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Abstract

For more than a decade, debates over the impact of new information
technologies on trend productivity growth rates have played a key role in
the formulation of monetary policy in many countries, including the United
States and Canada. However, the question of whether the trend growth
rate of aggregate productivity has changed significantly is rarely examined
formally. This paper examines the latest aggregate labour productivity
data for Canada using a new testing approach specifically designed to detect
recent changes in trends. In addition to showing the strength of the evidence
for changes in long-run trends, it considers the effect that data revision and
changing sample period has had on inference about structural changes. In
an appendix, it investigates how large such changes must be before they can
be detected and to what degree detection tends to lag the structural change.
Evidence of a decline in the trend rate of labour productivity growth in

Canada since 1990 is mixed. In particular, conclusions vary considerably from
year to year as data are revised and as the accumulation of observations after
purported breaks changes initial perceptions. The instability of test results
suggest that policymakers need to use extreme caution in interpreting claims
of changes in labour productivity trends and highlight the uncertainty that
they face.
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1. Introduction

Trends in productivity growth play a key role in the formulation of public
policy. They are important factors in determining long-run economic growth
and therefore play central roles in the management of public pension systems
and government debt. They are an essential component in defining measures
of economic slack and have therefore played a key role in the formulation
of monetary policy, particularly in the United States and Canada.2 Inter-
national differences in such trends in turn have profound influences on the
balance of world saving and investment. Not surprisingly, the possibility of
a persistent change in aggregate productivity growth casts a long shadow
over many of the most important economic policy debates. For all these
reasons, great effort is devoted to accurate productivity measurement and to
the analysis of sources of productivity growth.3

Surprisingly, however, the question of whether the trend growth rate of
aggregate productivity has changed significantly is rarely examined formally.4

The answer to this question is frequently ambiguous, even in the much-
studied context of recent trends in U.S. productivity growth. For example,
Gordon (2003) concludes

Productivity growth experienced a second acceleration in 2000-03
following the initial productivity revival of 1995-2000. [p. 272 ]

a view shared by Bailey (2003).5 Blinder and Yellen (2001) present

2For example, the May 4th 2004 minutes of the FOMC note the FRB staff’s opinion
that "...that the remaining slack in resource utilization and strong productivity growth
would keep core inflation at a low level over the forecast period." The same minutes also
summarize the committee’s view that "... a range of factors was continuing to restrain
inflation, including slack in resource utilization, strong productivity gains ...."

3Many different measures and definitions of productivity play a role in this research and
policy debate. The most common are labour productivity and total-factor productivity
(which considers aggregate inputs of both labour and capital.) This paper examines the
behaviour of labour productivity (specifically, real output per employee.)

4This puzzling blindspot affects even the most important works in this field. For
example, Gordon (2003) provides a 73-page analysis of the "explosion" in US productivity
growth, but remarks by Durlauf and Sims [p. 293] lament the absence of any analysis of
the uncertainty surrounding his estimates.

5"...it does now seem clear that trend labor productivity growth picked up substantially
in the 1990s, and the most recent data suggest that there may even have been a further
acceleration in the past two years. [p. 282 ]"
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evidence for a change at the end of 1995, and Hansen (2001) finds that
formal statistical analysis supports this timing.6 However, Fair (2004)
argues that late 1995 is simply a cyclical trough in productivity growth and
that cyclically adjusted productivity growth shows very little improvement
in the 1995-1999 period. Maury and Pluyard (2004) find weak evidence of
trend break in US hourly productivity in 1995Q3, but none after the early
1980s when using per capita GDP.

We argue that at least two potential problems complicate the analysis
in this literature. First, productivity data are revised over time, with the
revisions often causing non-trivial changes in measured growth rates. None of
the above papers investigates this problem in a systematic way. Second, very
few papers perform statistical tests for changes in productivity growth trends,
and some of those that do (Hansen (2001), Maury and Pluyard (2004)) use
methods that are known to be unreliable close to the end of sample.
This paper examines the latest aggregate labour productivity data for

Canada using a new testing approach specifically designed to detect recent
changes in trends. Using real-time data, it then considers the impact of data
revision on the detection of trend breaks. In an appendix, we also consider
how large changes must be before they can be detected and to what degree
detection tends to lag the structural change.

2. Literature Review

Most of the literature on trends in aggregate productivity growth relies
on informal methods to characterize trends. On the basis of such analysis, it
appears that profession opinion shifted around 2000 in favor of a improvement
in US trend productivity growth which occurred less than five years before.
For example, Stiroh (1999) looks at data up to 1998Q3 and concludes

"... it is still too early to tell if a twenty-five-year trend of rela-
tively slow productivity growth has been reversed."

while Jorgenson et al. (2002) write

6(Blinder and Yellen, 2001, p. 61, Table 8.1) and Hansen (2001, p. 123). Note that
Hansen finds no evidence of a trend break in the early 1970s.
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"... that a consensus has emerged about trend rates of growth
for output and labor productivity.... that the U.S. productiv-
ity revival is likely to remain intact for the intermediate future.
[p.12]"

Blinder and Yellen (2001) present some informal evidence for a change at
the end of 1995, but note that

"As late as 1998...productivity growth had risen somewhat, but
normal statistical tests attributed this rise to the cyclical upturn;
there was no real evidence of any change in the underlying trend.
[p. 59 ]"

Similarly, Gordon (1998) notes

"...the failure of measured productivity growth to accelerate sig-
nificantly in the 1990s. [p. 299]"

Writing in mid-year, Gordon (2000) notes

"There is no dispute that [US] productivity has revived....[p.49]",

but then goes on to argue that the improvement is narrowly confined to
computer manufacturing and that part of the apparent improvement is due
to cyclical influences rather than a change in trend. However Baily and
Lawrence (2001) write in early 2001

"...there has been a substantial increase structural acceleration of
total factor productivity (TFP) outside of the computer sector.[p.
308]"

and Gordon (2003) (as cited above) concludes that trend growth improved
in the later part of the 1990s and then improved further in 2000-03.7

Reviewing this literature, Edge et al. (2004) conclude that

7"These results refute my earlier position that actual productivity was above trend in
the late 1990s; that position was defensible based on data at the time, but the soaring
growth of actual productivity in 2002-03 now pulls the estimated trend lines well above
actual values for the late 1990s. [p. 223]"
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"...the productivity acceleration in the late 1990s is now widely
viewed as starting in the middle of the decade. ...[H]owever, esti-
mates of long-run productivity growth by economists and profes-
sional forecasters changed little until 1999 and shot up dramati-
cally in 2000."

