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1 Introduction

The cyclicality of markups have been emphasized as a key transmission mechanism in the business

cycle literature. Countercyclical markups, for instance, are broadly viewed as a propagation mechanism

within New Keynesian models1, as well as a potential reason for positive comovement between hours

and wages2. Empirical evidence on the cyclicality of markups, however, has been limited and open to

discussion due to the di�culty in measuring marginal costs. Moreover, theoretical work has focused

on microfounding models of markups, but the two most common frameworks � implicit collusion and

customer base models � yield di�erent cyclicalities: implicit collusion models are interpreted as implying

countercyclical markups, while customer base models have been used to generate both procyclical and

countercyclical markups.

This paper contributes to the literature in three dimensions. First, I show that the cyclicality of

markups in both classes of models depends not on the response of output but rather on the response

of output growth to shocks. By varying auxiliary assumptions on the structure of the shocks, the same

models can generate markups that move in the opposite direction of what previously perceived. For

instance, within the implicit collusion model, oligopolistic �rms always choose the highest markup from

which no one has an incentive to deviate. Variable markups arise because these incentives are changing

over time, in particular due to stochastic discount rates and expected changes in demand of �rms. The

reason for the former is that collusion is inherently a dynamic consideration, and how much players

value future pro�ts plays a key role in determining cheating incentives. The latter matters because

�rms care about the relative size of these pro�ts over time. Industries that expect a relative increase in

demand in the future are able to sustain a higher collusive markup now because none of the �rms want

to cheat and be punished later by their competitors in periods with higher demand. On the contrary,

in industries where �rms expect a relative decrease in demand, each �rm wants to seize the day and

cheat while demand is at its highest. Consequently, the oligopoly is forced to act more competitively

and charge a lower markup than usual to eliminate cheating incentives. What determines the response

of markups is the expected changes in relative demand of �rms, which, in a general equilibrium setting,

is equal to the output growth.

In fact, the reason that implicit collusion models are believed to imply countercyclical markups is

1See e.g. Christiano et al. (2011).
2See e.g. Rotemberg and Woodford (1992).
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that in classic business cycle models output is always expected to decline towards its steady state level

during a boom. The negative expected output growth increases �rms' cheating incentives and forces

the oligopoly to settle on lower than usual markups. However, if the model is rich enough to allow for

a hump-shaped response of output, which is a well-documented empirical property for most identi�ed

shocks in the literature3, then markups are procyclical during the periods that output is rising, even if

it happens during a boom.

Furthermore, the inertial response of output not only changes the contemporaneous correlation of

output and markups, but also is crucial in capturing the cross-correlation of the two as documented

in the empirical literature. Speci�cally, Nekarda and Ramey (2013) show that lags of markups are

procyclical while leads of them are countercyclical. Calibrating an implicit collusion model to the U.S.

data, I show that while the traditional implicit collusion model fails to capture this feature of the data,

the model almost completely captures it when we allow for inertial response of output to shocks.

Another class of models that microfound variable markups are customer base models. These models

rely on the assumption that there is �stickiness� in demand of �rms, which introduces dynamic consid-

erations in their price setting decisions as they consider how their current prices will a�ect their future

demand. While di�erent versions of these models have been shown to produce both procyclical and

countercyclical markups4, using a simple reduced-form model of external habit formation on the side of

the �nal good producer that incorporates both versions, I show that, similar to the implicit collusion

models, output growth determines the direction of the cyclicality within each version. For instance,

as long as future habits are positively sensitive to current relative price of �rms, �rms that expect a

higher demand in future have an incentive to build a larger market base for those periods by imme-

diately charging lower prices. In the setting of classic business cycle models, this would translate to

procyclical markups as it is only in recessions that output is expected to grow over time. Nevertheless,

a humped-shaped response for output will change the cyclicality of markups in this setting as well.

A second contribution of this paper is to formally show that, up to a �rst order approximation, both of

these models yield the same reduced form expression for the dynamics of markups. Speci�cally, current

markups depend on the net present value of all expected growth rates of output in the future, discounted

by a stochastic discount factor. The two models di�er, however, in terms of the sign restrictions that

3See e.g. Ramey (2011); Ramey and Shapiro (1998); Monacelli and Perotti (2008) for government spending shocks,
Sims (2011); Smets and Wouters (2007) for productivity shocks, and Christiano et al. (2005) for monetary policy shocks.

4See, e.g., Phelps and Sidney (1970); Paciello et al. (2014); Ravn et al. (2006).
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they imply for this reduced form representation of markup dynamics. Hence, one can di�erentiate

between these two models by estimating the common expression and testing the restrictions implied by

each model.

My third contribution is to implement this empirical test. Because current markups depend on �rms'

expectations of future economic conditions, measuring these expectations is crucial to the endeavor. To

do so, I rely on a recent survey of �rms' expectations from New Zealand, introduced by Coibion et al.

(2015). Consistent with the insights from the calibrated model, the results favor the implicit collusion

model, and therefore given the high levels of inertia observed in output, point toward acyclical or

procyclical markups.

Both implicit collusion and customer-base models are used within macroeconomic and industrial

organization settings to study the markup setting behavior of �rms. In my analysis, I start by building

the �rm side of the implicit collusion model, and show that markups are determined by the joint

distribution of expected growth of output and stochastic discount rates, so partial equilibrium settings, as

are used in the industrial organization models, are not su�ciently equipped to give the right implications

about the cyclicality of markups. The reason is that within such environments one needs to make

certain assumptions about the stochastic processes of demand and discount rates, and these assumption

are unlikely to reproduce their joint determination as equilibrium objects. Moreover, the IO models

largely abstract from cyclical discount rates, and focus only on the implications of demand shocks. For

instance, Rotemberg and Saloner (1986) assume that demand shocks are i.i.d., implicitly implying that

the expected demand growth is countercyclical, and conclude that markups are countercyclical. On the

other hand, Kandori (1991); Haltiwanger and Harrington Jr (1991); Bagwell and Staiger (1997), each

by assuming alternative processes for demand shocks, �nd that these models can produce procyclical

markups.

Rotemberg and Woodford (1991, 1992) are the �rst to study the implicit collusion model within a

DSGE model. Contrary to the IO models, their general equilibrium setting endogenously pins down the

joint distribution of output growth and stochastic discount rates; however, their result is not robust to

the structure of the shocks. In fact, as I will show in later sections, the countercyclicality of markups in

these papers is not a general result of the microfoundations, and is reversed by introducing a humped-

shaped response for output.

Phelps and Sidney (1970) is the �rst paper that formalizes the idea for customer-base models, and
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show that �rms will charge a lower markup than the static monopoly one. Various papers have used

this idea to study the cyclical behavior of markups. Di�erent versions of customer-base models have

been shown to create either procyclical or countercyclical markups. For instance, among the most recent

ones, by micro-founding the game between �rms and customers, Paciello et al. (2014) �nd that markups

are procyclical, but Ravn et al. (2006) argue that they are countercyclical.

In this paper, I do not take a stance on the micro-foundations of this friction. Instead, using a

simple customer-base model with an exogenous habit formation process on the side of customers, that

is rich enough to produce both procyclical and countercyclical markups, I show that there is a direct

relationship between cyclicality of markups in these models and their implications for the relationship

of average markups with the static monopoly one5. Then, I show that within each version inertia in

response of output reverses the cyclicality of markups.

Due to the di�culty of measuring marginal costs, there is a wide range of results on the cyclicality of

markups in the empirical literature. For instance, Bils et al. (2012) �nd markups to be countercyclical,

while Nekarda and Ramey (2013) argue the opposite. The theoretical observations in this paper support

�ndings of Nekarda and Ramey (2013). A calibrated version of the implicit collusion model closely

matches the cross-correlation of markups and output that they document.

Section 2 provides a simple example of the implicit collusion model to illustrate the forces at work.

Section 3 introduces the implicit collusion model in general equilibrium. Section 4 presents the results

for the calibrated DSGE model and shows that markups are pro-cyclical when we account for the inertia

of output response to shocks, and examines the robustness of the model to parameters that are di�cult

to calibrate. Section 5 derives the law of motion for the customer-base model. Section 6 presents the

results from the New Zealand survey data, and section 7 concludes.

