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KILIAN, PLANTE & RICHTER: GEOPOLITICAL OIL PRICE RISK

1 INTRODUCTION

Time-variation in geopolitical risk is widely considered an important determinant of fluctuations

in economic activity. The financial press, international organizations, rating agencies and the in-

vestment community all vie to assess these risks and their impact on the economy. Clearly, major

geopolitical disruptions matter not only when they occur on rare occasions, but also when in-

vestors and consumers make decisions in anticipation of the possibility of such events. This fact

is nowhere more apparent than when it comes to geopolitical risk in energy markets. For exam-

ple, many market analysts list risks to energy security as one of the top geopolitical risks of 2024.

This assessment is driven in no small part by concerns about OPEC quota decisions, global access

to Russian oil amidst Ukrainian attacks on Russian oil infrastructure and efforts to tighten the G7

price cap, dwindling strategic oil reserves, disruptions of oil shipments in the Red Sea and possibly

in the Persian Gulf, and concerns about a widening conflict between Israel and Iran.

There is a deep-rooted belief in macroeconomics that higher oil price uncertainty driven by

geopolitical risk lowers domestic investment and consumption and hence real GDP.1 The focus

of our paper is to develop a better understanding of how time-variation in geopolitical risk in

oil markets affects oil price uncertainty and economic fluctuations. Our analysis recognizes that,

while downside geopolitical risk raises oil price uncertainty, not all surges in oil price uncertainty

are driven by geopolitical events. In particular, a major downturn in the economy or simply the

possibility of such a downturn may cause surges in oil price uncertainty.

We present results from a calibrated dynamic stochastic general equilibrium (DSGE) model

of the global economy that is designed to address the question of how geopolitical oil price risk

is linked to economic fluctuations. The model includes risk averse economic agents, an oil pro-

1For example, Bernanke (1983), Lee et al. (1995), Ferderer (1996), Edelstein and Kilian (2009), Elder and Serletis
(2010), Baumeister and Kilian (2016a), Ready (2018), Gao et al. (2022), and Alfaro et al. (2024) discuss the impact
of oil price uncertainty on U.S. real activity, while Kilian (2009), Jo (2014), and Cross et al. (2022) discuss its impact
on global real activity. The perception that oil price volatility matters for the transmission of oil price shocks to the
economy also helped spawn a large literature on the asymmetric transmission of oil price shocks (see, e.g., Bernanke
et al., 1997; Davis and Haltiwanger, 2001; Hooker, 1996, 2002; Kilian and Vigfusson, 2011; Leduc and Sill, 2004;
Lee and Ni, 2002; Mork, 1989; Ramey and Vine, 2010).
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duction sector, oil storage, and limited substitutability between oil and capital. The price of oil is

determined endogenously. Since the model is global, we abstract from oil imports and exports and

international capital flows.2 One key difference from earlier studies is that our model allows for

both macroeconomic and oil price uncertainty and that uncertainty is determined endogenously.

Building on Gourio (2012), downside risk emanates from macroeconomic and oil production

disasters of stochastic length that occur with time-varying probabilities. Macroeconomic disasters

are modeled as sharp declines in economic growth and may be viewed as the result of an economic

crisis such as the financial crisis of 2008 or the Covid-19 pandemic of 2020. Oil production

disasters are modeled after historical events such as the Arab-Israeli War in 1973, the Iranian

Revolution in 1979, or the invasion of Kuwait in 1990. The size (5% drop in global oil production)

and duration (3 quarters on average) of these disasters is set to match the behavior of global oil

production during major geopolitical events in the oil market over the past 50 years.

We find that shocks to the probability of an oil production disaster have persistent, albeit mod-

est, effects on oil inventories, the price of oil, and oil price uncertainty, whether this disaster is

realized or not. These shocks also have modest effects on investment and output, and they are not

a major driver of fluctuations in macroeconomic aggregates because large probability shocks are

rare. Nor do they have much of an effect on macroeconomic uncertainty. Shocks to the probability

of a growth disaster, which increase macroeconomic uncertainty, in contrast have larger effects on

both the price of oil and the macroeconomy. These shocks also play a major role in the determina-

tion of oil price uncertainty, which helps explain why higher oil price uncertainty has historically

been associated with lower real activity. Our analysis highlights that this association should not be

interpreted as evidence of a causal link.

We also explore the possibility that agents might be concerned about larger oil production dis-

asters than observed historically. While this increases the importance of geopolitical oil price risk,

even when considering a temporary 20% drop in global oil production, which roughly corresponds

2While a multi-country model would allow us to assess the differential effects of oil production disasters across
countries, our focus in this paper is the aggregate effects of oil production disasters on the global economy rather than
their distributional implications.
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Figure 1: Sources of uncertainty
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to the cessation of oil supplies from the Persian Gulf, it takes a large increase in the probability of

this disaster or its realization to cause sizable recessionary impacts.

Incorporating downside risk is crucial for our results. While increases in oil price uncertainty

may alternatively be explained by stochastic volatility shocks to oil production growth, these

shocks have very small effects on the economy because they do not generate risk tilted to the

downside. We also show that the ability to store oil plays a central role. Without storage the re-

sponses of both oil market variables and macroeconomic aggregates to higher oil production risk

tend to be muted, suggesting that DSGE models without storage fail to capture the full effects of

shifts in oil production risk. Oil storage also matters for the responses of the global economy to

growth disaster probability shocks, underscoring the importance of jointly modeling oil production

disasters and macroeconomic disasters.

Our model shows that changes in oil price uncertainty need not be an indication of exogenous

shifts in the uncertainty about future oil supplies. As illustrated in Figure 1, oil price uncertainty

also reflects exogenous macroeconomic uncertainty shocks, mirroring the standard result that the

real price of oil responds to shifts in the demand for oil. In addition, oil price uncertainty responds

to level shocks in the oil market and the macroeconomy, such as realizations of disasters. Thus, not

only are level and uncertainty shocks not the same, as implicitly assumed in VAR-GARCH models,

but the effects of a level shock are not separable from those of an uncertainty shock, as assumed

in VAR models with stochastic volatility. Similarly, it does not make sense to employ recursive
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linear VAR models with oil price uncertainty either ordered first or last, since oil price uncertainty

is simultaneously determined with macroeconomic aggregates. These results call into question a

large body of empirical work that has produced seemingly robust evidence of large recessionary

effects of oil price uncertainty shocks and shaped the policy debate about geopolitical risk.

Related Literature Our work relates to several strands of the literature. First, it contributes to the

large literature on the effects of uncertainty shocks on the macroeconomy (e.g., Berger et al., 2020;

Bernstein et al., 2024; Bianchi et al., 2018; Bloom, 2009; Bloom et al., 2018; Fernández-Villaverde

et al., 2015, 2011; Gourio, 2012; Jurado et al., 2015; Leduc and Liu, 2016; Ludvigson et al.,

2021) by focusing on the interaction between macroeconomic and oil price uncertainty, which

has received little attention to date. We show that modeling geopolitical oil production risk and

macroeconomic risk jointly is necessary for understanding the evolution of oil price uncertainty.

Second, our analysis contributes to the literature making the case that oil price uncertainty

shocks driven by geopolitical events are recessionary (e.g., Alfaro et al., 2024; Başkaya et al., 2013;

Bernanke, 1983; Drakos and Konstantinou, 2013; Gao et al., 2022; Guo and Kliesen, 2005; Ready,

2018) and affect oil production and storage (e.g., Cross et al., 2022; Kellogg, 2014). We examine

this question within a general equilibrium model with an endogenous price of oil and endogenous

oil price uncertainty. Unlike earlier DSGE studies with stochastic volatility shocks to either oil

production or the price of oil, we account for the fact that geopolitical oil price risk is inherently

one-sided and reflects the stochastic arrival of oil production disasters driven by geopolitical events.

We find that shifts in the probability of an oil production disaster are associated with changes in

oil price uncertainty. However, they have modest effects on real activity and are too infrequent to

generate much volatility in macroeconomic aggregates.

Third, we contribute to the literature emphasizing the endogeneity of fluctuations in the price

of oil with respect to macroeconomic aggregates (e.g., Braun, 2023; Kilian, 2009; Kilian and Mur-

phy, 2014; Zhou, 2020). Whereas this earlier literature focused on showing that the level of the real

price of oil is endogenously determined by oil demand and supply, our analysis shows that oil price

uncertainty responds to both level and uncertainty shocks to macroeconomic aggregates, compli-
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cating the identification of oil price uncertainty shocks. These findings have important implications

for empirical work seeking to establish the macroeconomic effects of shocks to oil price uncertainty

(e.g., Cross et al., 2022; Elder and Serletis, 2010; Ferderer, 1996; Gao et al., 2022; Jo, 2014).

Outline The remainder of the paper is organized as follows. In Section 2, we highlight the

importance of geopolitical risk for the economy. We propose an index of the uncertainty in the

real price of oil building on Jurado et al. (2015), trace its evolution since the 1970s, and discuss

the relationship between downside risk in oil production and oil price uncertainty. We also show

that our index is highly correlated with the OVX measure of implied volatility when that index is

available. Section 3 reviews why many economists expect oil price uncertainty to slow economic

activity. Section 4 introduces a calibrated DSGE model of the global economy that elucidates

the determination of oil price uncertainty and macroeconomic uncertainty. In Section 5, we study

the relationship between oil price uncertainty and macroeconomic uncertainty, the transmission

of uncertainty shocks to the economy, and the ability of these shocks to explain fluctuations in

economic growth and the oil price. Our analysis also sheds light on the key economic mechanisms

in the model, the importance of modeling downside risk, and the sensitivity of our results to the

specification of the oil production disaster. In Section 6, we discuss the relationship between our

work and earlier DSGE models of the transmission of oil price uncertainty shocks. Section 7

discusses implications of our analysis for empirical models of the effects of oil price uncertainty

shocks. The concluding remarks are in Section 8.

2 MEASURING OIL PRICE UNCERTAINTY

There has been growing interest in the impact of shifts in geopolitical risk in global commodity

markets, in general, and in the oil market in particular in recent years. Historically, increases in oil

price risk have been associated, for example, with uncertainty about the implications of the Iranian

Revolution in 1979 and the outcome of the invasion of Kuwait in 1990. More recently, there was a

surge in uncertainty about the possibility of Russia refusing to sell oil to Europe after the invasion
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of Ukraine in 2022 and then about the effectiveness of a price cap on Russian oil exports. Other

recent sources of oil price uncertainty have included concerns in 2024 about a war between Israel

and Iran disrupting global oil exports, changes in OPEC production quotas, and the ability of U.S.

shale oil producers to maintain their production increases.

The focus of our paper is to develop a better understanding of how time-variation in geopolitical

risk in oil markets affects oil price uncertainty and hence economic fluctuations. Our starting point

is the downside risk to oil production caused by these events. These downside risks are inherently

subjective because they relate to events that have not occurred. In contrast, oil price uncertainty

can be quantified using econometric methods. This does not make oil price uncertainty a good

indicator of geopolitically driven downside risk in oil production, however, because these two

variables need not go hand-in-hand. While downside geopolitical risk to oil production raises oil

price uncertainty, not all surges in oil price uncertainty are driven by geopolitical events.