The methods used to distinguish "trends" from other movements in pro-
ductivity in the above papers are usually ad hoc; typical methods include the
comparison of growth rates for non-overlapping five-year periods or the use
of other arbitrary smoothing techniques (e.g. Gordon’s use of the Hodrick-
Prescott filter.) Lacking any formal statistical framework, such studies are
unable to assess whether the changes in estimated trend rates are statistically
significant, and therefore whether they are reliable indicators of structural
economic changes. Exceptions to this approach are few and noteworthy;
Borio et al. (2003) characterize this literature as showing that

"The time series evidence of a structural productivity break was
suggestive but not statistically significant until the late 1990s...[p.
17, footnote 33.]"

Filardo (1995) uses data through 1995Q2 to critically examine the claim of
an increase in productivity growth in the early 1990s. While he finds
evidence of a structural break around 1990Q4 for some tests, he concludes
that more reliable tests find no significant evidence of a break. However,
Hansen (2001) uses monthly data through April 2001 and finds significance
evidence of a shift in the mid-1990s, with some series indicating a break
around 1994 and others placing it in 1997. Maury and Pluyard (2004) use
data ending in 2002Q4 and conclude that there is some evidence of a
structural break in trend growth around 1995Q3 when using output per
person-hour but not when using output per capita data. Erber and Fritsche
(2005) use data ending in 2003Q4 and find breaks in the trend in 1994Q3 as
well as 1998Q3. All four of these papers test for breaks by searching over all
possible break dates and comparing the maximum F-statistic to a
nonstandard distribution under the null. All also allow for multiple
structural breaks using the iterative approach of Bai and Perron (1998).8

8Kahn and Rich (2007) use a very different approach to testing for changes in pro-
ductivity growth trends. They estimate a multi-variate regime-switching factor model in
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A more formal state-space analysis of productivity growth trends is pro-
vided by Benati (2007), who examines evidence for the US, the Eurozone
and a selection of other economies (not including Canada.) He begins by
noting that the above Bai and Perron tests find "surprisingly little" evidence
of changes in productivity growth trends. He notes that this would be consis-
tent with models in which the trend growth rate varies gradually over time
rather than exhibiting sharp breaks, and proceeds to a careful estimation
and examination of such models. However, he avoids formal tests of the null
hypothesis of a constant trend growth rate in these models and finds that
confidence intervals for the trend growth rate for the US are quite wide; the
90% interval at the end of sample has a width of 1.6% (in annual rates.)9

Filardo (1995) performs bootstrap simulations to determine the distri-
bution of his F-statistic under the null hypothesis of no structural change,
while Hansen (2001) and Maury and Pluyard (2004) use asymptotic criti-
cal values provided by Andrews (1993). However, it is well known that the
test statistic converges only very slowly to its asymptotic distribution as the

which several variables (including productivity) switch between high and low trend growth
states. They argue that their multivariate framework provides a more powerful test than
the univariate tests used elsewhere. Their estimates date the break in trend in 1997 and
the authors note that their model would have detected the regime switch within about six
quarters of when it occurred.
Updates of their results published by the Federal Reserve Bank of New York show that

their model’s probabilities undergo important revisions for many years after first estimates
are available. For example, the probability of being in the low growth state in 2006Q1 was
estimated to be well under 10% in Sept. 2006, but well over 95% by Dec 2008, only to be
revised downwards to under 60% 15 months later.
Their results rely inter alia on the strong assumption that any change in productivity

growth trends after the 1970s and 80s must imply a "return" to patterns of the 1960s.
Their implimentation of the regime-switching structure also precludes statistical tests
for a structural break in the 1990s which are comparable to those discussed above. For
example, although the authors show that "unsmoothed" estimates of the probability of
being in the high-growth-trend regime exceed 95% by 1998Q4 [p. 17], this calculation
ignores the effects of parameter uncertainty on regime inference; tests used in the above-
mentioned literature take account of this uncertainty.

9Benati provides graphs showing median-unbiased estimates of the trend growth rate
for many series along with their 90% confidence intervals. Those for the US [p. 2864] are
striking in that there is no hint of signficant evidence of a change in trend productivity
growth; the minimum of the upper 90% bound is always above the maximum of the lower
90% bound. This is also typical of the results he show for other economies.
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search for potential breakpoints comes "close" to the extremes of the data
sample. For that reason, most applications of the this testing approach re-
strict the breakpoint not to lie within the first 15% or the last 15% of their
observations. This is an awkward restriction when the object of interest is
current trends in productivity growth. Fair (2004) uses a new test statistic
proposed by Andrews (2003) which allows for breakpoint tests close to the
end of the sample; however, while he applies the test to a broad range of
macroeconomic series, he reports no test results for productivity series. We
discuss the properties of this test in greater detail, below.
None of the papers discussed above consider the problems caused by the

ongoing revision of data (except insofar as to reconcile an article’s conclusions
with previously published conclusions by the same author.) In contrast, Edge
et al. (2004) carefully consider the problem of estimating trend productivity
growth with real-time data.10 They show that with such data, a heuristic
linear updating rule can produce estimates of productivity growth which
resemble historical estimates produced by the Council of Economic Advisors
and other analysts. They also discuss the importance of data revisions in 1998
and late 1999 to changes in estimated trend productivity growth. However,
this paper also stops short of providing a framework for formal statistical
inference and uses a stylized state-space model only as a device to justify
their use of a simple updating rule.
In contrast to the robust literature examining US data, papers examining

Canadian data are far fewer and have tended to focus on identifying sources
and causes of productivity growth rather than estimate its trends. Leading
articles on aggregate productivity, such as Sharpe (2004), Macklem (2003) or
Crawford (2002) discuss "trends" by performing growth-accounting of recent
productivity data. They provide no distinction between trends and cycles in
productivity beyond looking at changes over multi-year periods. Robidoux
and Wong (2003) use the Hodrick-Prescott filter to measure trend growth.
Despite their discussions of future trends in productivity and acknowledge-
ment of the uncertainty surrounding such projections, none attempt to quan-
tify this uncertainty in a statistical framework and none test for breaks in
trend. Crawford (2002), Macklem (2003) and Sharpe (2004) contrast pro-
ductivity developments in Canada against those in the US, but stop short of

10Kahn and Rich (2007) also provide some limited analysis of real-time data with vin-
tages starting in the mid-90s.
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considering whether there is any significant difference in their trend growth
rates.
Reliable evidence of improvements in productivity growth trends requires

reliable testing procedures. Below, we briefly review tests proposed by An-
drews (1993) and Andrews (2003). Simulation evidence on their reliability is
presented in an appendix. We then apply the latter test to original vintage
data for Canada to replicate what researchers would have been to conclude
about apparent changes in productivity growth trends and we examine the
degree to which such conclusions are consistent over time. We also isolate
the importance of data revisions in accounting for these results. Before that,
however, we review how we choose to measure Canadian productivity.