2 A Simple Example

I start with a very simple example of the implicit collusion model to illustrate the forces that a�ect

markups. This provides intuition to interpret the results of the full model in later sections.

5For example, in the setting of Paciello et al. (2014) introducing customer-base frictions reduces the average markups in
the steady state. Within a reduced-form model of customer-base frictions, I show that, in absence (presence) of a humped-
shape response of output to shocks , this is a necessary and su�cient condition for getting procyclical (countercyclical)
markups.
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2.1 Environment

Consider an oligopoly with two identical �rms producing two di�erentiated goods. In this example,

assume that marginal cost is constant over time and normalized to one. Also, assume that �rms discount

future pro�ts with a constant discount factor β. Demand of �rm i ∈ {1, 2} is given by yi = AD(µi;µ−i),

where A is a constant level of demand, µi is the markup of the �rm i, and µ−i is the markup of its

competitor. Moreover, assume that function D(.; .) is homogeneous of degree −σ. Firms perfectly

observe the sequence of previous markups of their competitor and are engaged in an in�nitely repeated

game. Following the literature, I focus on the following strategies: there are two sub-games; one for the

collusion and the other for the punishment. The game starts in the collusion sub-game, where �rms

jointly choose a markup and each independently decide whether they want to commit to collusion or

best respond to their competitor's markup. In the next period, if both �rms committed to collusion last

period, the game stays in the collusion sub-game and if not the game moves to the punishment sub-game

where �rms play a single period static competition6 and then move back to the collusion sub-game the

period after. An extensive representation of this game is shown in Figure 1.

In the class of these strategies, I will consider the one where at every period �rms choose the largest

markup from which none of them has an incentive to deviate, as this strategy is the one that yields the

highest stream of pro�ts to the �rms, given the punishment strategy. It will be shown in next subsequent

that such a strategy is a sub-game perfect Nash equilibrium. Accordingly, the problem of the oligopoly

can be written as7

max{µi}i∈{1,2}(A1 + βA2)
∑

i∈{1,2}(µi − 1)D(µi;µ−i)

s.t. (A1 + βA2)(µi − 1)D(µi;µ−i) ≥

maxµ̃{(µ̃− 1)A1D(µ̃;µ−i)}+ β(µBR − 1)A2D(µBR;µBR) , ∀i
6meaning that they play the Nash equilibrium of the static game. Notice that this is not the worst possible punishment

in general. The reason to use it is that we assume there is a regulation structure that prevents these �rms from actively
engaging in explicit collusion strategies, so absent an implicit collusion agreement they revert back to the static equilibrium.

7This formulation incorporates a slight abuse of notation as it assumes that �rms are choosing a single markup,
assuming that they will charge that markup in both the current and the future period. Nevertheless, since A1 and A2 are
known, as long as A2

A1
is constant over time, the problem is well-de�ned. In other words, this formulation already takes

into account the result that only the growth rate of demand matters for the equilibrium markup; hence, I could revert to
using a single growth parameter de�ned as A2

A1
. Nevertheless, since the goal of this example is to illustrate the e�ects of

current and future demand shocks, I keep the levels A1 and A2.
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where µBR is the best response of a �rm when they are playing the one period static game. The

constraint is nothing more than an incentive compatibility one, that requires each �rm to weakly prefer

collusion to cheating. Therefore, along the equilibrium path, the game never enters the punishment

stage as by construction �rms always choose incentive compatible markups. Also, �rms only care about

their current and one period ahead pro�ts because the game after next period is independent of today's

actions. From now on, I am going to focus on the symmetric equilibrium in which µ1 = µ2 = µ.

When deciding whether to commit to collusion or to cheat, a �rm weighs the costs and bene�ts. The

opportunity cost of collusion is the net pro�ts that a �rm loses by not best responding to other �rm's

action. In the setting of this example, given a collusion markup µ, this cost is represented by

C(µ) ≡ A1

[
max
µ̃

{(µ̃− 1)D(µ̃;µ)} − (µ− 1)D(µ;µ)

]

which is a function of the chosen markup of the oligopoly. On the other hand the bene�t from collusion

is the present value of the net pro�ts that the �rm will gain by not being punished in future periods:

B(µ) ≡ A2β[(µ− 1)D(µ;µ)− (µBR − 1)D(µBR;µBR)]

As µBR is independent of �rms' joint decisions in determining the markup, the problem of the oligopoly

for the symmetric equilibrium can be rewritten as

maxµB(µ)

s.t. B(µ) ≥ C(µ)

where �rms are maximizing their bene�ts from collusion subject to the constraint that those bene�ts

should exceed the cost of collusion. If the constraint is not binding, �rms are maximizing their joint

bene�t, acting as a monopoly. The homogeneity of the demand function then yields that if the constraint

is not binding the optimal monopoly markup is just µMON = σ
σ−1

. When the constraint is binding, where

the collusion markup is given by µ = argmax{x : B(x) ≥ C(x)}. Therefore, in this case, the optimal

markup is being implicitly de�ned by this incentive compatibility constraint. Figure 2a shows a depiction

of the graphs of B(µ) and C(µ) for µ ∈ [µBR, µMON ].
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The concave curve depicts the gains of a single �rm from committing to collusion as a function of

the chosen markup of the oligopoly. This graph should be increasing at the best response markup point,

because an oligopoly can earn more by increasing their markup at that point, but it should be �at at

the monopoly markup because the best an oligopoly can do is to act like a monopoly. Hence, the gains

from collusion should be concave in this region. On the other hand, the convex curve, depicts the gains

of a single �rm by best responding to the chosen markup of the oligopoly. This curve should be �at at

the best response markup as the other �rm is also best responding at that point; however, it should be

increasing in monopoly markup because the higher the other �rm's markup the higher the pro�t of a

best responding competitor. Therefore, the cost of collusion should be convex in the chosen markup of

the oligopoly.8

Another observation is that both curves should intersect at the best response markup, as both the

cost and bene�t of collusion are zero at that point. Hence, we have two curves, one convex and one

concave, with at least one intersection at which they cannot be tangent. Therefore, there should be

another intersection for these two curves. This second intersection should be at a higher markup than

the best response one because of the shape of these curves, and if it falls below the monopoly markup,

then it means that the incentive compatibility constraint is binding. In other words, either the monopoly

markup is incentive compatible and �rms are acting as a monopoly, or there exists a maximum markup

within [µBR, µMON ] which is incentive compatible. Formally

µ∗ = min{ σ

σ − 1
,max{x : B(x) ≥ C(x)}}

From now on I will refer to this markup as the collusion markup.

2.2 Comparative Statics and Forces at Work

Rewriting the oligopoly's problem in terms of the bene�t and the cost of collusion allows us to investigate

the forces that a�ect �rms' decision in an intuitive manner. The �rst and the most important observation

is that while the cost of collusion is in terms of today's pro�ts, the bene�t of collusion is in terms of

the present value of future pro�ts. With this in mind, we can expect three forces to alter the collusion

8Formally, a su�cient condition for concavity of B(µ) is concavity of the aggregate pro�t with symmetric markup,
2(µ−1)D(µ;µ), and a su�cient condition for convexity of C(µ) isD22(µ̃(µ);µ) > 0 where µ̃(µ) = argmaxx{(x−1)D(x;µ)}.
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markup by shifting one of these curves: an increase in current price of future pro�ts (β), an increase in

current demand, and an increase in future demand.

It is straight-forward to see that the current price of future pro�ts only a�ects the bene�t of collusion.

These bene�ts are increasing in β as it determines how valuable future pro�ts are for �rms in the current

period. Therefore, an increase in β will shift the bene�t curve up, leaving the cost curve unchanged.

Figure 2b depicts the e�ect of this increase on the collusion markup. The more patient �rms are, the

more they are able to sustain higher markups as incentive compatible agreements. In the full model,

this force will a�ect markups through the stochastic discount factor of households who will own these

�rms.