Figure 2 quantifies the uncertainty about the real price of oil in global oil markets since the

modern oil market emerged in the early 1970s. We follow Jurado et al. (2015) in measuring oil

price uncertainty (Upo) as the one-quarter ahead conditional volatility of the unpredictable com-

ponent from a predictive model of the real price of oil.3 This definition highlights the fact that

what matters for economic decision making is not whether the price of oil has become more or less

variable, but whether it has become more or less predictable.4 The real price of oil is defined as the

U.S. refiners’ acquisition cost for oil imports deflated by the implicit GDP deflator and is plotted

in Appendix C for reference. The predictable component of the growth rate of the real price of oil

is approximated using a diffusion index based on largely the same set of variables used by Jurado

et al. (2015), augmented by the real price of oil, updated, and aggregated to quarterly frequency.

We estimate the uncertainty about the price of oil from 1974Q4 to 2023Q4. There are large

spikes in 1979, 1986, and 1990 at the time of the Iranian Revolution, the collapse of OPEC, and the

invasion of Kuwait. Not all geopolitical events are associated with surges in oil price uncertainty,

3Details of the construction of the uncertainty measure can be found in Appendix A.
4The definition of uncertainty in Jurado et al. (2015) is closely related to the formal measure of predictability in

Diebold and Kilian (2001), since lack of predictability implies uncertainty.
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Figure 2: Measures of oil price uncertainty
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Notes: All series are indices. The solid line shows the uncertainty about the percent change in the
real price of oil obtained by deflating the U.S. refiners’ acquisition cost for oil imports by the U.S.
CPI for all urban consumers. The method used to quantify this uncertainty is based on Jurado et al.
(2015). The dotted line is the option-implied crude oil price volatility index (OVX) published by
the Chicago Board Options Exchange. The dash-dotted line shows the (rescaled) text-based oil
price uncertainty index in Abiad and Qureshi (2023). The dashed line is the quarterly average of
the historical GPR series in Caldara and Iacoviello (2022).

however. For example, neither the outbreak of the Iran-Iraq War in late 1980 nor the outbreak of

the Israel-Hamas War in the last quarter of 2023 had a discernible impact on the index.5

The largest spike in oil price uncertainty in 2008 was not driven by geopolitical risk, but by

macroeconomic risk created by the Great Recession. Similarly, the surge in oil price uncertainty

in 2015 appears to be driven by market forces rather than geopolitics (see Baumeister and Kilian,

5Our analysis of oil price uncertainty cannot be extended back further because the U.S. refiners’ acquisition cost
for crude oil imports we use as a proxy for the global price of oil is only available starting in early 1974. While the
WTI price of oil is available much further back, that price only captures the domestic price of oil in the United States.
Since the WTI price remained regulated until the early 1980s and because arbitrage between the U.S. oil market and
the global oil market temporarily broke down during the U.S. shale oil boom in the 2010s, the WTI price is not a good
proxy for the global price of oil even after 1974. These problems are compounded in the pre-1974 era. The nominal
WTI price of oil price prior to 1974 was fixed for extended periods, followed by discrete jumps, reflecting the regula-
tion of the U.S. oil market. As a result, not only is there a major structural change in the distribution of the real price of
oil in late 1973, but there is a structural break in the predictive correlation between U.S. real GDP growth and the real
price of oil. Combining the pre- and post-1974 oil price data thus would be inappropriate (see Alquist et al., 2013).

7



KILIAN, PLANTE & RICHTER: GEOPOLITICAL OIL PRICE RISK

2016b), as was a smaller spike during the Asian Financial Crisis of the late 1990s. Sometimes,

geopolitical events coincide with surges in macroeconomic risk, as was the case in early 2020

when the Covid-19 recession occurred at the same time as the Saudi price war in the oil market or

in 1979 when rising geopolitical uncertainty coincided with uncertainty about monetary policy.

An alternative way to measure oil price uncertainty is to use the implied volatility index (OVX)

published by the Chicago Board Options Exchange. While these data are only available starting in

2007, we find a correlation of 0.71 between our index and the OVX when both series are available.6

Figure 2 also shows that our oil price uncertainty index differs systematically from the geopo-

litical risk (GPR) index of Caldara and Iacoviello (2022), which quantifies the newspaper coverage

of geopolitical events not limited to oil markets. The GPR index does not capture oil price un-

certainty associated with macroeconomic risk, nor does it capture variation in oil price uncertainty

clearly driven by geopolitical risk in oil markets. For example, the direction of these indices differs

in the early 1980. In addition, the changes in these indices are quite different, and the correlation

between the two indices is close to zero. Similarly, the text-based oil price uncertainty index in

Abiad and Qureshi (2023) based on the methodology in Baker et al. (2016) differs substantially

from our data-based index. The low correlation of 0.3 with our index suggests that the text-based

oil price uncertainty index fails to capture changes in the predictability of the real price of oil.

3 WHY ECONOMISTS THINK OIL PRICE UNCERTAINTY MATTERS

Interest in fluctuations in oil price uncertainty dates to the mid-1980s. Economists at the time ob-

served that the economy entered a steep recession after the 1979/80 oil price surge, but a similarly

large drop in the price of oil in 1986 did not cause a large economic expansion. This fact is consis-

tent with two mutually exclusive narratives. One is that the relationship between oil prices and the

U.S. economy is linear, which implies that the effect of oil price shocks on the economy is modest

at best and that the recession in the early 1980s is explained in substantial part by other shocks

6In related work, Gao et al. (2022) derive an index similar to the OVX series using oil options back to 1990Q1.
The relationship between these indices is similar over the extended sample.
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(e.g., Barsky and Kilian, 2002). This explanation is consistent with DSGE models of the trans-

mission of oil price shocks that predict that a rising price of oil will only modestly slow growth in

oil-importing economies, as consumers’ income is reduced and firms face higher production costs,

and, conversely, falling oil prices will only modestly stimulate growth in oil-importing economies

(e.g., Backus and Crucini, 2000).7

The other narrative is that this relationship is nonlinear with positive oil price shocks having

disproportionately larger effects on the economy. Macroeconomists for many years have been

partial to this interpretation. A leading explanation of the nonlinearity required to explain the

disproportionately large effect of positive oil price shocks and the negligible effects of negative oil

price shocks, is that the rise in oil price uncertainty associated with the 1979/80 oil price surge

caused consumer spending and business fixed investment to drop, amplifying the effects of rising

oil prices, whereas in 1986 an increase in oil price uncertainty associated with the fall in oil prices

largely offset the stimulus from lower oil prices.

The theoretical justification for this explanation relies on the real options theory of investment

in Bernanke (1983) as well as the effect of rising uncertainty on precautionary savings and con-

sumer spending (e.g., Başkaya et al., 2013; Edelstein and Kilian, 2009; Plante and Traum, 2012).

A closely related third argument is that firms build oil inventories when oil price uncertainty rises,

which raises the real price of oil, lowers oil consumption, and hence depresses economic activity

(e.g., Cross et al., 2022; Gao et al., 2022; Kilian, 2009; Kilian and Murphy, 2014).

3.1 REAL OPTIONS THEORY The most commonly cited reason why oil price uncertainty shocks

matter for economic activity was articulated by Bernanke (1983) in a partial equilibrium setting.8

Bernanke’s point is that—to the extent that the cash flow from an irreversible investment project

depends on the price of oil or its derivatives—all else equal, increased uncertainty about the price

of oil prompts firms to delay investments. As a result, investment expenditures drop and real output

7There have been many attempts to design macroeconomic models that amplify the transmission of oil price shocks
(e.g., Aguiar-Conraria and Wen, 2007; Atkeson and Kehoe, 1999; Finn, 2000; Rotemberg and Woodford, 1996). These
theoretical models are not necessarily supported by the data, however. More importantly, being able to generate a larger
recession after 1979/80 makes it even more difficult to explain the absence of an economic expansion in 1986.

8For related discussion of the effects of uncertainty shocks more generally see Pindyck (1991) and Bloom (2014).
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declines. Uncertainty for this purpose may be measured by the expected conditional volatility of

the real price of oil over the relevant investment horizon. Exactly the same reasoning applies to

purchases of energy-intensive consumer durables such as cars (see Edelstein and Kilian, 2009).

There are several caveats to this application of real options theory. First, the quantitative impor-

tance of this cash flow channel depends on how important the real price of oil is for investment and

durable consumption decisions and on the share of such expenditures in aggregate spending. For

example, it seems intuitive that uncertainty about the price of oil would be important for decisions

about oil drilling in Texas (see Kellogg, 2014). It is less obvious that it would be as important for

investment in other sectors of the economy such as textile production or information technology,

the expected profitability of which does not depend as much on oil prices.

Second, there is reason to believe that for longer-term investment projects, the variation over

time in the uncertainty about the real price of oil is small. Consider an airline purchasing new

planes that are expected to fly for 20 years. The cash flow from this investment clearly depends

on fuel prices and an increase in expected fuel price uncertainty, all else equal, should cause the

airline to delay the investment. However, the predictable component of the variance of the real

price of oil quickly reverts to the unconditional variance at longer horizons, so one would not

expect variation in the conditional variance at a monthly or quarterly frequency to have a large

effect on the investment decision.

Third, Bernanke (1983) takes the real price of oil as exogenously given. This simplifying as-

sumption does not hold in practice, complicating the analysis. The concern is that we may attribute

to oil price uncertainty the effects of macroeconomic uncertainty, which is more likely to affect the

cash flow from the investment. As discussed in Section 4.4, it is also unclear whether the impor-

tance of the real options channel survives in general equilibrium. Thus, the overall importance of

this channel for the aggregate economy is open to question.

3.2 PRECAUTIONARY SAVINGS A complementary reason first articulated in Edelstein and Kil-

ian (2009) is that households’ increased uncertainty about their future income in the wake of un-

expected changes in the real price of oil will cause an increase in precautionary savings. In this
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interpretation, oil price uncertainty may affect a wide range of consumer expenditures. This argu-

ment has subsequently been formalized in Plante and Traum (2012) and Başkaya et al. (2013).

While a response of precautionary savings to oil price uncertainty shocks may seem persuasive

in a partial equilibrium setting, its quantitative importance becomes less obvious when moving to

general equilibrium models. For example, in many general equilibrium models with stochastic

volatility shocks, consumption barely declines or even increases in response to higher uncertainty

(e.g., Born and Pfeifer, 2021; de Groot et al., 2018).

3.3 PRECAUTIONARY INVENTORY DEMAND A third channel by which increased oil price un-

certainty can reduce economic activity operates through precautionary demand for oil inventories.

This channel was introduced in Kilian (2009) and expanded on in Kilian and Murphy (2014) and

Cross et al. (2022). These studies emphasized that higher precautionary demand driven by in-

creases in oil price uncertainty, all else equal, will raise the real price of oil and reduce global

economic activity by discouraging oil consumption.9 DSGE models incorporating oil storage have

been presented in Olovsson (2019) and Gao et al. (2022). The latter study considers stochas-

tic volatility shocks to oil production and finds that firms increase their oil inventory holdings in

response to an increase in oil price uncertainty.

4 A MODEL OF THE PROPAGATION OF UNCERTAINTY SHOCKS

In this section, we introduce a DSGE model of the global economy designed to elucidate the

determinants of oil price uncertainty and to uncover the macroeconomic implications of downside

risk. Focusing on the global economy allows us to sidestep the complications involved in modeling

oil importing and exporting economies and to concentrate on the key research questions.

4.1 ENVIRONMENT The model is a nonlinear stochastic growth model augmented to include

oil production. Oil is used as an intermediate input by a representative firm that produces a final

9This analysis in turn builds on the theoretical insights in Alquist and Kilian (2010) of how mean-preserving shifts
in the uncertainty about future oil supply shortfalls affect the real price of oil through inventory accumulation.
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good. The model allows for precautionary savings as well as oil storage, which has been shown

to play an important role in driving fluctuations in oil prices (see Kilian and Murphy, 2014). The

distinguishing feature of the model is that it includes downside risk to both oil production and

output growth. While downside risk to oil production can be thought of as arising from geopolitical

events, downside risk to the macroeconomy involves rare, sharp economic downturns, such as the

Great Recession or the COVID-19 Recession that are not otherwise captured by the model.

