Q4.
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Figure C.8: Nondefense Public Capital

Notes: Estimates based on (2) using the orthog-
onalized narrative measure of changes in federal
nondefense R&D appropriations, see (1). Impulses
are scaled to imply a unit peak increase in fed-
eral nondefense R&D capital. Sample: 1948Q2–
2021Q4.

Figure C.9: S&L Structures by Function

Notes: Estimates based on (2) using the orthog-
onalized narrative measure of changes in federal
nondefense R&D appropriations, see (1). Impulses
are scaled to imply a peak increase in state and lo-
cal structures of 1.21 dollars, to match Figure C.8.
Sample: 1948Q2–2021Q4.

C.9 A Closer Look at the Public Infrastructure Response to a Nondefense

Shock

Figure 9 in the main text shows that an increase in appropriations for nondefense R&D

leads to a rise in public infrastructure, and specifically in nondefense structures. In this

section, we present further decompositions similar to those in Figure 9 to better understand

the nature of the rise in public infrastructure after a nondefense R&D shock.

The first additional decomposition considers the response of various components of total

nondefense public capital by type and level of government, i.e., federal versus state and

local (S&L) government. Figure C.8 shows that the increase in public infrastructure after

a nondefense shock is primarily driven by a rise in structures funded by state and local

governments (up to 1.19 dollars), although there is also an increase in federal infrastructure

spending on structures (up to 28 cents). Note that the total increase does not exactly add

up to the 1.58 dollar increase seen in Figure 9 because of slight differences in the regression

specifications (the lagged outcome variables yt−j on the right-hand side in (2) are different).

The main text, therefore, reports the contribution of state and local government structures

as a percentage (1.19/(1.19 + 0.28) ≈ 0.8).

Figure C.9 provides a further breakdown of the state and local government infrastructure

response into various categories based on additional detail in the BEA Fixed Assets Accounts

(Table 7.1), with quarterly values obtained by interpolation of the annual source data. The

responses, in this case, are scaled to match the peak 1.21 dollar increase in Figure C.8.

As the figure shows, the largest increase occurs in educational structures. There are also

meaningful increases in highways and streets as well as in power, water, and sewer systems.
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Figure C.10: Financing of S&L Investment in
Structures

Notes: Estimates based on (2) using the orthog-
onalized narrative measure of changes in federal
nondefense R&D appropriations, see (1). Impulses
are scaled to imply a unit peak increase in S&L
gross investment in structures. Sample: 1949Q1–
2021Q4.

The changes in all remaining types of state and local government infrastructure (‘Other

Infrastructure’) are individually relatively small.

Figure C.10 provides a breakdown of the response of investment in structures by state

and local governments according to the means of financing: Debt, federal transfers, or

current surpluses (revenues less other spending). Note that, unlike in the previous figures,

this decomposition pertains to the flow (real gross investment in structures) rather than

the stock (the capitalized real cost value of structures). The decomposition is based on the

budget constraint identity aggregated across state and local governments using data from

the BEA (NIPA Table 3.3). The impulses are scaled to imply a unit peak increase in S&L

gross investment in structures.

Figure C.10 shows that, consistent with the response of the corresponding capital stock,

a nondefense R&D shock leads to a gradual rise in state and local investment in nondefense

structures. Investment peaks after about seven years, subsequently returns to prior levels,

and towards the end of the forecast horizon, even dips slightly below the level predicted

in the absence of the nondefense R&D shock. Figure C.10 also shows that the investment

boom is not financed by increased federal transfers to state and local governments. The

latter initially fall and only revert to prior levels well after the peak in investment. For the

first couple of years, the rise in investment is accounted for by an increase in borrowing by

state and local governments. Between horizons of 4 to 10 years, the investment boom is

implicitly financed by a surplus in revenues relative to other state and local spending. The

main takeaway from Figure C.10 is that the rise in state and local investment in nondefense
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structures does not appear to be driven by increases in federal grants to state and local

governments, for instance, to increase spending on highways.

D Estimation of Production Function Elasticity: Additional Results

This section presents additional results for the estimation of the production function elas-

ticity of government R&D capital ϕ in Section 4 in the main text.

