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Abstract: 
 
A machine-learning approach is employed to forecast hedge fund returns and perform 
individual hedge fund selection within major hedge fund style categories. Hedge fund 
selection is treated as a cross-sectional supervised learning process based on direct 
forecasts of future returns. The inputs to the machine-learning models are observed 
hedge fund characteristics. Various learning processes including the lasso, random 
forest methods, gradient boosting methods, and deep neural networks are applied to 
predict fund performance. They all outperform the corresponding style index as well as 
a benchmark model, which forecasts hedge fund returns using macroeconomic 
variables. The best results are obtained from machine-learning processes that utilize 
model averaging, model shrinkage, and nonlinear interactions among the factors. 
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1. Introduction 
 
In recent years, hedge funds have found it increasingly difficult to produce high returns. This makes 

hedge fund selection a critical issue for investors. Selection is difficult because hedge funds are 
heterogeneous using many distinctive strategies and investing in a variety of asset classes with vastly 
different return characteristics. Various ways have been proposed to improve hedge fund selection; a 
complete survey of those methods is beyond the scope of this paper. An investor could look at historical 
hedge fund returns and try to forecast future returns based on macroeconomic conditions. For instance, 
Jagannathan, Malakhov, and Novikov (2010) and Avramov, Barras, and Kosowski (2013) implement 
conditional strategies to forecast returns using macroeconomic variables, and they find such strategies 
generate very good performance. 

Another more intuitive and easily implemented approach is to rank the funds based on certain risk 
factors and to construct different portfolios of funds from the rankings of these factors (De Souza and 
Gokcan, 2004; Pedersen, 2013; Molyboga, Beak, and Bilson, 2014). This approach has been employed to 
test fundamental theories in asset pricing, to study pricing anomalies, and to identify profitable investment 
strategies. The underlying premise is that the expected returns of an asset class are related to a certain factor, 
and the asset group ranked highest with regard to that factor has the highest likelihood of outperforming 
other groups. Using this framework, there is no forecasting equation, but the procedure can be casted as a 
nonparametric estimator (Cattaneo, Crump, Farrell, and Schaumburg, 2016).  

Our paper differs from both methods because we build cross-sectional models and select funds 
based on forecasts of return from those models. It relies to some extent on models like the Fama-French-
Carhart (FFC hereafter) factor model (Carhart, 1997). Instead of forecasting returns of an individual fund 
using macroeconomic variables, we focus on forecasting returns using characteristic factors using cross-
sectional methods. We treat forecasting as a supervised machine-learning problem and utilize both linear 
and nonlinear machine-learning techniques to construct our forecasts of returns. Portfolios are formed 
according to the rankings of the forecasted returns, and we find that these portfolios generate robust and 
superior performance results across major hedge fund style categories. Our forecast methods deviate from 
traditional econometric approaches and are more in line with the suggestions made in Varian (2014) who 
argues that data analysis in statistics and econometrics can be divided into four categories: 1) prediction, 2) 
summarization, 3) estimation, and 4) hypothesis testing. The machine-learning methods we employ are 
mainly concerned with the first category: the accuracy of out-of-sample prediction.  
 The next section discusses the data used in the paper. Following that, we present our machine-
learning portfolio-based methodology and an alternative method using macroeconomic variables, which we 
use as a benchmark for comparison. After that, we present a description of the factors used in our analysis, 
and then we present the alternative machine-learning methods used in our analysis. Empirical results are 
presented in the following section. The final section presents conclusions. 
 
2. Hedge Fund Return Data 
 

Hedge fund monthly return data come from the Hedge Fund Research, Inc. (HFR) database. There 
are four major HFR styles: equity, event-driven, macro, and relative value. We evaluate individual funds in 
the HFR database grouped within the four styles. The period for evaluating portfolio performance is January 
1996 to December 2015. There are 7,324 live funds in the HFR database and 16,304 dead, or graveyard, 
funds. There are considerable survivorship and backfill biases in the data. To mitigate those problems, we 
combine both the live and graveyard databases as follows: 
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1. We combine the funds from both the graveyard and live database and sort them into equity, event-
driven, macro, and relative-value style classifications. 

2. At each time 𝑡𝑡 we find hedge funds with returns reported at that particular date. They are our live 
funds at time 𝑡𝑡 regardless of whether the reported returns come from the live or graveyard database. 
That is, funds in the graveyard data that were live at time 𝑡𝑡 are treated as live as of that date. 

3. Our analytical method requires that each fund has a continuous reported history, which we set at 
24 months. The 24-month requirement could be flexible but it has to be longer than the sum of 
look-back period 𝑀𝑀 and the look-forward period 𝐾𝐾. 

4. Once we have built the forecast model at time 𝑡𝑡, the funds are sorted by their forecast returns for 
the next 𝐾𝐾 months into 10 groups with an equal number of funds in each group. We refer to these 
as our “decile portfolios.” 

5. We hold the equally weighted portfolios until time 𝑡𝑡 + 𝐾𝐾. If a fund is dropped out of the database, 
we assume the return for that portion of asset allocation to be 0 for the remaining part of the 𝐾𝐾 
months. 

 
Steps 1–5 greatly reduce unwanted survivorship and backfill biases. For example, for macro funds in 

January 2000, there are only 74 funds in the live database, but adding funds from the graveyard there are 
416 funds in the month. Of these, 294 of them had a continuous reporting history of no fewer than 24 
months as of January 2000. So our model uses those 294 funds in that month. Step 5 gives us a more 
conservative and realistic estimation of the portfolio returns as it would take time for an investor to reinvest 
funds if a hedge fund has returned proceeds to investors. 

The hedge fund indexes used in the paper are the four HFR “HFRI” style indexes (the HFR indexes 
hereafter) for equity, event-driven, macro, and relative-value hedge funds published by Hedge Fund 
Research, Inc. 
 
3. Methodology 
   

Portfolio sorting based on certain characteristics is an important tool in empirical finance. In 
practice, a set of securities is typically ranked according to a risk factor under scrutiny over a certain look-
back window, and long and short positions in securities are taken based on the ranking. Numerous factors 
have been studied in the academic research. Harvey, Liu, and Zhu (2016) have identified more than 200 
such factors in the literature. 

There are important issues with regard to factor-ranking procedures. One of these is the question 
of whether the risk premium of a particular factor is stable over time. For instance, Fama and French (1992) 
found that their value factor had a positive risk premium over the long term, but we find that the value 
premium estimated as the annual return difference between the Russell 1000 Value Index and Russell 1000 
Growth Index has been negative in all five-year rolling windows from 2009 to 2015. 
  A natural extension of the method is to include multiple risk factors in the portfolio formation 
process, but this raises another issue. Typically, we may want to identify securities ranked in the top group 
in all the risk factors. However, with a large number of factors, we run into the high-dimensional problem 
that the securities/funds would be scattered sparsely in an N-dimensional space where 𝑁𝑁 is the number of 
factors we want to combine. It may be impractical to find enough securities in the top rankings of all the 
factors to form a diversified portfolio. One can devise an ad hoc method where a composite score is used 
to combine the factors into a ranking. However, there may be no statistical principle or financial theory 
dictating how to form that composite score and build the best portfolio because the rank combination 
approach ignores interactions between the factors. A study by Bali, Brown, Murray, and Tang (2016) on 
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“lottery” stocks, i.e., stocks that have a high return in one day in the previous month, and high-beta stocks 
illustrates the problem. High-beta stocks underperform low-beta stocks, and lottery stocks underperform 
their counterparts. One would expect then that low-beta nonlottery stocks would offer the best performance. 
However, Bali et al find out that high-beta nonlottery stocks outperform low-beta nonlottery stocks by about 
0.6 percent per month when sorted by lottery and beta properties sequentially. Thus, an underlying 
interaction between the factors plays a crucial role in determining performance.  
 Given these difficulties, it is useful to examine this approach from a machine-learning perspective. 
Essentially, the approach described above falls into the realm of “unsupervised learning.” This is a type of 
machine-learning algorithm used to draw inferences from data sets without access to the outcome response 
to provide correct answers for each observation (Hastie, Tibshirani, and Friedman, 2009). It is difficult to 
ascertain the correctness of the inferences drawn from the algorithms, and one typically relies on heuristic 
argument to motivate the algorithm and evaluate the quality of results. In the case of factor-sorted cross-
sectional analysis, the heuristic argument is that the factor carries a significant positive risk premium in 
either a statistical or economic sense. Then, if we cluster all the securities into similar groups based on their 
rankings, we could effectively evaluate the risk premium hypothesis and the clustering algorithm 
simultaneously. For most of the studies dealing with a single factor, the grouping by rank is just a one-
dimensional clustering algorithm where the distance between data points is the difference between their 
ranks. The number of the clusters is fixed beforehand with equal number of members in each cluster. The 
multi-factor case elevates the clustering problem into high dimensions. We can use readily available 
clustering algorithms like K-means or hierarchical clustering to form the clusters/groups, and we can also 
use methods like principal component analysis and independent component analysis to reduce the number 
of dimensions to a manageable extent. However, after applying unsupervised learning techniques, we are 
still facing the heuristic problem of finding the cluster with the best performers. The clustering algorithms 
could only tell us how to group the securities based on their similarities in terms of the factors, and it may 
be difficult to predefine which group is the leading group. 
 There is another branch in machine learning called “supervised learning,” which directly targets 
the prediction of one or more responses for a given set of input or predictor variables. Regression is a 
familiar, if simple, example of supervised learning, and we can use the FFC four-factor model to examine 
how our fund selection machine-learning framework is related to more traditional cross-sectional studies. 
Based on the four-factor model, a fund’s excess return can be decomposed into the excess return of four 
factors: market return, value, size, and momentum as in the following equation: 
 
𝑅𝑅𝑡𝑡 = 𝛼𝛼 + 𝛽𝛽𝑀𝑀𝑅𝑅𝑀𝑀,𝑡𝑡 + 𝛽𝛽𝐵𝐵𝑅𝑅𝐵𝐵,𝑡𝑡 + 𝛽𝛽𝐶𝐶𝑅𝑅𝐶𝐶,𝑡𝑡 + 𝛽𝛽𝑊𝑊𝑅𝑅𝑊𝑊,𝑡𝑡 + 𝜀𝜀𝑡𝑡               (1) 
 
where 𝑅𝑅𝑡𝑡 is the monthly excess return of a particular fund, 𝑅𝑅𝑀𝑀,𝑡𝑡 is the monthly excess return of a market 
index, 𝑅𝑅𝐵𝐵,𝑡𝑡 is the monthly excess return of a portfolio that is long (short) high (low) book-to-market stocks, 
𝑅𝑅𝐶𝐶,𝑡𝑡 is the monthly excess return of a portfolio that is long (short) small (large) capitalization stocks, and 
𝑅𝑅𝑊𝑊,𝑡𝑡 is the monthly excess return of a portfolio that is long the stocks with the highest returns (i.e., the 
returns in the top three deciles) over the previous 12 months and short the stocks with the lowest returns 
over the previous 12 months. 
 With a slight modification, we can transform equation (1) into a forecasting model for a fund’s 
returns. In the forecast model, a fund’s return at time 𝑡𝑡 + 1 can be expressed as a conditional expectation 
𝐸𝐸(𝑅𝑅𝑡𝑡+1𝑖𝑖 |∅𝑡𝑡𝑖𝑖 ) where 𝑅𝑅𝑡𝑡+1𝑖𝑖 is the return at time 𝑡𝑡 + 1 for fund 𝑖𝑖, and ∅𝑡𝑡𝑖𝑖  is all the information pertaining to fund 
𝑖𝑖 at time 𝑡𝑡. Following Haugen and Baker (1996), the FFC four-factor model can be rewritten as: 
 
𝐸𝐸�𝑅𝑅𝑡𝑡+1𝑖𝑖 �∅𝑡𝑡𝑖𝑖� = 𝛼𝛼 + 𝛽𝛽𝑀𝑀,𝑡𝑡

𝑖𝑖 𝑅𝑅𝑀𝑀,𝑡𝑡 + 𝛽𝛽𝐵𝐵,𝑡𝑡
𝑖𝑖 𝑅𝑅𝐵𝐵,𝑡𝑡 + 𝛽𝛽𝐶𝐶,𝑡𝑡

𝑖𝑖 𝑅𝑅𝐶𝐶 ,𝑡𝑡 + 𝛽𝛽𝑊𝑊,𝑡𝑡
𝑖𝑖 𝑅𝑅𝑊𝑊,𝑡𝑡             (2) 
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where ∅𝑡𝑡𝑖𝑖  is the information represented by the fund-specific betas. The model can be estimated through 
either a cross-sectional regression or a Fama-MacBeth process. Using this model at a point in time 𝑡𝑡 across 
the hedge funds in our database, we can generate cross-sectional return predictions for the funds in our 
database and pick up the top performing funds. 
 Besides linear regression, there are many machine-learning techniques widely employed to 
incorporate nonlinear effects to reduce forecast error by introducing bias and to utilize model averaging 
methods. Our goal is to use alternative machine-learning methods to build a flexible framework that is 
capable of combining the strengths of all the factors and to construct our dynamic forecast models without 
relying on heuristic arguments to define the weights in the composite score. This holds the potential to 
improve model performance and to build a general framework that could easily be modified to incorporate 
new risk factors. Our method can be viewed as a supervised learning problem based on the following 
equation: 
 
𝐸𝐸�𝑅𝑅𝑖𝑖,𝑡𝑡+𝐾𝐾𝐾𝐾 �∅𝑡𝑡𝑖𝑖 � = 𝑓𝑓𝑡𝑡(𝑅𝑅𝑡𝑡𝑖𝑖 ,𝑅𝑅𝑡𝑡−1𝑖𝑖 … , 𝑥𝑥1,𝑡𝑡

𝑖𝑖 ,𝑥𝑥2,𝑡𝑡
𝑖𝑖 … )                (3) 

 
where 1 + 𝑅𝑅𝑖𝑖,𝑡𝑡+𝐾𝐾𝐾𝐾 = ∏ (1 + 𝑅𝑅𝑡𝑡+𝑗𝑗𝑖𝑖 )𝐾𝐾

𝑗𝑗=1  is the cumulative return for fund 𝑖𝑖 from time 𝑡𝑡 + 1 to 𝑡𝑡 + 𝐾𝐾 and 
𝑓𝑓𝑡𝑡(𝑅𝑅𝑡𝑡𝑖𝑖 ,𝑅𝑅𝑡𝑡−1𝑖𝑖 … ,𝑥𝑥1,𝑡𝑡 , 𝑥𝑥2,𝑡𝑡 … ) is the linear/nonlinear forecast function using the past returns (𝑅𝑅𝑡𝑡𝑖𝑖 ,𝑅𝑅𝑡𝑡−1𝑖𝑖 …) up 
to time 𝑡𝑡 and quantitative factors (𝑥𝑥1,𝑡𝑡

𝑖𝑖 ,𝑥𝑥2,𝑡𝑡
𝑖𝑖 …) describing fund 𝑖𝑖 at time 𝑡𝑡. 