3. Data

The data consist of seasonally-adjusted quarterly observations for Canada
on real output at market prices per person employed. These in turn are
based on quarterly figures for seasonally-adjusted real output at market prices
from 1976Q1 onwards as reported by Statistics Canada.11 The real output
figures are then simply divided by the corresponding vintage figures for total
employment seasonally-adjusted.12

3.1. Data Revision

In addition to analyzing the data as they are currently reported by Statis-
tics Canada, we also examine "original vintage" series as they were published
every quarter from 1976Q2 to 2009Q2. The "Final" series is the 2009Q2 vin-
tage, whose last observation is for 2009Q1.

11Statistics Canada series v1992067. Note that prior to 1986 figures are for GNE rather
than GDP; figures from the 2003Q3 vintage onwards are chain-weighted. Vintages up to
the end of 2005 were provided by the Bank of Canada from their vintage model databases
and from Statistics Canada reports. Figures thereafter were manually updated from Sta-
tistic Canada’s Canadian Economic Observer (figures are taken from the first issue of each
quarter.) Historical figures for the 2006-2009 vintages were taken from the most recent
vintage in CANSIM; no benchmark revisions took place during this period.
12Statistics Canada series v2062811. Vintages up to the end of 2002 were provided by

the Bank of Canada from Statistics Canada reports. Figures thereafter were manually
updated from Statistic Canada’s Canadian Economic Observer; the figures used are for
employment in mid-quarter. Historical figures for the 2005-2009 vintages were taken from
the most recent vintage in CANSIM; no benchmark revisions took place during this period.
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Employment figures are regularly revised at the start of each year as the
seasonal adjustment factors are updated; these revisions usually apply to
last three years of data. Revisions are also carried out every five years as the
surveys are reweighted to reflect information from the most recent census,
with results from the July 2001 census incorporated in benchmark revisions
at the start of 2005. Real output is revised when subsequent quarters for
the same year are published and annually at the start of the year when the
seasonal adjustment factors are published; the latter usually affects the last
four years of published data. Historical revisions are also carried out once
per decade.

3.2. Measuring Productivity

It would be desirable to examine figures covering only the business sector
in order to avoid valuation problems in the non-business sectors. However,
business-sector figures are available only from 1987Q1 onwards; this was
judged to be insuffi ciently informative about trends prior to the early 1990s
to be of use.13 Quarterly total factor productivity estimates from the Bank
of Canada QPM Simplex Database were available from 1966Q1 onwards.14

However, this series is dominated by strong cyclical fluctuations. Given the
large revisions of estimated cyclical factors at the end of sample, one would
expect that a series with less pronounced cyclical factors should give more
reliable estimates of recent trend growth rates Also, these estimates are not
used outside the Bank of Canada; Statistics Canada has published only an-
nual estimates of multi-factor productivity. Updates of the Statistics Canada
series have been irregular and revisions frequent, as shown in Table 1.

3.3. Canadian Labour Productivity

The output per employee (OPE) data are summarized in Figures 1 and 2,
and Table 3.3. Figure 1 shows the natural logarithm of labour productivity
in the upper panel and its first difference in the lower panel. Both show the
most recent (2009Q2) vintage estimates. We see that productivity is clearly
cyclical with lower growth during the recessions in the early 1980s, 1990s,
2001 and the end of 2008. There are many periods in which productivity

13Due to the influence of a deep recession in the early 90s, this series shows a roughly
constant level of productivity until the early 90s and steady growth thereafter.
14The author would like to thank Wendy Chan of the Bank of Canada for providing the

data.
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Table 1: Publication of Canadian Productivity Data by Statistics Canada

Issue Year Year Released Publication # Notes
1984 unknown 14-201
1985-86 1988 15-204 XIE
1987 1989 15-204 XIE Important structural breaks.
1988 1990 15-204 XIE Important sectoral breaks.
1989 1991 15-204 XIE Introduces multivariate TFP
1990-91 1992 15-204 XIE Important structural breaks
1991 1993 15-204 XIE
1992 1994 15-204 XIE
1993 1995 15-204 XIE
1994 1996 15-204 XIE

1997-2000 No publications
1999 2001 15-204 XIE Major data revisions
2000 2002 15-204 XIE
2003 2004 15-003
2003 2005 Data revisions

appears to decline, and the volatility of productivity growth appears to drop
after the mid-1980s. There is also some suggestion that productivity may be
tending to "level off" after 2000.
Figure 2 gives some idea of the relative importance of data revisions

by showing the real-time estimates of productivity growth. This real-time
estimate is simply the growth rate in each vintage over its final 1, 4, 8 or
16 quarters. Each of the four panels in Figure 2 shows one of these four
real-time estimates alongside the corresponding revision in that growth rate,
where the revision is simply the difference between the estimate from the
"final" (2009Q2) vintage and the real-time estimate. For ease of comparison,
all series are shown at annual rates. We see that revisions are roughly the
same order of magnitude as the real-time estimates of productivity growth.
The volatility of the revisions seems to reflect the volatility of the real-time
estimates; both vary widely and rapidly when measured over a single quarter,
but unsurprisingly both become smoother as we measure growth rates over
longer intervals. It also appears from the graphs that the average revision has
been negative; productivity estimates have tended to be revised downwards
over time.
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Table 2: Revisions in Growth of Log Canadian Output per Employee.