Moreover, an increase in current demand, modeled as an increase in A1, increases the cost of collusion

and leaves the bene�t of collusion unchanged. Accordingly each �rm has a higher incentive to cheat as

by committing to collusion they are now forgoing larger pro�ts than before. Therefore, the oligopoly

will have to settle on a lower markup to eliminate this higher cheating incentive. Figure 2c shows the

e�ect of such an increase in the cost-bene�t framework.

Finally, an increase in future demand, modeled as an increase in A2, shifts the bene�t curve up

leaving the cost of collusion unchanged, as shown in Figure 2d. Knowing this, �rms will now have lower

incentives to cheat as they want to wait and collude in the future period when demand is going to high.

This lower incentive to cheat, in turn, allows the oligopoly to sustain a higher collusion markup today.

Consequently, the relative increase in demand within periods, A2/A1, is crucial for determining the

equilibrium markup. Even if current demand, A1, goes up, which is the equivalent of a boom in this

simple example, markups will also go up only if relative demand, A2/A1, goes up as well.

3 General Equilibrium

In this section, I embed the implicit collusion setup within a standard macro framework. While the

general setup is similar to Rotemberg and Woodford (1991, 1992), I depart from their representation

by deriving the law of motion for markups, and showing that markups depend on the expected growth

of output. Then, I show that the cyclicality of markups is reversed once the model is calibrated to

replicate the observed humped-shape response of output to shocks in the data, which I do by introducing

investment adjustment costs
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There is a �nal good of consumption in the economy which is produced using a large number

of intermediate di�erentiated goods. There is a measure one of intermediate good sectors indexed

by i ∈ [0, 1]. In each sector, there are N identical �rms producing di�erentiated goods, indexed by

ij, j ∈ {1, . . . , N}.

3.1 The Final Good Producer

The �nal good producer takes the price of consumption good, Pt, as given and produces with

Yt =

[ˆ 1

0

Yi,t
σ−1
σ di

] σ
σ−1

where

Yi,t = Φ(Yi1, . . . , YiN) ≡

[
N− 1

η

N∑
j=1

Y
η−1
η

ij,t

] η
η−1

Therefore, σ is the elasticity of substitution across sectors, and η is the elasticity of substitution within

sectors. The pro�t maximization problem of this �rm gives

Pij,t
Pt

= N− 1
ηY

− 1
η

ij,t Y
1
η
− 1

σ

i,t Y
1
σ
t

which de�nes the inverse demand function of the �rm ij. One can invert the set of these functions to

get the demand function of each �rm, given by

Yij,t = YtD(
Pij,t
Pt

;
Pi−j,t
Pt

) (1)

where

D(
Pij,t
Pt

;
Pi−j,t
Pt

) ≡ 1

N

(
Pij,t
Pt

)−η
[
1

N

N∑
k=1

(
Pik,t
Pt

)1−η
] η−σ

1−η

.

A general assumption in two layer CES models is that η > σ > 1. The economic intuition for this

assumption is that goods within sectors are closer substitutes than goods across sectors, and it also

implies that the demand of a single �rm is increasing in the price of its competitors.
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3.2 Intermediate Goods

Within sector i, there are N identical �rms that use capital and labor to produce with a Cobb-Douglas

production function, Yij,t = Za
tK

α
ij,tL

1−α
ij,t , where Z

a
t is an economy wide technology shock with an AR1

process:

log(Za
t ) = ρa log(Z

a
t−1) + σaεa,t

εa,t ∼ N (0, 1)

Also, intermediate �rms know that their impact on total production is negligible and take Yt and Pt

as given. Moreover, I assume that there are competitive markets in place for renting labor and capital

so that �rms also take factor prices, Wt and Rt, as given.

3.2.1 The Repeated Game of Sector i

Let Yi,t ≡ Φ(Yi1,t, . . . , YiN,t) denote the output of sector i at time t. The N �rms in sector i take the

demand function of the �nal good producer, (1), as given, and play an in�nitely repeated game. I

assume that price (or alternatively, quantity) along with capital and labor demands are the only control

variables of �rms. The current price of future pro�ts is a stochastic process, {Q0,t : t ≥ 0}, which

�rms take as given. In general equilibrium, these will be determined by the relative marginal utilities

of households in di�erent states.

As in every super-game, this repeated game has many potential equilibria. Although there is no

rigorous way to rank the multiple equilibria of this game, the standard assumption in the literature is

that given the structure of the game, �rms choose the equilibrium that yields the highest possible pro�t

stream. To this end, after �xing a punishment strategy for the �rms, I will construct the best possible

equilibrium in which �rms always collude9.

Following the literature on implicit collusion models, I assume that in every sector there exists a

perfect monitoring system that detects any cheating with probability one. Therefore, the best cheating

strategy for a �rm would be to best respond to collusion outputs of their rivals, as they know that even

9Such an equilibrium is not necessarily the equilibrium with the highest net present value of pro�ts; it may be the
case that occasional deviations yield higher pro�ts compared to staying in collusion forever. Therefore there might be an
equilibrium with occasional collusion that dominates the best equilibrium in which �rms always collude. I abstract from
this case, following Rotemberg and Woodford (1991, 1992, 1999).
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a slight deviation from collusion output will be noticed and the punishment strategy will be triggered10.

3.2.2 Characterization of the Repeated Game Equilibrium

The equilibrium will be constructed as follows; before time 0 �rms get together and layout a contingent

plan for all possible states in the future. For every single state at every point of time, they assign a

markup level for every �rm such that it yields the highest pro�t for the sector and is incentive compatible

with collusion relative to the following punishment strategy: in case a �rm cheats from the agreement,

the game will enter a punishment stage at which �rms will charge the static best response markup

forever after; however, at every period there is a possibility that the industry will renegotiate this with

probability 1−γ and will move back to the collusion stage. This probability γ is in fact pinning down the

expected punishment length such that after a �rm cheats, the industry expects to remain in punishment

stage for an average of 1/(1− γ) periods.

Therefore, �rms within every sector maximize the discounted value of the industry's life time pro�ts

such that no �rm in no state has an incentive to cheat. Note that incentive compatibility is the only

restricting concern in this setting. Without it, �rms would choose the monopoly markup for the industry

at every state. However, a �rm's incentive to cheat is at its highest level when the rest of the �rms are

committed to producing the monopoly output of the industry. This incentive declines as the markups

of the other �rms decrease towards the one in the static equilibrium. Also, notice that charging the

best response markup at every state is trivially a feasible markup sequence for the industry in terms of

incentive compatibility, and accordingly an equilibrium.

After choosing the markup sequence, �rms then start the game at the collusion stage, denoted by C.

Notice that at any time and any state �rms would prefer to commit to collusion, so the game will stay in

stage C forever. Furthermore, in the punishment stage, �rms will play the static Nash equilibrium with

probability γ at every period, and they will prefer to go back to collusion when industry renegotiates

since collusion is at least as good as static best responding. Ergo, the proposed strategy is a sub-game

perfect Nash equilibrium.

An alternative interpretation for this strategy, which justi�es the name �implicit collusion�, is that

10In the absence of such a system, however, static best responding may not be the best cheating strategy for a �rm.
If small deviations were unnoticeable with some probability, characterizing the best strategy is nontrivial. For instance,
in an environment with imperfect monitoring, Green and Porter (1984) characterize equilibria in which �rms switch to
punishment when their price falls below a trigger price, even if it is caused by a negative demand shock rather than a
cheating competitor.
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there is an implicit agreement among �rms according to which each �rm chooses the highest markup from

which no one in the industry has an incentive to deviate. However, if a �rm observes that a competitor

has deviated from this mutual understanding, the agreement breaks, and the oligopoly reverts back to

static best responding.

With a CRS production function, �rms' capital to labor ratios are independent of their output level.

This can be interpreted as �rms having a constant marginal cost of production in a given period that is

pinned down by factor prices:

MCt =
1

Za
t

(
Rt

α

)α(
Wt

1− α

)1−α

Given �rms' price taking behavior for factor prices, we can treat them as only choosing their markup

for every possible state, with input demands being determined automatically given the ratio induced by

prices.

Since I only focus on symmetric equilibria, in characterizing the strategy of a �rm, I assume that

others are charging the same markup which is going to be the collusion markup in the equilibrium.