 We use a rolling window to build our forecast model and evaluate its performance. Assuming a 
look-back period of 𝑀𝑀 and a look-forward period of 𝐾𝐾, at time 𝑡𝑡 the machine-learning algorithm is applied 
to the fund returns information from 𝑡𝑡 − 𝑀𝑀 − 𝐾𝐾 + 1 to 𝑡𝑡. The output variable is the cumulative return from 
𝑡𝑡 − 𝐾𝐾 + 1 to 𝑡𝑡 while the input variables are only evaluated from 𝑡𝑡 − 𝑀𝑀 − 𝐾𝐾 + 1 to 𝑡𝑡 − 𝐾𝐾 in building each 
model. Basically, we are constructing a supervised-learning model using past information to forecast the 
future returns in the next 𝐾𝐾 months. Applying the model on data from 𝑡𝑡 − 𝑀𝑀 + 1 to 𝑡𝑡, we have the forecast 
of return for each fund. Based on the forecast, we rank the funds into 10 equal-sized groups to form 10 
equally weighted portfolios, i.e., the decile portfolios, and hold the 10 portfolios for the next 𝐾𝐾 months at 
which time we rebalance. When rebalancing at the end of 𝐾𝐾 months, we retrain the forecast model following 
the same procedures and form a new set of 10 portfolios. We set 𝑀𝑀 = 12 so that such a short window can 
follow market dynamics more closely. 𝐾𝐾 is set at 3, 6, and 12 months to simulate typical hedge fund 
redemption restrictions. Doing so, we establish 10 out-of-sample dynamic portfolios. Following this 
procedure, we only rebalance the portfolios every K months, generating for each trading strategy a single 
time series of monthly returns. We generate this single time series of returns following the approach used 
by Moskowitz, Ooi, and Pedersen (2010) in which the return at time 𝑡𝑡 measures the average return across 
all portfolios at that time. 

As a benchmark for comparison to our results, we use the macroeconomic hedge fund return 
forecast model proposed by Avramov, Barras and Kosowski (2013) (the ABK model hereafter) to construct 
decile portfolios. They constructed four univariate time-series models of illiquidity-adjusted hedge fund 
returns regressed, respectively, on the VIX, hedge fund industry net dollar inflow, the dividend yield of the 
S&P 500 index, and the yield differential between Moody’s BAA- and AAA-rated bonds. For each of the 
four regressions, the conditional 𝑡𝑡-statistic, 𝑡𝑡(𝑢𝑢�𝑖𝑖,𝑡𝑡+1(j)) is estimated for the predictor 𝑧𝑧𝑗𝑗,𝑡𝑡 separately at time 
𝑡𝑡 as: 

 
𝑡𝑡(𝑢𝑢�𝑖𝑖,𝑡𝑡+1(j))  = 𝑢𝑢�𝑖𝑖,𝑡𝑡+1(j)

𝑠𝑠𝑠𝑠(𝑢𝑢�𝑖𝑖,𝑡𝑡+1(j))
                  (4) 
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where 𝑢𝑢�𝑖𝑖,𝑡𝑡+1(j) is the conditional mean and 𝑠𝑠𝑠𝑠 �𝑢𝑢�𝑖𝑖,𝑡𝑡+1(j)�is the estimated standard error from the regression 

equation of 𝑢𝑢�𝑖𝑖,𝑡𝑡+1(j) = 𝑢𝑢�𝑖𝑖 + 𝑏𝑏�𝑖𝑖,𝑗𝑗𝑧𝑧𝑗𝑗,𝑡𝑡 . Their indicator is the average of the four individual 𝑡𝑡(𝑢𝑢�𝑖𝑖,𝑡𝑡+1(j)), and 
their investment strategy is to hold the top decile of funds with the highest value of the indicator. In our 
estimation of equation (4), we use a 24-month rolling window. 
 
 4. Risk Factors 
 

Our risk factors include a variety of measures including cumulative monthly returns, Sharpe ratios, 
skewness of returns, and kurtosis of returns. Hedge funds returns may exhibit strong serial correlation, and 
Getmansky, Lo, and Makarov (2004) argue this is caused by illiquidity in asset markets rather than 
unexploited profit opportunities. Thus, we include autocorrelation factors, which offer information about 
the effect of a fund’s illiquidity on its future returns. We also use the Ω ratio proposed by De Souza and 
Gokcan (2004) as a risk factor. It is defined as: 
 
Ω ratio = ∫ (1 − 𝐹𝐹(𝑟𝑟))𝑑𝑑𝑟𝑟𝑏𝑏

𝐿𝐿 ∫ 𝐹𝐹(𝑟𝑟)𝑑𝑑𝑟𝑟𝐿𝐿
𝑎𝑎�                                            (5) 

 
where 𝐹𝐹(𝑟𝑟) is the cumulative distribution function of the returns, 𝑎𝑎 and 𝑏𝑏 are lower and upper limits of the 
range of return, and 𝐿𝐿 is the target return threshold defining what is considered a gain versus a loss. We set 
𝐿𝐿 =  0 in our study. 

Additionally, we employ the current drawdown of a fund measured as the percentage difference 
between the fund’s most recent monthly unit value and its trailing high watermark. We reason that this 
factor could bear useful information; a fund may have incentive to increase portfolio risk if the fund is far 
below the high watermark given that the 2-20 fee structure resembles an out-of-money call option for the 
manager (Goetzmann, Ingersoll and Ross, 2003). The machine-learning algorithm determines dynamically 
whether such action would be beneficial for the fund. 
 Sun, Wang, and Zhen (2016) found that funds that perform well in adverse market conditions tend 
to be consistent winners over the long run. Thus, we include as a risk factor the average return of the fund 
in months when its corresponding HFR style index experiences a loss.  
 Another useful factor is the 𝑡𝑡-statistic of 𝛼𝛼, which measures the “significance” of fund performance. 
Molyboga, Beak, and Bilson (2014) propose to regress the return of a commodity trading advisor on its 
corresponding benchmark and define the 𝑡𝑡-statistic of alpha as: 
 
𝑡𝑡𝛼𝛼 = 𝛼𝛼

𝑠𝑠𝑡𝑡𝑠𝑠(𝛼𝛼)
                     (6) 

 
A large positive value of 𝑡𝑡𝛼𝛼 indicates that the manager is able to generate positive alpha consistently over 
time, while a large negative value of 𝑡𝑡𝛼𝛼 indicates consistently poor performance. They report the top 
𝑡𝑡𝛼𝛼 funds significantly outperform bottom 𝑡𝑡𝛼𝛼 funds out of sample. Following these ideas, we construct our 
𝑡𝑡𝛼𝛼 factor by regressing a fund’s returns on those of its corresponding style index and calculate its alpha and 
the 𝑡𝑡-statistic from that regression. 
 With hedge fund data, we are limited in the types of factors we can employ. For instance, while we 
can define risk factors for stocks based on book and market values, such measures do not exist for hedge 
funds. In addition, there are gaps in hedge fund databases. For example, some funds do not update assets 
under management regularly, and so we do not incorporate this into our set of risk factors. The candidate 
factors on the right-hand side of equation (3) include some measures typically used to measure fund 
characteristics and some which are atypical. All variables are converted to normalized deviations from the 
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mean. Exhibit 1 lists the factors used in our analysis. In the exhibit, the first nine factors are typical of those 
used in factor analysis while the remaining eight factors are atypical: 
 
Exhibit 1. Factors used in our analysis 
 
Factor Symbol 
1. One-month return R1 
2. Two-month cumulative return R3 
3. Six-month cumulative return R6 
4. Nine-month cumulative return R9 
5. 12-month average return R12 
6. Sharpe ratio calculated from the past 12 months of returns SR 
7. Standard deviation calculated from the past 12 months of returns SD 
8. Skewness calculated from the past 12 months of returns Skew 
9. Kurtosis calculated from the past 12 months of returns Kurt 
10. Ω ratio  Omega 
11. Lag 1 autocorrelations calculated from the past 12 months of returns ACF1 
12. Lag 2 autocorrelations calculated from the past 12 months of returns ACF2 
13. Lag 3 autocorrelations calculated from the past 12 months of returns ACF3 
14. Fund alpha with respect to the corresponding HFR style index Alpha 
15. Alpha 𝑡𝑡-statistic Alpha-t 
16. Distance/drawdown from the high watermark in the past 12 months DD 
17. Average return of the fund in months when HFR style index experienced a loss PerLoss 

 
 
5. Machine-Learning Algorithms 
 

Cross-Sectional OLS Regression 
 

OLS regression for cross-sectional returns has a simple model structure as follows: 
 
𝐸𝐸�𝑅𝑅𝑖𝑖,𝑡𝑡+𝐾𝐾𝐾𝐾 �∅𝑡𝑡𝑖𝑖 � = 𝛼𝛼𝑡𝑡 + ∑ 𝛽𝛽𝑗𝑗,𝑡𝑡

17
𝑗𝑗=1 𝑥𝑥𝑗𝑗,𝑡𝑡

𝑖𝑖                  (7) 
 
where the superscript 𝑖𝑖 indicates the fund-specific factors. 
  

The Lasso 
 

The lasso method is an automatic model building system based on a shrinkage method that has 
gained wide acceptance in the machine-learning field. The lasso method has found adherents in finance and 
economics (see Welsch and Zhou, 2007; Bai and Ng, 2008; and Wang and Zhu, 2008). Lasso addresses 
high-dimension problems by shrinking parameters that have been inflated in value by the effects of 
multicollinearity. It shrinks parameters by a constant factor at the limit to zero such that variables are 
eliminated from the initial equation. From a set of candidate variables, which may consist of all variables 
in the dataset, it selects a subset for inclusion in an equation, making it an automatic model building system.  
For example, for a linear regression 𝑦𝑦𝑖𝑖 = 𝛽𝛽0 + ∑ 𝛽𝛽𝑗𝑗 ∗ 𝑥𝑥𝑖𝑖𝑗𝑗 + 𝜀𝜀𝑡𝑡 , 𝑖𝑖 = 1,2,3, … ,𝑛𝑛𝑝𝑝

𝑗𝑗=1 , the lasso estimate is 
defined by: 
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�̂�𝛽𝑙𝑙𝑎𝑎𝑠𝑠𝑠𝑠𝑙𝑙 = argmin
𝛽𝛽

∑ (𝑦𝑦𝑖𝑖 − 𝛽𝛽0 − ∑ 𝛽𝛽𝑗𝑗 ∗ 𝑥𝑥𝑖𝑖𝑗𝑗)2𝑝𝑝
𝑗𝑗=1

𝑛𝑛
𝑖𝑖=1                           (8) 

 
subject to ∑ �𝛽𝛽𝑗𝑗�

𝑝𝑝
𝑗𝑗=1 ≤ 𝑇𝑇  

 
where 𝑇𝑇 is a tuning, or penalty, parameter. By making 𝑇𝑇 sufficiently small, some of the coefficients are 
shrunk to exactly zero, which means that the lasso estimation method is also a variable selection method. 
The penalty parameter 𝑇𝑇 is adjusted in small increments to minimize cross-validated mean square error. 
The lasso can also be written in the equivalent Lagrangian form (Hastie, Tibshirani, and Friedman, 2009). 
 
�̂�𝛽𝑙𝑙𝑎𝑎𝑠𝑠𝑠𝑠𝑙𝑙 = argmin

𝛽𝛽
(∑ (𝑦𝑦𝑖𝑖 − 𝛽𝛽0 − ∑ 𝛽𝛽𝑗𝑗 ∗ 𝑥𝑥𝑖𝑖𝑗𝑗)2𝑝𝑝

𝑗𝑗=1
𝑛𝑛
𝑖𝑖=1 + 𝜆𝜆∑ �𝛽𝛽𝑗𝑗�

𝑝𝑝
𝑗𝑗=1 )             (9) 

 
The key motivation for lasso is the bias-variance tradeoff in mean squared error (MSE). For a fitted model 
of f̂(x), where f0(x) is the true value of f(x) at point x: 
 
𝑀𝑀𝑀𝑀𝐸𝐸�𝑓𝑓(𝑥𝑥)� = 𝐸𝐸[𝑓𝑓(𝑥𝑥) − 𝑓𝑓0(𝑥𝑥)]2 = 𝑉𝑉𝑎𝑎𝑟𝑟𝑖𝑖𝑎𝑎𝑛𝑛𝑉𝑉𝑠𝑠�𝑓𝑓(𝑥𝑥)�+ [𝐸𝐸[𝑓𝑓(𝑥𝑥)] − 𝑓𝑓0(𝑥𝑥)]2               (10) 
 
By shrinking the estimator in lasso, 𝑉𝑉𝑎𝑎𝑟𝑟𝑖𝑖𝑎𝑎𝑛𝑛𝑉𝑉𝑠𝑠�𝑓𝑓(𝑥𝑥)� will be reduced. If the increase in bias, [𝐸𝐸[𝑓𝑓(𝑥𝑥)] −
𝑓𝑓0(𝑥𝑥)], is relatively small, the forecast error could be reduced. In our study, the choice of the penalty 
parameter 𝑇𝑇 is based on 10-fold cross-validation estimation of mean square error. 
 

Random Forest 
 

Random forest (RF hereafter) is an ensemble method built on a classification and regression tree 
(CART). The basic CART works by a recursive partitioning of the data that can be represented within a 
basis function framework (Berk, 2008). The basis functions are indicator variables determined by the best 
splits, which can be viewed as nonlinear and high-order functions of all the variables. It is a stagewise 
process that breaks the data into smaller and smaller pieces. The goal is to construct subsets of the data so 
that the values of the response variable in each subset fall within a narrow range. Defining the impurity of 
node as the within-node sum of squares for the response variable 𝑖𝑖(𝜏𝜏) = ∑(𝑦𝑦𝑖𝑖 − 𝑦𝑦(𝜏𝜏)������)2 at each split, the 
best split is chosen to maximize the change of impurity: 
 
∆(𝑠𝑠, 𝜏𝜏) = 𝑖𝑖(𝜏𝜏) − 𝑖𝑖(𝜏𝜏𝐿𝐿) − 𝑖𝑖(𝜏𝜏𝑅𝑅)                 (11) 
 
where 𝜏𝜏 represents the “parent node” and 𝜏𝜏𝐿𝐿 and 𝜏𝜏𝑅𝑅 represent the two “daughter nodes.” Through the whole 
process, each observation is placed in a terminal node and is then assigned the mean of that mode. The 
basic CART is prone to over-fitting, and Breiman (2001) proposes to use an ensemble approach called 
“random forest” to improve on the basic CART. Let 𝑁𝑁 be the number of observations, and the following 
steps are followed to build an RF model for quantitative response variable: 
 

1. Take a random sample of size 𝑁𝑁 with replacement from the data. 
2. Take a random sample without replacement of the predictors. 
3. Construct the first CART partition of the data. 
4. Repeat step 2 for each subsequent split until the tree is as large as desired. 
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5. Drop the out-of-bag data which were not selected in the first step down the tree. From these 
observations, a mean is calculated for each terminal node and such means would serve as the 
predicted values in the respective terminal nodes. 