Statistic 1Q Change 4Q Change 16Q Change 32Q Change
Real-time Mean 0.81 0.78 0.79 0.78
Real-time Std. Err. 2.00 1.10 0.81 0.62
Revision Mean -0.19 -0.22 -0.22 -0.27
Revision Std. Err. 2.00 0.78 0.51 0.41
ρ (Real-time,Final) 0.577 0.790 0.861 0.796
ρ (Revisiont,Revisiont−1) -0.183 0.665 0.769 0.888
Notes:
Final data is 2009Q2 Vintage; Real-time Vintages are 1976Q2-2009Q2.
All series start 1976Q2.
All figures are for change in logs at annual rates x 100.

Table 3.3 largely confirms what is shown in Figure 2. The upper portion
of the table shows the mean of the real-time estimates of annual labour
productivity growth. Estimates over 1, 4, 8 or 16 quarters all show very
similar mean growth rates of 0.80% annually. As we expect from Figure
2, the standard error of these growth rates declines sharply from 2.0% for
quarter-to-quarter changes, to 1.0% for 4-quarter changes and to 0.6% for
changes over 16 quarters. The Table confirms that the mean revision has
been negative, with productivity tending to be revised downward by about
0.20% from the 0.80% real-time estimate. The standard deviations of the
revisions fall somewhat faster with horizon, falling from 2.0% for quarter-to-
quarter changes, to 0.8% for 4-quarter changes and to 0.4% for changes over
16 quarters. The fifth line in the Table shows the correlation between the
real-time and the final estimates of the growth rate of productivity; this rises
from just under 60% at the one-quarter horizon to about 80% at the 4 and 16-
quarter horizons and just over 85% when measured over 8 quarters. The final
line shows that while revisions to the 1Q growth rates have no persistence
and are actually negatively serially correlated, their persistence rises with
horizon as we would expect, with a first-order autocorrelation coeffi cient of
just over 88% at 16Q.
Together, Figure 2 and Table 3.3 suggest that revisions may be a poten-

tially serious problem for the estimation of trend productivity. The standard
error of revisions varies from roughly 65% to 100% of that of real-time pro-
ductivity growth estimates; although the ratio improves as we move from
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short-run productivity movements to longer-term trends, it remains far from
negligible and the persistence of revisions increases. The mean revision also
appears to be non-zero; while small relative to the mean growth rate (about
1/4), it will likely be larger in relation to potential changes in productivity
growth trends. All this may therefore complicate the timely detection of
shifts in trend growth rates. We therefore turn in the next section to the
problem of detecting such shifts.

4. Methodology

As noted above in the literature review, most of the work which tests for
statistically significant changes in productivity growth trends use mid-sample
tests, including those of Andrews (1993) and Bai and Perron (1998), which
allow for single or multiple breaks at unknown dates. Below, we first review
the construction of such tests as well as the problems they encounter when
searching for "recent" breaks in trend.15 We then explain the basis for a new
test statistic proposed by Andrews (2003) which allows for breakpoint tests
close to the end of the sample and we discuss its properties.16

4.1. Mid-Sample Tests

Chow (1960) proposes F-tests for a one-time structural change in one or
more estimated regression coeffi cients when the date of the break is known.
In the case of a simple AR(1) model, the null hypothesis is
(1) yt = ρ · yt−1 + εt for t = 1, . . . , T and εt ∼ IN(0, σ)

and the alternative is

15Our discussion focuses on the Andrew’s test for a single breakpoint whose date is
unknown. The Bai and Perron test generalizes this to multiple breakpoints, but shares
the same characteristics with respect to its application near the end of samples.
16Yet another approach to modeling time-varying productivity growth trends would be

to use the state-space model applied by Benati (2007). We note, however, that Benati
does not provide a statistical test for changes in trend growth rates. Instead, he advo-
cates modeling trend growth as varying continuously. We also note that Benati imposes
assumptions of homoscedasticity similar to the ones we require, below. Finally, Benati’s
approach does not appear to have very high power to detect shifts in growth rates. As
noted above, the 90% confidence intervals he graphs are wide and provide no evidence
of significant changes in productivity growth trends at any time for any of the countries
studied.
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(1′) yt = ρ0 · yt−1 + εt for t = 1, . . . , τ and yt = ρ1 · yt−1 + εt for
t = τ + 1, . . . , T , where ρ0 6= ρ1.

Let ε̂, ε̂0, and ε̂1 be the OLS residuals for these three equations and S, S0
and S1 be the sums of their squared residuals. The Wald test statistic for a
structural break at τ is then given by

(3) W = T · S−S0−S1
S0+S1

Andrews (1993) considers the distribution of this and related statistics
when the researcher searches over possible values of τ . He proposes the test
statistic
(4) Sup W = max

τ
W where π · T ≤ τ ≤ (1− π) · T and π is referred

to as a "trim factor".

Andrews shows that this statistic converges to a nonstandard distribution
under very general conditions and provides tabulated asymptotic critical
values. He also shows that the test will generally have better asymptotic
power than other stability tests (such as the CUSUM.) Andrews and
Ploberger (1994) provide stronger optimality results for a closely related
statistic,

(5) Exp W = ln

[∑
τ

exp W
2

]
+ ln (T · (1− 2π))

Hansen (1997) provides formulas for approximate p-values for both the Sup
W and the Exp W statistics; both statistics are used in Hansen (2001).
Throughout this literature, the asymptotic theory requires that π is
constant and bounded away from 0 as T →∞. We will therefore refer
below to this test as a mid-sample test to distinguish it from the
end-of-sample test introduced below. Andrews (1993) suggests using
π = 0.15, and this choice is widespread in the applied literature.

4.2. End of Sample Tests

Andrews (2003) proposes a related approach for testing stability close to
the end of the sample. Let εR1 be the subvector of ε̂ and X1 be the set of
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regressors (in this case, just yt−1) for t = τ+1, . . . , T , and let σ̂ = S ′S/(T−1).
Andrews’test statistic is then17

(6) ψ = ε̂R′1 X1 (X
′
1X1)

−1X ′1ε
R
1 /σ̂

2

Unlike the Andrews (1993) approach, this statistic does not compare
parameter estimates before and after the breakpoint. Instead, it compares
full-sample estimates of the residual variance to the size of the
(transformed) residuals near the end of sample. Large values of the latter
relative to the former are evidence of a structural break. Tests of this form
may thought of as "predictive failure" tests, or tests of a quite general
hypothesis of structural stability. In the above AR(1) example, such a
statistic would tend to reject the null hypothesis of no structural change
even when ρ0 = ρ1 but σ increases after the breakpoint. We return to this
point, below. The Andrews (2003) test also differs from the Andrews (1993)
test in that the date of the breakpoint is treated as known.