Therefore, ij's pro�t from the action pro�le µti ≡ (µij,t;µit), where µit is the collusion markup chosen

by the industry and µt is the average markup in the economy, is given by

Πij,t(µij,t;µi,t) = PtYt(
µij,t
µit

− 1

µit
)µ1−σ

i,t µσ−1
t D(

µij,t
µi,t

; 1)

The following Proposition formalizes the equilibrium.

Proposition 1. Each �rm in sector i, maximizes its net present value of future pro�ts subject to no

other �rm having an incentive to undercut them:

max{µi,t}∞t=0

1
N
E0

∑∞
t=0(βγ)

tQ0,tYt(1− 1
µit

)µ1−σ
i,t µσ−1

t

s.t. maxρi,t

{
(ρi,t − 1

µi,t
)D(ρi,t; 1)

}
− 1

N
(1− 1

µit
) ≤ βγEtQt,t+1

Yt+1

Yt

(
µt+1/µi,t+1

µt/µi,t

)σ−1

Γit+1 ∀t (2)

Γit ≡ 1
N

[
(1− 1

µit
)− µ−σ

COU(µCOU − 1)µσ−1
t

]
+ βγEtQt,t+1

Yt+1

Yt

(
µt+1/µi,t+1

µt/µi,t

)σ−1

Γit+1

where βτQt,t+τ is the time t price of a claim that pays a unit of consumption at t + τ , and µCOU ≡
(N−1)η+σ

(N−1)η+σ−N is the equilibrium markup of static best responding for �rms at any state. η > σ guarantees

that µCOU < µMON ≡ σ
σ−1

. The solution to this problem {µi,t}∞t=0 exists, and it is a Sub-game Perfect
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Nash Equilibrium for the repeated game in sector i, in which �rms always collude.

Note that (2) is the incentive compatibility constraint which requires that all �rms in a sector prefer

collusion to cheating in every possible state. Accordingly, such a sequence of assigned collusion markups

are incentive compatible by construction and therefore form an equilibrium.

Now, suppose that the model is calibrated such that the constraint binds in the steady state, then

for small perturbations around that steady state, a �rst order approximation yields

µ̂t = ψ1Et [∆ŷt+1 + q̂t,t+1] + ψ2Et [µ̂t+1] (3)

where hats denote percentage deviations from the steady state level, and ∆ŷt+1 ≡ ŷt+1 − ŷt.

ψ1 ≡ γβ
µ̄Γ̄

D(ρ̄; 1)− 1/N
≥ 0

ψ2 ≡ γβ
D(ρ̄; 1)− (σ − 1)(µC − 1)( µ̄

µC
)σ/N

D(ρ̄; 1)− 1/N
Q 0

Equation 3 gives the law of motion for average markups in the partial equilibrium of the �rm side.

This is the key equation in this paper that will underlie all the results in later sections. Therefore, the

following subsection is devoted to discussing this result.

3.2.3 Interpretation

Implicit collusion implies that markups are forward looking variables that depend on the expected change

in demand in the next period, the changes in the price of future pro�ts, and the expected change of

markup in the next period. ψ1, which is the coe�cient on the �rst two, is a positive number that is

increasing in steady state gains from collusion (γβµ̄Γ̄) and decreasing in the marginal revenue that a

�rm makes by cheating in the steady state (D(ρ̄; 1) − 1/N). The intuition behind this equation is the

key to understanding the main results of this paper. Two things between current period and the period

ahead a�ect the current period's markup: �rst, the current price of next period's pro�t, which is the

discount factor of the �rms. The more patient the �rms are in an industry, the higher their collusion

markup will be today as they value future pro�ts more. Second, the expected growth in demand from

current period to next period. If �rms expect that demand tomorrow will be higher than today, then

they do not want to lose the chance of cheating tomorrow by cheating today. Basically, �rms want
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to wait until demand is at its highest to take advantage of cheating, as in that case they will collect

the highest cheating gains. This incentive to wait diminishes �rms' cheating incentives in the current

period, allowing the industry to sustain a higher collusion markup. Therefore, when �rms expect output

to grow, they will charge markups that are closer to the monopoly one.

ψ2, however, can theoretically be positive or negative based on the calibration of the model. The

reason is that there are two opposite forces that a�ect the �rms' cheating incentives based on their

expectation of the future markup. Before explaining these two forces, it is useful to recall that what

ultimately determines the sign and the magnitude of the change in the markup is how hard it is to sustain

the collusion markup, or in other words, how motivated �rms are to cheat given a level of markup for

the industry.

Suppose that �rms expect that the markup next period will be higher than its steady state level.

On one hand, they know that their industry is going to collude on a higher markup tomorrow, so they

do not want to miss that chance by cheating today and pushing the industry to the punishment stage.

On the other hand, since �rms know that all other industries will also charge high markups, they expect

to have a very high demand shift towards their industry from the �nal good producer, if industry as a

whole charge the static best response markup. This second force gives an incentive to every single �rm

to push the industry to punishment stage by cheating today. Obviously the magnitude of this e�ect

depends on how elastic the �nal good producer's demand for the industry is; as seen in the expression

of ψ2, when σ is close to 1, this force is negligible because the �rms do not expect to get a large demand

shift if the industry moves to the static Nash equilibrium.

The previous results in the IO literature can be seen as special cases of equation 3. For example,

Rotemberg and Saloner (1986) follows a case where q̂t,t+1 = 0 due to a constant discount rate, and

Et [∆ŷt+1] = −ŷt as shocks are assumed to be i.i.d. over time. Therefore, in their model

µ̂t = −ψ1ŷt

which is a demonstration of their result that markups should be counter-cyclical. But as (3) implies,

assuming other processes for these variables can give rise to di�erent results. With two di�erent random

processes, ∆ŷt+1 and q̂t,t+1, that are potentially correlated, the spectrum of possibilities for their under-

lying distribution is large enough to allow for any type of result in terms of the cyclicality of markups.
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Therefore, we need to pin down this joint distribution, which in the case of this paper will be done by

introducing a household side for the model.

Finally, ψ1 and ψ2 are completely pinned down by the �rm side parameters σ, η,N, γ plus β which

is going to be the subjective discount factor of the households in the general equilibrium.

3.3 Households, the Government and Market Clearing

There is a representative household that solves the following standard problem with investment adjust-

ment costs.

max{(Ct,Nt,It,Kt+1)}∞t=0
E0

∑∞
t=0 β

t
[
C1−θ

t

1−θ − φ
L
1+1/ε
t

1+1/ε

]
s.t. PtCt + PtIt ≤ WtLt +RtKt +

´ 1
0

∑N
j=1 Πij,tdi− Tt

Kt+1 = (1− δ)Kt + (1− S( It
It−1

))It

S( It
It−1

) ≡ a
2
(1− It

It−1
)2

The investment adjustment cost is included to allow for inertia in the response of output to shocks. As

I will discuss later the extent of this inertia will be crucial in determining the cyclicality of markups.

There is also a government that uses lump-sum taxes from households to conduct �scal policy, Gt.

I assume that Gt follows an AR(2) stochastic process

Gt = ḠZg
t

log(Zg
t ) = ρg1 log(Z

g
t−1) + ρg2 log(Z

g
t−2) + σgεg,t

εg,t ∼ N (0, 1)

Again, the AR(2) assumption on government spending process is to allow for a humped-shape response

of output to a �scal policy shock.
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Finally, the market clearing conditions are

Ct + It +Gt = Yt

Kt =
´ 1
0

∑N
j=1Kij,tdi

Lt =
´ 1
0

∑N
j=1 Lij,tdi

4 Calibration and Simulation

In this section, by simulating a log-linearized version of the model around a steady state in which the

incentive compatibility constraint binds, I will show (1) why these models are typically interpreted as

implying counter-cyclical markups and (2) that markups are actually pro-cyclical once the model is

calibrated to generate realistic amounts of inertia in economic activity.