We follow Gourio (2012) in modeling such events as disasters that arrive with a time-varying

probability.10 Time-variation in the probability of oil production and output growth disasters in-

duces exogenous variation in oil price uncertainty and macroeconomic uncertainty. While the idea

of modeling downside risk in the economy as growth disasters with time-varying probability is not

new, we are the first to apply this approach to modelling geopolitical risk in the oil market.11 One

advantage of this approach compared to the more traditional approach of subjecting oil produc-

tion to a stochastic volatility shock is that it accounts for the fact that the risk agents are typically

concerned with in practice is not two-sided. Rather these risks involve a sharp reduction in oil

production. Such rare disasters matter not only because of their impact when they occur, but, more

importantly, because agents’ behavior reflects the anticipation of these disasters even when they

are not realized in the data.

Productivity and Growth Disasters The growth rate of productivity, gt = at/at−1, follows

ln gt = ln ḡ + σgεg,t − ζg(v
g
t − π̄g1), εg,t ∼ N(0, 1),

where ḡ is the steady-state growth rate. The indicator variable vgt equals 1 if a growth disaster

occurs and 0 otherwise. The transition matrix for vgt is summarized by

Pr(vgt+1 = 1|vgt = 1) = q̄g, Pr(vgt+1 = 1|vgt = 0) = pgt ,

10Applications of disaster risk include Barro and Ursúa (2012), Gourio (2013), Gourio et al. (2013), Wachter (2013),
Shen (2015), Farhi and Gabaix (2016), Olovsson (2019), Berger et al. (2020), Kim (2022), and Kilian et al. (2024).

11Olovsson (2019) uses a related approach, except his model treats the probability of an oil disaster as constant.
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where the probability of a growth disaster follows

ln pgt = (1− ρgp) ln p̄
g + ρgp ln p

g
t−1 + σgpε

g
p,t, εgp,t ∼ N(0, 1).

The size of the disaster is determined by ζg, and π̄g1 = p̄g

1+p̄g−q̄g is the unconditional probability of

the disaster. Following Gourio (2012), capital is destroyed when the disaster occurs. As in that

paper, we use a broad interpretation of capital destruction that can represent a sharp reduction in

capital quality due to the loss of intangible capital during economic downturns or the destruction of

physical capital during wars, natural disasters, or sectoral reallocations. Let kt denote the inherited

stock of capital and it denote investment. The capital stock evolves according to

kt+1 = e−ζgvg,t+1((1− δ)kt + it − ϕ(it/kt)kt).

The functional form of the adjustment cost follows Jermann (1998) and is given by

ϕ(it/kt) = it/kt − (µ1 +
µ2

1−1/ν
(it/kt)

1−1/ν),

where µ1 = (ḡ − 1 + δ)/(1− ν) and µ2 = (ḡ − 1 + δ)1/ν .

Final Goods Firm A representative firm maximizes profits by choosing investment (it), capi-

tal (kt+1), labor (nt), and oil (ot) inputs. Following Kim and Loungani (1992) and Backus and

Crucini (2000), the firm produces a final good yt using a Cobb-Douglas technology that aggregates

labor and capital services, which are produced using a normalized CES production function that

aggregates capital and oil. The firm’s profit maximization problem is given by

Vt = max
it,kt+1,nt,ot

yt − it − potot − wtnt + Et[xt+1Vt+1]

subject to

kt+1 = e−ζgvg,t+1((1− δ)kt + it − ϕ(it/kt)kt),

yt = y0(atnt)
1−ξ ((1− α)(kt/k0)

1−1/σ + α(ot/o0)
1−1/σ

)ξ/(1−1/σ)
,

where σ is the elasticity of substitution between capital and oil, δ is the depreciation rate of capital,

1−ξ is the share of labor in gross output, and α controls the share of oil in the capital services aggre-
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gate. The scalars y0, k0, and o0 are set so that α is equal to the cost share of oil in the capital services

aggregate. These normalizations do not affect the results but simplify the model calibration.12

The first-order conditions for the firm’s problem are given by

wt = (1− ξ)yt/nt,

pot = ξα (ot/o0)1−1/σ

(1−α)(kt/k0)1−1/σ+α(ot/o0)1−1/σ
yt
ot
,

Et[xt+1r
i
t+1] = 1,

where

rit+1 ≡ e−ζgvg,t+1(rkt+1 + (1− δ + µ1 +
µ2
ν−1

(it+1/kt+1)
1−1/ν)pkt+1)/p

k
t ,

rkt ≡ ξ(1− α) (kt/k0)1−1/σ

(1−α)(kt/k0)1−1/σ+α(ot/o0)1−1/σ
yt
kt
,

pkt ≡ 1
1−ϕ′(it/kt) =

1
µ2
( it
kt
)1/ν .

Oil Production and Oil Disasters The production of oil is exogenous and given by

ost = aotet.

This assumption is commonly used in DSGE models of the oil market, given the paucity of data

for the oil sector. The permanent component, aot , reflects factors that influence the productive

potential of the oil sector, including the evolution of oil reserves and technological progress that

increases the ability of the sector to extract oil from current reserves. We include a shock to this

permanent component to allow for productivity shocks in the oil sector not related to geopolitical

oil supply disruptions. The transitory component reflects temporary changes in the production of

oil driven by exogenous geopolitical events. Oil production disasters are modeled as transitory,

given evidence that geopolitical supply disruptions historically have not had long-lasting effects

on global oil production, as discussed in the calibration section.

The permanent component is cointegrated with productivity in the rest of the economy,

aot = κ0g
κ1
t ϵ

κ2
t−1a

o
t−1 exp(σgoεgo,t)

12A more detailed discussion of normalized CES production functions can be found in Klump et al. (2012).
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where ϵt = at/a
o
t , κ1 determines the impact response of a growth shock on aot , and κ2 affects

the speed at which aot converges to at. This setup allows for a slow response of oil production to

productivity growth shocks in the rest of the economy, which is a key feature of the data.13

The transitory component of global oil production is given by

ln et = ln ē− ζe(v
e
t − π̄e1).

The indicator variable vet equals 1 if an oil production disaster occurs and 0 otherwise. The transi-

tion matrix for vet is summarized by

Pr(vet+1 = 1|vet = 1) = q̄e, Pr(vet+1 = 1|vet = 0) = pet ,

where the probability of an oil disaster follows

ln pet = (1− ρep) ln p̄
e + ρep ln p

e
t−1 + σepε

e
p,t, εep,t ∼ N(0, 1).

The size of the disaster is determined by ζe, and π̄e1 = p̄e

1+p̄e−q̄e is the unconditional probability of

the disaster.

Oil Storage A representative oil storage firm maximizes profits by choosing inventories, st+1, and

how much oil to supply to the final goods firm, ot. The firm’s maximization problem is given by

V o
t = max

ot,st+1

potot + Et[xt+1V
o
t+1]

subject to

st+1 = (1− ω)st + ost − ot − π
2
(st/at)

−2at,

where ω is the cost of storage. Following Gao et al. (2022), there is a penalty, π, that prevents

stockouts (s = 0) from occurring, as they are not observed in the global oil market.

13When κ1 = 1 and κ2 = 0, aot = at, so the production of oil responds immediately to changes in productivity
elsewhere in the economy. This special case corresponds to the assumption made in Gao et al. (2022). Cointegration in
DSGE models with oil is rare. One exception is Ready (2018), who models cointegration between oil production and
TFP in a setting with long-run risk. Similarly, cointegrated TFP processes have been used in two-country international
real business cycle models (e.g., Rabanal et al., 2011).
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The first-order condition for the storage firm is given by

1 = Et[xt+1r
s
t+1],

where

rst+1 ≡ ((1− ω + π(st+1/at+1)
−3)pot+1)/p

o
t .

Household A representative household maximizes the present discounted value of utility by

choosing consumption, ct, hours worked, nt, bond holdings, bt+1, and equity shares, set+1, which

have unit net supply. The household has Epstein-Zin recursive preferences to distinguish between

risk aversion, γ, and the intertemporal elasticity of substitution, ψ (see Epstein and Zin, 1989).

The household’s maximization problem is given by

Jt = max
ct,nt,set+1,bt+1

(
(1− β)u

1−1/ψ
t + β(Et[J

1−γ
t+1 ])

1−1/ψ
1−γ

) 1
1−1/ψ

subject to

ut = cχt (at(1− nt))
1−χ,

ct + pets
e
t+1 + bt+1/rt = wtnt + (pet + det )s

e
t + bt,

where β is the discount factor, pet is the equity price, rt is the risk-free rate, wt is the wage rate, det

are dividends from firm ownership, and the Frisch elasticity of labor supply ηλ = 1−nt
nt

1−(1−1/ψ)χ
1/ψ

.

The first-order conditions for the household are given by

χwt(1− nt) = (1− χ)ct,

1 = Et[xt+1rt],

1 = Et[xt+1r
e
t+1],

where

ret+1 ≡ (pet+1 + det+1)/p
e
t ,

xt+1 ≡ β(ut+1/ut)
1−1/ψ(ct/ct+1)(Jt+1/zt)

1/ψ−γ,

zt ≡ (Et[J
1−γ
t+1 ])

1/(1−γ).
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The equity risk premium is defined as

rext ≡ ret − rt−1.

Market Clearing Following Jermann (1998) and Gourio (2012), both the final goods and storage

firms issue bonds to finance their assets, where ϑ determines leverage. Since the Modigliani-Miller

theorem holds in our model, the introduction of firm leverage only affects equity returns. There is

no effect on household or firm decisions. Aggregate firm dividends are given by

det = dft + dst − ϑ(Et−1kt − 1
rt
Etkt+1)− ϑ(Et−1st − 1

rt
Etst+1),

where dft = yt − it − potot − wtnt and dst = potot.

Asset market clearing implies that set = 1 and total bond issuance is given by

bt ≡ bft + bst = ϑ(Et−1kt + Et−1st).

Market clearing in the goods market implies

ct + it = yt.

Due to the stochastic trend in productivity, we detrend the model by defining x̃t = xt/at. The

detrending process introduces the growth terms gt = at/at−1 and go,t = aot/a
o
t−1. Appendix E

provides the detrended equilibrium system of equations.

Uncertainty We follow Plante et al. (2018) and Bernstein et al. (2024) and define output uncer-

tainty as the conditional volatility of log output growth, which is given by

Uy
t =

√
Et[(ln(yt+1/yt)− Et[ln(yt+1/yt)])2].

Oil price uncertainty, Upo
t , is analogously defined as the uncertainty surrounding ln(pot+1/p

o
t ). This

definition is equivalent to the measure we used to compute oil price uncertainty in the data.14

14The uncertainty surrounding oil price growth is equivalent to the uncertainty surrounding the log oil price because
pot is known at time t and cancels from the definition of Upo

t . An analogous result holds for output uncertainty.
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4.2 SOLUTION METHOD Modeling the oil sector considerably increases the computational cost

of solving the model compared to a model that only includes macroeconomic risk. Our model has

7 state variables (kt, st, v
g
t , v

e
t , ln p

g
t , ln p

e
t , ϵt−1), 4 of which are related to the oil market. There

are 4 continuous and 2 discrete shocks. In total, the state space contains over 300,000 nodes and

40,000 shock realizations for each node in the state space.