D.1 SP-IV as a Regression in Impulse Response Space

Figure D.1 provides the main intuition behind the SP-IV estimation of ϕ in (7) based on

the response to the orthogonalized narrative measure of nondefense R&D appropriations,

zND
t , using the specification in (2). The solid lines in the left panel show the response of

t̃fpt to a one standard deviation innovation in zND
t for three different values of η, and the

right panel shows the estimated response of kt, the government R&D capital stock. Both

figures show the impulse responses at one-year intervals that used for the estimation of

the production function elasticity. The left panel shows the response for the endpoints of

Ramey’s (2021) plausible range, η = 0.065 and η = 0.12; to make the dependence on η

visually clearer, the figure also shows the response for a much higher value η = 0.39, which

is the estimate in Aschauer (1989). The SP-IV estimate of ϕ in each case is simply the OLS

coefficient ϕ̂ in a regression (without intercept) of the impulse response coefficients of t̃fpt

in the left panel on those of kt in the right panel. The dashed lines in the left panel show

the resulting fitted values—ϕ̂ times the impulse response of kt—that minimize the sum of

squared residuals for each value of η. The SP-IV regression framework thus estimates the

structural parameter as the value of ϕ that best fits the relationship between t̃fpt and kt

along the impulse response trajectories. The functional form in (7) imposes very specific

assumptions on the lags between R&D spending and the TFP effects. As Figure D.1 shows,

the dynamics of the fitted TFP responses align well with those of the actual TFP responses,

such that the timing assumptions implied by the structural equation appear reasonable in

light of the responses estimated in the local projections.

SP-IV can make use of more than one set of impulse response coefficients for identifi-

cation, e.g., to both defense and nondefense shocks, in which case the inverse covariance

matrix of the identifying innovations weights the different impulse responses. The SP-IV

estimator also applies to structural equations with multiple endogenous regressors, as in

specification (9) in the main text, in which case it reduces to multiple regression in impulse

response space, see Lewis and Mertens (2023).

D.2 Simultaneous Confidence Sets

For the specifications with two endogenous regressors, i.e., (9) and (11) in the main text, the

confidence intervals reported in Tables 1 and 2 are subvector confidence sets obtained using
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Figure D.1: Illustration of the SP-IV Estimator

Response of t̃fpt
Response of kt

Notes: Solid lines show impulse response estimates (at one-year intervals) to a one standard deviation
innovation in the orthogonalized narrative measure of changes in nondefense R&D appropriations using
the baseline specification in (2) in a balanced sample. The SP-IV estimator ϕ̂ results from regressing the

impulse response coefficients of t̂fpt in the left panel on the impulse response coefficients of kt in the right
panel without intercept, see Lewis and Mertens (2023). The dashed lines in the left panel show the fitted

responses obtained by multiplying ϕ̂ by the response of kt in the right panel.

the projection method, see, e.g., Andrews et al. (2019). As an illustration, the panels in

Figure D.2 show the 68, 90, and 95 percent weak-instrument-robust confidence sets for the

full parameter vector [ϕND, ϕD] associated with the estimates reported in row [6] of Table

1. The confidence intervals reported in Table 1 for ϕ̂ND (ϕ̂D) are the largest and smallest

values of ϕ̂ND (ϕ̂ND) across all values of ϕD (ϕ̂ND) that belong to the 95 percent simulta-

neous confidence set. The simultaneous confidence sets are based on inverting the KLM

statistic of Kleibergen (2005). The latter is based on the score of the continuously updated

Anderson-Rubin statistic (or equivalently, the S-statistic of Stock and Wright (2000) for

GMM) as a function of ϕND and ϕD, see Lewis and Mertens (2023). The minimum of the

Anderson-Rubin objective does not correspond to the SP-IV point estimate, such that the

latter does not generally lie at the ‘center’ (or is even within) of the confidence sets. An

alternative estimator of (ϕND, ϕD) is the minimand of the continuously-updated Anderson-

Rubin objective function, which by construction lies at the ‘center’ of the confidence sets.

This continuously updated estimator (CUE) is marked by the blue dots in Figure D.2. As

can be seen from the figure, the CUE estimates of ϕND are all very close to the SP-IV

estimates, whereas those for ϕD are marginally larger.

Figure D.3 shows the simultaneous confidence sets for the three remaining specifications

in Table 1 that include nondefense and defense capital separately (rows [7]-[9]). For brevity,

the figure reports only the confidence sets for the specifications that assume the interme-
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Figure D.2: Simultaneous Weak-Instrument Robust Confidence Sets

(a) Intermediate η = 0.08 (b) Low η = 0.065 (c) High η = 0.12

Notes: Confidence sets based on inverting the KLM statistic of Kleibergen (2005) for the specification in
row [6] of Table 1.

