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Abstract 

 
We examine the effects of smoothed hedge fund returns on standard devia-
tion, skewness, and kurtosis of return and on correlation of returns and 
cross-sectional volatility and covariance of returns using an MA(2)-
GARCH(1,1)-skewed-t representation of returns instead of the traditional 
MA(2) model employed in the literature. We present evidence that our pro-
posed representation is more consistent with the behavior of hedge fund 
returns and that the traditional method tends to overstate the degree of 
smoothing observed in hedge fund returns. We present methods for cor-
recting for the distortive effects of smoothing using our representation. 
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1.  Introduction 
 
Hedge fund returns are characterized by certain stylized facts. Among them, hedge fund 
return distributions are often skewed and leptokurtic, returns may exhibit high positive 
correlation between funds during periods of financial distress, and monthly returns of 
individual hedge funds are often positively serially correlated, a phenomenon known to 
hedge fund analysts as smoothed returns. 
 
Several writers have examined return smoothing. These include Asness, Krail, and Liew 
(2002); Getmansky, Lo, and Makarov (2004); Aragon (2007); Kosowski, Naik, and Teo 
(2007); Jagannathan, Malakov, and Novikov (2010); and Titman and Tiu (2010). Get-
mansky et al argue in their well-known work that hedge fund monthly returns are 
smoothed because of the effects of various forms of illiquidity. For example, for its 
month-end books a hedge fund may average broker estimates of an illiquid asset’s val-
ue. Brokers may estimate the month-end value as a markup at an assumed rate from 
the prior month’s value. This and the practice of averaging the estimates produces 
smoothed returns. 
 
It is established in the literature that with smoothed returns, standard deviation using 
reported returns is understated so that the Sharpe ratio and information ratio are over-
stated. It is also established that measures of skewness and kurtosis are also distorted 
by smoothing as is correlation of returns between funds. We analyze corrected meas-
ures of these statistics. We also examine the possibility that smoothing distorts cross-
sectional measures of returns, indicators of hedge fund risk, and we present a method 
for analyzing this issue. 
 
Section 2 examines computational methods employed in our analysis. Section 3 ex-
amines the impact of smoothed hedge fund returns on measured standard deviation, 
skewness, and kurtosis of individual hedge fund return streams. Section 4 examines the 
impact of smoothing on correlation of returns between hedge funds, and cross-sectional 
measures of returns between hedge funds. Section 5 presents an empirical study of key 
statistics under return smoothing. Section 6 presents conclusions. 
 
2.  Computational methods 
 
In the literature an MA(2) model of monthly hedge fund returns is often employed as fol-
lows: 
 
(2.1)  Rt

o = θ0Rt + θ1Rt−1 + θ2Rt−2 
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         1 = θ0 + θ1 + θ2 
         0 ≤ θi ≤ 1 

 
where 𝑅𝑡𝑜 is the observed, or reported, monthly return in period t, 𝑅𝑡 is the underlying ac-
tual return in t, and the 𝜃𝑠 are parameters. 
 
Some authors (Getmansky et al 2004) propose to estimate the MA(2) smoothing model 
using maximum likelihood estimation (MLE) while relaxing the constraint 0 ≤ θi ≤ 1. 
They define the de-meaned observed return Xt = Rt

o − µ. Then: 
 
(2.2) Xt = θ0εt + θ1εt−1 + θ2εt−2 
 1 = θ0 + θ1 + θ2 
 ϵk~ iid N(0,σ2)  
 
It then becomes a traditional MA time series estimation process and can be estimated 
using standard statistical software. A key assumption in such an approach is that the 
underlying true hedge fund return has an iid normal distribution. In reality, the true return 
rarely has such a distribution. It is not uncommon for the return to show volatility cluster-
ing and skewness. To demonstrate this, we employ a dataset of 256 hedge funds from 
the Hedge Fund Research Inc. database, each with a continuous monthly reporting his-
tory for the period from January 1998 to December 2010. We restricted our selection of 
hedge funds to those with assets under management of at least $100 million and conti-
nuous reporting of returns over our sample period. In Figure 1 below, we show the resi-
duals for one of the funds obtained through the MA(2) process with normality assump-
tions. The distribution of the residuals, which should be iid normal, exhibits fat tails and 
are highly skewed. 
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Figure 1.  Histogram of the residuals for fund #3 in the MA(2) model  

 

To demonstrate the volatility clustering or heteroscedasticity, we show the autocorrela-
tion function plot of the absolute residuals in the MA(2) model in Figure 2.  
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Figure 2.  ACF of the absolute residuals for Fund #3 in the MA(2) model. The dashed 
horizontal lines form the 95 percent confidence band for no autocorrelation.