The existence of time-varying disaster risk prevents the use of perturbation methods. We there-

fore employ a fully nonlinear solution method. Specifically, the model is solved using the policy

function iteration algorithm described in Richter et al. (2014), which is based on the theoretical

work in Coleman (1991). The algorithm minimizes the Euler equation errors on each node in the

state space and computes the maximum change in the policy functions. It then iterates until the

maximum change is below a specified tolerance. The algorithm is programmed in Fortran and run

on the BigTex supercomputer at the Federal Reserve Bank of Dallas. Appendix D describes the

solution method in more detail.

4.3 CALIBRATION Each period in the model corresponds to one quarter. Given the paucity of

global macroeconomic data, we calibrate the model under the assumption that the world economy

resembles the U.S. economy. While this model abstracts from many features of the actual global

economy, it provides a useful benchmark and a natural starting point for studying the role of

downside risk in the global economy. The parameters shown in Table 1 are informed by moments

in the data and the related literature.15 The moments are computed using data from 1975Q1 to

2019Q4. Appendix B documents our data sources.

The discount factor β is set to 0.994 to match the average real interest rate. The relative risk

aversion coefficient, γ, and intertemporal elasticity of substitution are set to 10 and 2, respectively,

consistent with Gourio (2013), Croce (2014), Gao et al. (2022), and several other recent studies.16

The Frisch elasticity of labor supply is set to 2 following Peterman (2016), Basu and Bundick

15Estimation using Bayesian methods or the simulated method of moments is not possible due to the high dimension-
ality of the model. Even when using a supercomputer with thousands of cores, the model takes several hours to solve.

16Swanson (2018) shows how to compute risk aversion under recursive preferences with an endogenous labor
supply. Under our utility kernel, γ corresponds to risk aversion over consumption and leisure.
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Table 1: Model calibration at a quarterly frequency

Parameter Value Target

Discount Factor (β) 0.994 E(r)
Risk Aversion (γ) 10 Gourio (2013), Croce (2014), Gao et al. (2022)
Intertemporal Elasticity of Substitution (ψ) 2 Gourio (2013), Croce (2014), Gao et al. (2022)
Frisch Labor Supply Elasticity (ηλ) 2 Peterman (2016), Basu and Bundick (2017)
Capital-Oil Elasticity of Substitution (σ) 0.105 SD(∆po)
Capital Depreciation Rate (δ) 0.025 Depreciation on fixed assets and durables
Capital-Oil Share of Production (ξ) 0.4043 Average labor share of income
Investment Adjustment Cost (ν) 2.4 SD(∆i)
Oil Storage Cost (ω) 0.025 Casassus et al. (2018), Gao et al. (2022)
Average Growth Rate (ḡ) 1.004 E(∆y)
Firm Leverage (ϑ) 0.9 SD(rex)
Elasticity of Oil Supply to TFP (κ1) 0 Newell and Prest (2019)
Oil Supply Adjustment Speed to TFP (κ2) 0.05 Half life of 3.5 years
Growth Shock SD (σg) 0.01 SD(∆y)
Oil Production Growth Shock SD (σgo) 0.011 SD(∆os)
Growth Disaster Size (ζg) 0.022 E(rex)
Probability of Entering Growth Disaster (p̄g) 0.0025 Occurs in expectation every 100 years
Probability of Exiting Growth Disaster (q̄g) 0.9 Gourio (2012)
Growth Disaster Probability Persistence (ρpg) 0.8 SD(Uy)
Growth Disaster Probability SD (σpg) 0.8 AC(Uy)
Oil Production Disaster Size (ζe) 0.05 Average peak decline in oil production disasters
Probability of Entering Oil Disaster (p̄e) 0.02 Average frequency of oil production disasters
Probability of Exiting Oil Disaster (q̄e) 0.67 Average duration of oil production disasters
Oil Disaster Probability Persistence (ρpe) 0.9 SD(Upo)
Oil Disaster Probability SD (σpe) 1.4 AC(Upo)

(2017), and many others in the business cycle literature.

The elasticity of substitution between capital and oil, σ, is set to 0.105 to match the volatility

of oil price growth. Backus and Crucini (2000) adopt the same functional form of the production

function and use a similar value (0.09). The Cobb-Douglas weight on capital services (ξ) is set to

match the average labor share of income. The investment adjustment cost parameter, ν, is set to

match the volatility of per capita investment growth. The capital depreciation rate, δ, matches the

annual average rate of depreciation on private fixed assets and durable goods. The oil storage cost,

ω, is set to 0.025 following Casassus et al. (2018) and Gao et al. (2022). As in Basu and Bundick

(2017), the leverage parameter, ϑ, is set to 0.9 to help match the volatility of the equity premium.

The mean growth rate of productivity, ḡ, is set to 1.004 to match the average growth rate of
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per capita real GDP. The standard deviation for the growth shock, σg, is set to 0.01 to help match

the volatility of real GDP growth. The calibration of the growth disaster parameters is guided by

several moments in the data as well as the parameter choices in Gourio (2012). We set the size of

the disaster, ζg, to 0.022 to match the mean equity premium. The mean probability of entering the

disaster state, p̄g, is set to 0.0025, which implies that these disasters happen once every 100 years

in expectation. The persistence, ρpg, and standard deviation, σpg, of this probability are both set to

0.8 to help match the autocorrelation and volatility of output uncertainty. The fixed probability of

exiting a growth disaster, q̄g, is set to 0.9, in line with Gourio (2012). This value implies that growth

disasters, on average, last 2.5 years. As shown in Appendix F, the responses to an average growth

disaster are very similar to those reported in Gourio (2012), who documents that his responses

resemble the empirical estimates in Barro et al. (2013).

The value of κ1 is set to 0, implying that productivity in the oil sector is unresponsive to changes

in productivity in the rest of the economy within the first quarter. This is consistent with the view

that oil production in the short run is determined entirely by geological constraints (see Newell and

Prest, 2019). We set κ2 to 0.05, so the half-life of the deviation between aot and at is 4 years. The

standard deviation of the growth shock to oil production, σgo, is set to 0.011 to match the volatility

of global oil production.

The parameters controlling the oil production disasters are based on historical oil production

data.17 Following Hamilton (2013), Figure 3 plots global oil production during major geopolitical

events, where production is expressed in percent deviations from the level at the beginning of the

event. We set the size of the oil production disaster, ζe, to 0.05 to match the average peak decline

observed in the data. The mean probability of entering the oil disaster state, p̄e, is set to 0.02 so

that disasters occur every 12.5 years in expectation (four major events over the last 50 years). The

persistence, ρpe, and standard deviation, σpe, of this probability are set to 0.9 and 1.4, respectively,

17It may seem that options data could be used to help with the calibration. This is not the case. One challenge is
that tail probabilities estimated from equity options as in Barro and Liao (2021) do not help quantify macroeconomic
tail risk, but only equity risk. The distinction between financial risk and macroeconomic risk has been emphasized in
Gao et al. (2022) and Ludvigson et al. (2021). Likewise, oil disaster probabilities are not recoverable from oil options
because these prices reflect both oil and macroeconomic disaster risk in unknown combinations.
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Figure 3: Shortfall in global oil production during major geopolitical events
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Notes: Reproduced from Hamilton (2013) using updated global oil production data. We exclude
the 2002/03 episode because the revised data show no evidence of a material shortfall.

to help match the autocorrelation and volatility of oil price uncertainty. The fixed probability of

exiting an oil production disaster, q̄e, is set to 0.67 so that a disaster lasts, on average, for 3 quarters,

which corresponds to the longest duration observed in the four episodes in Figure 3.

To compute the model-implied moments, we simulate the model 10,000 times, each with 180

quarters to match the length of the data used to calibrate the model. We calculate the moments of

interest in each simulated data set and then compute the average moments across all simulations.

Table 2 compares the data and model-implied moments. The model closely matches most of the

targeted moments. This includes moments related to the oil market (e.g., the standard deviations of

oil price growth and oil production growth, the oil expenditure share, and the oil inventory-to-oil

consumption share), real activity (e.g., the standard deviations of output and investment growth),

asset prices (e.g., the average risk-free rate and equity risk premium), and uncertainty (e.g., the
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Table 2: Data and simulated moments

Moment Data Model Moment Data Model

E(∆y) 0.39 0.39 SD(∆os) 2.01 2.13
E(s/o) 0.97 0.97 SD(∆po) 14.39 14.22
E(poo/y) 0.045 0.046 SD(rex) 8.29 3.73
E(rex) 2.18 2.03 SD(Uy) 14.51 15.60
E(r) 0.22 0.23 SD(Upo) 29.95 28.97
SD(∆y) 0.74 0.83 AC(Uy) 0.87 0.77
SD(∆i) 1.95 1.87 AC(Upo) 0.93 0.80

SD(∆s) 2.30 2.12 AC(∆os) −0.11 −0.20
SD(r) 0.91 0.45 Corr(∆y,Uy) −0.15 −0.38
AC(∆y) 0.32 0.21 Corr(∆y,Upo) −0.27 −0.35

Notes: Moments above the middle line are targeted while those below it are untargeted. The model
is calibrated to data from 1975Q1-2019Q4. SD(Uy) and SD(Upo) are normalized by SD(∆y)
and SD(∆po), respectively, to be consistent with the normalization in Jurado et al. (2015).

standard deviations and autocorrelations of output uncertainty and oil price uncertainty).18 Jointly

matching all four of these key aspects of the economy gives us confidence that the model provides

a good description of oil market, real activity, and uncertainty dynamics.

The model also performs well at matching several untargeted moments shown at the bottom

of Table 2. For example, the volatility of oil inventory growth and the autocorrelations of out-

put growth and oil production growth closely match the data. Output and oil price uncertainty

are somewhat more countercyclical in the model than in the data, but this could presumably be

addressed by adding exogenous volatility shocks. Finally, allowing for macroeconomic risk and

geopolitical oil price risk raises the volatility in the risk-free rate and brings it more in line with the

data. These results provide further validation of our model.

4.4 DISCUSSION Our model incorporates precautionary savings by households in response to

higher oil price uncertainty as well as storage, the two main economic mechanisms that are thought

to propagate oil price uncertainty shocks. While we do not model real options arising from irre-

18One concern is the oil share calculated using U.S. data may not be representative of the global economy. We
also calculated oil shares using supply-use tables from the World Input-Output Database (Timmer et al., 2015). These
tables are available for 38 countries, including the U.S., China, Japan, Brazil, India, Indonesia and many countries in
Europe. The average across all countries was 0.05, very close to the ergodic mean of the share in our model.
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versible investment as in Bernanke (1983), our model features limited substitutability between

capital and oil. This feature causes the expected return on investment to decline when the proba-

bility of an oil production disaster increases, generating recessionary effects in the model.

Although Bernanke’s theoretical analysis is often cited in support of models of oil price volatil-

ity shocks, it is not well appreciated that Bernanke was not modeling a monthly or quarterly oil

price volatility shock. Rather, he envisioned agents being uncertain about whether the price of oil

would permanently move to a higher level or not, which is a different thought experiment. In his

model there are two types of capital that differ by their oil efficiency. The irreversibility of the

investment decision causes risk averse agents to postpone the acquisition of either type of capi-

tal. The difficulty in generalizing this model to general equilibrium is that it requires aggregating

different types of capital across many firms.

A closely related model that deals with the aggregation of different types of capital in general

equilibrium was proposed by Atkeson and Kehoe (1999). In their putty-clay model there is a

continuum of capital goods indexed by their oil efficiency. Existing capital goods use oil in fixed

proportions, so, in the short run, there is no substitutability between capital and oil. However, firms

may invest in new capital with different oil efficiency in response to changes in the price of oil.