Figure D.3: Simultaneous Weak-Instrument Robust Confidence Sets

(a) Using Both Shocks (b) Excluding Space (c) All Appropriations

Notes: Confidence sets based on inverting the KLM statistic of Kleibergen (2005) for the specification in
rows [7]-[9] of Table 1 for η = 0.08.

diate value of the infrastructure elasticity, η = 0.08. As can be seen from the figures, the

CUE estimate is usually close to the SP-IV estimate, and always nearly identical for the

nondefense elasticity. The simultaneous confidence sets are also very similar across speci-

fications. The exception is the specification with the narrative measure that excludes the

large appropriations for the space race, see panel (b) in Figure D.3. For that specification,

the confidence sets have highly irregular shapes, and most values of either parameter cannot

be ruled at conventional levels of confidence.

D.3 Wald Inference

In the main text, inference for the SP-IV estimates is based on the weak-instrument robust

methods for GMM described in Kleibergen (2005). Lewis and Mertens (2023) show that

the SP-IV estimator is equivalent to a restricted 2SLS estimator in a system of equations,
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Table D.1: SP-IV Elasticity Estimates with Wald Inference

Public R&D Intermediate η Low η High η

Measure Instruments ϕND ϕ/ϕD ϕ/ϕND ϕ/ϕND

[1] Total Exo ND 0.12∗∗∗
(0.08,0.16)

0.12∗∗∗
(0.08,0.17)

0.11∗∗∗
(0.06,0.15)

[2] Total Exo ND, No Space 0.14∗∗∗
(0.05,0.24)

0.14∗∗∗
(0.05,0.24)

0.13∗∗∗
(0.04,0.22)

[3] Total All ND 0.11∗∗∗
(0.07,0.16)

0.12∗∗∗
(0.08,0.16)

0.10∗∗∗
(0.06,0.14)

[4] Total Exo D −0.24
(−0.69,0.20)

[5] Total All D −0.23
(−0.67,0.21)

[6] ND/D Exo ND 0.11∗∗∗
(0.06,0.16)

−0.01
(−0.33,0.30)

0.11∗∗∗
(0.07,0.16)

0.10∗∗∗
(0.05,0.15)

[7] ND/D Exo ND/D 0.10∗∗∗
(0.05,0.14)

−0.07
(−0.35,0.21)

0.10∗∗∗
(0.06,0.14)

0.09∗∗∗
(0.05,0.13)

[8] ND/D Exo ND, No Space 0.14∗∗∗
(0.04,0.24)

0.18
(−0.75,1.10)

0.14∗∗∗
(0.04,0.25)

0.13∗∗
(0.03,0.23)

[9] ND/D All ND 0.11∗∗∗
(0.07,0.15)

−0.02
(−0.33,0.28)

0.11∗∗∗
(0.07,0.15)

0.10∗∗∗
(0.06,0.14)

Notes: See notes to Table 1 in the main text. The only difference is that the confidence intervals are based
on the Wald formulas derived under the assumption of strong identification, see Lewis and Mertens (2023).

where the number of equations is equal to the number of impulse response horizons used

for identification. Under strong identification and otherwise standard assumptions, this

formulation of the SP-IV estimator leads to conventional Wald inference formulas. It is

well known that—when identification is weak—Wald inference can suffer from large size

distortions in small samples, and the simulations in Lewis and Mertens (2023) show that

this is also the case for the SP-IV estimator. Table D.1 shows the same point estimates

as Table 1 in the main text, but reports confidence intervals based on the conventional

Wald formulas. Qualitatively, the only specification for which there are large differences in

the inference results is the one in row [8], i.e., the specification with the narrative measure

that excludes the large appropriations for the space race: The Wald-based inference points

to estimates that are highly statistically significant, whereas the weak-instrument-robust

inference result leads to the conclusion that the instrument is uninformative. The estimates

of the defense R&D capital elasticity, on the other hand, remain insignificant also under

Wald inference.