6. Repeat steps 1–5 a large number of times, e.g., we use 10,000 in our setup. 
7. Using only the value assigned to each observation when that observation is not used to build the 

tree; we take the average of those values among all the trees as the predicted outcome from this 
random forest. 

8. Variable importance can be computed using the shuffling approach. For a single tree, each time a 
given variable is used to define a splitting of the data, the reduction in the purity is recorded. Once 
the tree is complete, all the reductions are summed. The result is the error sum of squares reduction 
contributed by each predictor. Those sums are then averaged over all the trees for each predictor. 

 
There are three major tuning parameters: 1) the terminal node size for the single tree, 2) the number of trees, 
and 3) the proportion of predictors to be sampled. We use a value of 5 for the terminal node size. We set 
the number of trees at 10,000. The proportion of the predictors to be selected for each iteration is set at 1/3. 
 With a random sample of input variables, the predictions made by each of the trees are more 
independent. As a result, averaging over a large number of independent trees can bring great improvement 
in prediction accuracy. Because of this, a random forest is able to work with high-dimensional data. Where 
predictors are highly correlated, one can use either one as the splitting variable. However, the two variables 
would not split the data in exactly the same way given the hierarchical structure in the regression trees. The 
two partitions might have large overlap while having unique content. If each of the two variables has an 
opportunity to be selected without competing against each other, we are able to explore a richer feature 
space. Overall, the predictor sampling and multiple tree averaging leads to shrink each predictor on the 
fitted values. 
 

Gradient Boosting Model 
 

The strength of the random forest model comes from two things: 1) the fitting functions are very 
flexible and can accommodate highly localized features of the data, and 2) averaging over the out-of-bag 
observations reduces the risk of over-fitting. Boosting is an alternative way of dealing with the flexibility 
issue. It gives observations responsible for highly localized features more weight in the fitting procedure. 
After a large number of iterations, which gives relatively more weight for the difficult-to-fit observation, 
one can combine the predictions from each iteration in a sensible way to reduce over-fitting. Basically it is 
able to take a “weak” learning algorithm and gradually boost it into a “strong” learning algorithm. In this 
paper, we will follow a specific approach called stochastic gradient boosting (GBM hereafter) to build our 
forecast model. For 𝑁𝑁 observations and 𝑝𝑝 variables, our procedure is as follows: 
 

1. Initialize the forecast function 𝑓𝑓0(𝑥𝑥) such that the constant c minimizes the loss function: 𝑓𝑓0(𝑥𝑥) =
argmin

𝑐𝑐
∑ 𝐿𝐿(𝑦𝑦𝑖𝑖, 𝑉𝑉)𝑁𝑁
𝑖𝑖=1 . We use the quadratic loss function of mean square error in our setup. 

2. For 𝑚𝑚 =  1,2, … ,𝑀𝑀 where 𝑀𝑀 is the total number of iterations, we iterate over the steps 2a) to 2e) 
as follows: 
2a) Estimate the gradient for the N observations as: 

    𝑟𝑟𝑖𝑖𝑖𝑖 = −[
𝜕𝜕�𝐿𝐿�𝑦𝑦𝑖𝑖,𝑓𝑓(𝑥𝑥𝑖𝑖)��

𝜕𝜕𝑓𝑓(𝑥𝑥𝑖𝑖)
]𝑓𝑓=𝑓𝑓𝑚𝑚−1 which is just the forecast error of 𝑦𝑦𝑖𝑖 −  𝑓𝑓(𝑥𝑥𝑖𝑖) in our case. 
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2b) Randomly select without replacement W*p cases from the whole data set where W should be 
smaller than the total number of observations. 
2c) Fit a regression tree with 𝐽𝐽𝑖𝑖 terminal nodes to the gradient obtained in 2a). 
2d) For j= 1,2,…, 𝐽𝐽𝑖𝑖 we calculate the optional terminal node prediction as 
𝛾𝛾𝑖𝑖𝑖𝑖 = argmin

𝛾𝛾
∑ 𝐿𝐿(𝑦𝑦𝑖𝑖 ,𝑓𝑓𝑖𝑖−1(𝑥𝑥𝑖𝑖) + 𝛾𝛾)𝑥𝑥𝑖𝑖∈𝑅𝑅𝑗𝑗𝑚𝑚  where 𝑅𝑅𝑗𝑗𝑖𝑖is the space defining the terminal node from 

step 2c). 
2e) Using the same sampled data, we can update 𝑓𝑓𝑖𝑖(𝑥𝑥) = 𝑓𝑓𝑖𝑖−1(𝑥𝑥) + 𝑣𝑣 ∗ ∑ 𝛾𝛾𝑖𝑖𝑖𝑖𝐼𝐼(𝑥𝑥𝑖𝑖 ∈ 𝑅𝑅𝑗𝑗𝑖𝑖)𝐽𝐽𝑚𝑚

𝑗𝑗=1  
where 𝑣𝑣 is shrinkage parameter controlling the learning rate. 

3. Obtain the final output 𝑓𝑓𝑀𝑀(𝑥𝑥). 
 
It has been shown (Ridgeway, 1999) that all the procedures within the generalized linear model can 

be properly boosted by the stochastic gradient model. The major tuning parameters of this algorithm include 
the sample size, the shrinkage parameter, the depth of interaction among variables, the minimum number 
of observations in each tree's terminal node, and the total number of iterations. We set the minimum number 
of observations in the terminal node to be 1 and sample all of the observations employing a shrinkage 
parameter of 0.02. We only optimize the interaction depth ranging from five to 15 based on five-fold cross-
validation with the total number of iterations capped at 1,000.  
 

Deep Neural Network 
 

The deep neural network (DNN hereafter) approach, which is also known as deep learning, is 
composed of multiple levels of nonlinear operations. We employ feed-forward neural networks with 
multiple hidden layers. The diagram below shows such a network: 
 

 
 
The computing units in neural networks are called neurons. These are represented by the cells in the 
diagram. The layer of cells on the left in the diagram is the input layer, and the cells within the input layer 
are called input neurons. The output layer contains a single output neuron, which is the forecast of the 
fund’s future returns. The middle layer is called a hidden layer. 
 Let 𝑤𝑤𝑗𝑗𝑗𝑗𝑙𝑙  denote the weight for the connection link from the 𝑘𝑘𝑡𝑡ℎ neuron in the (𝑙𝑙 − 1)𝑡𝑡ℎ layer to the 
𝑗𝑗𝑡𝑡ℎ neuron in the 𝑙𝑙𝑡𝑡ℎ layer. Similarly, let 𝑏𝑏𝑗𝑗𝑙𝑙 denote the bias of the 𝑗𝑗𝑡𝑡ℎ neuron in the 𝑙𝑙𝑡𝑡ℎ layer and 𝑎𝑎𝑗𝑗𝑙𝑙 denote 
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the activation/output of the 𝑗𝑗𝑡𝑡ℎ neuron in the 𝑙𝑙𝑡𝑡ℎ layer. Mathematically, the neural network can be 
represented as: 
 
𝑢𝑢𝑗𝑗𝑙𝑙 = ∑ 𝑤𝑤𝑗𝑗𝑗𝑗𝑙𝑙𝑗𝑗 𝑎𝑎𝑗𝑗𝑙𝑙−1 and 𝑎𝑎𝑗𝑗𝑙𝑙 = 𝜑𝜑(𝑢𝑢𝑗𝑗𝑙𝑙 + 𝑏𝑏𝑗𝑗𝑙𝑙)               (12) 
 
where 𝜑𝜑 is the activation function, which can take various forms such as: 
 

a) Threshold function: 𝜑𝜑(𝑢𝑢) = �1 𝑖𝑖𝑓𝑓 𝑢𝑢 ≥ 0
0 𝑖𝑖𝑓𝑓 𝑢𝑢 < 0 

b) Sigmoid function: 𝜑𝜑(𝑢𝑢) = 1
1+𝑠𝑠−𝛼𝛼𝛼𝛼

 where 𝛼𝛼 is the slope parameter 
c) Tanh function: 𝜑𝜑(𝑢𝑢) = tanh (𝑢𝑢) 
d) Rectifier function: 𝜑𝜑(𝑢𝑢) = max (0,𝑢𝑢) 
 

The parameters are usually calculated through a back-propagation algorithm by estimating the 
partial derivatives of the loss function with respect to the weights and the biases. The loss function in our 
analysis is the quadratic loss function of mean square error. A detailed explanation of the back-propagation 
algorithm and its variations is beyond the scope of this paper, but Goodfellow, Bengio, and Courville (2016) 
provide comprehensive descriptions of the algorithms. Adding more layers to the network, we have more 
flexibility in approximating the true underlying response function, and in principle, we should have better 
performance. Typically, if one trains DNNs using the standard stochastic gradient descent approach with 
back-propagation, it is very unlikely that DNNs would have any advantage over simple shallow networks. 
This lack of performance can be attributed to the vanishing gradient problem (Glorot and Bengio, 2010). It 
arises from the intrinsic instability of the gradient descent approach in computing DNNs. The parameters 
associated with early or later layers become fixed in value during the training process, and the effective 
learning rate can differ by several magnitudes between layers. This intrinsic problem is part of the reason 
DNN methods did not become popular until work by Hinton, Osindero, and Teh (2006). They introduced 
Deep Belief Networks with a learning algorithm that greedily trains one layer at a time, exploiting an 
unsupervised learning algorithm for each layer called a Restricted Boltzmann Machine. Since then, related 
algorithms based on auto-encoders (Bengio, Lamblin, Popovici, and Larochelle, 2007) and other structures 
have been proposed. We employ the rectifier activation function because the vanishing gradient problem is 
less severe with it. The major tuning parameters are the number of layers and the number of neurons in each 
layer, the learning rates controlling parameters, the regularization parameters that add stability and improve 
generalization, the input drop-out ratio, which omits a fraction of the input features to improve 
generalization, the early stopping criteria, and the number of epochs, which determines how many times 
the dataset should be iterated. 

There are many more tuning parameters in DNNs than there are in the previously mentioned 
machine-learning algorithms. We fix the learning rate to be 0.005 and stop the iterations early if the simple 
moving average of length 5 of the MSE does not improve. We use grid search under five-fold cross-
validation with 100 epochs to choose the other tuning parameters as follows. We allow up to 10 layers with 
10 neurons per layer in our DNN structures, the input dropout ratio is tuned to either 0.5 or 1, and the 
regularization parameters range from 10-4 to 10-7. 
 
 
 
 
 



12 
 

6. Empirical Results 
 

We examine the performance of our hedge fund portfolios separately for each style.  
 

Equity 
 

Chart 1 shows the annual returns of our equity hedge fund portfolios ranked by the forecast from 
different methods and grouped by decile with a three-, six- and 12-month rebalancing cycle. Decile portfolio 
10 contains the 10 percent of funds ranked highest in terms of the forecasted return, decile portfolio 9 
contains the next 10 percent, and so on. The detailed summary statistics for such portfolios can be found in 
Appendix A. 
 
Chart 1.  Annual returns of the portfolios using ABK, OLS, Lasso, RF, GBM, and DNN forecasts 

 



13 
 

 
In general, the power of our machine-learning methods to select hedge funds with superior 

performance weakens with longer rebalancing periods and vanishes or even reverses with annual 
rebalancing. This is in agreement with the finding by Agarwal and Naik (2000) that persistence of return 
among hedge fund managers is short-term in nature. The poor performance with 12-month rebalancing may 
be due to this effect or because the factors in our analysis do not contain enough information to forecast 
returns that far in the future. With a three-month rebalancing cycle, where all the models have the best 
performance, the annual returns of the portfolios agree well with the decile rankings, which is a desirable 
feature. We note that the performance of decile portfolio 10 using the ABK model is worse than that of 
deciles 7–9, which means the 𝑡𝑡-statistic forecast of fund returns using macro variables is an inconsistent 
indicator of future fund returns.  

Chart 2 and Table 1 compare the performance of the best-performing portfolio from each algorithm 
at a three-month rebalancing cycle with the HFR equity index to assess the benefit of our framework in 
fund selection. All five machine algorithms generate higher annual returns than the index and the ABK 
model, although some of them do not offer a better risk profile. This is understandable because the response 
variable in our forecast framework is the future return, and our approach was designed only to maximize 
returns. Among the five algorithms, DNN has the best total return. Its annual return of 15.95 percent is 
more than 80 percent higher than that of the HFR equity index at 8.72 percent. The DNN algorithm 
outperforms the RF and the GBM algorithms marginally despite its much more complicated structure. One 
possible reason for this is that the number of observations is very limited; DNN operates much better with 
larger samples.  

 
 

Chart 2.  The cumulative returns of the six best-performing equity hedge fund portfolios and the HFR equity 
index

 
 
 
Table 1. Monthly return statistics of the six best-performing equity hedge fund portfolios and the HFR 
equity index 
 
 HFR ABK OLS Lasso RF GBM DNN 
Annual Return (%) 8.72 11.89 12.39 14.72 15.86 15.63 15.95 
Annual Volatility 9.13 10.15 13.66 14.37 13.94 13.03 13.95 
Sharpe Ratio 0.66 0.92 0.74 0.85 0.94 0.98 0.95 
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Skewness -0.32 -0.15 0.36 0.58 0.44 0.50 0.45 
Excess Kurtosis 2.17 3.89 2.78 3.76 3.87 3.15 4.28 
Max Drawdown (%) 30.57 25.16 19.63 30.28 24.45 28.51 21.43 

 
Event-Driven 

 
Chart 3 shows the annual returns of our event-driven hedge fund portfolios ranked in the same way. 

The detailed summary statistics for the portfolios can be found in Appendix B. 
 

Chart 3.  Annual returns of the portfolios using ABK, OLS, Lasso, RF, GBM, and DNN forecasts 
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Analogous to the results with equity hedge fund, at short and medium rebalancing cycles, annual 
returns generally agree with the forecast ranks for the machine-learning algorithms, while the decile 
portfolio 10 in the ABK model still slightly lags deciles 6–8. In addition, the power to differentiate among 
ranks generally becomes weaker at longer rebalancing cycles.  