 

To extract the true return accommodating its skewness, kurtosis and heteroscedasticity 
properties, we propose using an MA(2)-GARCH(1,1)-skewed-t model: 
 
(2.3) Xt = θ0at + θ1at−1 + θ2at−2 
 1 = θ0 + θ1 + θ2 
 at = σtϵt 
 σt2 = α0 + α1at−12 + β1σt−12   
 
where the error term ϵt has a skewed-t distribution defined in Lambert and Laurent 
(2001) as follows. Suppose x  has a Student-t distribution with density (.)g  and degrees 
of freedom υ . Potential skewness is introduced through the parameter ξ  such that: 
 

(2.4) mxE =
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where ),|( υξyf  is the density. 
 
For our 256 hedge funds, 228 of them have returns different from a normal distribution 
at the 0.05 significance level based on Jarque and Bera (1987) statistic, which is 
asymptotically distributed as a chi-square random variable with two degrees of freedom. 
This is a strong indication that we should incorporate the skewed-t distribution in our es-
timation process. In our estimation we also relax the constraint of 0 ≤ θi ≤ 1 as in the 
literature. In the following table, we list the estimated θs using our modified model and 
the traditional MA(2) model together with the Jarque and Bera statistics for the 
duals ϵt. We list only the first 10 funds ranked in increasing order of the estimated 
smoothing parameter θ0 from the traditional model to illustrate the difference between 
the two estimation processes. 
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Table 1. Comparison of traditional model and skewed-t model across hedge funds.  
 
 

MA(2)-GARCH(1,1)-skewed-t MA(2)  
θ0 θ1 θ2 θ0 θ1 θ2 J-B statistic 

0.5943 0.2680 0.1377 0.4790 0.3302 0.1908 457.38 

0.6004 0.2591 0.1406 0.4821 0.3344 0.1835 418.13 

0.6841 0.2626 0.0533 0.4929 0.3945 0.1126 2675.84 

0.6496 0.2762 0.0742 0.5162 0.3433 0.1406 525.44 

0.6468 0.2388 0.1144 0.5327 0.2830 0.1842 564.30 

0.7155 0.2481 0.0364 0.5402 0.2870 0.1729 702.96 

0.6541 0.2516 0.0943 0.5463 0.3566 0.0971 1299.21 

0.7264 0.2037 0.0700 0.5603 0.3419 0.0978 2967.80 

0.6664 0.2316 0.1020 0.5640 0.2688 0.1671 346.54 

0.6448 0.2668 0.0884 0.5641 0.2965 0.1394 75.64 

 
 
From the table we see that there is significant amount of smoothing in hedge fund re-
turns and that the normality assumption is violated as the Jarque and Bera statistic is 
5.99 at the 0.05 significance level. When we compare the estimations of θ0, the tradi-
tional process tends to overestimate the smoothing effects in hedge fund returns, and 
that could exaggerate the distortion of key hedge funds statistics when taking smoothing 
into consideration. 
 
The charts below show the comparison of θ0 estimations using the simple MA(2) model 
and our MA(2)-GARCH(1,1)-skewed-t model for our 256 funds. The kernel density was 
calculated using a normal kernel with plug-in optimal bandwidth choice. 
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Figure 3.1.  Histogram comparison of θ0 estimations 

 
 

Figure 3.2.  Kernel density comparison of θ0 estimations 
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Figure 3.3.  Scatter plot comparison of θ0 estimations 

 
 
In the chart above, the straight line shows where the two estimates are equal. It is evi-
dent from the graphs that the estimates for θ0 are quite different for these two models. 
The traditional model tends to overstate the smoothing factor based on our database. 
Our proposal is closer to reality in that it takes into consideration the skewness, kurtosis, 
and heteroscedasticity of the return distributions. 
 
3.  Smoothed returns and statistical moments of individual hedge funds 
 

Return smoothing and standard deviation of return 
 
Geltner (1991) shows that for (2.1) the standard deviation SDo of the reported returns 
𝑅𝑡𝑜 and the standard deviation SD of the actual returns 𝑅𝑡 are related as follows: 
 
(3.1) SD = ψ1 SDo 
           ψ1 = 1/(∑θi2)1/2 
  
The term ψ1 is greater than 1 where 0 ≤ θi < 1; i=0,1,2, i.e., where returns are 
smoothed, so that the standard deviation of reported returns is less than the standard 
deviation of the actual underlying returns. The chart below shows ψ1 plotted as func-
tions of θ0 and θ1 (θ2 = 1 − θ0 − θ1 , of course). 
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Figure 4.  Distortion factor ψ1 under return smoothing 

 
 
The distortive effect of return smoothing, i.e., the value of ψ1, is greatest where θ0 =
θ1 = θ2 = 1/3. The understatement of standard deviation means that the Sharpe ratio 
and the information ratio computed from reported returns are higher than they would be 
using actual returns. For example, where θ0 = θ1 = θ2 = 1/3, ψ1 = 1.732 so that the 
standard deviation of the reported return is 0.5774 (= 1/1.732) that of the actual return, 
and the reported Sharpe ratio and the information ratio are each 1.732 higher than their 
respective actual measures. Getmansky et al find that distortions of standard deviation 
are sometimes substantial in empirical hedge fund data. 
 