D.4 Specification with Constant Elasticities

In specification (9) in the main text, the production function elasticities of defense and

nondefense R&D capital scale with their nominal shares in total government R&D capital.
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Table D.2: Government R&D Production Function Elasticities
Alternative Specification

Public R&D Intermediate η = 0.08 Low η = 0.065 High η = 0.12

Measure Instruments ϕ̂/ϕ̂ND ϕ̂/ϕ̂D ϕ̂/ϕ̂ND ϕ̂/ϕ̂ND

[1] ND/D Exo ND 0.07∗∗
(0.02,0.13)

0.16
(−0.42,0.47)

0.07∗∗
(0.02,0.13)

0.06∗∗
(0.01,0.12)

[2] ND/D Exo ND/D 0.08∗∗
(0.01,0.12)

−0.03
(−0.30,0.37)

0.08∗∗
(0.01,0.13)

0.08∗
(−0.00,0.12)

[3] ND/D Exo ND, No Space 0.13
(−2.00,0.11)

−0.09
(−0.93,2.00)

0.13
(−2.00,0.11)

0.12
(−2.00,0.10)

[4] ND/D All ND 0.07∗∗∗
(0.02,0.13)

0.13
(−0.41,0.43)

0.07∗∗∗
(0.02,0.13)

0.06∗∗
(0.01,0.12)

Notes: Rows [1]-[4] show SP-IV estimates of ϕND (nondefense) and ϕD (defense) in (D.1). All specifi-
cations include the baseline set of lagged controls described in Section 3. Numbers in parentheses are
weak-instrument robust confidence intervals at the 5 percent significance level based on inverting the KLM
statistic of Kleibergen (2005). Test inversion is limited to a grid with endpoints −2 and 2, † denotes in-
tervals constrained at these endpoints. Subvector inference is based on the projection method. ∗, ∗∗ and
∗ ∗ ∗ denote statistical significance at 10, 5 and 1 percent levels respectively. ‘Exo ND/D’ denotes the
orthogonalized narrative measure of exogenous changes in nondefense/defense R&D appropriations. ‘All
ND’ denotes the orthogonalized series of all changes in nondefense/defense R&D appropriations, ignoring
our narrative classification. ‘No Space’ indicates that the instrument is also orthogonalized to all changes
in space appropriations between 1958 and 1963.

The following specification instead imposes constant elasticities:

∆t̃fpt = ϕND

(
s̄ND∆kND

t

)
+ ϕD(1− s̄ND)∆kD

t +∆wt(D.1)

We multiply the regressors by the average shares, s̄ND and 1 − s̄ND, over the estimation

sample, such that the estimates are on a comparable scale to those reported in Table 1 in the

main text. The estimation results based on (D.1) are reported in Table D.2. The estimates

can be multiplied by s̄ND ≈ 0.5 to obtain the elasticities with respect to ∆kND
t and ∆kD

t .

The main difference with the results in the main text is that the point estimates for ϕND

are smaller. The only exception is in row [3], but this is also the specification for which the

estimates are very imprecise. Ignoring the results in row [3], the point estimates of ϕND are

around 0.07, as compared to 0.12 under the specification discussed in the main text. The

estimates of ϕND are relatively precisely estimated (except in row 3]), and they are highly

statistically significant. Just as in the main text, the estimates of ϕD vary considerably

across the specifications. They are always imprecise and never statistically distinguishable

from zero.

The difference in the estimates of ϕND between the specification in equation (9) and the

one in (D.1) is not too surprising, given that the share of nondefense R&D varies considerably

over the estimation sample. Given that the stock of nondefense R&D capital is small in the

beginning of the sample, the log differences ∆kND
t are very large early on, which leads to

lower overall estimates of ϕND. Weighting by the shares as in the baseline specification (9)
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in the main text attenuates the influence of these early observations, and should therefore

lead to more accurate estimates for the whole sample.

Even if one would prefer the lower estimates in Table D.2, they do not change the overall

conclusion that the rate of return on nondefense government R&D is very high. Dividing

the estimates in rows [1], [2], and [4] of Table D.2 by 0.06 (the average ratio of government

R&D capital to GDP), the implied rates of returns range from 100 to 150 percent.

Finally, note that the point estimates of ϕND in row [3] of Table D.2 lie outside of the

reported weak-instrument-robust confidence intervals. As explained in Appendix D.2, this

is possible with the confidence sets based on Kleibergen (2005) as they are not necessarily

centered on the GMM estimates.