4.1 Parameters

I have set β = 0.993 to match the a steady state annual real interest rate of 3 percent, α = 0.35 to

match a steady state share of capital income of 35 percent, δ = 0.025 to match a 10 percent annual

rate of depreciation on capital, φ = 8 to match a steady state labor supply of 0.3, Ḡ = 0.2 to match a

steady state G/Y of 20 percent, and a = 2.48 following Christiano et al. (2005). I also set the Frisch

labor supply elasticity, ε, to 2.5.

Moreover, I have set the elasticity of substitution across sectoral goods, σ, equal to 4, and the

elasticity of substitution within sectoral goods,η, equal to 20. I set γ = 0.811 and N = 15 to match a

steady state markup level of 20 percent. Although these are calibrated in an arbitrary fashion, as I will

show later in a series of robustness checks, for the given levels of σ and η the model is not very sensitive

to these parameters, and reasonable variations in them do not a�ect the main results of my analysis.

The qualitative results in terms of direction of cyclicality of markups are robust to any calibration as

long as η > σ.

Finally, I have set the persistence of the technology shock to 0.95. For the persistence parameters of

the government spending shock, I run the following regression on the quarterly data for real government

11Given σ and η, this is the highest level for γ for which the incentive compatibility constraint binds, and the Blanchard
Kahn condition for the law of motion for markups holds.
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consumption expenditures and gross investment from 1947Q1 to 2014Q1:

log(Gt) = Constant+ ρg1 log(Gt−1) + ρg2 log(Gt−2) + εt

which gives the estimates ρg1 = 1.51 and ρg2 = −0.52. I will also consider alternative persistence

parameters for robustness checks in Section 4.4.

4.2 Impulse Response Functions

First, consider the case of no investment adjustment cost (a = 0). The dashed curves in Figure 3a show

the impulse responses of this model to a 1 percent technology shock. The key observation is that in

this setting, output jumps up on impact and converges back to zero as the e�ect of the transitory shock

fades away. Moreover, the response of stochastic discount rate, which is given by Qt,t+1 = β u
′(Ct+1)
u′(Ct)

,

is countercyclical given that households are able to smooth their consumption without being restricted

by costly investment. The fact that consumption has an inertial response to the technology shock is

a crucial element to the countercyclicality of stochastic discount rates. On impact, households expect

that their consumption will peak later in the expansion; therefore, they are not really concerned about

future states as they know they will have a higher consumption.

By equation 3, the combination of counter-cyclical output growth and discount rates gives rise to

counter-cyclical markups. The interpretation from the �rm side is that on impact, �rms know that

demand is at its highest. This expectation along with the low price of future pro�ts increases their

cheating incentives to its highest, as they know that now is the best time to cheat and steal the market

share of their rivals. The oligopoly, knowing this, is forced to settle on a low markup to eliminate this

high cheating incentive.

A similar exercise can be done with the government spending shock. Suppose that Zg
t is an AR(1)

process with persistence 0.95. The impulse response functions of the model to such a shock is illustrated

by the dashed curves in Figure 3b. On impact, government spending is at its highest, which means that

private consumption is at its lowest. First, since private consumption will increase to its steady state

level, such a shock would give rise to counter-cyclical stochastic discount rates. Moreover, the income

e�ect of G is at its highest on impact, so that Y will peak immediately due to a jump in labor supply and

converge back to its steady state as the shock fades away. Again, the combination of counter-cyclical
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discount rates and output growth will translate into counter-cyclical markups.

However, empirical evidence on TFP shocks and government spending shocks suggests that the

response of output to these shocks is inertial such that the peak e�ect happens not on impact but in

later periods12. To allow for such inertia, I introduce investment adjustment costs and an AR(2) process

for government spending. Solid curves in Figure 3a show the IRFs of the model to a 1% technology

shock when a = 2.48. With positive adjustment costs, two things happen: �rst, investment does not

jump on impact and has an inertial response, which translates to an inertial response in output, and

second, households now face a stronger trade-o� in smoothing their consumption because they face

costly investment, which gives rise to pro-cyclical stochastic discount rates. Therefore, on impact �rms

expect their demand to increase in future periods, which gives them the incentive to avoid cheating until

demand peaks as they do not want to force the oligopoly to the punishment stage of the game when

demand is at its highest. This lower incentive to cheat allows the oligopoly to settle on higher incentive

compatible markups. Hence, on impact one would expect a higher markup than the one in the steady

state, making markups pro-cyclical.

A similar exercise can be done with the government spending shock by assuming an AR(2) process

for Zg
t . Figure 3b depicts the IRFs of the model to such a shock. The inertial implementation of the

�scal policy translates to an inertial output and consumption responses, as shown by solid curves in

Figure 3b, which in turn produce procyclical markups for similar reasons to the case of the technology

shock with a > 0.

4.3 Cross Correlation of Markups and Output

Another set of results that are emphasized in the literature is the cross correlation of markups and

output over time. For instance, Nekarda and Ramey (2013) empirically document that in addition to

the positive contemporaneous correlation of the two, lags of markups are pro-cyclical with output while

the leads of it are counter-cyclical, as illustrated by the dashed curve with no markers in Figure 4. The

goal of this section is to show that the model without inertia completely fails to match this evidence;

however, the model with inertia is highly consistent with it.

12For empirical evidence on humped-shape response of output to productivity and government spending shocks, see,
for example, Sims (2011); Smets and Wouters (2007); Ramey (2011); Ramey and Shapiro (1998); Christiano et al. (2005);
Monacelli and Perotti (2008).
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The dashed curve with circle markers in Figure 4 shows the simulated correlation of lags and leads

of markups with output conditional on a TFP shock when there is no inertia in the response of output;

and the solid curve in the same �gure depicts the same graph for the model with inertia. While the

model without inertia misses the direction of cyclicality for the most part, the model with inertia in the

output response matches the empirical evidence closely.13

4.4 Robustness

In this section, I check the robustness of the predictions of the model with respect to di�erent variables.

Figures 5a and 5c show the simulated correlations of leads and lags of markups with GDP conditional

on a technology shock and a government spending shock respectively, for values of γ between 0.4 and 0.8,

such that darker curves correspond to higher levels of γ. Aside from the fact that lower γ's create lower

steady state markups because of the higher impatience of �rms, they also produce lower correlations

between GDP and markups. The reason for the latter is that variations in current markup are a weighted

sum of all expected output changes and stochastic discount rate changes in the future, and as γ gets

smaller, they put lower weights on future values. Nevertheless, all values of γ yield the same structure

of correlations of lags and leads of the markup with the output.

Moreover, Figures 5b and 5d, respectively, show the correlation of leads and lags of markups with

GDP conditional on a technology shock and government spending shock for values of N between 5 and

25. Again darker curves represent higher values of N . Variation in number of competitors does not

change the structure of correlations and has very small level e�ects. The reason is that what ultimately

determines the cheating incentives of �rms, and hence markups, is the elasticity of demand for a single

�rm which is equal to η − η−σ
(N−1)ρη−1+1

∈ [σ, η]. Note that for small amounts of η (η ≤ 20), which

corresponds to a relatively high di�erentiation among within industry goods, the e�ect of N on the

structure and level of correlations is negligible.

In the model, investment adjustment costs are the mechanism generating the humped-shape response

of output to technology shocks. While I have calibrated this parameter to the estimated value of

Christiano et al. (2005), this section examines the question of how large this parameter needs to be for

13The same exercise can be done with government spending shocks, and while the results qualitatively remain the same
� meaning that correlations in the inertial model are larger than in the model with no inertia in the output response �
the inertia created by the AR(2) process is not enough to make the conditional correlation positive.
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markups to be procyclical. Figure 6a depicts the number of periods that markups are procyclical after

a 1% technology shock given di�erent values of a ∈ [0, 5]. As soon as a is larger than 0, markups are

procyclical on impact. Also, the duration of procyclicality increases as a gets larger. For my calibration

of this parameter, markups are pro-cyclical for 5 quarters after the shock hits the economy.

Moreover, Figure 6b shows the contemporaneous correlation of the markup with GDP conditional on

a 1% technology shock, which shows that the conditional correlation is increasing in a, and for a > 1.2

, it is positive. Hence, any empirically reasonable value of investment adjustment costs will generate

procyclical markup in this model.