Although this point is not the focus of Atkeson and Kehoe (1999), their model implies that higher

oil price uncertainty would reduce investment, as discussed in Plante and Traum (2012).

The reason we do not incorporate the putty-clay framework within our model is that two key

assumptions made by Atkeson and Kehoe (1999) do not hold in our model. One is that the price

of oil is exogenous; the other is that under their assumptions oil consumption does not respond to

the price of oil on impact. These assumptions not only allow Atkeson and Kehoe to abstract from

storage, but they allow them to aggregate across different types of capital without the need to track

the distribution of capital types. The fact that the infinite-dimensional state space of capital stocks

in the model can be reduced to a one-dimensional space facilitates the solution of their model.

In contrast, in our model the price of oil is endogenously determined. Suppose, for example,

that there is an oil supply shock. In that case, we must add storage to the model because otherwise
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equilibrium in the oil market is unattainable. If oil consumption is predetermined and hence un-

responsive to the oil price fluctuations caused by the oil supply shock, oil inventories must absorb

any imbalances in the oil market each period. It can be shown that, as a result, the oil inventory

moments of the simulated model data differ substantially from the oil inventory moments in the

actual data. It may seem that this problem could be addressed by dropping the assumption that oil

consumption is unresponsive to the price of oil, but this would render the capital stock intractable,

which is why we do not consider the putty-clay framework in our model. However, our model

with disaster risk generates investment and output responses that are qualitatively consistent with

those in models of irreversible investment. The reason is that in our model risk averse agents are

reluctant to invest given the limited substitutability between capital and oil.

5 WHAT IS THE ROLE OF UNCERTAINTY SHOCKS?

As discussed in Section 3, economists’ intuition about the impact of oil price uncertainty shocks

continues to be based on insights from partial equilibrium models or from general equilibrium

models with exogenous oil price volatility shocks, no fluctuations in macroeconomic uncertainty,

and two-sided risk. This section examines the role of uncertainty shocks within the context of a

general equilibrium model with endogenous time-varying uncertainty about the price of oil and

output driven by macroeconomic and oil production disasters.

This model provides a useful benchmark for what we would expect the relationship between

oil price uncertainty and output uncertainty to be in the data. First, it is capable of generating

fluctuations in oil price uncertainty that are qualitatively similar to those in the data. Second,

output uncertainty and oil price uncertainty are not independent. The model helps us understand

to what extent their relationship is driven by exogenous shifts in macroeconomic risk, exogenous

shifts in geopolitical risk in oil markets, or by other shocks.

5.1 TRANSMISSION OF UNCERTAINTY SHOCKS In practice, economic agents will witness

disasters only infrequently. Nevertheless, disasters matter for economic behavior because there is
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Figure 4: Responses to alternative oil production disaster probability shocks
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Notes: Responses in deviations from the baseline. Simulations assume no disasters are realized.

a probability that they may be realized in the future. As we highlight in this section, changes in the

probability of a disaster, which generate fluctuations in uncertainty, may create large responses in

the oil market and the macroeconomy even when no disasters actually occur.

Oil Disaster Probability Figure 4 shows the responses of key model variables when the ex-

ogenous oil disaster probability is increased by 10, 20, and 40 percentage points (pp), respectively.

Higher odds of an oil production disaster generate stronger precautionary storage demand, reflected

in a persistent build-up of oil inventories. This raises the price of oil, with the initial increase rang-

ing from about 4% for a 10pp shock to the disaster probability to about 10% for a 40pp shock.

The probability shock reduces investment, with the effect ranging from a 0.27% drop for a 10pp

shock to 0.6% for a 40 pp shock. The negative effect on investment arises for two distinct reasons.

First, an oil production disaster, if it were to occur, would reduce the return to capital, since oil
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and capital are complements in production. Thus, the higher probability of such a disaster lowers

the expected return from investing in capital. Second, the return to capital today declines because

higher precautionary demand for oil inventories raises the price of oil. Together, these two effects

push down output, but the overall magnitude is modest since the investment share in output is small.

Higher odds of an oil production disaster raise both output uncertainty and oil price uncer-

tainty, but the effects on oil price uncertainty are much larger. For example, a 10pp increase in

the probability of an oil disaster raises the output uncertainty index only by 0.4, but the oil price

uncertainty index by 7.5. Thus, the oil disaster probability shock looks in some ways like an ex-

ogenous oil price uncertainty shock. However, as discussed later, the downside risk inherent in the

oil production disaster leads to very different responses compared to a stochastic volatility shock

to oil production growth.

The model shows that the recessionary effects of the probability shock are reflected in output

immediately, but are short-lived. The responses do not change proportionately with the shock size.

For example, the responses of output and the price of oil to a 40pp increase in the oil disaster

probability are only about 2 times larger than when the probability rises by 10pp. This result

highlights that exogenous variation in uncertainty transmits to the macroeconomy nonlinearly.

Raising the disaster probability beyond a certain point lowers oil price uncertainty because the

agents in the model perceive the disaster as increasingly likely. At the same time, the effect of the

disaster probability shock on the oil price and real activity strengthens and eventually converges to

the effects that occur when an average oil production disaster is realized. As shown in Appendix

F, an average oil disaster causes a 16% increase in the price of oil and a 0.18% decline in output.

However, unlike an oil disaster probability shock, inventories sharply decline as oil supply is cut.

Growth Disaster Probability A growth disaster acts like a negative demand shock in the oil

market by reducing real activity and lowering oil demand. This plays a key role in understanding

how the oil market responds to an increased probability of an output growth disaster.

Figure 5 shows the responses when the exogenous disaster probability increases by 10, 20, and

40pp, respectively. An increase in the probability of a growth disaster has substantial, albeit short-
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Figure 5: Responses to alternative growth disaster probability shocks

0 4 8 12 16 20

-1

-0.8

-0.6

-0.4

-0.2

0

0 4 8 12 16 20
-15

-10

-5

0

0 4 8 12 16 20
0

50

100

150

0 4 8 12 16 20
-10

-8

-6

-4

-2

0

0 4 8 12 16 20
-60

-40

-20

0

20

0 4 8 12 16 20
0

50

100

150

Notes: Responses in deviations from the baseline. Simulations assume no disasters are realized.

lived, effects on the price of oil. For example, a 10pp increase in the probability causes the price of

oil to decline by 39% on impact. There are two related but somewhat distinct mechanisms at play.

First, as in Gourio (2012), the higher probability directly reduces the expected return to capital,

which lowers oil demand today since capital and oil are complements. Second, lower current and

expected oil demand also reduces the expected return from holding oil inventories. As a result, oil

currently held in storage is sold off, pushing down the oil price even further.

Although the reduction in the price of oil is beneficial for the economy, the net effect of this

probability shock on output is negative. In fact, the decline in output is much larger than from the

oil disaster probability shock of the same magnitude. This is because the growth probability shock

transmits directly to output rather than through the share of oil in output, which is small. In addi-

tion, the response is much more persistent than the response to the oil disaster probability shock.
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In related work, Gourio (2012) showed that an increase in the probability of a growth disaster

causes the uncertainty about equity prices to rise. Our results show that the same shock also has

a major effect on output uncertainty and oil price uncertainty. If the price of oil and oil price

uncertainty were exogenous, this interaction between the uncertainty measures would not occur.

As in Figure 4, the responses do not scale proportionately with the increase in the growth

disaster probability. For example, a 10pp increase leads to a 39% decline in the price of oil,

whereas the price of oil declines by 58% when the probability rises by 40pp. This is true for the

other variables as well, once again highlighting the nonlinearity in the transmission of uncertainty.

The key difference between the two disaster probability shocks is that the growth disaster prob-

ability shock has substantial effects on both uncertainty variables, whereas the oil disaster proba-

bility shock does not. This suggests that the comovement between oil price uncertainty and output

uncertainty tends to reflect shifts in macroeconomic risk rather than geopolitical risk.

External validation of the oil market responses An important question is whether the responses

of the real price of oil and of oil inventories reported in Figures 4 and 5 (and the corresponding

responses associated with the realization of a disaster shown in Appendix F) align with earlier

empirical evidence. A natural benchmark are the impulse responses reported in Zhou (2020) based

on the workhorse structural VAR model of the global oil market developed in Kilian and Murphy

(2014). These response estimates are consistent with those implied by our DSGE model.

The responses to a positive shock to the oil production disaster probability may be interpreted

as an example of a positive storage demand shock in the Kilian-Murphy model, which is expected

to raise oil inventories and the price of oil, consistent with the responses in Figure 4. Likewise,

the responses to an increase in the growth disaster probability represent an example of a negative

storage demand shock that lowers oil inventories and the price of oil, consistent with the responses

in Figure 5. Both shocks involve anticipation and hence affect the oil market through storage.

The realization of an oil production disaster (Appendix F, Figure 2), in contrast, is best thought

of as a negative flow supply shock in the Kilian-Murphy model that lowers inventories and raises

the price of oil, consistent with the evidence in Zhou (2020). Finally, the realization of a growth
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Table 3: Decomposition of key volatilities

Model

No Output Disaster Risk or
Moment Data Baseline No Output Disaster Risk Oil Production Disaster Risk

SD(∆y) 0.74 0.83 0.66 0.66
SD(∆i) 1.95 1.87 1.18 1.15
SD(∆os) 2.01 2.13 2.12 1.12
SD(∆po) 14.39 14.22 6.79 5.99
SD(Uy) 14.51 15.60 0.17 0.07
SD(Upo) 29.95 28.97 5.06 2.17

Notes: The models without disaster risk remove both the probability shock and the disaster state.
SD(Uy) and SD(Upo) are normalized by SD(∆y) and SD(∆po) in the baseline model, respec-
tively, to be consistent with Jurado et al. (2015).

disaster (Appendix F, Figure 3) instead resembles a negative flow demand shock in the Kilian-

Murphy framework associated with lower oil prices and inventories, consistent with the evidence

in Zhou (2020). Thus, in all cases our DSGE model replicates the sign of the oil price and inventory

responses found in the structural VAR literature. Of course, the persistence of the responses need

not match, as the DSGE model focuses on specific examples of storage demand, flow demand and

flow supply shocks rather typical shocks of this type.19

5.2 HOW MUCH VOLATILITY IS DUE TO OUTPUT RISK AND GEOPOLITICAL RISK? Table 3

shows that the model generally does an excellent job at capturing the volatility in the data. Drop-

ping the output disaster risk from the DSGE model substantially lowers the ability of the model

to explain the volatility in the data. The resulting model not only substantially understates the

standard deviation of the two uncertainty series, but it also understates most other data moments.

Dropping both output and oil production disasters from the model further lowers the volatilities.

In particular, it removes almost all variability in the two uncertainty measures and some of the

19Studying the evolution of oil inventories and the oil price during geopolitical disasters would not be informative
about the realism of the DSGE model because the anticipation of an oil production disaster causes inventories to move
in the opposite direction from it realization. Moreover, the behavior of oil inventories and prices during geopolitical
disasters may also reflect past and current macroeconomic shocks. Thus, the realism of the responses in the DSGE
model can only be evaluated based on the conditional moments in the data, which requires a structural VAR model.
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variability in oil price growth and oil production growth but has little additional effect on the

volatility of macroeconomic aggregates.

There are two key takeaways from these results. First, output disaster risk is a major driver

of fluctuations in oil price uncertainty, highlighting that oil price uncertainty is not exogenous as

is often assumed in the literature. Second, oil production disaster risk is not a major driver of

fluctuations in macro aggregates or output uncertainty, suggesting that oil price uncertainty does

not play a major role in driving business cycles.