With smoothed returns, reported standard deviation is less than actual standard devia-
tion, and the reported Sharpe ratio and information ratio are higher than their respective 
actual measures, and the degree of distortion is sensitive to the method of estimation. 
 

Return smoothing and higher statistical moments 
 
Higher moments are also distorted by smoothing (Cavenaile et al, 2011). Let SK, SKo, K, 
and Ko denote, respectively, skewness of actual returns, skewness of observed returns, 
excess kurtosis of actual returns, and excess kurtosis of observed returns, respectively. 
Then: 
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(3.2) SK = ψ2 SKo 
           ψ2 = (∑θi2)3/2/(∑θi3) 
 
(3.3) K = ψ3 Ko 
           ψ3 = (∑θi2)2/(∑θi4) 
  
Of course, in the absence of return smoothing, ψ2 = ψ3 = 1, but these distortion factors 
are elevated where returns are smoothed and may be well above 1. The charts below 
show ψ2 and ψ3 plotted as functions of θ0 and θ1. 
 

Figure 5.  Distortion factor ψ2 under return smoothing 
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Figure 6.  Distortion factor ψ3 under return smoothing 

 
Again, the distortive effects of return smoothing are greatest where θ0 = θ1 = θ2 = 1/3 
for both skewness and excess kurtosis.  

 
With smoothed returns, actual skewness and actual excess kurtosis are greater than 
their respective measures taken from reported returns, and the distortion of kurtosis is 
greater than the distortion of skewness. 
 
4.  Smoothed returns and statistical measurements across hedge funds 
 

Correlation of returns under return smoothing 
 
There is evidence that, during periods of financial distress, hedge fund return streams 
become positively correlated with each other, and analysts use correlation of hedge 
fund returns as an indicator of potential financial distress. Unfortunately, the correct 
computation of correlation of returns may be undermined by return smoothing. 
 
Let xto and yto be the observed returns of two hedge funds, let xt and yt be the respec-
tive actual returns, and suppose again that the two return streams are subject to MA(2) 
smoothing so that: 
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4.1) xto = θx0xt + θx1xt−1 + θx2xt−2 
 yto = θy0yt + θy1yt−1 + θy2yt−2 
 ∑θxi = 1 
 ∑θyi = 1 
 
Then, the correlation corr[xt, yt] of the actual returns and the correlation corr[xto, yto] of 
the observed returns are related as follows (Geltner, 1991): 
 
4.2) corr[xt, yt] = ψ4 corr[xto, yto]  
           ψ4 = (∑θxi2 ∑θyi2 )1/2/(∑θxi θyi) 
 
When the smoothing parameters are the same for both funds, i.e., where θxi = θyi; i = 
0,1,2, we have ψ4 = 1. However, when the smoothing parameters are different, we 
have ψ4 > 1. Figure 7 shows ψ4 as a function of θy0 and θy1 where θx0 = θx1 = θx2 =
1/3. 
 

Figure 7.  Distortion factor ψ4 under return smoothing 
 

 
 
In the case of identical smoothing parameters, actual correlation and observed correla-
tion are equal, but correlation of actual returns is greater in absolute value than correla-
tion using reported returns where the smoothing parameters are different. 
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Analysts may use correlation of returns as an indicator of the degree of distress in fi-
nancial markets, and so correcting measured correlation, i.e., computing Ψ4, may be a 
consideration in analyzing hedge fund return data. 
 

Cross-sectional volatility, covariance and correlation 
of returns under return smoothing 

 
Return smoothing can have effects on other statistical measures, and we round out our 
analysis with an examination of these effects. Analysts may use cross-sectional meas-
ures of returns as indicators of hedge fund risk. Adrian (2007) defines cross-sectional 

volatility at a point in time as�1
𝑁
∑ (𝑅𝑖𝑜)2𝑁
𝑖=1  where 𝑅𝑖𝑜 is the observed return of fund i and 