Chart 4 and Table 2 show the performance of the best-performing portfolio from each algorithm at 
a three-month rebalancing cycle. All five machine algorithms generate higher annual returns than both the 
index and the ABK model, although some of them do not generate a better risk profile. Among the five 
algorithms, RF has the best total return. Its annual return of 14.90 percent is more than 70 percent higher 
than that of the index at 8.66 percent. All of the machine-learning algorithms generate portfolios with less 
negative skewness compared to the HFR event-driven index.  
 
Chart 4.  The cumulative returns of the six best-performing event-driven hedge fund portfolios and the HFR 
event-driven index  

 
 
Table 2. Monthly return statistics of the six best-performing event-driven hedge fund portfolios and the 
HFR event-driven index 
 
 HFR ABK OLS Lasso RF GBM DNN 
Annual Return (%) 8.66 9.62 11.29 14.08 14.90 14.75 14.00 
Annual Volatility 6.76 6.61 10.47 9.33 9.08 9.29 6.87 
Sharpe Ratio 0.88 1.07 0.85 1.21 1.31 1.27 1.59 
Skewness -1.34 -0.93 -0.31 -0.31 -0.03 -0.17 0.28 
Excess Kurtosis 4.48 6.94 1.03 2.27 1.18 1.14 2.47 
Max Drawdown (%) 24.78 23.04 21.91 24.23 18.25 21.56 11.95 

 
 

Macro 
 

Chart 5 shows the annual returns of our macro fund portfolios ranked in the same way. The detailed 
summary statistics for the portfolios can be found in Appendix C. 
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Chart 5.  Annual returns of the portfolios using ABK, OLS, Lasso, RF, GBM, and DNN forecasts 
 

 
 
Macro hedge funds behave very differently than equity and event-driven funds. The best portfolios 

are formed at a medium six-month rebalancing cycle instead of a three-month cycle for the machine-
learning algorithms, and they are much more difficult to forecast compared to the other styles. Although 
decile portfolio 10 at the six-month rebalancing scheme outperforms other deciles, there is little 
differentiating power from decile 1 to decile 9.  
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Chart 6 and Table 3 show the performance of the top-ranked portfolio from each machine-learning 
algorithm at a six-month rebalancing cycle and the best-performing portfolio from ABK model at a three-
month rebalancing cycle. All five machine algorithms generate higher annual returns than both the index 
and the ABK model, although none of them offer a better Sharpe ratio. Among the five algorithms, GBM 
has the best total return. Its annual return of 11.42 percent is more than 70 percent higher than that of the 
index at 6.67 percent. 
 
Chart 6.  The cumulative returns of the six best-performing macro hedge fund portfolios and the HFR macro 
index 
 

 
 
Table 3.  Monthly return statistics of the six best-performing macro hedge fund portfolios and the HFR 
macro index 
 
 HFR ABK OLS Lasso RF GBM DNN 
Annual Return (%) 6.67 8.47 9.87 10.78 11.23 11.42 11.32 
Annual Volatility 5.97 3.91 11.15 11.33 11.63 11.64 11.68 
Sharpe Ratio 0.69 1.50 0.69 0.75 0.77 0.78 0.77 
Skewness 0.47 -0.20 0.07 0.09 0.16 0.15 0.16 
Excess Kurtosis 0.82 0.94 1.38 1.79 0.94 0.88 0.91 
Max Drawdown (%) 8.01 5.20 16.88 17.63 14.97 14.88 14.97 

 
 

Relative Value 
 

Chart 7 shows the annual returns of our relative-value fund portfolios ranked in the same way. The 
detailed summary statistics for the portfolios can be found in Appendix D. 
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Chart 7.  Annual returns of the portfolios using ABK, OLS, Lasso, RF, GBM, and DNN forecasts 
 

 
 
 
Relative-value hedge funds are relatively easier to forecast. Forecasting power generally decreases 

with forecast horizon. Meanwhile, machine learning still generates good results at 12-month rebalancing.  
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Chart 8 and Table 4 show the performance of the best-performing portfolio from each algorithm at 
a three-month rebalancing cycle. All five machine-learning algorithms generate higher annual returns than 
the HFR relative value index and the ABK model. Most of them produce more than double the annual 
return of the index. RF has the highest return. Its annual return of 17.74% percent is more than 130 percent 
higher than that of the index at 7.61 percent. 
 
Chart 8.  The cumulative returns of the six best-performing relative-value hedge fund portfolios and the 
HFR relative-value index 

 
 
Table 4. Monthly return statistics of the six best-performing relative-value hedge fund portfolios and the 
HFR relative value index 
 
 HFR ABK OLS Lasso RF GBM DNN 
Annual Return (%) 7.61 9.45 13.56 16.63 17.74 16.78 17.59 
Annual Volatility 4.31 2.50 8.74 7.49 7.21 7.09 7.12 
Sharpe Ratio 1.16 2.69 1.28 1.79 1.99 1.90 2.00 
Skewness -2.91 -1.00 -3.89 -1.02 -1.23 -1.18 -1.30 
Excess Kurtosis 16.56 4.10 32.88 5.84 8.29 7.23 9.15 
Max Drawdown (%) 18.03 4.92 28.02 15.52 17.62 15.64 17.39 

 
 Throughout our analysis of the four trading styles, the RF, GBM and DNN models are generally 
the best, with very similar performance results, followed by the lasso, with OLS producing the worst results. 
RF and GBM both incorporate model-averaging methods, which may give them an advantage in handling 
inherently noisy data like hedge fund returns. DNN operates from another extreme by offering highly 
flexible functions designed to extract local features in the data. However, despite its simplicity, the OLS-
based method still outperforms the style indexes consistently. That adds weight to our basic approach. As 
we have seen throughout the empirical results, if predictive signals exist in a dataset, various models are 
able to take advantage of such signals regardless of the techniques used in developing the model. Simple 
models can, therefore, be effective, but the more versatile models coupled with specific domain knowledge 
can produce much more accurate predictions and, thus, better portfolio performance. Such a framework can 
be extended to incorporate additional risk factors and alternative definitions of the response variable.  

In terms of fund-selection performance, we find the greatest improvement in relative-value funds 
and the least improvement using macro funds. This could mean that there is more opportunity in the relative-
value sector for the successful application of our fund-selection methods. 
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Although some of the machine-learning algorithms cannot provide straightforward information 
about how each factor is related with fund performance, it would be beneficial to examine how a factor 
contributes to performance. At each point in time, we trained the risk factor models using the RF approach 
employing a six-month holding horizon for macro funds and a three-month holding horizon for the other 
three styles. We then ranked the risk factors according to their variable importance, defined earlier, in the 
corresponding risk factor model. The final score is the average of such ranks for the 240 months in our 
study. There are 17 risk factors in our analysis, and Table 5 shows the outcome where we convert the ranks 
so that the highest possible rank in the exhibit is 1, and the lowest possible rank is 17. Among the 17 input 
variables, the higher-order moments and auto-correlation play the most important roles. The importance of 
the past returns is relatively low.  
 
Table 5.  Variable importance rank for each fund category based on RF models  
 

 Equity Event Driven Macro Relative Value 
R1 16 14 13 15 
R3 15 15 16 17 
R6 13 13 15 16 
R9 12 12 12 14 
R12 11 11 10 11 
SR 3 6 7 6 
SD 17 17 17 12 
Skew 2 4 2 5 
Kurt 1 1 1 1 
Omega 4 8 6 9 
ACF1 5 5 5 4 
ACF2 8 3 4 2 
ACF3 7 2 3 3 
Alpha 6 9 8 8 
Alpha.t 10 10 11 10 
DD 9 7 9 7 
PerfLoss 14 16 14 13 

 
Finally, we use the factor model proposed by Fung-Hsieh (2004) to evaluate the alpha and the factor 

loadings of our best machine-learning portfolios. They use seven factors: an equity-market factor measured 
by the S&P 500 index monthly total return, a size-spread factor defined as the difference between the 
Russell 2000 index monthly total return and the S&P 500 monthly total return, a bond-market factor defined 
as the monthly change in the 10-year Treasury constant maturity yield, a credit-spread factor defined as the 
monthly change in the Moody's BAA yield less the 10-year Treasury constant-maturity yield, and three 
trend-following (TF) factors, one each for bond, currency, and commodity markets. Table 6 shows the 
regression results for decile portfolio 10 for the four styles. 
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Table 6.  Regression of the decile portfolio 10 returns on Fung-Hsieh factors with p-values in parentheses 

 
Factor OLS LASSO RF GBM DNN 
Equity funds: 
  Intercept  0.0063 (0.359)  0.0114 (0.128)  0.0136 (0.062)  0.0123 (0.063)  0.0116 (0.111) 
  Equity Market  0.4793 (0.000)  0.4603 (0.000)  0.4074 (0.000)  0.4238 (0.000)  0.4169 (0.000) 
  Size Spread  0.3747 (0.000)  0.4250 (0.000)  0.4594 (0.000)  0.4078 (0.000)  0.4431 (0.000) 
  Bond Market  0.0105 (0.268)  0.0192 (0.062)  0.0164 (0.101)  0.0171 (0.060)  0.0188 (0.061) 
  Credit Spread  0.0002 (0.951) -0.0009 (0.739) -0.0014 (0.597) -0.0011 (0.672) -0.0006 (0.815) 
  Bond TF -0.0119 (0.426)  0.0012 (0.940) -0.0067 (0.673) -0.0057 (0.692) -0.0072 (0.649) 
  Currency TF  0.0118 (0.336)  0.0098 (0.462)  0.0068 (0.600)  0.0101 (0.391)  0.0068 (0.601) 
  Commodity TF  0.0137 (0.363)  0.0034 (0.836)  0.0131 (0.409)  0.0138 (0.340)  0.0119 (0.455) 
  R2 0.4094 0.3825 0.3772 0.4093 0.3775 
Event-Driven Funds: 
  Intercept  0.0086 (0.087)  0.0115 (0.015)  0.0100 (0.033)  0.0121 (0.009)  0.0109 (0.003) 
  Equity Market  0.3734 (0.000)  0.3082 (0.000)  0.2873 (0.000)  0.3189 (0.000)  0.1871 (0.000) 
  Size Spread  0.2653 (0.000)  0.2138 (0.000)  0.1961 (0.000)  0.2075 (0.000)  0.1315 (0.000) 
  Bond Market  0.0133 (0.056)  0.0119 (0.069)  0.0129 (0.048)  0.0125 (0.048)  0.0114 (0.025) 
  Credit Spread -0.0009 (0.652) -0.0010 (0.589) -0.0002 (0.929) -0.0011 (0.526) -0.0006 (0.679) 
  Bond TF -0.0090 (0.409) -0.0015 (0.886) -0.0157 (0.126) -0.0139 (0.164) -0.0224 (0.005) 
  Currency TF  0.0012 (0.898)  0.0030 (0.725)  0.0067 (0.427)  0.0086 (0.296)  0.0056 (0.389) 
  Commodity TF  0.0023 (0.832) -0.0120 (0.247) -0.0053 (0.609) -0.0101 (0.313) -0.0019 (0.817) 
  R2 0.4503 0.3903 0.3692 0.4245 0.3324 
Macro Funds: 
  Intercept  0.0059 (0.364)  0.0077 (0.253)  0.0099 (0.151)  0.0097 (0.158)  0.0096 (0.166) 
  Equity Market  0.2050 (0.000)  0.1621 (0.001)  0.1627 (0.001)  0.1634 (0.001)  0.1681 (0.001) 
  Size Spread  0.0455 (0.427)  0.0736 (0.217)  0.0708 (0.245)  0.0705 (0.246)  0.0763 (0.210) 
  Bond Market -0.0063 (0.482) -0.0044 (0.639) -0.0022 (0.820) -0.0019 (0.839) -0.0029 (0.761) 
  Credit Spread  0.0006 (0.790)  0.0003 (0.901) -0.0004 (0.886) -0.0002 (0.927) -0.0002 (0.928) 
  Bond TF  0.0331 (0.020)  0.0311 (0.035)  0.0331 (0.028)  0.0336 (0.025)  0.0331 (0.028) 
  Currency TF  0.0387 (0.001)  0.0363 (0.003)  0.0406 (0.001)  0.0407 (0.001)  0.0410 (0.001) 
  Commodity TF  0.0467 (0.001)  0.0448 (0.003)  0.0476 (0.002)  0.0486 (0.001)  0.0483 (0.002) 
  R2 0.1981 0.1624 0.1747 0.1778 0.1786 
Relative-Value Funds: 
  Intercept  0.0118 (0.006)  0.0076 (0.056)  0.0150 (0.000)  0.0124 (0.001)  0.0151 (0.000) 
  Equity Market  0.2666 (0.000)  0.2157 (0.000)  0.2068 (0.000)  0.2178 (0.000)  0.1973 (0.000) 
  Size Spread  0.1712 (0.000)  0.1312 (0.000)  0.1287 (0.000)  0.1354 (0.000)  0.1381 (0.000) 
  Bond Market -0.0024 (0.682)  0.0042 (0.446)  0.0051 (0.332)  0.0037 (0.470)  0.0040 (0.446) 
  Credit Spread -0.0013 (0.415)  0.0014 (0.352) -0.0011 (0.431) -0.0004 (0.750) -0.0012 (0.400) 
  Bond TF -0.0136 (0.138) -0.0194 (0.026) -0.0121 (0.145) -0.0134 (0.095) -0.0131 (0.113) 
  Currency TF -0.0096 (0.202)  0.0001 (0.989)  0.0013 (0.847)  0.0017 (0.801)  0.0014 (0.833) 
  Commodity TF -0.0153 (0.099) -0.0084 (0.337) -0.0132 (0.115) -0.0103 (0.205) -0.0127 (0.128) 
  R2 0.4003 0.3201 0.3255 0.3513 0.3202 

 
Except for macro hedge funds, most of the machine-learning algorithms have significant alpha of more 

than 1 percent per month. The loadings on the equity-market and size-spread factors are all positive, which 
implies that all the algorithms tend to generate long exposures to the equity market and exhibit a preference 
for small cap companies. Although the loadings on the equity-market and size-spread factors are positive, 
the coefficients are not large. Thus, it may be that the superior performance of the algorithms is not coming 
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from overleveraging the two factors but rather from the algorithms. This is reinforced by the observation 
that the R2 in all the regressions are relatively small. The trend-following factors were significant only for 
the macro hedge funds algorithms. That agrees with the fact that many macro funds employ trend-following 
strategies. 
 