5.3 ALTERNATIVE MODEL SPECIFICATIONS In this section, we highlight key features of our

model by considering alternative specifications. We first illustrate the central role of oil storage.

We then contrast our model with earlier models incorporating stochastic volatility shocks.

Role of storage There are important movements in oil inventories whenever the probability of a

disaster increases. These movements affect the price of oil and, therefore, the evolution of macroe-

conomic aggregates. In this section, we investigate how important storage is for those responses

by comparing the baseline results to those from a model without storage.

Figure 6 shows the responses for the oil disaster probability shock. The key difference is that

the price of oil declines slightly in the model without storage, whereas it increases substantially in

the baseline model. In the absence of storage, the response of the oil price is driven entirely by

the expectation of lower output, which reduces the demand for oil and modestly lowers its price.

Given the muted response of the price of oil, the impact effect on output is also reduced.

Figure 7 shows that storage also plays a key role in the propagation of a growth disaster proba-

bility shock. In the model with storage, a higher probability of a disaster leads to a reduction in oil

inventories due to the greater likelihood of a recession. This causes a substantial decline in the price

of oil, which does not occur in the no-storage model. Since a lower price of oil offsets some of the

negative effects of this shock on the macroeconomy, the impact effect on output is larger when the

model does not contain storage. Overall, our results demonstrate that storage is a key ingredient

for understanding the effects of uncertainty in both the oil market and the macroeconomy.
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Figure 6: Responses to oil production disaster probability and stochastic volatility shocks
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Notes: Responses in deviations from the baseline. Simulations assume no disasters are realized.
The stochastic volatility shock has been normalized to match the impact response of oil price
uncertainty in the baseline model. The baseline and no storage disaster probability shock is 10pp.

Role of downside risk Stochastic volatility (SV) is an alternative way of generating time-varying

oil price uncertainty that has been used in previous studies (e.g., Başkaya et al., 2013; Gao et al.,

2022; Plante and Traum, 2012). In this section, we compare the results from the baseline model to

those from a model where uncertainty is generated by SV. Specifically, we introduce an exogenous

volatility shock into productivity growth and oil production growth,

ln gt = ln ḡ + σg,t−1εg,t,

ln go,t = lnκ0 + κ1 ln gt + κ2 ln ϵt−1 + σgo,t−1εgo,t,

lnσg,t = (1− ρgsv) ln σ̄g + ρgsv lnσg,t−1 + σgsvε
g
sv,t,

lnσgo,t = (1− ρgosv) ln σ̄go + ρgosv lnσgo,t−1 + σgosvε
go
sv,t,
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Figure 7: Responses to growth disaster probability and stochastic volatility shocks
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Notes: Responses in deviations from the baseline. Simulations assume no disasters are realized.
The stochastic volatility shock has been normalized to match the impact response of output uncer-
tainty in the baseline model. The baseline and no storage disaster probability shock is 5pp.

where all shocks are standard normally distributed.20 The parameters of the level processes are

unchanged. The persistence of both SV processes, ρgsv and ρesv, are equal to the persistence of the

disaster probability processes. The standard deviation of the growth SV shock, σgsv, is set to 0.09

to match the volatility of output growth uncertainty. Analogously, the standard deviation of the oil

production SV shock, σgosv , is set to 0.145 to match the volatility of oil price uncertainty.

Figure 6 compares the responses to an SV shock in oil production, εgosv,t, to the responses to our

baseline oil disaster probability shock, εep,t. The εgosv,t shock is set so the SV specification generates

the same impact effect on oil price uncertainty as the oil disaster probability shock. Qualitatively,

20Stochastic volatility has also been used to model exogenous uncertainty shocks in a number of other settings
including fiscal policy (Fernández-Villaverde et al., 2015), monetary policy (Mumtaz and Zanetti, 2013), household
preferences (Basu and Bundick, 2017), and the global interest rate (Fernández-Villaverde et al., 2011).
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these shocks move the model variables in the same direction, but there are quantitatively significant

differences. While the SV shock naturally generates sizable fluctuations in oil price uncertainty, it

has little effect on the macroeconomy and the oil market.

The key difference between the two modeling choices is that an oil disaster introduces a source

of downside risk into the economy because it makes a sharp drop in oil production more likely. As a

result, when the probability of a disaster increases, it not only increases uncertainty but also shifts

the conditional mean of economic outcomes. This generates a stronger precautionary demand

motive, which pushes up the price of oil and lowers output. The SV shock, on the other hand, is

akin to a mean-preserving spread. It generates a sizable increase in uncertainty but has little effect

on the conditional mean. Hence, the responses of the price of oil and output are muted. A similar

result holds when replacing the growth probability shock with a SV shock on productivity growth,

as shown in Figure 7. We conclude that SV shocks are unable to capture the effects of increases in

uncertainty associated with major geopolitical events that affect the oil market.21

5.4 ALTERNATIVE OIL DISASTER SPECIFICATIONS The surge in oil price uncertainty ob-

served after the invasion of Kuwait in August 1990 far exceeded the increase in oil price uncer-

tainty implied by our baseline model, which is calibrated to match the average magnitude and

duration of past geopolitically driven oil production disasters. This suggests that the oil market in

1990 was concerned about a much larger or longer lasting disaster than the average realized oil

production disaster observed in the data. Figure 8 explores this question by considering alternative

specifications of the oil production disaster. We first consider a disaster with the same 5% magni-

tude as in the baseline model, but with an expected duration of 10 quarters rather than 3 quarters.

We then, alternatively, consider a much larger oil production disaster of 20% of global oil produc-

tion with the same expected duration as in the baseline model. A 20% shortfall would have been

21Similar to our responses for the SV specification, Gao et al. (2022) find small impacts of oil production volatility
shocks in their baseline model. They show that the responses are amplified when markups are assumed to be time-
varying such that the markup falls with oil consumption. The responses are even larger when level and volatility
shocks to oil production are also assumed to be negatively correlated. The empirical support for these assumptions is
not clear. For example, time-varying markups are a standard feature of micro-founded New Keynesian models. Plante
and Traum (2014) examine such a model where oil is an intermediate input and find that SV shocks to the price of oil
have a negligible effect on the macroeconomy.
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Figure 8: Responses to an oil production disaster probability shock under different disasters
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Notes: Responses in deviations from the baseline. Simulations assume no disasters are realized.
The disaster probability shock is 20pp for all three specifications.

the approximate share of world oil production at risk if Iraq had succeeded in conquering not only

Kuwait in 1990, but also Saudi Arabia and its smaller neighbors along the Persian Gulf such as

Qatar, Bahrain, and the UAE. It also corresponds to the share of world oil production at risk from

Iranian retaliation in the event of an Israeli attack on Iranian oil export facilities in 2024.

While making the oil production disaster longer lasting only modestly raises the effects on the

global economy and the uncertainty measures compared to the baseline, making the oil production

disaster larger increases the effect on oil price uncertainty six-fold. This brings the response much

more in line with the observed spike in oil price uncertainty in 1990 (see Figure 2). At the same

time, the responses of the price of oil and macroeconomic aggregates roughly quadruple in magni-

tude. The increase in the price of oil rises from 6.5% on impact to 26% and the reduction in output

rises from 0.09% to 0.34%. As the disaster probability increases, these responses increase and
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converge to what happens if the disaster is realized, which is shown in Appendix F. For example,

with a 40pp (60pp) probability shock, the price of oil rises by 37% (44%) and output declines by

0.49% (0.60%). If the disaster is realized, the price of oil rises by 54% and output falls by 0.63%.

The specification of the oil disaster also affects the ability of oil production disaster risk to

explain variation in oil price uncertainty. While oil production disaster risk accounts for only

17% of this variability in the baseline model, as shown in Table 3, this share rises to 23% when

the disaster is longer lasting and to 65% when the magnitude of the disaster is increased. We

conclude that geopolitically driven oil disasters play a more important role when agents expect, at

least sometimes, a larger oil production disaster than observed on average in the historical data.

Such expectations would be consistent with a 20% geopolitically driven shortfall in global oil

production being so rare that it is never observed in the historical data. Changing the magnitude of

the oil disaster, however, does not alter our finding that a large portion of the variability in oil price

uncertainty is driven by macroeconomic uncertainty.

6 RELATIONSHIP TO THE EXISTING LITERATURE

We are not the first to study the transmission of oil price uncertainty shocks within a DSGE model.

For example, Başkaya et al. (2013) analyze the business cycle implications of oil price uncertainty

based on a stylized oil-importing small open economy. One important difference is that oil price

uncertainty is exogenous in their model. In contrast, our analysis shows that oil price uncertainty

in general depends on level shocks as well as macroeconomic uncertainty shocks. Allowing for

both macroeconomic and oil price uncertainty is important when assessing their respective roles

in explaining economic fluctuations, as illustrated in Section 5.2. Another important difference is

their use of SV shocks. Our results in Section 5.3 show that models with SV are unable to capture

the responses to macroeconomic and oil production disaster probability shocks.

Our DSGE model shares some features with the theoretical model in Gao et al. (2022) in that

both models allow the price of oil to be endogenously determined and incorporate uncertainty

shocks. One key difference is that their model features SV shocks to oil production and productiv-
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ity growth rather than downside risk. Another difference is that they do not examine the responses

of oil price uncertainty to the level shocks in their model. Nor do they explore the relationship

between oil price uncertainty and macroeconomic uncertainty.

The study related most closely to ours is perhaps Olovsson (2019) with the important difference

that, while his model allows for oil storage and oil production disasters, it does not allow the

disaster probability to vary over time, nor does it include macroeconomic disasters. These two

features are crucial for understanding the economic effects of geopolitical risk. In addition, the

focus of his paper is not on uncertainty.

Our DSGE model also differs from the theoretical model in Ready (2018) who does not study

how the economy responds to shifts in the likelihood of a major temporary drop in oil production

driven by geopolitical events, but instead examines how discrete shifts in the uncertainty about

long-run oil supplies affect asset prices and the economy in a model with long-run risk.22

Finally, what sets our work apart from all these earlier studies is that we address the implica-

tions of the endogeneity of oil price uncertainty for the identification of oil price uncertainty shocks

in empirical work. This question, which we turn to next, has not been addressed in prior work.

7 IMPLICATIONS FOR EMPIRICAL WORK

The model in Section 4 highlights that oil price uncertainty endogenously responds not only to

exogenous uncertainty about future oil production driven by geopolitical events, but also to ex-

ogenous uncertainty about the future path of the economy. Thus, geopolitically driven oil price

uncertainty shocks differ in general from shocks to observed oil price uncertainty, as measured by

the method of Jurado et al. (2015) or the OVX oil volatility index. This result is consistent with

practitioners’ understanding that uncertainty about the oil price reflects not only uncertainty about

future oil production, but also uncertainty about future oil consumption driven by macroeconomic

uncertainty, financial uncertainty, and policy uncertainty. For example, market commentators in

recent years have routinely highlighted the role of uncertainty about the prospects of the Chinese

22In related work, Hamann et al. (2023) examine the effects of sovereign default risk in oil-producing economies.
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Figure 9: Responses to positive and negative oil production disaster probability shocks
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Notes: Responses in deviations from the baseline. Simulations assume no disasters are realized.

economy, the resolution of the Covid-19 pandemic, and whether the U.S. economy is about to enter

a recession in assessing the uncertainty about the price of oil. Perhaps less obviously, the model

also shows that oil price uncertainty responds to level shocks in the macroeconomy, as shown in

the responses to a growth disaster in Appendix F. These results invalidate the premise of exogenous

oil price uncertainty shocks and cast doubt on the ability of standard empirical models to correctly

identify exogenous oil price uncertainty shocks.