N is the number of hedge funds in the database. We note that there is not a term like 𝜓 

above that converts this indicator to �1
𝑁
∑ (𝑅𝑖)2𝑁
𝑖=1 , i.e., cross-sectional volatility of actual 

returns. He defines cross-sectional covariance as 1
𝑁2−𝑁

∑ ∑ 𝑅𝑡𝑜𝑖𝑁
𝑗=1,𝑗≠𝑖 𝑅𝑡

𝑜𝑗𝑁
𝑖=1 . Using Credit 

Suisse/ Tremont style indexes, he finds that “increases in … covariances tend to pre-
cede elevations in volatility.” Cross-sectional correlation is the ratio of cross-sectional 
covariance to the square of cross-sectional volatility. Adrian finds “no statistical evi-
dence that increases in … correlations precede rises in … volatility.” He finds that the 
Long Term Capital Management crisis of August 1998 “was accompanied by a large 
negative covariance of … returns.” Using the same style indexes, we replicated his re-
sults, demonstrating that such measures are useful when working with hedge fund style 
indexes. 
 
However, problems arise when we deal with individual hedge funds—as we do in this 
study—which may use very idiosyncratic strategies even within the same style classifi-
cation. For instance, in our analysis using the definitions above, we are not able to 
detect significant negative cross-sectional covariance in our database of individual 
hedge funds during periods of financial crisis. 
 
We also note that, where a large constant is added to all the returns, cross-sectional vo-
latility/covariance is larger while the true underlying performance differences across 
hedge funds remain the same. Adding a constant to the returns may be thought of as 
artificially creating a more bullish operating environment for hedge funds. With that in 
mind, we propose the following modified cross-sectional measures for our study: 
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Cross-sectional volatility =�1
𝑁
∑ (𝑅𝑖𝑜−𝑢)2𝑁
𝑖=1 𝑤ℎ𝑒𝑟𝑒 𝑢 = 1

𝑁
∑ 𝑅𝑖𝑜𝑁
𝑖=1  

Cross-sectional covariance = 1
𝑁2−𝑁

∑ ∑ (𝑅𝑡𝑜𝑖𝑁
𝑗=1,𝑗≠𝑖 −𝑢) ∗ (𝑅𝑡

𝑜𝑗 − 𝑢)𝑁
𝑖=1  

 
When taking return smoothing into consideration, we will use our approach to filter out 
the unsmoothed underlying “true” return and estimate the above mentioned cross-
sectional measures. 

 
5.  Empirical study of key statistics 
 
Using our original dataset of 256 hedge funds, we use both our MA(2)-GARCH(1,1)-
skewed-t model and the MA(2) model to examine the distortion effects for standard dev-
iation, skewness, excess kurtosis, and the cross-sectional measures considered above. 
In this empirical study, we relax the constraint of 0 ≤ θi ≤ 1 so that, for instance, stan-
dard deviation of reported returns may at times be less than that of actual returns. The 
following charts show the histogram comparisons of distortions for standard deviation, 
skewness, excess kurtosis and pair-wise correlations estimated from the two methods. 
The cross-sectional measures using the observed return and filtered return in our ap-
proach are shown from January 1998 to December 2010. 
 

Figure 8.  Histogram of ψ1 
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Figure 9.  Histogram of ψ2  

 
 

Figure 10.  Histogram of ψ3 
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Figure 11.  Histogram of ψ4 

 
 

Figure 12.  Comparison of cross-sectional volatility 
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Figure 13.  Comparison of cross-sectional covariance 

 
 

Thus, in general using our method, standard deviation, skewness and excess kurtosis 
all show some distortions for most of the 256 funds in our study, while the distortions 
tend to be less than that estimated from the traditional method. The cross-sectional risk 
measures are affected to a lesser extent, and it would suffice to use only the observed 
return in this case. Most importantly, there are three big spikes in cross-sectional vola-
tility and three big negative spikes in cross-sectional covariance corresponding to the 
Long Term Capital Management crisis in 1998, the internet bubble burst in 2000, and 
the recent financial crisis in 2008.   
 
6.  Conclusion 
 
It is established in the literature that hedge fund return smoothing causes distortions in 
hedge fund statistics. We propose a new MA(2)-GARCH(1,1)-skewed-t model to incor-
porate the skewness, kurtosis and heteroscedasticity effects often encountered in 
hedge fund returns. In addition, it has been reported in the literature that return smooth-
ing causes standard deviation of reported returns to understate true volatility and that 
smoothing distorts correlation of returns. Skewness and excess kurtosis are unders-
tated using smoothed returns. In addition, we find that some statistics such as cross-
sectional volatility and covariance are not substantially distorted by illiquidity and so they 
may serve for risk-measurement purposes without correcting for illiquidity effects. 
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The construction of our indicators of hedge fund illiquidity, i.e., the ψ, is consistent with 
our analytical framework, and we suggest that such measures may be useful to policy-
makers who require correct assessment of risk in hedge fund space. 
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