 
 
 
7. Conclusion 
 

We propose a supervised machine-learning approach to forecast hedge fund returns and select 
hedge funds quantitatively. The framework is based on cross-sectional forecasts of hedge fund returns 
utilizing a set of 17 factors. The approach allows the investor to identify funds that are likely to perform 
well and to construct the corresponding portfolios. We find that our method is applicable across hedge fund 
style categories. Focusing on factors constructed from characteristics idiosyncratic to individual funds, our 
models offer distinctive perspectives when compared to models that are driven by macroeconomic 
variables. Retrospectively, when benchmarked against a traditional factor model, our machine-learning 
approach generates portfolios with large alphas. The relatively low explanatory power of the regressions 
indicates that most of the performance of the algorithm-generated portfolios is due to success in identifying 
funds likely to deliver good performance. Our approach is flexible enough to incorporate new developments 
both in risk-factor research field and in the machine-learning field.  
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Appendix A. Statistics of monthly returns of the equity hedge fund portfolios 
 
Table A1.  Statistics of monthly returns of ABK portfolios 

Rebalance Decile Portfolio 1 2 3 4 5 6 7 8 9 10 

3-month 
 

Ann Return % 1.04 4.57 6.01 7.22 8.65 10.08 11.89 11.35 10.91 10.23 

Ann Volatility 9.51 11.80 11.58 10.92 11.15 10.72 10.15 9.75 8.08 6.64 
Sharpe Ratio -0.09 0.24 0.36 0.48 0.59 0.73 0.92 0.91 1.02 1.14 

Skewness -0.60 -0.75 -0.86 -0.99 -0.73 -0.28 -0.15 0.06 0.34 -0.14 
Excess Kurtosis 1.94 3.72 3.26 3.74 3.51 2.98 3.89 4.07 3.15 0.98 

Max Draw % 31.53 35.79 37.01 34.39 33.38 29.54 25.16 24.31 19.24 13.24 

6-month 

Ann Return % 3.25 5.61 5.89 6.48 8.26 9.70 10.98 10.14 9.20 8.72 

Ann Volatility 8.69 10.98 10.80 10.73 10.70 10.37 10.00 9.32 8.02 6.69 
Sharpe Ratio 0.14 0.34 0.37 0.43 0.58 0.72 0.86 0.83 0.84 0.94 

Skewness -0.33 -0.56 -0.78 -0.95 -0.73 -0.41 -0.22 -0.01 -0.09 -0.78 
Excess Kurtosis 1.95 3.33 3.13 3.47 2.67 2.47 3.30 3.04 2.80 3.54 

Max Draw % 29.54 34.77 35.53 34.60 31.39 28.38 24.91 24.10 20.82 14.71 

12-month 

Ann Return % 3.78 5.51 5.73 6.69 7.57 8.69 8.97 8.46 7.82 8.07 

Ann Volatility 7.90 9.88 10.11 10.09 10.23 9.94 9.82 9.16 8.01 6.70 
Sharpe Ratio 0.21 0.36 0.37 0.46 0.54 0.66 0.69 0.68 0.69 0.84 

Skewness -0.41 -0.14 -0.75 -0.79 -0.60 -0.54 -0.57 -0.40 -0.11 -0.33 
Excess Kurtosis 2.92 2.80 3.20 2.75 2.38 2.74 3.24 3.18 2.91 2.45 

Max Draw % 25.96 30.13 31.45 30.59 30.28 28.23 27.82 26.69 21.46 16.20 
 
Table A2.  Statistics of monthly returns of OLS portfolios 

Rebalance Decile Portfolio 1 2 3 4 5 6 7 8 9 10 

3-month 
 

Ann Return % 2.75 5.48 6.43 7.84 8.29 8.81 9.37 10.45 10.66 12.39 
Ann Volatility 16.30 11.84 10.14 9.08 8.53 8.21 8.44 8.87 10.12 13.66 

Sharpe Ratio 0.11 0.32 0.44 0.63 0.71 0.78 0.82 0.90 0.82 0.74 
Skewness -1.43 -1.25 -1.22 -1.07 -0.85 -0.29 0.05 -0.09 0.12 0.36 

Excess Kurtosis 7.82 5.89 4.82 4.85 4.30 1.05 2.18 2.54 3.77 2.78 
Max Draw % 52.67 42.45 33.62 30.70 23.84 24.05 21.30 15.73 14.10 19.63 

6-month 

Ann Return % 5.18 6.53 7.27 7.96 7.62 8.33 8.47 9.02 9.98 10.59 
Ann Volatility 13.67 10.41 9.42 8.54 8.32 8.30 8.07 8.78 10.32 13.31 

Sharpe Ratio 0.27 0.44 0.55 0.67 0.65 0.73 0.76 0.76 0.74 0.64 
Skewness -0.84 -0.95 -1.12 -1.03 -0.85 -0.75 -0.36 -0.06 0.23 0.44 

Excess Kurtosis 4.38 3.56 4.63 4.10 3.32 3.29 1.87 2.40 3.69 4.92 
Max Draw % 41.02 32.44 27.53 26.83 24.91 24.81 22.96 25.22 25.17 33.67 

12-month 

Ann Return % 5.77 6.48 6.99 7.47 7.40 7.24 7.15 7.29 7.57 7.48 
Ann Volatility 8.20 7.23 7.31 7.28 7.76 8.42 9.12 9.96 11.86 15.44 

Sharpe Ratio 0.44 0.58 0.64 0.71 0.66 0.60 0.55 0.52 0.48 0.39 
Skewness 0.05 -0.20 -0.48 -0.56 -0.56 -0.76 -0.64 -0.66 -0.69 -0.49 

Excess Kurtosis 2.12 2.28 4.50 3.70 3.51 3.62 2.80 2.49 2.95 2.66 
Max Draw % 19.98 18.55 18.43 20.45 22.57 26.46 28.25 30.16 35.61 47.21 
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Table A3.  Statistics of monthly returns of the lasso portfolios 
Rebalance Decile Portfolio 1 2 3 4 5 6 7 8 9 10 

3-month 
 

Ann Return % 1.46 5.87 6.02 6.46 7.44 8.15 9.85 11.06 11.62 14.72 

Ann Volatility 16.06 11.79 9.78 9.01 8.62 8.05 8.22 9.20 10.24 14.37 
Sharpe Ratio 0.02 0.35 0.41 0.48 0.61 0.72 0.90 0.92 0.89 0.85 

Skewness -1.51 -1.15 -1.46 -0.92 -0.96 -0.41 0.07 0.35 0.32 0.58 
Excess Kurtosis 8.10 5.61 6.18 3.72 3.85 1.25 2.17 2.33 3.62 3.76 

Max Draw % 45.70 34.99 31.53 28.06 26.87 23.66 20.79 18.86 22.11 30.28 

6-month 

Ann Return % 2.92 5.77 6.78 7.24 8.00 7.92 9.14 9.69 11.15 12.35 

Ann Volatility 13.80 10.17 9.37 8.46 8.27 8.19 8.54 9.33 10.69 13.99 
Sharpe Ratio 0.11 0.38 0.50 0.60 0.69 0.69 0.79 0.78 0.82 0.73 

Skewness -1.15 -1.17 -1.25 -1.06 -0.65 -0.86 -0.30 -0.01 0.23 0.20 
Excess Kurtosis 4.70 4.44 4.73 4.21 2.06 3.74 2.80 3.08 3.84 4.77 

Max Draw % 47.70 34.47 31.70 27.99 25.38 24.10 22.19 23.07 22.52 29.20 

12-month 

Ann Return % 6.68 7.02 7.82 7.47 7.31 6.80 6.96 6.78 6.99 6.84 

Ann Volatility 8.93 7.48 7.10 7.48 7.79 8.31 9.27 10.02 11.88 15.70 
Sharpe Ratio 0.50 0.63 0.77 0.69 0.65 0.56 0.52 0.47 0.44 0.35 

Skewness 0.16 -0.25 -0.09 -0.55 -0.55 -0.90 -0.73 -0.73 -0.78 -0.65 
Excess Kurtosis 2.34 2.54 1.65 3.88 3.53 4.45 3.40 2.72 3.05 3.30 

Max Draw % 25.77 18.41 17.67 20.70 21.98 26.12 28.94 30.28 36.34 47.23 

 
Table A4.  Statistics of monthly returns of random forest portfolios 

Rebalance Decile Portfolio 1 2 3 4 5 6 7 8 9 10 

3-month 
 

Ann Return % 1.09 4.78 5.3 7.17 7.1 8.64 10.01 10.84 11.86 15.86 

Ann Volatility 16.6 11.52 10.36 8.97 8.37 8.06 8.69 9.21 10.78 13.94 
Sharpe Ratio 0.01 0.26 0.33 0.56 0.59 0.78 0.87 0.9 0.87 0.94 

Skewness -1.61 -1.4 -1.51 -0.83 -0.89 -0.41 0.28 0.15 0.27 0.44 
Excess Kurtosis 9.21 6.93 6.76 3.99 3.54 2.12 2.73 2.56 4.07 3.87 

Max Draw % 49.39 41 36.21 29.02 26.18 20.54 16.76 17.88 19.68 24.45 

6-month 

Ann Return % 3.62 4.97 6.24 7.46 7.23 8.27 9.15 9.81 11.24 12.79 

Ann Volatility 14.46 10.99 9.64 8.56 8.01 8.02 8.83 9.36 11.01 13.7 
Sharpe Ratio 0.16 0.29 0.44 0.62 0.62 0.74 0.77 0.79 0.8 0.77 

Skewness -1.18 -1.2 -1.32 -0.92 -0.91 -0.55 -0.25 -0.07 0.18 0.18 
Excess Kurtosis 6.09 6.49 6.23 3.62 2.94 2.86 2.57 3.08 4.08 4.67 

Max Draw % 48.34 39.86 36.18 30.69 28.29 24.09 21.85 17.09 17.61 21.79 

12-month 

Ann Return % 6.49 7.53 7.42 6.98 7.29 7.66 6.8 7.2 6.95 6.51 

Ann Volatility 9.09 8.07 7.67 7.63 7.96 8.42 9.02 9.92 11.42 14.44 
Sharpe Ratio 0.48 0.65 0.67 0.62 0.63 0.64 0.52 0.52 0.44 0.35 

Skewness 0.1 -0.11 -0.57 -0.64 -0.62 -0.69 -0.75 -0.43 -0.58 -0.49 
Excess Kurtosis 2.28 2.45 3.02 3.09 2.95 3.89 4.11 2.69 3.68 3.77 

Max Draw % 24.07 22.36 22.61 24.05 25.21 25.46 27.83 27.66 33.19 39.08 
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Table A5.  Statistics of monthly returns of gradient boosting portfolios 
Rebalance Decile Portfolio 1 2 3 4 5 6 7 8 9 10 

3-month 
 

Ann Return % 2.33 4.49 5.63 6.69 7.64 8.81 8.91 10.69 12.05 15.63 

Ann Volatility 15.76 11.64 10.19 9.08 8.35 8.11 8.42 9.53 10.38 13.03 
Sharpe Ratio 0.08 0.24 0.36 0.51 0.65 0.79 0.77 0.86 0.91 0.98 

Skewness -1.38 -1.67 -1.49 -1.05 -0.78 -0.33 0.10 0.12 0.68 0.50 
Excess Kurtosis 7.50 8.32 6.94 4.07 2.34 2.26 2.38 3.04 5.47 3.15 

Max Draw % 46.00 40.76 32.87 29.89 25.06 19.14 19.25 19.43 20.44 28.51 

6-month 

Ann Return % 4.06 5.46 6.66 8.02 8.10 7.91 9.09 9.59 10.43 11.64 

Ann Volatility 13.77 10.66 9.11 8.42 8.07 8.26 8.72 9.59 10.51 13.27 
Sharpe Ratio 0.19 0.34 0.50 0.68 0.72 0.68 0.77 0.76 0.77 0.71 

Skewness -1.08 -1.32 -1.33 -0.74 -0.46 -0.68 -0.40 -0.05 -0.09 0.26 
Excess Kurtosis 4.74 6.16 5.64 3.16 2.28 2.70 2.83 2.45 3.11 4.25 

Max Draw % 43.84 37.95 33.14 30.23 26.67 25.93 20.87 21.30 17.19 20.51 

12-month 

Ann Return % 7.07 7.30 7.59 7.63 7.66 7.03 7.09 6.30 6.67 6.58 

Ann Volatility 9.64 8.44 7.73 7.86 7.83 7.94 8.71 9.82 11.12 13.90 
Sharpe Ratio 0.51 0.60 0.68 0.68 0.69 0.60 0.56 0.44 0.43 0.36 

Skewness 0.06 -0.53 -0.29 -0.58 -0.59 -0.66 -0.51 -0.72 -0.78 -0.69 
Excess Kurtosis 2.10 3.46 1.66 2.64 2.80 3.20 2.57 4.16 3.79 4.07 

Max Draw % 26.60 25.11 22.16 23.72 23.84 23.88 25.91 25.76 32.53 38.48 

 
Table A6.  Statistics of monthly returns of deep neural network portfolios 

Rebalance Decile Portfolio 1 2 3 4 5 6 7 8 9 10 

3-month 
 

Ann Return % 1.82 3.49 5.07 5.98 7.85 8.88 10.11 11.16 12.43 15.95 
Ann Volatility 16.53 12.02 10.19 9.33 8.28 8.16 8.36 9.07 10.40 13.95 

Sharpe Ratio 0.05 0.15 0.31 0.42 0.67 0.80 0.91 0.95 0.94 0.95 
Skewness -1.49 -1.42 -1.12 -1.07 -0.63 -0.25 -0.08 0.19 0.27 0.45 

Excess Kurtosis 7.54 6.04 4.15 4.02 3.27 2.04 2.08 3.22 4.23 4.28 
Max Draw % 47.78 39.55 35.84 30.97 25.23 23.13 19.71 19.33 18.39 21.43 

6-month 

Ann Return % 3.35 5.29 6.56 7.18 7.84 7.89 8.94 9.78 10.96 12.84 
Ann Volatility 14.46 10.93 9.36 8.79 8.10 8.39 8.56 9.41 11.04 14.45 

Sharpe Ratio 0.14 0.32 0.48 0.57 0.69 0.67 0.77 0.79 0.78 0.74 
Skewness -1.33 -1.31 -1.22 -1.03 -0.85 -0.69 -0.34 -0.02 0.14 0.32 

Excess Kurtosis 7.24 6.54 5.49 3.84 3.07 3.95 3.12 3.06 4.14 5.46 
Max Draw % 48.09 41.67 36.01 32.14 27.43 24.95 19.60 17.35 17.47 26.18 