D.5 Different Depreciation Rates

The quarterly measures of the government R&D capital stocks that we use throughout the

analysis closely follow the methodology of the BEA, which publishes the annual totals as

part of the ‘Fixed Assets’ tables. For certain categories of government R&D, the BEA

estimates depreciation rates based on observing a progression of specific R&D investments

with observable outcomes on the effective life of the R&D. For other categories of government

R&D, the BEA uses the same depreciation rates as for private R&D services.

Given the inherent difficulties in measuring the obsolescence of intellectual capital, we

verify how the estimates of the production function elasticities and rates of return change

under different assumptions about depreciation rates on government R&D. Specifically, we

capitalize the various categories of government R&D investment by multiplying the annual

BEA depreciation rates for each category by a scaling factor x = 0, 0.5, 1, 1.5 or 2. On

average across (weighted) categories and years, the BEA depreciation rate is δ ≈ 0.16.

When x = 0, all depreciation rates are zero. When x = 2, all depreciation rates are twice

as large as those used by the BEA, therefore averaging to 2 × δ ≈ 0.32. For simplicity, we

keep the initial values of each subcomponent of the R&D capital stock constant to the 1946

values in the BEA tables.

Figure D.4 shows how the estimation results (all assuming η = 0.08) change with the

assumed depreciation rates. The left panel shows the estimates of the production function

elasticity, obtained exactly as in row [1] of Table 1. The right panel shows the estimates of

the net rate of return, obtained by estimating the gross rate of return exactly as in row [1]

of Table 2 and subtracting the (scaled) average depreciation rate. The error bars mark the

95 percent weak-instrument-robust confidence intervals.

As the left panel of Figure D.4 shows, the production function elasticity estimates are

decreasing in the assumed depreciation rate. Intuitively, assuming a larger depreciation rate

implies a smaller estimate of the net stock of R&D capital, and therefore, a one percent

increase in the capital stock corresponds to a smaller increase in investment expenditures.
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Figure D.4: Nondefense Government R&D,
Elasticity and Return Estimates Assuming Different Depreciation Rates

(a) Production Function Elasticity (b) Net Rate of Return

Notes: SP-IV estimates of ϕ (left) and rates of return ρ (right) based on (7) and (10), respectively. Estimates
are based on the (orthogonalized) narrative measure of nondefense appropriations as in rows [1] of Table
1 and 2, respectively, and assuming the intermediate value η = 0.08. Error bars are 95 percent weak-
instrument-robust confidence intervals based on inverting the KLM statistic of Kleibergen (2005).

As mentioned in the main text, the BEA depreciation rates result in elasticity estimates

that are centered around 0.12. Assuming zero depreciation raises the point estimate of the

elasticity to 0.20, whereas doubling the depreciation rates lowers the estimate to 0.10. The

right panel of Figure D.4 shows that the net rate of return is increasing in the assumed

depreciation rate. Although the elasticity estimates are decreasing in the depreciation rate,

larger depreciation rates also lower the capital stock to GDP ratio estimate, which translates

to higher rates of return. Using the BEA estimates, the point estimate of the net rate of

return is (2.13− 0.16)× 100 = 197 percent. This estimate drops to 125 percent, assuming

zero depreciation. Doubling the depreciation rates increases the net return estimate to 237

percent. Even if one would prefer to assume a higher or lower average depreciation rate on

intellectual capital, doing so would not change the main conclusion that the rate of return

on nondefense government R&D is relatively high.

Online Appendix References

Alexopoulos, Michelle (2011). “Read All about It!! What Happens Following a Technology

Shock?” In: American Economic Review 101.4, pp. 1144–79.

Andrews, Isaiah, James H. Stock, and Liyang Sun (2019). “Weak Instruments in Instrumen-

tal Variables Regression: Theory and Practice”. In: Annual Review of Economics 11.1,

pp. 727–753.

Antolin-Diaz, Juan and Paolo Surico (2022). The Long-Run Effects of Government Spending.

Discussion Paper 15062. Centre for Economic Policy Research.

24



Aschauer, David Alan (1989). “Is public expenditure productive?” In: Journal of Monetary

Economics 23.2, pp. 177–200.

Bloom, Nicholas, Charles I. Jones, John Van Reenen, and Michael Webb (2020). “Are Ideas

Getting Harder to Find?” In: American Economic Review 110.4, pp. 1104–1144.
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