In the baseline calibration with inertia, I use estimated parameters for the AR(2) process of gov-

ernment spending to create the humped-shape response of the output to a G shock. Now, I consider a

wider range of persistence parameters to check for robustness of results in previous section. Consider the

set {(ρg1, ρ
g
2)|ρ

g
2 ∈ [−0.7, 0], ρg1 + ρg2 = ρG}, where ρG is the persistence of government spending shocks,

�xed to an estimated value of 0.98. Therefore, this set de�nes a locus for persistence parameters of G

such that when ρg2 = 0 the process is AR(1) and when ρg2 < 0 the process is AR(2) with highest inertia

achieved when ρg2 = −0.7. In fact, the magnitude of this parameter, |ρg2|, determines the degree of inertia

in the response of output. Figure 6c shows the number of periods that markups are procyclical after

a 1% government spending shock given di�erent values of |ρg2|. Again, for the most part (|ρg2| > 0.1),

the inertia causes the markups to be procyclical on impact. For my estimate of persistence parameters,

markups are procyclical for 2 periods after the impact. However, as Figure 6d shows, the inertia is not

enough to make the conditional correlation of markup and GDP positive. Nevertheless, the correlation

is still increasing with inertia.

5 Customer Base Models

Another class of models that micro-found variable markups is based on the notion that it is costly for

customers to switch among �rms. Accordingly, �rms' pricing decisions in the current period a�ect their

market share in future periods. In contrast to implicit collusion models, customer base models have

been shown to imply both procyclical and countercyclical markups.

The method through which customer-base frictions are modeled in the literature is by a habit forma-

tion process on the side of customers. This habit component makes it costly for customers to switch to
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other products, and hence creates dynamic considerations for �rms as their future market share changes

with their current decisions. The dynamics of markups, however, depend on how customers are reacting

to pricing of the �rms over time. Hence, the habit formation process is crucial for their dynamics.

In this section I build a simple reduced form customer-base model, with a rich enough external habit-

formation process that could support both procyclical and countercyclical markups, and then show that

introducing a humped-shape response for output changes the cyclicality of markups within each version.

The reason is identical to the implicit collusion model; regardless of how the habit formation process

works, the dynamic considerations that it creates for the �rms are not in terms of the level of demand

but its relative changes over time. Hence, similar to the implicit collusion model, since a humped-shape

response of output changes the expectations of �rms about changes in future demand over the business

cycle, it also changes the cyclicality of markups.

5.1 Model Speci�cation

Consider the �nal good producer of Section 3. To incorporate the customer base model, I assume that

this �nal good producer has an external habit formation over the goods within industries, meaning that

Yt =
[´ 1

0
Yit

σ−1
σ di

] σ
σ−1

(4)

Yit ≡ Φ(
Yi1,t
Si1,t

, . . . ,
YiN,t

SiN,t
)

Φ(x1, . . . , xN) =

[
N− 1

η
∑N

j=1 x
η−1
η

j

] η
η−1

Where Sij,t is the external habit of producer in using the input Yij,t, which is taken as given by the �nal

good producer at time t. I assume that Sij,t has the following general law of evolution

Sij,t = h(
µij,t
µit

)(γSij,t−1 + 1− γ)

where h(.) is di�erentiable, h(1) = 1, and γ ∈ [0, 1). Therefore, the problem of the �nal good producer

is

max
Yij,t

PtYt −
ˆ 1

0

N∑
j=1

Pij,tYij,tdi
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which implies that the demand for Yij,t is then given by

Yij,t = YtD(Pij,tSij,t;Pi−jtSi−j,t)

where D(.; .) is de�ned exactly as in section 3. Firm ij takes demand as given and maximizes the net

present value of all its future pro�ts by choosing a relative markup
µij,t
µit

, and Sij,t, where Sit is the the

�nal good producer's habit for the others in the sector, in the symmetric equilibrium. Therefore, �rm

ij's dynamic problem is

max{µij,t,Sij,t}∞t=0
E0

∑∞
t=0Q0,tYtP

−σ
t

(
µit
µt

)1−σ
(
µij,t−1

µit
)D(

µij,t
µit

Sij,t

Sit
; 1)

s.t. Sij,t = h(
µij,t
µit

)(γSij,t−1 + 1− γ)

Proposition 2. In a symmetric equilibrium where all �rms identically solve the problem above,

1. The law of motion for markups, up to a �rst order approximation, takes the same form as the

implicit collusion model, i.e.

µ̂t = ψ1Et{q̂t,t+1 +∆ŷt+1}+ ψ2Et{µ̂t+1}

where ψ1 ≡ βγ
µµ−1

C −1

1+h′(1)
Q 0, ψ2 ≡ βγ

1+h′(1)
> 0, µC ≡ (N−1)η+σ

(N−1)η+σ−N > 1 is the static best response

markup in absence of the customer base friction, and µ is the steady state markup in presence of

the friction.

2. Markups move in the opposite direction of �rms' expectations of output growth, meaning that

ψ1 < 0, if and only if the existence of customer base frictions reduce the average markup, i.e.

µ < µC.

3. Existence of customer base frictions reduce the average markup if and only if h′(1) > 0.

Proof. See Appendix.

The �rst part of the proposition formalizes the idea that the law of motion implied by this model

takes the same form as that of the implicit collusion model; however, the implications of the model

on signs of ψ's are di�erent. While ψ2 is unambiguously positive, the second part of the proposition
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relates the sign of ψ1 to the nature of the customer base friction. If the customer base friction is such

that it reduces the average markups compared to the frictionless economy, then markups should move

in the opposite direction of expected output growth, and vice versa. In the context of models without

inertia, the former would translate into procyclical markups. The latter, which predicts that markups

should move in the same direction as the expected output growth if the average markup is higher than

the frictionless one, is also consistent with the other side of the literature which predicts that markups

are countercyclical. The third part gives a necessary and su�cient condition between the shape of the

function h(.) and the relationship between the average and frictionless markups.

Although they have opposing predictions, both versions of the model follow the same intuition. The

reason that in this model markups are variable over time is that by altering their relative markup, and

through the law of motion for habit, �rms can change their future market shares. The fact that the law

of motion depends on the net present value of all output growths in the future, implies that �rms want

to build high market share for periods in which they expect the output to be higher. However, how

this incentive a�ects the markups, which is determined by the sign of ψ1, depends on how potentially

opposing forces aggregate together: there are two forces through which the relative markup a�ects

�rms' market shares. The �rst one is the direct relationship between price and demand; that a higher

relative markup reduces current demand for �rms. The second one a�ects market share through law of

the motion for the habit: higher relative markup can either increase or decrease the habit of the �nal

good producer for a particular �rm14. While the �rst one always goes in one direction, the second force

can work in either direction, causing a di�erent law of motion for markups. For instance, if decreasing

the relative markup increases the habit of the �nal good producer15, then markups should move in the

opposite direction of the �rms' expectations on output growth.

More importantly, even if we �x the sign of ψ1, similar to the implicit collusion model, a humped-

shaped response for the output would change the cyclicality of the markups. Figures 7a and 7b, shows

14By assuming a reduced form law of motion for �nal producer's habit, I abstract away from microfounding the slope of
the h(.) function which determines the sign of ψ1. Nevertheless, the equivalence between slope of h(.) and the relationship
between average and frictionless markup, derived in Proposition 2, o�ers some intuition. The nature of the friction in
terms of whether it decreases or increases the average markups is su�cient for identifying the sign of ψ1. For instance,
Paciello et al. (2014) mention that in their version of the customer base model, the friction reduces the average markups
and they �nd that markups are procyclical, which implies ψ1 < 0.

15It is important to distinguish between how relative markup a�ects the habit of the �nal good producer, and how it
a�ects the market share. The market share is determined by the two forces combined, and the assumption that a higher
markup increases the habit, does not imply that the market share is also increasing in relative markup.
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the impulse responses of a version of the model with ψ1 < 016, to a 1% technology shock and government

spending shock with and without inertial response for the output. Humped-shaped response of output

changes the cyclicality of markups, even with a �xed ψ1.