The distribution of the test statistic under the null hypothesis is non-
standard; Andrews (2003) proposes a subsampling-based simulation approach
to tabulate appropriate p-values in specific applications. This consists of cal-
culating the test statistic for all possible samples of length T − τ over the
period t = 1, . . . , τ in order to estimate its distribution under the null hy-
pothesis of stability.
Since the correct breakpoint for the Andrews (2003) test is not known, we

must search over possible break dates, which presents a problem in maintain-
ing the correct size of the test. Therefore, we also consider a generalization of
the above ψ test statistic in which τ is unknown. The resulting test statistic
is simply the maximum of the ψ statistic defined above over all values of
τ |π · T < τ < T . Critical values are similarly computed using the subsam-
pling approach, which now requires calculating max (ψ (τ)) for all possible
samples of length T − τ and all values of τ . We note, however, that the
Andrews (2003) test has reasonable power to reject the null hypothesis even
when the date of the structural break is (slightly) misspecified. We therefore
consider evidence from the max (ψ) test alongside that from the ψ test for a
fixed breakpoint of π · T .

17See Andrews (2003) for a general exposition. Note that when the number of regressors
is greater than or equal to the number of post-break observations, the test statistic is
instead calculated as ψ = ε̂R′1 ε

R
1 /σ̂

2.
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4.3. Heteroscedasticity
Unlike the mid-sample test, the end-of-sample test relies on the joint null

hypothesis of no structural break and homoscedasticity. As can been seen
from the above equation, an increase in the variance of the residuals at the
end of the sample will tend to increase the size of the test, while a decrease
in their variance will decrease its power. Using the Andrews (1993) test
on squared productivity growth finds significant evidence of a decrease in
the volatility of productivity growth with the most likely date for the break
being 1987Q2. Assuming that this break would have been apparent by 1990,
we therefore adjust all our data series for this shift prior to applying the
Andrews (2003) test. Specifically, let σ̂1be the estimated standard deviation
of productivity growth about its sample mean up to 1987Q2 and σ̂2 be the
standard deviation thereafter. We test the transformed series ỹt where
(7) ỹt = yt up to 1987Q2

ỹt = µ̂+ (yt − µ̂) · σ̂1/σ̂2 where µ̂ is the sample mean after 1987Q2.
{µ̂, σ̂1, σ̂2} are estimated only on the vintage series that they are used

to transform.

5. Recent Breaks in Trend Productivity Growth

5.1. Known Breakpoint Tests
We now consider tests for recent breaks in Canadian labour productivity

growth trends. We transform the data described above using (7) and perform
both the Andrews (2003) test as well as the generalization we described above
for the case of unknown breakpoints. Specifically, we estimate
(8) yt = α + ρ · yt−1 + εt for t = 1, . . . , T

and

(8′) yt = α0+ ρ0 · yt−1+ εt for t = 1, . . . , τ and yt = α1+ ρ1 · yt−1+ εt
for t = τ + 1, . . . , T

and test the joint null hypothesis that ρ0 = ρ1 and α0 = α1 using the ψ
statistic given in (6).18 We repeat the test for every quarterly vintage of our

18Note that the unconditional mean of an AR(1) series is given by α/ (1− ρ). We
therefore focus on joint tests for the stability of both α and ρ rather than on tests for just
α.The tests were repeated for an AR(2) specification with tests of the joint null hypothesis
of stability in all three coeffi cients. The results were essentially the same to the results for
the AR(1) case presented below.

15



productivity series from 1990Q1 to 2009Q2. For each of these vintages, we
then repeat the test for all values of τ |0.85 · T ≤ τ < T . This enables us to
both see whether there is significant evidence of a break in the trend growth
rate of productivity, and when such evidence would have become apparent.

The p-values of the resulting tests are shown in Figure 3, where T is shown
on the horizontal axis and τ on the vertical. The legend shows the color
assigned to p-values in various ranges, with only dark blue areas indicating
significant evidence of changes in productivity growth trends. Consistent
detection of the same breakdate in subsequent vintages should appear as a
blue area that extends horizontally along a given value of τ . This area will
start at the 45-degree line (i.e. τ = T ) if the break is detected the first time
it is tested. However, if more observations are required to detect a break,
then the blue area would start to the right and below the τ = T line. Vertical
features are associated with data revisions; vertical contours (i.e. a change
from one colour to another) indicate that the use of different vintages causes
important changes in the perceived probability of a trend break.
There are several noteworthy features in Figure 3.

1. There is some, but not much, dark blue in the graph. Significant ev-
idence of breaks in productivity growth trends can be found and is
mostly confined to small number of distinct episodes.

2. Most of the evidence of structural breaks is found during recessions;
low p-values are found in data vintages from the start of 1991, 2001
and the end of 2008. Others include a very brief period in 1996 and a
longer period in 2006.

3. Evidence of structural breaks tends to vanish abruptly as new data
become available. Evidence of a shift around the 2001 vintage disap-
pears at the start of 2002, while that around the 2006 vintage vanishes
within a year. A possible exception to this may be the evidence which
appeared in the late 2008 vintages, but it is too soon to draw a reliable
conclusion. These vertical features suggest that changes from one vin-
tage to the next are sometimes important in creating and destroying
evidence of breaks in productivity growth trends.

4. Some of the most suggestive evidence for a change in productivity
growth trends comes from tests for a change in 1999Q1&2, with strong
evidence that persisted until a May 2002 benchmark revision in GDP,
whereupon all evidence vanished. There is also fairly persistence evi-
dence of a break near the end of 2005 that can be found in most vintages
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up to and including the most recent. As we can see from Figure 1, this
corresponds to a downward shift in the trend growth rate.