The endogeneity of oil price uncertainty shocks is not the only concern with these models. For

example, VAR models with GARCH errors, as in Elder and Serletis (2010), have two additional

shortcomings. First, they postulate that every level shock to the price of oil is also an oil price un-

certainty shock. In our model, level and uncertainty shocks affect oil price uncertainty differently.

Second, they assume that positive and negative oil price shocks both increase oil price uncertainty,
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which is inconsistent with our model. Figure 9 illustrates this point by comparing the responses to

a ±10pp disaster probability shock.23 A decrease in the probability of an oil disaster reduces the

price of oil and oil price uncertainty on impact, while an increase in this probability raises the oil

price and oil price uncertainty. The same result holds for a growth disaster probability shock, as

shown in Appendix F.

Models that break the link between level and uncertainty shocks such as the VAR model with

SV in Jo (2014) have their own limitations. Our analysis implies that empirical measures of oil

price uncertainty shocks and shocks to the level of the price of oil are not independent, as assumed

in VAR models with SV. The reason is that oil price uncertainty is endogenous and may be driven

by the same shocks as the price of oil. For example, an increase in the probability of a growth

disaster not only raises oil price uncertainty, but also causes storage demand to increase, raising

the real price of oil.24 In addition, the assumption that the effects of a rise and decline in oil price

uncertainty on output are symmetric is violated in our model.

The insight that oil price uncertainty is simultaneously determined with macroeconomic aggre-

gates applies not only to GARCH and SV models but also to recursively identified linear VAR mod-

els that order oil price uncertainty first in the spirit of Bloom (2009), such as Gao et al. (2022).25

Thus, the seemingly robust empirical evidence from linear and nonlinear VAR models that oil price

uncertainty shocks substantially lower real activity must be viewed with caution.

8 CONCLUDING REMARKS

There has been growing interest in the impact of shifts in geopolitical risk in global commodity

markets, in particular in the market for crude oil. In this paper, we introduced a theoretical model

of the global economy that is designed to examine how this risk affects oil price uncertainty and

23The simulations are initialized at a 15% oil disaster probability to permit a positive and negative shock. The state
vector equals the average of periods in the ergodic distribution that are within 1pp of the initial disaster probability.

24Moreover, as shown in Section 5, while an increase in oil price uncertainty may be alternatively generated by an
SV shock to oil production, only a disaster probability shock can generate meaningful recessionary effects. Thus, one
would not expect large recessionary effects of shocks to oil price uncertainty when estimating VAR models with SV.

25Exploring alternative recursive orderings does not address this concern, as shown in Kilian et al. (2024).
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the macroeconomy. Unlike previous studies, we modeled geopolitical risk as downside risk to oil

production and allowed oil price and macroeconomic uncertainty to be determined endogenously.

Our results show that shocks to the probability of a major shortfall in global oil production driven

by geopolitical events only have modest effects on the oil market and real activity and are not a

major driver of macroeconomic fluctuations.

Our analysis highlighted the importance of jointly modeling macroeconomic and geopolitical

risk. We showed that oil price uncertainty responds to level shocks in the macroeconomy and

to macroeconomic uncertainty shocks, in addition to geopolitically driven oil price uncertainty

shocks. Shocks to the probability of growth disasters are not only recessionary, but they also play

a major role in the determination of oil price uncertainty, which helps explain why oil price uncer-

tainty has historically been associated with reductions in real activity. In our model, more than half

of the observed oil price uncertainty tends to be driven by the economy. This fact, along with other

implications of our model discussed in the paper, calls into question standard empirical models of

the transmission of oil price uncertainty shocks that provide seemingly robust evidence supporting

the conventional wisdom that oil price uncertainty plays a major role in driving the business cycle.

These findings suggest that economists and policymakers need to rethink the role of geopo-

litical oil price risk in the global economy and be cognizant of the interplay between oil price

uncertainty, macroeconomic uncertainty, and the state of the economy. Notwithstanding the atten-

tion geopolitical events in oil markets have attracted, we conclude that geopolitical oil price risk

is unlikely to generate sizable recessionary effects. Even when considering a geopolitically driven

disaster involving a 20% drop in global oil production, which far exceeds the magnitude of histor-

ically observed oil production shortfalls, it takes a large increase in the probability of this disaster

or its actual realization to cause a sizable recessionary impact.
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an Empirical Model of Consumption Disasters,” American Economic Journal:
Macroeconomics, 5, 35–74.

BARRO, R. J. AND G. Y. LIAO (2021): “Rare Disaster Probability and Options Pricing,” Journal
of Financial Economics, 139, 750–769.
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A MEASURING UNCERTAINTY

Our method of constructing quarterly measures of uncertainty builds on Jurado et al. (2015). We
first summarize the key steps of the estimation process before discussing the data used in the
estimation.

A.1 METHODOLOGY Let Yt = (y1,t, . . . , yNy ,t)
′ be a vector of data containing Ny variables.

Our objective is to estimate the 1-quarter ahead uncertainty about select elements of Yt, defined as

U j
t ≡

√
E[(yj,t+1 − E[yj,t+1|It])2|It],

where the expectation is taken with respect to the information set It and j refers to the variable of
interest. There are four steps:

1. Generate forecast errors for yj,t+1 using a forecasting model that includes lags of the variable
yj , estimated factors extracted from a panel of predictor variables, F̂t, and a set of additional
predictors contained in a vector Wt.

2. Fit autoregressive models for the factors in F̂t and the variables in Wt and generate residuals
for each variable.

3. Estimate a stochastic volatility model for each residual.

4. Calculate U j
t .

Factors Let Xt = (X1,t, . . . , XNx,t)
′ be a vector of predictors that are available for forecasting.

These data are transformed to be stationary. It is assumed that the transformed variables have an
approximate factor structure,

Xi,t = ΛF ′

i Ft + eXi,t,

where Ft is a rF × 1 vector of latent factors, ΛF ′
i is a 1 × rF vector of loadings for variable i

and the idiosyncratic errors are given by eXi,t. The estimated factors, denoted as F̂t, are estimated
using principal components and the number of factors is selected using the criterion of Bai and Ng
(2002). Each of the factors is assumed to follow an autoregressive process with two lags,

Ft = ΦF (L)Ft−1 + vFt ,

vFt = σF
t ϵ

F
t , ϵFt ∼ N(0, 1),

ln(σF
t )

2 = αF + βF ln(σF
t−1)

2 + τFηFt , ηFt ∼ N(0, 1),

where ΦF (L) is a lag polynomial. As with the other lag order choices made below, our results are
robust to reasonable variation in the lag order.

1



KILIAN, PLANTE & RICHTER: GEOPOLITICAL OIL PRICE RISK

Additional predictors The rW × 1 vector Wt includes the squared values of the first factor in F̂t

and a set of NG factors estimated using principal components on the squared values of the variables
in Xt. Each variable in Wt is assumed to follow an autoregressive process with two lags,

Wt = ΦW (L)Wt−1 + vWt ,

vWt = σW
t ϵWt , ϵWt ∼ N(0, 1),

ln(σW
t )2 = αW + βW ln(σW

t−1)
2 + τWηWt , ηWt ∼ N(0, 1),

where ΦW (L) is a lag polynomial.

Forecasting Model A forecast for yj,t+1 is produced with the factor-augmented forecasting model,

yj,t+1 = ϕY
j (L)yj,t + γF

j (L)F̂t + γW
j (L)Wt + νY

j,t+1,

νy
t = σy

t ϵ
y
t , ϵyt ∼ N(0, 1)

ln(σy
t )

2 = αy + βy ln(σy
t−1)

2 + τ yηyt , ηyt ∼ N(0, 1),

where ϕY
j (L), γ

F
j (L), and γW

j (L) are lag polynomials of orders 2, 1, and 1, respectively. As in
Jurado et al. (2015, footnote 10), a hard threshold is applied to remove any variables from the
forecasting model that do not have incremental predictive power.

Uncertainty Define Zt ≡ (F̂
′
t,W

′
t)

′ as a vector that collects the estimated factors and the addi-
tional predictors contained in Wt. Then let Zt ≡ (Z′

t, . . . ,Z
′
t−q+1)

′ and Yj,t = (yj,t, . . . , yj,t−q+1)
′,

where q = 2. The FAVAR model can be written in companion form as(
Zt

Yj,t

)
=

(
ΦZ 0

Λ′
j ΦY

j

)(
Zt−1

Yj,t−1

)
+

(
VZ
t

VY
j,t

)
⇐⇒ Yj,t = ΦY

j Yj,t−1 + VY
j,t.

The forecast error variance is

ΩY
j,t(1) ≡ Et[(Yj,t+1 − EtYj,t+1)(Yj,t+1 − EtYj,t+1)

′],

where EtYj,t+1 = ΦY
j Yj,t. The forecast error variances can be calculated as

ΩY
j,t(1) = Et[VY

j,t+1VY ′

j,t+1].

The uncertainty of yj,t+1 is

U j
t =

√
1
′
jΩ

Y
j,t(1)1j,

where 1 is a selection vector and j refers to the growth rate of real GDP and the growth rate of the
inflation-adjusted U.S. refiners’ acquisition cost of imported crude oil, respectively.
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A.2 DATA Our dataset includes most of the financial and macroeconomic variables listed in
the data appendix of Ludvigson et al. (2021) plus U.S. real GDP and the inflation-adjusted U.S.
refiners’ acquisition cost of imported crude oil.

The macroeconomic variables are from the April 2024 vintage of the FRED-MD database with
the following modifications.

• We linearly interpolate the missing values of UMCSENTx that occur through 1977.

• We set the missing value of CP3Mx for 4/1/2020 to its value on 3/1/2020.

• We set the missing value of COMPAPFFx for 4/1/2020, to its value on 3/1/2020.

Monthly data are averaged by quarter and transformed to stationarity using the code in the FRED-
MD database. Both real GDP and the real price of oil are log-differenced. The data set starts in
1974Q1. The sample begins in 1974Q2, because we lose one observation due to differencing.

The financial variables are obtained from FRED-MD, CRSP and the Fama-French database.
Returns are aggregated by summing the monthly values by quarter.

B DATA SOURCES

We use the following time-series provided by Haver Analytics:

1. Consumer Price Index for All Urban Consumers: Not seasonally Adjusted,
Monthly, Index (PCUN@USECON)

2. World Production of Crude Oil Including Lease Condensate
Not Seasonally Adjusted, Thousands of Barrels per Day
(Monthly, AWOACAUF@ENERGY; Quarterly, BWOACAUF@ENERGY)

3. United States: Petroleum Products Expenditures
Annual, Millions of Dollars (ZUSPATCV@USENERGY)

4. US Crude Oil Imported Acquisition Cost by Refiners
Not Seasonally Adjusted, Quarterly, Dollars per Barrel (CUSIQABF@USENERGY)

5. Civilian Noninstitutional Population: 16 Years & Over
Not Seasonally Adjusted, Quarterly, Thousands (LN16N@USECON)

6. Gross Domestic Product: Implicit Price Deflator
Seasonally Adjusted, Quarterly, 2012=100 (DGDP@USNA)

7. Gross Domestic Product
Seasonally Adjusted, Quarterly, Billions of Dollars (GDP@USECON)

8. Gross Domestic Product
Annual, Millions of Dollars (GDPY@USNA)
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9. Personal Consumption Expenditures: Nondurable Goods
Seasonally Adjusted, Quarterly, Billions of Dollars (CN@USECON)

10. Personal Consumption Expenditures: Services
Seasonally Adjusted, Quarterly, Billions of Dollars (CS@USECON)

11. Personal Consumption Expenditures: Durable Goods
Seasonally Adjusted, Quarterly, Billions of Dollars (CD@USECON)

12. Private Fixed Investment
Seasonally Adjusted, Quarterly, Billions of Dollars (F@USECON)

13. Total Economy: Labor share
Seasonally Adjusted, Quarterly, Percent (LXEBL@USNA)

14. Net Stock: Private Fixed Assets, Annual, Billions of Dollars (EPT@CAPSTOCK)

15. Net Stock: Durable Goods, Annual, Billions of Dollars (EDT@CAPSTOCK)

16. Depreciation: Private Fixed Assets, Annual, Billions of Dollars (KPT@CAPSTOCK)

17. Depreciation: Durable Goods, Annual, Billions of Dollars (KDT@CAPSTOCK)

18. CBOE Crude Oil Volatility Index (OVX), Daily, Index (SPOVX@DAILY)

We also use the following data sources:

1. FRED-MD, Monthly Databases for Macroeconomic Research. The data is available at
https://research.stlouisfed.org/econ/mccracken/fred-databases

(McCracken, 2024). Under Monthly Data, we use the April 2024 vintage.