12-month 

Ann Return % 7.59 7.44 7.68 7.61 6.98 6.69 6.28 7.25 6.73 6.51 
Ann Volatility 9.80 8.38 7.95 7.76 7.81 8.10 8.85 9.79 11.07 14.73 

Sharpe Ratio 0.55 0.62 0.68 0.69 0.61 0.55 0.47 0.53 0.44 0.35 
Skewness 0.08 -0.35 -0.27 -0.51 -0.73 -0.56 -0.59 -0.37 -0.69 -0.71 

Excess Kurtosis 2.49 3.05 2.30 2.42 2.91 2.47 3.20 3.32 3.54 4.50 
Max Draw % 24.12 23.66 23.76 22.80 23.55 23.58 25.27 27.93 32.80 41.89 
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Appendix B. Statistics of monthly returns of the event-driven fund portfolios 
 
Table B1.  Statistics of monthly returns of ABK portfolios 

Rebalance Decile Portfolio 1 2 3 4 5 6 7 8 9 10 

3-month 
 

Ann Return % 2.65 6.85 6.37 7.92 8.05 9.62 9.49 9.21 8.67 8.77 

Ann Volatility 10.16 9.84 8.54 7.36 7.06 6.61 5.58 5.42 4.05 4.25 
Sharpe Ratio 0.08 0.49 0.50 0.76 0.81 1.07 1.24 1.24 1.50 1.46 

Skewness -1.16 -1.70 -1.47 -1.03 -1.17 -0.93 -1.16 -2.23 -1.35 -1.20 
Excess Kurtosis 6.14 9.77 5.87 4.16 6.58 6.94 4.69 10.87 3.45 4.40 

Max Draw % 35.20 38.27 34.18 27.75 27.69 23.04 20.90 24.03 11.97 10.50 

6-month 

Ann Return % 3.34 6.88 6.99 7.98 7.73 8.87 8.77 8.60 8.27 7.55 

Ann Volatility 9.86 9.04 7.77 7.02 6.59 6.26 5.43 5.22 4.01 4.47 
Sharpe Ratio 0.15 0.53 0.61 0.80 0.81 1.02 1.15 1.17 1.43 1.14 

Skewness -1.49 -1.83 -1.28 -1.03 -1.11 -1.24 -1.21 -1.96 -1.70 -2.25 
Excess Kurtosis 7.82 9.43 4.89 3.42 4.63 6.75 4.53 8.72 5.52 10.95 

Max Draw % 35.67 36.33 31.30 27.30 26.37 20.83 21.52 22.91 12.52 13.21 

12-month 

Ann Return % 3.88 6.17 6.91 7.60 7.40 7.93 8.04 8.08 6.74 7.39 

Ann Volatility 8.31 8.25 7.23 6.85 6.22 5.90 5.22 5.05 4.20 4.31 
Sharpe Ratio 0.22 0.49 0.64 0.77 0.81 0.93 1.07 1.11 1.03 1.14 

Skewness -0.69 -1.65 -1.41 -1.24 -1.33 -1.16 -1.08 -1.38 -1.84 -1.91 
Excess Kurtosis 4.69 8.81 5.89 4.92 5.13 4.95 3.13 5.76 6.34 7.92 

Max Draw % 29.53 34.53 29.77 28.64 23.09 21.39 20.22 20.25 15.79 15.07 
 
Table B2.  Statistics of monthly returns of OLS portfolios 

Rebalance Decile Portfolio 1 2 3 4 5 6 7 8 9 10 

3-month 
 

Ann Return % 7.87 6.93 5.63 6.14 6.39 6.89 8.30 8.77 10.56 11.29 
Ann Volatility 11.47 7.76 5.97 5.91 5.51 5.11 5.34 5.77 6.66 10.47 

Sharpe Ratio 0.52 0.62 0.57 0.66 0.74 0.88 1.09 1.09 1.19 0.85 
Skewness -1.65 -3.13 -2.29 -2.87 -2.06 -1.55 -1.35 -1.07 -0.35 -0.31 

Excess Kurtosis 11.13 18.16 10.29 15.80 8.48 5.10 5.04 3.29 2.15 1.03 
Max Draw % 43.24 35.16 28.74 25.05 25.16 22.87 19.50 18.65 15.87 21.91 

6-month 

Ann Return % 8.32 7.36 6.90 6.96 7.03 6.45 7.12 7.90 8.49 10.87 
Ann Volatility 11.06 6.48 5.93 5.72 5.13 5.32 5.31 5.57 6.71 9.73 

Sharpe Ratio 0.57 0.78 0.77 0.81 0.90 0.77 0.89 0.98 0.91 0.88 
Skewness -0.56 -1.47 -1.97 -2.14 -1.78 -2.28 -2.02 -1.50 -1.56 -1.04 

Excess Kurtosis 5.12 6.22 8.84 9.74 7.26 10.13 8.43 6.27 6.10 4.52 
Max Draw % 38.03 30.84 28.56 29.09 24.41 22.60 22.15 19.21 19.76 19.95 

12-month 

Ann Return % 8.34 6.42 7.01 6.76 6.60 6.07 6.60 6.05 7.53 8.63 
Ann Volatility 10.26 6.49 5.55 5.37 5.34 4.86 4.73 5.30 5.67 8.62 

Sharpe Ratio 0.60 0.64 0.84 0.82 0.80 0.76 0.89 0.70 0.91 0.74 
Skewness -0.06 -1.26 -1.49 -1.59 -1.87 -1.54 -1.69 -2.00 -1.97 -1.49 

Excess Kurtosis 2.33 6.62 6.80 6.83 8.05 5.57 6.15 9.72 8.77 7.65 
Max Draw % 35.88 29.37 27.08 24.96 25.88 18.34 18.30 17.53 19.54 21.00 
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Table B3.  Statistics of monthly returns of the lasso portfolios 
Rebalance Decile Portfolio 1 2 3 4 5 6 7 8 9 10 

3-month 
 

Ann Return % 4.36 5.26 6.06 6.21 6.90 7.99 7.84 9.79 10.51 14.08 

Ann Volatility 13.29 7.53 6.85 6.34 5.25 5.34 5.49 5.29 6.48 9.33 
Sharpe Ratio 0.22 0.42 0.57 0.63 0.86 1.04 0.99 1.35 1.21 1.21 

Skewness -1.54 -2.16 -2.94 -2.78 -1.93 -1.52 -1.50 -0.40 0.02 -0.31 
Excess Kurtosis 9.81 11.93 16.31 14.78 7.11 6.03 6.66 1.12 2.63 2.27 

Max Draw % 44.25 27.72 31.28 30.84 21.87 20.78 24.12 13.46 16.46 24.23 

6-month 

Ann Return % 5.63 5.62 5.84 6.92 6.49 7.26 8.40 8.72 10.15 12.52 

Ann Volatility 12.37 6.71 6.19 5.79 5.46 4.84 5.09 5.62 6.14 9.18 
Sharpe Ratio 0.32 0.51 0.58 0.79 0.76 1.00 1.16 1.11 1.23 1.08 

Skewness -1.92 -1.78 -2.37 -1.88 -2.47 -1.49 -1.33 -1.36 -1.06 -0.70 
Excess Kurtosis 13.07 8.34 12.36 7.71 11.63 4.38 3.77 3.93 3.22 1.63 

Max Draw % 47.56 31.99 32.46 27.32 27.50 18.45 17.37 18.69 13.85 19.63 

12-month 

Ann Return % 9.31 7.18 6.24 7.23 6.39 6.28 6.51 6.52 6.76 7.51 

Ann Volatility 10.07 6.49 5.36 5.48 4.93 5.05 5.31 5.62 6.12 8.84 
Sharpe Ratio 0.70 0.75 0.73 0.89 0.81 0.78 0.78 0.75 0.73 0.61 

Skewness 0.12 -1.15 -1.30 -1.89 -1.71 -1.92 -1.64 -1.75 -1.37 -1.15 
Excess Kurtosis 6.54 9.15 5.70 10.28 6.36 7.82 5.73 7.58 4.72 3.17 

Max Draw % 34.07 29.41 25.50 26.51 23.42 23.15 19.15 18.29 20.29 19.22 

 
Table B4.  Statistics of monthly returns of random forest portfolios 

Rebalance Decile Portfolio 1 2 3 4 5 6 7 8 9 10 

3-month 
 

Ann Return % 4.31 3.94 5.29 5.97 6.53 8.16 9.11 9.48 11.27 14.90 

Ann Volatility 13.34 8.17 6.29 5.98 5.49 5.36 5.79 5.86 6.59 9.08 
Sharpe Ratio 0.21 0.24 0.49 0.62 0.76 1.06 1.14 1.18 1.29 1.31 

Skewness -1.56 -3.34 -2.80 -2.41 -2.24 -1.48 -0.81 -0.74 0.11 -0.03 
Excess Kurtosis 11.15 21.52 14.16 11.18 9.16 4.54 2.78 2.56 1.72 1.18 

Max Draw % 46.15 36.77 27.38 27.86 25.28 20.82 20.24 16.63 13.22 18.25 

6-month 

Ann Return % 5.10 5.89 5.82 6.26 6.66 7.83 7.77 8.16 9.96 14.25 

Ann Volatility 11.47 6.79 6.39 5.76 5.47 5.56 5.37 5.80 6.30 8.95 
Sharpe Ratio 0.29 0.54 0.56 0.69 0.79 0.97 0.99 0.98 1.17 1.27 

Skewness -1.62 -1.61 -2.22 -2.32 -2.48 -1.52 -1.22 -1.19 -0.88 -0.42 
Excess Kurtosis 12.73 8.85 12.44 10.20 11.81 5.26 3.35 3.06 1.94 0.58 

Max Draw % 43.94 30.11 30.96 28.22 26.63 22.68 19.43 19.75 14.90 15.10 

12-month 

Ann Return % 8.41 7.21 6.41 6.74 6.71 6.53 5.70 5.92 7.11 9.14 

Ann Volatility 9.22 5.94 5.60 5.31 5.33 5.33 5.69 5.55 6.60 8.98 
Sharpe Ratio 0.67 0.81 0.73 0.82 0.82 0.78 0.60 0.65 0.73 0.77 

Skewness -0.37 -0.89 -1.42 -1.52 -1.78 -1.76 -1.94 -1.68 -1.82 -1.11 
Excess Kurtosis 9.83 6.75 8.72 6.77 7.16 6.62 7.90 5.76 8.74 3.25 

Max Draw % 35.77 27.03 27.27 23.49 22.60 22.03 24.92 22.83 17.94 20.44 
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Table B5.  Statistics of monthly returns of gradient boosting portfolios 
Rebalance Decile Portfolio 1 2 3 4 5 6 7 8 9 10 

3-month 
 

Ann Return % 4.27 3.90 5.65 6.05 6.83 8.06 9.01 9.23 11.23 14.75 

Ann Volatility 12.71 7.79 5.99 5.95 6.25 5.24 5.51 5.68 6.56 9.29 
Sharpe Ratio 0.21 0.24 0.57 0.64 0.73 1.07 1.18 1.17 1.29 1.27 

Skewness -1.12 -3.69 -2.14 -2.78 -2.77 -1.64 -1.07 -0.67 0.06 -0.17 
Excess Kurtosis 8.03 25.35 10.58 15.24 14.87 6.38 3.02 2.22 1.57 1.14 

Max Draw % 42.02 33.87 25.86 27.73 29.13 22.47 19.96 17.27 15.49 21.56 

6-month 

Ann Return % 5.45 5.79 6.33 5.66 7.01 7.87 7.76 8.92 10.05 12.83 

Ann Volatility 10.92 6.53 5.94 6.03 5.33 5.54 5.44 5.87 6.43 8.94 
Sharpe Ratio 0.33 0.54 0.68 0.57 0.87 0.98 0.98 1.09 1.16 1.14 

Skewness -1.51 -1.68 -2.58 -2.71 -1.68 -1.24 -1.46 -0.99 -0.80 -0.74 
Excess Kurtosis 9.74 9.21 12.90 15.15 6.66 4.64 4.95 3.40 1.88 1.55 

Max Draw % 41.58 30.44 28.86 31.86 26.66 21.30 19.40 15.56 17.29 17.47 

12-month 

Ann Return % 8.60 7.01 6.58 6.15 6.65 6.44 6.14 6.99 6.78 8.64 

Ann Volatility 9.22 5.70 5.38 5.06 5.01 5.16 5.75 5.52 6.75 9.06 
Sharpe Ratio 0.69 0.81 0.79 0.75 0.85 0.79 0.67 0.84 0.67 0.71 

Skewness -0.37 -0.97 -1.57 -1.74 -1.51 -1.76 -2.11 -1.45 -1.83 -1.08 
Excess Kurtosis 7.98 6.77 9.61 8.92 6.19 6.22 9.15 4.54 8.86 2.67 

Max Draw % 34.09 26.68 25.36 22.82 22.24 22.45 21.76 20.55 20.09 22.12 

 
Table B6.  Statistics of monthly returns of deep neural network portfolios 

Rebalance Decile Portfolio 1 2 3 4 5 6 7 8 9 10 

3-month 
 

Ann Return % 4.82 4.55 5.82 6.44 6.63 7.56 8.51 9.33 11.55 14.00 

Ann Volatility 11.93 7.94 6.95 6.46 6.22 6.31 5.41 5.43 5.96 6.87 
Sharpe Ratio 0.26 0.31 0.52 0.65 0.70 0.83 1.11 1.25 1.47 1.59 

Skewness -1.41 -2.09 -1.90 -2.04 -1.90 -2.09 -0.91 -0.84 -0.59 0.28 
Excess Kurtosis 8.27 11.29 8.36 10.42 7.90 9.17 2.31 2.91 2.58 2.47 

Max Draw % 44.08 35.27 30.26 30.03 26.33 26.18 19.30 17.57 14.17 11.95 

6-month 

Ann Return % 4.88 6.54 6.17 6.73 7.26 7.16 8.20 9.00 9.77 12.11 

Ann Volatility 10.66 7.05 6.42 6.13 5.86 5.75 5.30 5.75 6.00 8.34 
Sharpe Ratio 0.29 0.61 0.61 0.72 0.84 0.83 1.08 1.13 1.20 1.13 

Skewness -1.85 -2.46 -1.97 -1.98 -2.18 -1.62 -1.41 -1.13 -1.15 -0.37 
Excess Kurtosis 16.23 14.33 10.50 9.05 10.45 5.45 4.32 2.92 2.89 0.36 

Max Draw % 45.93 32.51 29.90 27.96 24.27 24.27 17.47 17.84 13.60 16.52 

12-month 

Ann Return % 8.39 6.54 6.09 6.69 6.63 6.64 6.98 7.12 6.88 8.18 

Ann Volatility 7.39 6.08 5.38 5.22 5.43 5.26 5.32 5.77 6.39 9.11 
Sharpe Ratio 0.81 0.70 0.70 0.83 0.79 0.81 0.86 0.82 0.72 0.66 