The inconsistency of test results for the same break date on different data
vintages is troubling as it underscores the uncertainty confronting forecasters
and policymakers. One possible explanation for this inconsistency is that
data revisions have significantly altered our perception of productivity growth
trends. Another is that the addition of more observations after the purported
break date should be very informative in understanding whether or not trend
growth has changed. To better understand the role of these factors, we repeat
the analysis shown in Figure 3, but now remove the effects of data revisions
by using only the corresponding observations in the 2009Q2 data vintage.
The results are shown in Figure 4. They differ from those in Figure 3 in at
least two important respects.

1. There are more dark blue patches, particularly in the 1990s, providing
more evidence of shifts around 1990 and 1994. However, both of these
were periods when productivity growth initially stalled before resuming
shortly thereafter (see Figure 1) suggesting that early rejections of the
null hypothesis of no structural breaks may have been spurious.

2. There are more horizontal features in the graph (including most even-
numbered years from 1990 to 2000), suggesting that results are now
more consistent across time. Despite this, many vertical features are
still evident (such as in 1994, 2001 and the end of 1998.) This suggests
that both data revision and longer post-break data samples have played
important roles.

To better understand this last point, we turn to Figure 5, which simply
graphs the difference in p-values between Figures 3 and 4. These changes
are entirely due to the effects of data revision. Not surprisingly, we find
several vertical features in the graph. Of particular interest are the darker
blue patches and red patches. The former indicate areas where original data
vintages showed very low (significant) p-values while the revised data show
every high (insignificant) p-values. The indicate two episodes, the first in
2001 and the second at the end of 2006, where initial estimates produced
spurious evidence of changes in productivity growth trends that vanished
when data were revised.19 The opposite occurred more frequently (partic-

19Note that the blue patches do not extend to the top of the coloured diagonal band.
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ularly in the 1990s); data revision produced strong evidence of changes in
productivity growth where none was found previously. This implies that,
despite the power of the end-of-sample test to detect relatively small changes
in growth trends, evidence may only become apparent after a delay of a few
years due to data revisions.
To put this into perspective, it may be useful to remember the size of

the changes in productivity growth underlying these results. As noted in
the appendix, labour productivity growth in our data sample averaged 1.4%
annually. Figure 2 shows that the 16Q average growth rate varied between
1.8% and 0% in initial releases over the period shown in the graph, while
revisions could raised these average by up to 0.5% or lower them by up to
0.8%. The simulations performed in the Appendix and summarized in Figure
A3 imply that these tests should be able to detect persistent changes of 0.7%
within 5 year about half the time, and persistent changes of 1.4% within 2
years slightly more than half of the time.

5.2. Unknown Breakpoint Tests

A reasonable criticism of the test results presented so far in this section
is that they may suffer from repeated test bias; with literally hundreds of
breakpoint tests performed in each graph, it is not surprising a priori to find
that some test statistics exceed the nominal 5% or 1% critical values. We
can mitigate this problem (but not eliminate it) by using tests for unknown
breakpoints, which provide properly sized tests for each data vintage. As
described above, we use both the max (ψ) test alongside that from the ψ test
for a fixed breakpoint of π · T . p-values are again shown in Figure 6, with
those for the ψ test in green and those for the max (ψ) test in red. The blue
line in the upper half of the Figure (graphed on the right-hand scale) shows
the estimated break date for the max (ψ) test.20 The horizontal axis shows

This means that the data revisions did not affect tests on the most recent few quarters.
Rather, they changed conclusions about the possiblity of productivity growth changes
several years earlier.
20That is, it gives the value of τ which maximizes ψ. Because breaks for this test

are constrained to be near the end of sample, the estimated breakpoint trends upwards
over time. These estimated breakpoints should be interpretted together with the plotted
p-values for the max (ψ) test. For example, the estimated break date is consistently
estimated to be in 2001Q4 when viewed with many data vintages from 2002 and 2003.
However, the p-values from the max (ψ) test (red line) are consistently near 1 throughout
this period, indicating that the evidence is not significant.
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the value of T for each vintage tested.
We see from the figure that there are only two periods in which there

appears to be significant evidence of changes in productivity growth trends;
the start of 2001, when both tests briefly provide strong evidence against the
null hypothesis of no break, and (in the case of the max (ψ) test only) at the
end of 2008. Evidence from the latter test suggests a break in 1997 during
the first episode and in 2008 during the latter.21 Both are consistent with
the results in Figure 3, and correspond to the most consistent and significant
evidence of trend breaks. The vertical feature in Figure 3 around 2006 also
corresponds to the spike in Figure 6 at the same period, which produces a p-
value of just over 8%. It therefore appears that the most important features
of tests shown in Figure 3 are not altered by the correction for repeated test
bias

6. Conclusions

The results presented above support two main conclusions. The first is
that there appears to be evidence of a slowdown in productivity trend growth
in Canada that took place around 1997. There is also recent evidence of a
further slowdown that coincides with the 2008 recession.
The second conclusion, which may be of more general applicability, is that

such statistical evidence of structural changes is frequently fragile. We have
shown that data revision may overturn strong statistical evidence of struc-
tural changes, or create it where none has existed before. Furthermore, this
does not appear to be the result of the refinement of preliminary estimates in
the first quarter or two after their release; rather, data revisions may lead to
re-evaluation of events several years after the fact. We have also seen that the
data revision is not the sole factor responsible for the fragility of statistical
test results. The accumulation of observations can also be very informative
about the validity of perceived changes in productivity trends. Even in the
absence of data revision, therefore, judgements about productivity growth
trends may be revised for many years after the fact.

21Althought the evidence in the former case is fleeting, vanishing after only quarters,
this simply reflects the fact that with π = 0.15, the purported break date moves out of
the test window two quarters after the break becomes statistically significant. Mid-sample
tests on longer vintages also produce signficance evidence of a slight decline in productivity
growth around this time.
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The instability of test results suggest that policymakers need to use ex-
treme caution in interpreting claims of changes in productivity trends and
highlight the uncertainty that they face. Improving the reliability of existing
statistical methods remains an important task for future research.
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A. Appendix

This appendix presents evidence on the size and power of both end-of-
sample and mid-sample breakpoint tests.
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A.1. Mid-sample Tests
We begin by considering the evidence for a trend break in US productivity

growth presented by Hansen (2001). As mentioned above, Andrews’mid-
sample test for structural breaks requires that the breakpoint tested is "not
too close" to the end of the sample in order to be asymptotically valid.
Unlike most studies, Hansen (2001) tests for break by using the mid-sample
test to within 5% of the end of the sample.22 To assess the reliability of
the Andrews test in this setting, we conduct a closely related simulation
experiment. Hansen (2001) uses the monthly growth rate of the ratio of
the US Industrial Production Index for manufacturing/durables to average
weekly labor hours from February 1947 to March 2001 to estimate the model.

qt = α + ρ · qt−1 + εt
and test for the joint significance of a structural break in α and ρ.23 He

finds that Andrews’mid-sample test has an approximate p—value of 0.0016
and concludes "We are therefore quite confident that this time series has a
structural break.[p. 120]"
To investigate the reliability of this conclusion, we apply the same test to

data simulated under the null hypothesis of no structural break. Specifically,

1. We estimate (α̂, ρ̂) in the above equation using OLS on the full sample
period (652 monthly observations covering roughly 55 years from 1947
onwards.)