6 Testing the Law of Motion for Markups

The two models considered in the previous sections both imply a law of motion for markups of the form

µ̂t = ψ1Et{∆ŷt+1 + q̂t,t+1}+ ψ2Et{µ̂t+1}

where the implication of each model for the signs of the coe�cients are di�erent. The following table

summarizes these implications:

Implicit Collusion Customer Base

ψ1 > 0 Q 0

ψ2 Q 0 > 0

Table 1: Sign of Coe�cients in the Law of Motion for Markups in Di�erent Models

The goal of this section is to, �rst, empirically test this law of motion, and second, determine which

model is more suited to explain the data based on the sign implications above. Because the question

inherently relates to �rms' expectations of future outcomes of the economy, I use a quantitative survey of

�rms' expectations from New Zealand introduced by Coibion et al. (2015). Hence, if one could estimate

the above parameters, rejecting that ψ1 > 0 would reject the implicit collusion model; while rejecting

the hypothesis that ψ2 > 0 would imply the rejection of the customer base model.

6.1 Identi�cation

The survey includes data that allows me to directly test the law of motion for markups. Firms were

asked to provide information about their number of competitors, average markup, current markup, their

expected growth in sales, and their next expected price change. The following Proposition states that

this cross-sectional data are enough to partially identify the coe�cients in the law of motion up to the

elasticity of substitution across industry goods.

16The calibration is such that the frictionless markup, µC , is 11.5%, and the average markup, µ, is 10%. In terms of
parameters, the only change compared to the previous section is η = 10.
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Proposition 3. Let industries be indexed by i and �rms within them be indexed by j. Consider the

following regression

µ̂ij −
∑
i

∑
j

µ̂ij = Industry_FEi + β1{Ex∆Salesij −
∑
i

∑
j

Ex∆Salesij}

+ β2{Ex∆Priceij −
∑
i

∑
j

Ex∆Priceij}+ εij

where µ̂ij is the deviation of current markup of �rm ij from its average level, Ex∆Salesij is the expected

growth in sales for �rm ij, and Ex∆Priceij is its next expected price change. Now consider the following

decomposition of �rms' errors in expecting stochastic discount rates and changes in marginal costs:

Eijt {q̂t,t+1} −
∑

i

∑
j E

ij
t {q̂t,t+1} = ui1,t + uij2,t

Eijt {∆m̂ct+1} −
∑

i

∑
j E

ij
t {∆m̂ct+1} = vi1,t + vij2,t

where ui1,t and v
i
1,t are industry speci�c errors that are orthogonal to the �rm level errors vij2,t and u

ij
2,t.

Assuming that vij2,t and u
ij
2,t are independent across �rms and are orthogonal to the other terms in the

above regression, ψ1 and ψ2 can be identi�ed from β1 and β2 up to the elasticity of substitution across

sectors, σ.

Proof. See Appendix.

6.2 Results

A distinct characteristic of implicit collusion and customer base models is that they are derived for

oligopolistic �rms. Hence, one would expect that in the data, while oligopolistic �rms should conform

to the above law of motion, competitive ones should not. With that in mind, to test the validity of

the the law of motion, I divide the sample into two sub-samples, �rms with more than 20 competitors,

i.e. competitive �rms, and �rms with fewer than 20 competitors17. The prediction is that coe�cients

of the law of motion, identi�ed through the regression in Proposition 3, should be signi�cant for the

second group, and not signi�cant for the �rst. Table 2 shows the results of these two regressions, and

this hypothesis cannot be rejected at a 95% con�dence level.

17I also drop �rms with less than 2 competitors considering the possibility of a non-binding incentive compatibility
constraint for these �rms.
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Moreover, as the coe�cients are signi�cant for the oligopolistic �rms, we can use the results of

Proposition 3 to infer the implied coe�cients on the law of motion for markups, and hence identify the

model that is more consistent with the data. Speci�cally, rejecting the null hypothesis that ψ2 > 0

would lead to rejection of the customer base model, and similarly rejecting the null that ψ1 > 0 would

imply the rejection of the implicit collusion model. The following Proposition shows that while the �rst

hypothesis is rejected by the data, the latter is not.

Proposition 4. Given the results in Table 2, and imposing the theoretical bound |ψ2| < 118, the 0.95%

con�dence intervals for ψ1 and ψ2 are

ψ2 ∈ (−1,−0.06]

ψ1 ∈ [0.003, 0.64]

Therefore, we can reject the null that ψ2 > 0, which implies the rejection of the customer base models.

On the other hand, the null hypothesis that ψ1 > 0 (or ψ1 = 0) cannot be rejected.

Proof. See Appendix.

Therefore, these results imply a rejection of the customer base models but are consistent with the

implicit collusion models. Given that this class of models points towards procyclical markups for any

empirically realistic level of inertia in output, these results suggest that countercyclical markups are

unlikely to be a key propagation mechanism of business cycles.

2 < N ≤ 20 N > 20

Expected growth in sales (demeaned) 0.16** (0.08) -0.03 (0.11)
Expected size of next price change (demeaned) -0.18** (0.06) 0.02 (0.09)

Observations 495 200

Table 2: The table reports the coe�cients for the regression speci�ed in Proposition 3, allowing for
industry �xed e�ects. The �rst column reports the coe�cients for �rms that report less than 20 but
more than 2 competitors. Second column reports the coe�cients for �rms that report more than 20
competitors.

18So that the law of motion is not divergent.
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7 Conclusion

In this paper, I revisit the implicit collusion and customer base models and show they both imply a

forward looking law of motion for markups in which they depend on the �rms' expectations of output

growth and stochastic discount rates. Because markups are related to the expected output growth, and

not to its level, the conditional expectations of �rm for the dynamics of output are the key component

of the cyclicality of markups. In particular, if �rms expect a humped-shape response for output during

the business cycle, the predictions of these models are reversed.

Previous work using these models has not allowed for su�ciently rich dynamics in output which has

lead to the conclusion that implicit collusion models lead to counter-cyclical markups. I show that this

prediction is overturned once empirically realistic dynamics of output are incorporated into the model.

Doing so, also helps the implicit collusion model to match the empirical evidence on the dynamic cross

correlation of output and markups documented in Nekarda and Ramey (2013).

Furthermore, while di�erent versions of customer base models have been used in the literature to

model both procyclical and countercyclical markups, I show that the same result extends to each version

of these models; meaning that, given a customer base model, introducing inertia in response of the output

will reverse the cyclicality of markups.

Therefore, matching the humped-shape response of output to shocks is crucial for choosing a proper

model for understanding the cyclicality of markups. The common law of motion that I derive in this

paper boils down this problem to estimating the signs of its two reduced-form parameters. Using survey

data on �rms' expectations from New Zealand, I �nd that �rms increase their markup when they expect

that their demand will be higher in the future. Combined with the evidence that output responds to

shocks with inertia, as �rms expect output to keep growing on the impact of an expansionary shock,

this then implies that markups are procyclical.
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Figure 1: Extensive Representation for the Repeated Game of Section 2
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Figure 3: �Impulse Response Functions: Implicit Collusion Model
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(a) The dashed curves plot the impulse response functions of the implicit collusion model to a 1% technology shock with no
adjustment cost in which markups are counter-cyclical as output growth and stochastic discount rates are counter-cyclical. Solid
curves illustrate the impulse response functions of the same model to a 1% technology shock with investment adjustment cost.
Markups are pro-cyclical as long as �rms expect output to grow. See Section 4.2 for details.
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(b) The dashed curves plot the impulse response functions of the implicit collusion model to a 1% government spending shock
without inertia in which markups are counter-cyclical as output growth is negative during the expansion. Solid curves illustrate
the impulse response functions of the same model to an inertial government spending shock that peaks at 1%. Markups are
pro-cyclical on impact as output growth and stochastic discount rates are pro-cyclical. See Section 4.2 for details.
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Figure 5: Robustness to number of �rms in each sector N , and the renegotiation probability γ