2. Fama-French, Database. The data is available at https://mba.tuck.dartmouth.
edu/pages/faculty/ken.french/data_library.html

(Fama and French, 2024).

3. WRDS, Stock Market Indexes. The data is available at https://wrds-www.wharton.
upenn.edu (Wharton Research Data Services, 2024).

4. Geopolitical Risk Index, Historical series (GPRH). The data is available at https://
www.matteoiacoviello.com/gpr.htm (Caldara and Iacoviello, 2024).

5. Global Oil Inventories Monthly, Millions of Barrels per Day (Invt) from Kilian (2022).

We apply the following data transformations:

1. Per Capita Real Output: Yt = 109 ×GDPt/((DGDPt/100)(1000× LN16Nt)).

2. Per Capita Real Consumption: Ct = 109(CNt+CSt)/((DGDPt/100)(1000×LN16Nt)).

3. Per Capita Real Investment: It = 109(Ft + CDt)/((DGDPt/100)(1000× LN16Nt)).
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4. Depreciation Rate: δ = (1 + 1
T/4

∑T/4
t=1(KPTt +KDTt)/(EPTt−1 + EDTt−1))

1/4 − 1.

5. Capital Services Share: ξ = 1− 1
T

∑T
t=1 LXEBL/100.

6. Real Price of Oil: pot = CUSIQABFt/(DGDPt/100).

7. Expenditure Share of Oil: ZUSPATCVt/GDPYt.

8. Oil Consumption: ot = Days per Month × AWOACAUFt/1000− (INVt − INVt−1).

9. Inventory-Oil Consumption Share: INVt/
∑t

j=t−2 ot for t = 3, 6, . . . , 3T .

10. CPI Inflation Rate: πcpi
t = 100× (PCUNt/PCUNt−1 − 1).

11. Asset Returns: We use two time series from the Fama-French data library:

• Net nominal risk-free rate, monthly, percent (RF )

• Net nominal excess market return, monthly, percent (MKTmRF )

Define the market return as

RMt ≡ MKTmRFt +RFt.

The gross quarterly analogues of the Fama-French series and CPI inflation are given by

RFQ
t ≡

t∏
j=t−2

(1 +RFj/100), RMQ
t ≡

t∏
j=t−2

(1 +RMj/100), π
Q
t ≡

t∏
j=t−2

(1 + πcpi
j /100)

for t = 3, 6, . . . , 3T , so the quarterly real risk-free rate and equity premium are

rt = 100× (RFQ
t /πQ

t − 1), rext = 100× (RMQ
t /π

Q
t − 1)− rt.

All empirical targets are computed using quarterly data, except the expenditure share of oil which
is based on annual data.
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C OIL MARKET DATA

Figure 1: Real U.S. refiners’ acquisition cost crude oil imports, 1974Q4-2023Q4
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D SOLUTION METHOD

The equilibrium system of the DSGE model is summarized by E[g(xt+1,xt, εt+1)|zt, ϑ] = 0,
where g is a vector-valued function, xt is the vector of model variables, εt is the vector of shocks,
zt = [kt, st, v

g
t , v

e
t , ln p

g
t , ln p

e
t , ϵt] is the vector of states, and ϑ is the vector of parameters.

We discretize the continuous shocks, {εg, εgo, εgp, εep} using the Markov chain in Rouwenhorst
(1995). The bounds of the six continuous state variables are chosen so there is minimal extrapola-
tion over 99% of the ergodic distribution. Specifically, the bounds on capital, kt, range from −15%

to +10%, the bounds on storage, st, range from −50% to +50%, and the bounds on the error cor-
rection term, ϵt, range from −30% to +15% of the deterministic steady state. The bounds on the
probability of a growth disaster, pgt , are set to [0.00005, 0.8], while the bounds on the probability
of an oil production disaster, pet , are set to [0.0000025, 0.8]. Both are converted to logs, consistent
with the specifications of the processes. We discretize kt, st, and ϵt each into 7 points, and ln pgt

and ln pgt into 15 points given the nonlinearity in the transmission of the probability shocks. All of
the grids for the continuous states are evenly spaced. There are also binary indicators for whether
the economy is in a growth disaster or an oil production disaster, creating 4 outcomes. The product
of the points in each dimension, D, is the total number of nodes in the state space (D = 308,700).

6



KILIAN, PLANTE & RICHTER: GEOPOLITICAL OIL PRICE RISK

The realization of zt on node d is denoted zt(d). The Rouwenhorst method provides inte-
gration nodes for the continuous shocks, [εg,t+1(m), εgo,t+1(m), εgp,t+1(m), εep,t+1(m)]. The transi-
tion matrices for the discrete states determine the integration weights for their future realizations,
[vgt+1(m), vet+1(m)]. The weight for a particular realization of the continuous and discrete shocks is
ϕ(m), where m ∈ {1, . . . ,M} and M is the product of the number of realizations of each shock.
The two disaster probability shocks, εgp and εep, have the same number of realizations as the cor-
responding state variable (15). Each growth shock, εg and εgo, has 7 possible realizations. Each
discrete state has two possible outcomes. Thus, M = 44,100 possible shock realizations.

The vector of policy functions and the realization on node d are denoted by pf t and pf t(d),
where pf t ≡ [n(zt), o(zt), J(zt), p

e(zt), r(zt)]. The following steps outline our algorithm:

1. Use the Sims (2002) gensys algorithm to solve the log-linear model without any disasters
or time-varying probabilities. Then map the solution for the policy functions to the dis-
cretized state space, copying the solution on the dimensions that were excluded from the
linear model. This provides an initial conjecture, pf0, for the nonlinear algorithm.

2. On iteration j ∈ {1, 2, . . .} and each node d ∈ {1, . . . , D}, use Chris Sims’ csolve to find
the pf t(d) that satisfies E[g(·)|zt(d), ϑ] ≈ 0. Guess pf t(d) = pf j−1(d). Then

(a) Solve for all variables dated at time t, given pf t(d) and zt(d).

(b) Linearly interpolate the policy functions, pf j−1, at the updated state variables, zt+1(m),
to obtain pf t+1(m) on every integration node, m ∈ {1, . . . ,M}.

(c) Given {pf t+1(m)}Mm=1, solve for the other elements of st+1(m) and compute

E[g(xt+1,xt(d), εt+1)|zt(d), ϑ] ≈
∑M

m=1 ϕ(m)g(xt+1(m),xt(d), εt+1(m)).

When csolve has converged, set pf j(d) = pf t(d).

3. Repeat step 2 until maxdistj < 10−4, where maxdistj ≡ max{|(pf j − pf j−1)/pf j−1|}.
When that criterion is satisfied, the algorithm has converged to an approximate solution.
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E DETRENDED EQUILIBRIUM

We detrend the model by defining x̃t = xt/at. The equilibrium system of equations is given by

w̃t = (1− ξ)ỹt/nt

pot = ξα
(õt/o0)

1−1/σ

(1−α)(k̃t/k0)1−1/σ+α(õt/o0)
1−1/σ

ỹt
õt

Et[xt+1r
i
t+1] = 1

rit = e−ζvt 1
pkt−1

(rkt + (1− δ + a1 + a2
ν−1

(ı̃t/k̃t)
1−1/ν)pkt )

pkt = 1
a2

(ı̃t/k̃t)
1/ν

rkt = ξ(1− α)
(k̃t/k0)

1−1/σ

(1−α)(k̃t/k0)1−1/σ+α(õt/o0)
1−1/σ

ỹt
k̃t

Et[xt+1r
s
t+1] = 1

rst = 1
pot−1

(1− ω + πs̃−3
t )pot

χw̃tℓt = (1− χ)c̃t

xt = (β/gγt )(ũt/ũt−1)
1−1/ψ(c̃t−1/c̃t)(J̃t/z̃t−1)

1/ψ−γ

ũt = c̃χt ℓ
1−χ
t

z̃t = (Et[(gt+1Jt+1)
1−γ ])1/(1−γ)

J̃t =
(
(1− β)ũ

1−1/ψ
t + βz̃

1−1/ψ
t

) 1
1−1/ψ

ỹt = y0n
1−ξ
t

(
(1− α)(k̃t/k0)

1−1/σ + α(õt/o0)
1−1/σ

)ξ/(1−1/σ)

gt+1k̃t+1 = e
−ζgvgt+1 (1− δ + a1 + a2

1−1/ν
(ı̃t/k̃t)

1−1/ν)k̃t

gt+1s̃t+1 = (1− ω)s̃t + õst − õt − π
2
s̃−2
t

õst = et/ϵt

c̃t + ı̃t = ỹt

nt + ℓt = 1

ln go,t = lnκ0 + κ1 ln gt + κ2 ln ϵt−1 + σgoεgo,t

ln ϵt = ln gt − ln go,t + ln ϵt−1

ln gt = ln ḡ + σgεg,t − ζg(v
g
t − π̄g1)

ln et = ln ē− ζe(v
e
t − π̄e1)

Pr(vgt+1 = 1|vgt = 1) = q̄g , P r(vgt+1 = 1|vgt = 0) = pgt

Pr(vet+1 = 1|vet = 1) = q̄e, P r(vgt+1 = 1|vgt = 0) = pet

ln pgt = (1− ρgp) ln p̄g + ρgp ln pgt−1 + σgpε
g
p,t

ln pet = (1− ρep) ln p̄e + ρep ln pet−1 + σepε
e
p,t

Et[xt+1rt] = 1

1 = Et[xt+1r
e
t+1]

ret = gt(p̃
e
t + d̃et )/p̃

e
t−1

d̃et = ξỹt − ı̃t − ϑf (Et−1k̃t − 1
rt
Et[gt+1k̃t+1])− ϑs(Et−1s̃t − 1

rt
Et[gt+1s̃t+1])
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F ADDITIONAL RESULTS

Figures 2 and 3 show how the economy responds to an oil production and growth disaster real-
ization, respectively. The disaster occurs in the initial period and then follows its expected path.
Figure 4 shows the responses to a ±5pp growth disaster probability shock. The simulations are
initialized at a 15% growth disaster probability to permit a positive and negative shock.

Figure 2: Responses to an oil production disaster realization
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Notes: Responses in deviations from the baseline.
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Figure 3: Responses to a growth disaster realization
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Figure 4: Responses to positive and negative growth disaster probability shocks
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