2. We draw a random value of t and set qi0 = qt.
3. From the OLS residuals ε̂, we randomly draw (with replacement) T
observations εi.

4. Using (α̂, ρ̂), qi0 and ε
i, we simulate a new series qi.

5. For a given trim factor π, we use the simulated series to calculate the
Andrews mid-sample test statistics Sup W i and Exp W i.

6. We use Hansen (1997) to convert the statistics into purported p-values
and store the results.

7. We repeat steps 2 through 6 10,000 times

If the tests are correctly sized, then the resulting p-values should have a
uniform distribution. Table 3 presents the frequency with which low p-values

22Hansen (2001) uses 650 monthly observations; a 5% trim factor implies breakpoints
may be as little as 33 months from the end of the sample.
23Hansen (2001) also tests for and finds no evidence of a structural break in σ.
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Table 3: Joint SupW Tests for Parameter Stability

Trim Fraction of p-values
π < 10% < 5% < 1%

0.20 0.1127 0.0608 0.0123
0.15 0.1173 0.0594 0.0136
0.10 0.1260 0.0691 0.0140
0.05 0.1526 0.0858 0.0229
Note: Figures shown above are
asymptotic p-values under H0

are observed, and the overall distribution of p-values is summarized in Figure
A1. Following Hansen (2001), we also present only results for the joint test
of stability in (α̂, ρ̂).24

Results for the SupW i and ExpW i tests were very similar with the latter
performing slightly better; for brevity we therefore omit the former from the
table. The results in Table 3 show that the SupW i test is well-sized for trim
factors of 15 and 20%, with rejections at the 5% significance level occurring
only about 6% of the time under the null. As the trim factor is reduced
beyond that point, the test becomes increasingly liberal. In the worst case,
with a 5% trim, the null is rejected about 50% more frequently than it should
be at the 10% significance level and more than twice as often at the 1% level.
The two upper panels of Figure A1 summarizes these results in a p-value

plot. Each panel displays the difference between cumulative distribution of
the simulated p-values and their theoretical distribution under the null (i.e.
uniform on (0,1).) In the absence of size distortion, therefore, these lines
should line along the x-axis. We restrict our attention to the (0,0.1) interval
of the purported p-values as this is the range most relevant for hypothesis
testing. Results for the Sup W i and Exp W i tests are shown in the left and
right panels, respectively.
Figure A1 again shows that the 20% and 15% trim factors in this case

produce only modest size distortion; for example, a 5% nominal p-value for

24Results for the individual statistics were also examined. Tests for the constant were
generally very well sized. Size distortion in the joint test generally reflected size distor-
tion in the test on the autoregressive coeffi cient. Of course, instability in either implies
instability in the mean growth rate.
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the Exp W i statistic produces a size distortion of roughly 1%, giving an
actual size of roughly 5 + 1 = 6%. However, size distortion with a 10% trim
is roughly double that of the 15%, and the distortion roughly doubles again
in moving from the 10% to the 5% trim. The same 5% purported p-value for
the Exp W i statistic now produces an actual size of roughly 5 + 3.5 = 8.5%
This corresponds well to the figures shown in the 5% column of Table 3.
These results confirm that while the mid-sample stability test appears to

perform well with a trimming factor of 15%, testing closer to the end of the
sample tends to produce too many spurious rejections of the null hypothesis
of stability, with the severity of the problem increasingly sharply as the trim
factor is reduced. This size distortion is not enough to undermine Hansen
(2001)’s conclusion about a structural change in trend productivity growth,
however. Using a 5% trim factor, his reported Sup test statistic of 20.2
produces a simulated p-value of 0.97% (versus the 0.16% asymptotic p-value
he reports.) Accordingly, his confidence in the presence of a structural break
in this series appears to be well-founded.
These simulation results pose a more general problem, however. The need

to avoid smaller trim factors in order to have reliable interpretations of these
test statistics prevents policy-makers from testing for recent breaks. This
is not a trivial problem. For example, one cannot simply apply the same
trimming factors to a shorter data sample, thereby effectively testing for
breaks closer to the present time. The fundamental problem is one of a lack of
suffi cient observations after the break point to have the test statistic converge
to its asymptotic distribution. To illustrate the problem, we repeated the
above simulation reducing the sample size from 652 to 120 observations (i.e.
10 years of monthly data.) Results are summarized in the lower two panels
of Table 3. A comparison of the vertical scales of the upper and lower panels
in Figure 1 confirms that the degree of size distortion is now many times
greater than before. In fact, if we compare results for π=0.05 in the longer
sample (33 observations trimmed) to those for π=0.20 in the shorter sample
(24 observations trimmed), we can see that their results are similar. For
example, asymptotic p-values smaller than 5% are observed roughly 9% of
the time in both cases for both test statistics. 25

25As we discuss below, replacing asymptotic p-values with simulated values is also not
a panacea. While this corrects test size, low trim factors cause the test to have lower
size-adjusted power.
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A more reliable analysis of the recent past therefore requires a different
approach, such as the use of the Andrews (2003) test.

A.2. End-of-Sample Tests

To understand the finite-sample performance of the end-of-sample test, we
repeated the above experiment using the Andrews (2003) test. Specifically,

1. We estimate (α̂, ρ̂) as before.26

2. We set the break date to be tested to correspond to the last break date
covered in the mid-sample test with a trim factor of 15%.

3. We draw a random value of t and set qi0 = qt.
4. From the OLS residuals ε̂, we randomly draw (with replacement) T
observations εi.