Skewness -0.52 -1.59 -1.55 -1.73 -1.84 -1.59 -1.45 -1.62 -1.47 -1.33 
Excess Kurtosis 6.96 9.44 7.23 7.41 8.26 5.69 4.64 5.79 5.24 4.45 

Max Draw % 27.87 28.27 25.51 23.59 24.48 22.91 21.05 21.68 21.81 21.44 
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Appendix C. Statistics of monthly returns of the macro fund portfolios 
 
Table C1.  Statistics of monthly returns of ABK portfolios 

Rebalance Decile Portfolio 1 2 3 4 5 6 7 8 9 10 

3-month 
 

Ann Return % 4.91 8.48 6.51 7.52 7.55 7.35 6.64 6.46 6.05 8.47 
Ann Volatility 7.42 8.78 9.22 9.11 9.06 8.81 7.76 6.77 5.48 3.91 

Sharpe Ratio 0.36 0.70 0.47 0.58 0.59 0.58 0.57 0.61 0.67 1.50 
Skewness 0.96 0.96 0.73 0.38 0.29 0.29 0.04 0.08 0.04 -0.20 

Excess Kurtosis 4.30 2.14 2.13 0.39 0.36 0.54 0.19 0.58 0.06 0.94 
Max Draw % 21.49 12.30 9.21 10.27 10.72 11.03 10.14 8.37 7.14 5.20 

6-month 

Ann Return % 4.77 7.41 6.55 7.32 7.42 7.19 6.82 6.03 6.11 8.05 
Ann Volatility 6.67 8.41 8.89 8.65 8.56 8.43 7.47 6.33 5.06 3.70 

Sharpe Ratio 0.38 0.61 0.49 0.59 0.60 0.59 0.61 0.58 0.73 1.48 
Skewness 1.02 0.95 0.53 0.42 0.33 0.28 0.05 0.12 0.01 -0.17 

Excess Kurtosis 3.47 2.30 1.26 0.59 0.44 0.36 0.52 0.28 0.02 0.95 
Max Draw % 17.17 9.44 9.10 10.04 9.72 13.24 9.55 8.91 6.53 4.44 

12-month 

Ann Return % 4.75 6.25 5.97 6.79 6.47 6.26 6.43 5.58 6.30 7.06 
Ann Volatility 5.94 7.67 8.09 8.11 8.12 8.03 6.93 6.04 4.88 3.71 

Sharpe Ratio 0.41 0.52 0.46 0.56 0.52 0.50 0.59 0.54 0.80 1.23 
Skewness 1.18 0.76 0.41 0.47 0.23 0.24 0.20 0.05 0.13 -0.01 

Excess Kurtosis 3.10 2.18 1.03 1.04 0.75 0.66 0.37 0.33 -0.12 0.96 
Max Draw % 9.26 8.01 11.35 9.98 10.12 11.04 9.84 7.83 5.16 5.15 

 
Table C2.  Statistics of monthly returns of OLS portfolios 

Rebalance Decile Portfolio 1 2 3 4 5 6 7 8 9 10 

3-month 
 

Ann Return % 11.25 8.10 7.10 7.32 6.32 6.77 6.02 5.51 5.50 6.46 

Ann Volatility 10.72 7.61 6.91 6.10 5.61 6.16 6.58 7.30 8.76 11.85 
Sharpe Ratio 0.80 0.74 0.68 0.80 0.70 0.71 0.56 0.45 0.39 0.39 

Skewness 1.71 1.08 0.94 0.73 0.46 0.47 0.18 0.14 0.16 0.09 
Excess Kurtosis 10.11 3.70 2.42 1.24 1.11 0.68 0.73 0.39 1.12 1.41 

Max Draw % 15.16 7.16 6.40 6.45 5.85 6.95 10.15 10.81 15.84 18.60 

6-month 

Ann Return % 6.93 6.28 6.03 6.23 6.49 6.22 6.67 7.09 7.51 9.87 

Ann Volatility 8.37 6.81 6.45 5.71 5.95 6.14 6.32 7.56 8.18 11.15 
Sharpe Ratio 0.56 0.58 0.57 0.67 0.69 0.63 0.68 0.63 0.64 0.69 

Skewness 0.73 0.64 0.64 0.50 0.63 0.31 0.39 0.22 0.29 0.07 
Excess Kurtosis 3.32 2.97 2.60 1.12 1.24 0.59 0.25 0.37 0.58 1.38 

Max Draw % 8.06 6.99 8.25 6.82 8.54 7.41 7.30 8.84 8.86 16.88 

12-month 

Ann Return % 6.57 5.76 5.66 5.55 5.62 5.50 5.91 6.42 6.40 8.46 

Ann Volatility 7.07 5.27 5.11 4.98 5.34 5.72 6.43 6.95 8.14 11.19 
Sharpe Ratio 0.60 0.64 0.64 0.64 0.61 0.55 0.56 0.59 0.51 0.57 

Skewness 0.30 0.52 0.47 0.85 0.65 0.58 0.28 0.04 0.05 -0.06 
Excess Kurtosis 0.89 1.56 1.22 1.85 1.63 1.60 0.77 0.56 0.81 1.29 

Max Draw % 11.23 8.38 6.59 6.40 5.57 7.32 9.01 9.73 12.30 18.43 
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Table C3.  Statistics of monthly returns of the lasso portfolios 
Rebalance Decile Portfolio 1 2 3 4 5 6 7 8 9 10 

3-month 
 

Ann Return % 9.30 7.75 7.22 7.03 5.45 5.70 5.33 6.01 6.70 9.82 

Ann Volatility 10.60 7.88 6.77 6.38 5.91 5.89 6.61 7.08 8.74 11.91 
Sharpe Ratio 0.66 0.68 0.71 0.73 0.53 0.57 0.46 0.53 0.52 0.64 

Skewness 1.25 0.97 0.60 0.61 0.52 0.20 0.24 0.18 0.03 0.26 
Excess Kurtosis 6.56 3.01 2.27 1.57 0.88 0.52 1.00 1.07 1.43 1.86 

Max Draw % 12.10 7.10 7.98 6.96 6.26 8.36 10.16 10.68 13.67 14.48 

6-month 

Ann Return % 7.47 6.36 5.82 6.05 6.50 5.87 6.63 6.24 7.51 10.78 

Ann Volatility 8.79 6.67 6.22 5.74 5.92 6.00 6.88 7.66 8.46 11.33 
Sharpe Ratio 0.59 0.60 0.56 0.64 0.69 0.59 0.62 0.52 0.62 0.75 

Skewness 0.75 0.74 0.71 0.49 0.50 0.28 0.38 0.17 0.17 0.09 
Excess Kurtosis 4.27 2.68 2.95 0.96 0.66 0.44 0.68 0.88 1.07 1.79 

Max Draw % 12.67 8.37 7.17 7.65 7.38 8.63 10.29 11.05 10.94 17.63 

12-month 

Ann Return % 6.88 5.94 5.93 5.90 5.53 5.61 6.13 5.63 6.55 7.74 

Ann Volatility 6.90 5.74 5.50 5.52 5.22 5.62 6.22 7.04 7.82 11.09 
Sharpe Ratio 0.66 0.62 0.65 0.64 0.61 0.58 0.61 0.48 0.55 0.52 

Skewness 0.16 0.39 0.63 0.58 0.53 0.54 0.37 0.10 0.11 -0.06 
Excess Kurtosis 2.26 2.45 2.47 1.69 1.50 1.34 0.81 1.17 0.79 1.12 

Max Draw % 11.04 9.42 7.07 6.56 5.62 7.05 9.23 9.88 13.89 18.48 
 
 
Table C4.  Statistics of monthly returns of random forest portfolios 

Rebalance Decile Portfolio 1 2 3 4 5 6 7 8 9 10 

3-month 
 

Ann Return % 10.03 8.14 7.64 6.42 6.05 6.11 6.07 4.66 7.05 8.20 

Ann Volatility 10.56 7.30 6.22 5.97 5.94 6.22 6.81 7.37 8.64 11.88 
Sharpe Ratio 0.72 0.78 0.83 0.68 0.62 0.61 0.55 0.34 0.56 0.52 

Skewness 1.19 1.04 0.82 0.65 0.15 0.43 0.24 -0.06 -0.17 0.14 
Excess Kurtosis 3.71 2.65 2.21 1.70 1.17 0.26 0.98 1.31 1.53 1.32 

Max Draw % 13.40 7.61 5.83 7.06 6.23 8.75 11.29 9.53 13.18 13.49 

6-month 

Ann Return % 7.41 6.13 5.56 5.79 5.83 6.68 6.56 7.19 7.02 11.23 

Ann Volatility 7.42 6.42 6.01 5.97 6.14 6.41 6.82 7.35 8.05 11.63 
Sharpe Ratio 0.68 0.59 0.54 0.58 0.57 0.67 0.62 0.66 0.59 0.77 

Skewness 0.65 0.84 0.70 0.37 0.24 0.40 0.31 0.33 0.07 0.16 
Excess Kurtosis 1.86 2.67 2.02 0.91 0.38 0.80 0.48 0.73 0.43 0.94 

Max Draw % 8.73 6.12 7.23 6.85 7.57 7.81 10.32 9.71 11.41 14.97 

12-month 

Ann Return % 6.96 5.57 5.43 5.77 5.50 5.72 5.66 6.24 6.28 8.80 

Ann Volatility 6.73 5.33 5.36 5.42 5.35 5.73 6.20 7.07 8.08 10.57 
Sharpe Ratio 0.68 0.60 0.58 0.63 0.59 0.59 0.54 0.56 0.50 0.63 

Skewness 0.49 0.33 0.41 0.59 0.35 0.28 0.31 0.10 0.10 0.20 
Excess Kurtosis 2.16 1.58 1.30 1.34 0.49 0.84 1.10 0.80 1.37 1.26 

Max Draw % 8.76 6.49 6.04 5.93 6.31 7.90 10.40 12.92 14.42 14.17 
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Table C5.  Statistics of monthly returns of gradient boosting portfolios 
Rebalance Decile Portfolio 1 2 3 4 5 6 7 8 9 10 

3-month 
 

Ann Return % 10.85 7.50 7.15 7.16 6.30 6.43 5.96 5.70 5.60 7.71 

Ann Volatility 10.40 7.20 6.84 6.24 6.23 6.24 6.75 7.49 8.54 11.77 
Sharpe Ratio 0.80 0.71 0.69 0.76 0.63 0.65 0.54 0.46 0.41 0.49 

Skewness 1.15 0.81 1.05 0.86 0.41 0.32 0.26 0.18 -0.10 0.19 
Excess Kurtosis 4.84 2.76 3.13 2.47 0.91 0.52 1.09 1.04 1.02 1.84 

Max Draw % 10.54 7.84 5.67 5.60 6.65 7.66 9.73 11.49 12.41 15.44 

6-month 

Ann Return % 7.51 5.86 5.83 5.84 5.83 6.51 6.48 7.18 6.91 11.42 

Ann Volatility 7.46 6.42 6.01 6.09 6.24 6.23 6.83 7.27 8.00 11.64 
Sharpe Ratio 0.69 0.55 0.58 0.58 0.56 0.67 0.61 0.66 0.58 0.78 

Skewness 0.71 0.62 0.76 0.41 0.26 0.34 0.35 0.33 0.08 0.15 
Excess Kurtosis 1.92 2.25 1.91 1.03 0.58 0.67 0.59 0.70 0.42 0.88 

Max Draw % 8.93 6.22 6.91 7.50 8.23 7.09 10.92 9.62 11.15 14.88 

12-month 

Ann Return % 6.65 5.55 5.98 6.06 6.03 5.61 5.85 5.98 6.34 7.84 

Ann Volatility 6.40 5.62 5.25 5.69 5.84 6.06 6.22 6.89 7.78 10.91 
Sharpe Ratio 0.67 0.57 0.68 0.65 0.63 0.54 0.57 0.54 0.53 0.53 

Skewness 0.40 0.38 0.61 0.68 0.60 0.25 0.22 0.22 0.11 -0.07 
Excess Kurtosis 1.42 2.50 2.20 1.88 1.57 0.85 0.51 0.94 0.85 1.08 

Max Draw % 9.76 8.11 6.96 6.70 7.07 9.15 8.55 10.29 11.14 17.90 
 
Table C6.  Statistics of monthly returns of deep neural network portfolios 

Rebalance Decile Portfolio 1 2 3 4 5 6 7 8 9 10 

3-month 
 

Ann Return % 10.39 7.95 6.92 6.53 6.01 5.86 6.12 5.14 6.66 8.76 
Ann Volatility 10.80 7.79 6.95 6.23 5.84 6.06 6.58 7.28 8.71 11.57 

Sharpe Ratio 0.73 0.71 0.66 0.67 0.63 0.58 0.58 0.40 0.51 0.58 
Skewness 1.48 1.10 0.55 0.62 0.39 0.35 0.20 0.03 0.01 0.31 

Excess Kurtosis 6.63 3.46 1.63 1.29 0.47 0.62 0.63 1.16 1.59 2.13 
Max Draw % 11.63 7.75 6.71 5.75 7.25 8.27 10.29 12.26 12.73 15.05 

6-month 

Ann Return % 7.84 5.95 5.41 5.89 6.06 6.19 6.57 7.07 7.08 11.32 
Ann Volatility 7.56 6.22 5.97 6.18 6.21 6.19 6.76 7.43 7.99 11.68 

Sharpe Ratio 0.72 0.58 0.52 0.58 0.60 0.62 0.63 0.64 0.60 0.77 
Skewness 0.78 0.69 0.45 0.39 0.27 0.41 0.32 0.25 0.13 0.16 

Excess Kurtosis 2.31 2.06 1.58 0.81 0.76 0.79 0.75 0.52 0.57 0.91 
Max Draw % 8.24 6.76 7.30 7.36 6.39 8.53 10.27 9.48 10.78 14.97 

12-month 

Ann Return % 6.36 5.94 5.67 5.67 5.35 5.68 5.94 6.19 7.09 8.01 
Ann Volatility 6.88 6.08 5.68 5.50 5.40 5.82 6.20 7.00 7.77 10.60 

Sharpe Ratio 0.59 0.59 0.58 0.60 0.56 0.57 0.58 0.56 0.62 0.56 
Skewness 0.27 0.68 0.60 0.77 0.53 0.56 0.20 0.09 0.07 -0.21 

Excess Kurtosis 2.16 3.38 2.50 2.19 1.08 1.31 0.93 0.86 0.98 0.93 
Max Draw % 11.90 9.70 7.95 5.57 6.05 7.55 9.92 9.92 12.99 18.43 
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Appendix D. Statistics of monthly returns of the relative-value fund portfolios 
 