-5 0 5

Lead/Lag of Markup

-0.2

0

0.2

0.4

C
or

re
la

tio
n 

w
ith

 O
ut

pu
t

(a) Simulated correlation of µt+j with Yt conditional on a
TFP shock for γ ∈ [0.4, 0.8] . See section 4.4 for details.
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(b) Simulated correlation of µt+j with Yt conditional on a
TFP shock for N ∈ {5, . . . , 25} . See section 4.4 for details.
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(c) Simulated correlation of µt+j with Yt conditional on a
government spending shock for γ ∈ [0.4, 0.8] . See section
4.4 for details.
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(d) Simulated correlation of µt+j with Yt conditional on
a government spending shock for N ∈ {5, . . . , 25} . See
section 4.4 for details.
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Figure 6: Robustness to inertia
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(a) Duration of procyclicality of markup after a 1% TFP
shock for di�erent value of investment adjustment cost pa-
rameter, a ∈ [0, 5] . See Section 4.4 for details.
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(b) Simulated correlation of µt with Yt conditional on a
TFP shock for di�erent value of investment adjustment
cost parameter, a ∈ [0, 5] . See Section 4.4 for details.
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(c) Duration of procyclicality of markup after a 1% gov-
ernment spending shock for di�erent values of the inertia
parameter in the AR(2) process, |ρg2| ∈ [0, 0.7]. See Section
4.4 for details.
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(d) Simulated correlation of µt with Yt conditional on a
government spending shock for di�erent values of the in-
ertia parameter in the AR(2) process, |ρg2| ∈ [0, 0.7] . See
Section 4.4 for details.
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Figure 7: �Impulse Response Functions: Customer-Base Model
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(a) The dashed curves plot the impulse response functions of the customer base model to a 1% technology shock with no
adjustment cost in which markups are pro-cyclical as output growth and stochastic discount rates are counter-cyclical. Solid
curves illustrate the impulse response functions of the same model to a 1% technology shock with investment adjustment cost.
Markups are counter-cyclical as long as �rms expect output to grow. See Section 5.1 for details.
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(b) The dashed curves plot the impulse response functions of the customer base model to a 1% government spending shock
without inertia in which markups are pro-cyclical as output growth is negative during the expansion. Solid curves illustrate
the impulse response functions of the same model to an inertial government spending shock that peaks at 1%. Markups are
counter-cyclical on impact as output growth and stochastic discount rates are pro-cyclical. See Section 5.1 for details.
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B Proofs.

Proof of Proposition 1.

First, observe that the set of solutions is not empty as µit = µCOU ,∀t satis�es the constraint for all

periods. Moreover, if the constraint is not binding, the �rms will simply act like a monopoly and choose

µit = µMON , as it maximizes their joint pro�ts. Hence, the choice set of �rms can be compacti�ed so

that µit ∈ [µCOU , µMON ], and as the usual assumption of continuity holds, the problem has a solution.

Finally, for the solution to be a sub-game Nash equilibrium, two conditions have to hold: �rst, that

�rms do not have an incentive to deviate from the chosen markups in the equilibrium path, which is

true by construction, and second, that if ever the game were to go to punishment stage, �rms would

have an incentive to revert back to this strategy, which is also true as collusion is always at least as good

as best responding.

Proof of Proposition 2.

The �rst order conditions, after imposing the symmetric equilibrium conditions
µijt
µit

= 1, Sij,t = 1 and

normalizing Pt = 1 (as all �rms solve the same problem), are

(1 + h′(1))(µ−1
t − µ−1

C )− h′(1)(1− µ−1
C ) = γEt{Qt,t+1

Yt+1

Yt
(µ−1

t+1 − µ−1
C )}

Hence, in the steady state

µ =
1− βγ + h′(1)

1− βγ + µCh′(1)
µC

Notice that µ ≥ 1 if and only if

1− βγ + µCh
′(1) ≥ 0 ⇔ h′(1) ≥ −1− βγ

µC
(5)

also observe that

µ− µC = −h′(1) (µC − 1)µC
1− βγ + µCh′(1)

< 0 ⇔ h′(1) > 0 (6)

meaning that customer base frictions reduce markups on average if and only if h′(1) is positive.
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Finally, a �rst order approximation to the above equation around the steady state yields:

µ̂t = ψ1Et{q̂t,t+1 +∆ŷt+1}+ ψ2Et{µ̂t+1}

such that ψ1 ≡ βγ
µµ−1

C −1

1+h′(1)
and ψ2 ≡ βγ

1+h′(1)
. This veri�es that the customer base model, up to a �rst

order approximation, implies the same law of the motion for markups as the implicit collusion model.

To infer the signs of ψ1 and ψ2, observe that 5 implies that h′(1) + 1 as −1−βγ
µC

> −1. Thus, ψ2 > 1 for

any parametrization. Moreover, ψ1 > 0 if and only if µ−1
C µ − 1 > 0 which based on 6 happens if and

only if h′(1) < 0, and vice versa.

Proof of Proposition 3.

Notice that

Ex∆Salesij,t = Eij
t

Pij,t+1Yij,t+1 − Pij,tYij,t
Pij,tYij,t

≈ Eij
t [(1− σ)∆p̂ij,t+1 +∆ŷt+1]

= (1− σ)Ex∆Priceij,t + Eij
t [∆ŷt+1]

where the second line is derived using the demand structure Yij,t = Yi,t = YtD(Pit;Pit). Now, rewriting

the law of motion

µ̂ij,t =
ψ1

1− ψ2

Eijt {∆ŷt+1 + q̂t,t+1}+
ψ2

1− ψ2

Eijt {∆µ̂it+1}

=
ψ1

1− ψ2

Eijt {Ex∆Salesij,t + (σ − 1)∆p̂it+1 + q̂t,t+1}+
ψ2

1− ψ2

Eijt {∆p̂ij,t+1 −∆m̂ct+1}

=
ψ1

1− ψ2

Eijt {q̂t,t+1}+
ψ1

1− ψ2

Ex∆Salesij,t +
(σ − 1)ψ1 + ψ2

1− ψ2

Ex∆Priceij,t −
ψ2

1− ψ2

Eijt {∆m̂ct+1}
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Now sum over i and j and subtract the two to get

µ̂ij −
∑
i

∑
j

µ̂ij =
ψ1

1− ψ2

{Ex∆Salesij −
∑
i

∑
j

Ex∆Salesij}

+
(σ − 1)ψ1 + ψ2

1− ψ2

{Ex∆Priceij −
∑
i

∑
j

Ex∆Priceij}

+
ψ1

1− ψ2

(Eijt {q̂t,t+1} −
∑
i

∑
j

Eijt {q̂t,t+1})−
ψ2

1− ψ2

(Eijt {∆m̂ct+1} −
∑
i

∑
j

Eijt {∆m̂ct+1})

=
ψ1

1− ψ2

{Ex∆Salesij −
∑
i

∑
j

Ex∆Salesij}

+
(σ − 1)ψ1 + ψ2

1− ψ2

{Ex∆Priceij −
∑
i

∑
j

Ex∆Priceij}+ Industry_FEi + εij,t

where

Industry_FEi ≡ ψ1

1−ψ2
ui1,t +

ψ2

1−ψ2
vi1,t

, εij,t ≡ ψ1

1−ψ2
uij2,t +

ψ2

1−ψ2
vij2,t

Since uij2,t and vij2,t are independent of Indsutry_FEi by construction and the other two terms by

assumption, we have,

ψ1 =
β̂1

1 + β̂2 − (σ − 1)β̂1
, ψ2 = 1− 1

1 + β̂2 − (σ − 1)β̂1

Proof of Proposition 4.

From the proof of last proposition, observe that

1
1−ψ2

= 0.82− 0.16(σ − 1)± 1.96× (0.06 + 0.08(σ − 1))

⇒ 1
1−ψ2

∈ [0.7− 0.32(σ − 1), 0.94]

Also, since |ψ2| < 1, we have

1

1− ψ2

∈ (
1

2
,∞)
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combining the two we get

1

1− ψ2

∈ (0.5, 0.94], ∀σ > 1

which implies that

ψ2 ∈ (−1,−0.06],∀σ > 1

Also

ψ1

1− ψ2

= β̂1 = 0.16± 1.96× 0.08

Hence,

ψ1 ∈ (1− ψ2)× [0.003, 0.32]

⊂ [0.003, 0.64],∀σ > 1.

40