5. Using (α̂, ρ̂), qi0 and ε
i, we simulate a new series qi.

6. Given the break date, we use the simulated series to calculate the An-
drews end-of-sample test statistics Exp W i.

7. We use the simulated series qi to estimate the p-value of the test sta-
tistic using Andrew’s parameter sub-sampling procedure and store the
results.

8. We repeat steps 3 through 7 5,000 times.
9. We increment the break date to be tested, repeating steps 3 through 8
for each date, until we reach the end of the sample.

Again, if the tests are correctly sized, then the resulting p-values should
have a uniform distribution. Table 4 presents the frequency with which low
p-values are observed, and the overall distribution of p-values is summarized
in Figure A2.
The results show that, unlike the mid-sample tests, the end-of-sample test

is most accurately sized at the end of the sample, and tends to become in-
creasingly liberal as the breakpoint moves away from the sample end. Among
other things, this presumably reflects the fact that sample available for boot-
strapping the test statistic under the null shrinks as the breakpoint moves
away from the sample’s end, thereby reducing the precision of the simulation.

26To reduce the computational burden, we first converted the data from monthly to
quarterly frequency by summing productivity for all months in each quarter.
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Table 4: Joint S Tests for Parameter Stability

Periods from EOS 10% p-value 5% p-value 1% p-value
2 10.1% 5.1% 1.9%
4 9.9% 5.7% 1.7%
8 11.2% 6.2% 1.7%
16 11.3% 6.9% 2.3%
32 14.5% 9.0% 5.1%

Frequency of Parametrically Resampled p-values Under the Null

A.3. Power

While the simulations in the preceding section provide a better under-
standing of the tests’size properties, they give no indication of their power.
However, policy makers need to know how large trend breaks in productiv-
ity must be before they are likely to be detected and how quickly breaks
may be detected in order to better weigh their potential policy errors. It
would therefore be useful to know whether breaks are likely to be recognized
within a few quarters, or whether several years pass before enough evidence
is available to reliably conclude that a change in trend has occurred.
To answer this question, we estimated the power of the end-of-sample

test using a series of simulation experiments similar to those used above to
establish its size. However, in doing so we found that the homoscedasticity.
assumption used in the end-of-sample test might be unrealistic and have
an important effect on the results. As shown in the lower panels of Figure
1, the volatility of quarterly productivity growth appears to be much lower
after the 1980s than before, which would be consistent with other evidence
of increased macroeconomic stability in the Canadian and other economies
after the early 1980s.27 For Canada, the annualized standard deviation of
quarterly log productivity growth fell by just over half from 3.6% to 1.7%.
As discussed above, such a decrease in the volatility of productivity should
cause the end-of-sample test to lose power, as relatively larger breaks are
now required to generate significant outliers. Given that the lower volatility
appears to persist up to the present, the power of the end-of-sample tests in
this newer environment should be more relevant for policy makers than their

27The Andrews (1993) test found evidence of a break in the variance of shocks to quar-
terly productivity growth in both countries that was significant at the 0.1% level.
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performance using the average volatility over the available sample period.
To estimate the power of the end-of-sample test, we used an experimental

design very similar to that used above to investigate test size, this time cali-
brating our experiment to the Canadian OPE data under the null hypothesis
of no breaks. To correct for the apparent heteroscedasticity discussed above,
OLS regression residuals before the break were rescaled so that their mean
squared errors equalled that of the OLS residuals after the break. Boot-
strapped residuals were then drawn with replacement from these rescaled
residuals. To generate data under the alternative hypothesis of a break in
trend, we now introduced a multiplicative constant k to the intercept term
in the AR representation for the data. In all cases, k = 1 until the date for
the break in the mean growth rate, after which it takes on a new constant
value. This model was used together with the bootstrapped rescaled residu-
als to generate artificial data sets. End-of-sample break tests were then run
on each of 5000 artificial data sets and estimated p-values were tabulated.
This was repeated for all possible break dates over the last 15% of the data
sample. Tests were always correctly specified in the sense that the break date
tested always corresponded to the true break date. (Misspecification of the
break date would presumably lower the power.)
Figure A3 summarizes the results for the Canadian OPE data, where the

annualized rate of productivity growth under the null of no breaks is 1.4%
annually.28 The four panels show the frequency with which the test produced
p-values lower than or equal to the value shown on the vertical axis while
the horizontal axis indicates the number of periods after the break which are
being tested. Blue values indicate that low p-values were infrequent (i.e. low
power), red values indicate frequent low p-values (high power) while greens
and yellows indicate intermediate results. For reference, the panel in the
bottom right simulates the data under the null hypothesis of no breaks and
provides evidence on the size of the test similar to that reported previously
in Figure A2.
The four panels show that as the magnitude of the breaks increase, con-

tour lines move down and the left. This means that the probability of de-
tecting a break after a given number of periods increases with the size of the
break. It also implies that the time required to detect a break with a given

28This 1.4% is higher than the sum of the mean real-time growth rate (0.6%) and the
mean revision (0.5%) reported in Table 1 due to differences in the sample period.
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probability level falls with break size. For example, the top right panel shows
that after 5 years (20 quarters) the probability of detecting a break at the
5% significance level is about 90% for a doubling (from 1.4% to 2.8%) of the
trend growth rate. The detection probability is roughly 40% for a 50% rise in
the growth rate, and 100% for a tripling of productivity growth Put another
way, the time required to detect an improvement in productivity growth at
the 5% significance level with a probability of at least 50% is about 6 quarters
in the case of a doubling of trend growth, about 5 years for a 50% rise and less
than one year for a 200% improvement. These results imply that the end-
of-sample test can be quite powerful for large enough changes; improvement
of over 2% per year will be detected with high probability in a few quarters
at conventional significance levels. However, smaller but still economically
significant improvements (on the order of 0.5 to 1%) require substantially
longer periods before convincing statistical evidence of a change is likely to
be found.
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Figure 1
Canadian Real Output per Person Employed
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Figure 2
Productivity Growth Revisions
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End of Sample
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Figure 3 - End of Sample Breakpoints - RealTime
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Figure 4 - End of Sample Breakpoints - QuasiReal
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Figure 5 - End of Sample Breakpoints - (RealTime - QuasiReal)
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