Table D1.  Statistics of monthly returns of ABK portfolios 

Rebalance Decile Portfolio 1 2 3 4 5 6 7 8 9 10 

3-month 
 

Ann Return % 0.38 3.38 5.37 7.10 8.43 9.38 8.63 8.98 9.45 8.29 
Ann Volatility 7.03 7.35 6.94 5.81 5.58 4.89 4.66 2.98 2.50 2.44 

Sharpe Ratio -0.25 0.17 0.46 0.83 1.08 1.40 1.33 2.13 2.69 2.34 
Skewness -3.47 -2.31 -3.19 -3.50 -3.33 -2.75 -4.06 -2.01 -1.00 -2.99 

Excess Kurtosis 22.63 13.38 24.16 25.79 28.56 21.46 28.29 8.24 4.10 18.18 
Max Draw % 36.78 33.28 33.91 27.31 23.45 18.77 21.56 8.74 4.92 6.69 

6-month 

Ann Return % 1.54 3.69 5.57 6.71 7.91 8.53 8.29 8.51 8.30 7.66 
Ann Volatility 6.21 6.68 6.47 5.74 5.27 4.55 4.21 3.22 2.55 2.37 

Sharpe Ratio -0.10 0.23 0.52 0.77 1.04 1.32 1.38 1.85 2.23 2.15 
Skewness -3.48 -2.84 -3.40 -3.27 -2.67 -2.20 -3.58 -2.64 -1.85 -2.42 

Excess Kurtosis 23.65 17.88 25.23 23.97 20.05 14.06 23.68 13.11 7.11 11.18 
Max Draw % 32.73 32.52 32.99 27.26 21.47 16.82 18.63 11.52 6.58 5.68 

12-month 

Ann Return % 2.43 3.87 5.54 5.96 6.96 7.53 7.71 7.43 6.83 6.87 
Ann Volatility 5.28 5.62 5.59 5.53 4.91 4.45 4.12 3.58 2.81 2.40 

Sharpe Ratio 0.04 0.29 0.59 0.67 0.93 1.14 1.28 1.39 1.55 1.82 
Skewness -3.35 -2.06 -3.03 -3.14 -2.36 -2.32 -3.40 -3.15 -3.45 -2.72 

Excess Kurtosis 22.83 11.15 18.94 21.73 15.98 14.66 23.70 17.10 21.15 14.65 
Max Draw % 27.71 27.45 27.89 25.17 19.31 17.82 17.60 14.72 10.84 7.52 

 
Table D2.  Statistics of monthly returns of OLS portfolios 

Rebalance Decile Portfolio 1 2 3 4 5 6 7 8 9 10 

3-month 
 

Ann Return % 3.12 4.79 5.20 5.87 5.87 6.48 7.81 8.05 9.40 13.56 

Ann Volatility 7.18 4.51 4.16 3.83 3.97 4.23 3.84 5.19 5.61 8.74 
Sharpe Ratio 0.14 0.55 0.69 0.91 0.88 0.98 1.39 1.10 1.24 1.28 

Skewness -1.88 -2.36 -2.62 -2.48 -3.38 -4.95 -3.26 -4.18 -3.52 -3.89 
Excess Kurtosis 14.03 14.59 14.61 12.72 22.27 44.39 25.66 34.21 25.54 32.88 

Max Draw % 32.87 22.51 21.90 18.01 19.04 18.80 14.50 20.56 17.57 28.02 

6-month 

Ann Return % 4.32 4.25 4.57 5.15 5.79 6.56 7.05 8.44 9.13 13.60 

Ann Volatility 6.76 4.93 4.85 4.40 4.45 3.89 3.98 3.86 4.64 6.21 
Sharpe Ratio 0.32 0.40 0.48 0.65 0.79 1.07 1.16 1.52 1.41 1.71 

Skewness -3.12 -4.13 -4.82 -4.86 -5.30 -3.22 -2.76 -1.49 -1.59 -0.47 
Excess Kurtosis 18.81 27.48 36.39 38.01 45.13 22.42 18.15 7.45 9.21 2.50 

Max Draw % 32.30 25.88 26.71 23.36 23.49 16.71 15.41 11.25 13.69 10.75 

12-month 

Ann Return % 6.31 5.24 5.84 5.42 5.39 5.77 5.10 6.69 6.41 8.72 

Ann Volatility 6.37 4.94 4.24 4.31 3.74 3.69 4.01 3.70 3.78 6.66 
Sharpe Ratio 0.63 0.59 0.82 0.72 0.81 0.92 0.69 1.15 1.05 0.96 

Skewness -1.46 -2.82 -2.50 -4.45 -3.64 -4.22 -4.01 -2.44 -1.77 -2.79 
Excess Kurtosis 11.13 19.88 18.00 38.48 26.88 34.58 27.04 11.92 6.89 14.11 

Max Draw % 20.52 21.57 17.83 21.20 18.58 17.86 19.22 15.98 13.93 24.54 
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Table D3.  Statistics of monthly returns of the lasso portfolios 
Rebalance Decile Portfolio 1 2 3 4 5 6 7 8 9 10 

3-month 
 

Ann Return % -0.22 3.51 4.35 4.55 5.84 7.15 8.29 9.23 11.38 16.63 

Ann Volatility 8.67 5.14 4.82 4.64 4.18 3.65 3.91 4.10 4.70 7.49 
Sharpe Ratio -0.26 0.25 0.44 0.49 0.84 1.29 1.48 1.60 1.82 1.79 

Skewness -3.51 -4.03 -5.12 -4.74 -5.00 -3.03 -2.61 -0.61 -0.31 -1.02 
Excess Kurtosis 23.24 30.26 45.71 36.18 40.95 21.65 16.05 6.69 4.05 5.84 

Max Draw % 46.27 29.16 24.98 23.77 22.11 15.47 15.12 11.12 6.81 15.52 

6-month 

Ann Return % 2.26 4.17 4.94 5.12 5.67 6.58 7.62 8.61 9.26 14.71 

Ann Volatility 7.70 5.44 5.31 4.65 4.18 3.93 3.56 3.62 4.24 6.06 
Sharpe Ratio 0.03 0.36 0.51 0.62 0.80 1.06 1.43 1.66 1.56 1.91 

Skewness -4.00 -4.89 -5.89 -5.59 -4.04 -3.19 -2.06 -1.31 -1.14 -0.58 
Excess Kurtosis 30.26 42.06 53.50 48.83 29.56 21.16 9.85 3.76 3.19 1.70 

Max Draw % 38.44 29.09 28.38 25.01 21.60 17.15 12.42 9.73 8.62 8.80 

12-month 

Ann Return % 4.85 5.51 5.29 5.05 5.62 5.49 6.12 7.08 6.77 9.17 

Ann Volatility 6.99 4.88 4.56 4.19 3.96 3.72 3.67 3.44 3.85 5.87 
Sharpe Ratio 0.38 0.65 0.66 0.65 0.83 0.84 1.01 1.34 1.13 1.14 

Skewness -1.83 -2.79 -4.14 -3.59 -4.01 -3.69 -2.76 -2.18 -2.20 -2.25 
Excess Kurtosis 14.62 22.73 37.21 28.71 31.47 26.36 16.46 9.88 9.57 9.52 

Max Draw % 30.13 24.12 24.29 22.81 18.56 17.18 13.48 10.83 13.34 17.79 
 
 
Table D4.  Statistics of monthly returns of random forest portfolios 

Rebalance Decile Portfolio 1 2 3 4 5 6 7 8 9 10 

3-month 
 

Ann Return % -0.78 2.17 3.22 4.79 5.74 7.65 8.28 10.01 12.05 17.74 

Ann Volatility 8.02 6.28 5.90 5.06 4.12 3.57 3.84 3.99 4.45 7.21 
Sharpe Ratio -0.36 0.00 0.18 0.51 0.82 1.44 1.49 1.83 2.05 1.99 

Skewness -2.75 -6.59 -6.69 -5.47 -3.52 -2.79 -1.46 -1.01 -0.13 -1.23 
Excess Kurtosis 17.49 67.55 68.25 49.26 23.81 18.24 6.17 8.82 4.96 8.29 

Max Draw % 42.48 32.82 30.76 24.96 20.92 14.13 10.44 10.16 4.82 17.62 

6-month 

Ann Return % 2.45 4.34 5.04 5.51 5.83 6.43 6.78 8.36 9.40 14.76 

Ann Volatility 7.93 5.77 5.37 4.68 4.17 3.84 3.44 3.64 4.20 6.03 
Sharpe Ratio 0.05 0.37 0.52 0.69 0.84 1.05 1.26 1.59 1.62 1.93 

Skewness -3.51 -4.44 -4.38 -4.81 -3.69 -2.77 -2.58 -1.69 -1.43 -1.05 
Excess Kurtosis 32.78 39.62 40.20 41.61 26.35 14.36 13.12 4.60 3.53 3.51 

Max Draw % 39.81 31.39 28.69 25.55 19.02 15.55 12.84 8.74 7.77 10.52 

12-month 

Ann Return % 4.86 4.96 5.40 5.74 5.54 5.93 5.95 6.18 7.12 9.32 

Ann Volatility 5.66 5.08 4.48 4.23 3.94 3.92 3.77 3.66 3.88 6.54 
Sharpe Ratio 0.46 0.54 0.69 0.80 0.81 0.91 0.95 1.03 1.20 1.06 

Skewness -1.36 -4.82 -3.75 -3.22 -3.21 -3.14 -3.15 -2.14 -1.79 -2.79 
Excess Kurtosis 14.34 45.80 31.33 25.37 21.41 18.68 20.11 7.78 6.30 14.76 

Max Draw % 21.88 22.91 20.80 20.20 19.36 20.28 16.03 14.77 10.44 25.25 
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Table D5.  Statistics of monthly returns of gradient boosting portfolios 
Rebalance Decile Portfolio 1 2 3 4 5 6 7 8 9 10 

3-month 
 

Ann Return % 0.61 2.46 4.03 4.92 5.50 6.78 8.35 9.64 11.81 16.78 

Ann Volatility 8.00 6.18 5.01 4.75 4.55 4.23 3.61 3.71 4.49 7.09 
Sharpe Ratio -0.18 0.05 0.36 0.56 0.70 1.04 1.61 1.87 1.99 1.90 

Skewness -2.84 -4.90 -5.17 -6.10 -4.75 -4.15 -1.87 -0.40 -0.59 -1.18 
Excess Kurtosis 20.33 41.09 44.36 60.01 39.95 32.75 9.89 5.00 3.96 7.23 

Max Draw % 41.27 32.96 27.03 23.38 22.29 19.60 13.04 8.52 6.10 15.64 

6-month 

Ann Return % 2.15 4.82 5.01 5.30 6.10 6.54 7.65 8.83 9.60 13.03 

Ann Volatility 8.32 5.88 5.19 4.63 3.93 3.84 3.42 3.58 4.28 5.89 
Sharpe Ratio 0.02 0.45 0.54 0.65 0.95 1.08 1.50 1.73 1.62 1.73 

Skewness -3.40 -4.65 -5.29 -4.59 -4.17 -2.89 -2.11 -1.41 -1.48 -1.52 
Excess Kurtosis 32.14 43.12 47.47 39.96 32.46 16.43 7.31 3.15 4.24 5.25 

Max Draw % 40.98 30.14 27.83 24.49 20.17 16.73 10.39 6.51 7.54 13.96 

12-month 

Ann Return % 5.21 5.34 5.35 5.42 6.17 5.54 5.69 6.73 6.92 8.63 

Ann Volatility 5.77 4.76 4.48 3.93 4.02 4.06 3.68 3.67 3.68 6.56 
Sharpe Ratio 0.51 0.64 0.68 0.78 0.95 0.79 0.90 1.17 1.21 0.96 

Skewness -1.78 -2.92 -3.98 -2.95 -3.66 -3.47 -3.08 -2.31 -1.76 -3.01 
Excess Kurtosis 14.31 26.45 33.51 21.09 27.06 22.38 17.33 9.40 6.38 16.43 

Max Draw % 22.70 20.31 21.08 18.22 18.83 21.49 18.10 13.44 12.48 24.75 
 
Table D6.  Statistics of monthly returns of deep neural network portfolios 

Rebalance Decile Portfolio 1 2 3 4 5 6 7 8 9 10 

3-month 
 

Ann Return % -0.70 2.27 3.64 4.55 5.43 7.70 8.59 9.38 12.45 17.59 
Ann Volatility 8.11 6.37 5.81 5.08 4.02 3.72 3.65 4.17 4.45 7.12 

Sharpe Ratio -0.35 0.02 0.25 0.46 0.77 1.40 1.64 1.62 2.13 2.00 
Skewness -2.92 -6.18 -6.19 -5.80 -3.58 -2.65 -1.33 -1.37 -0.08 -1.30 

Excess Kurtosis 19.71 60.91 58.69 54.06 23.90 17.88 6.56 9.75 4.85 9.15 
Max Draw % 43.72 32.93 30.15 26.77 19.02 13.88 10.92 10.89 4.89 17.39 

6-month 

Ann Return % 2.18 4.75 4.68 5.83 5.63 6.38 7.04 8.11 9.78 14.49 
Ann Volatility 8.02 5.67 5.61 4.40 4.42 3.64 3.56 3.50 4.16 6.14 

Sharpe Ratio 0.02 0.45 0.44 0.80 0.75 1.09 1.28 1.59 1.71 1.86 
Skewness -3.54 -3.76 -5.28 -3.99 -4.17 -2.85 -2.50 -1.72 -1.47 -1.19 

Excess Kurtosis 32.06 33.62 49.92 32.58 33.25 13.98 12.34 4.41 4.00 4.02 
Max Draw % 40.89 28.88 30.67 22.83 22.79 14.18 12.67 8.72 7.28 11.62 

12-month 

Ann Return % 4.99 5.15 5.19 5.62 5.52 6.05 5.91 6.78 6.64 9.13 
Ann Volatility 5.83 4.71 4.56 4.32 4.08 3.77 3.70 3.55 3.98 6.53 

Sharpe Ratio 0.47 0.61 0.63 0.76 0.78 0.97 0.95 1.22 1.06 1.03 
Skewness -1.48 -4.23 -3.88 -3.62 -3.52 -2.74 -3.01 -2.10 -2.12 -2.60 

Excess Kurtosis 14.99 37.98 33.93 27.71 24.39 15.68 18.25 7.84 8.03 12.93 
Max Draw % 22.83 20.53 20.83 20.81 21.00 17.78 18.11 12.26 12.67 25.00 

 
 


