
Federal Reserve Bank of Dallas 
Globalization and Monetary Policy Institute  

Working Paper No. 147 
http://www.dallasfed.org/assets/documents/institute/wpapers/2013/0147.pdf  

 
Tractable Latent State Filtering for Non-Linear DSGE Models  

Using a Second-Order Approximation* 
 

Robert Kollmann  
ECARES, Université Libre de Bruxelles and CEPR  

 
June 2013 

 
Abstract  
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here--the present method is thus much faster. In Monte Carlo experiments, the filter here 
generates more accurate estimates of latent state variables than the standard particle filter. 
The present filter is also more accurate than a conventional Kalman filter that treats the 
linearized model as the true data generating process. Due to its high speed, the filter 
presented here is suited for the estimation of model parameters; a quasi-maximum likelihood 
procedure can be used for that purpose. 
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1. Introduction 

Dynamic Stochastic General Equilibrium (DSGE) models typically feature state variables that 

cannot directly be measured empirically (such as preference shocks), or for which data include 

measurement error. A vast literature during the past two decades has taken linearized DSGE 

models to the data, using likelihood-based methods (e.g., Smets and Wouters (2007), Del Negro 

and Schorfheide (2011)). Linearity (in state variables) greatly facilitates model estimation, as it 

allows to use the standard Kalman filter to infer latent variables and to compute sample 

likelihood functions based on prediction error decompositions. Recent research has begun to 

estimate non-linear DSGE models using particle filters;
1
 these filters infer latent states using 

Monte Carlo methods, and are thus slow computationally, which limits their use to small models.  

 This paper develops a novel deterministic filter for estimating latent state variables of 

DSGE models that are solved using a second-order accurate approximation (as derived by Jin 

and Judd (2000), Sims (2000), Collard and Juillard (2001), Schmitt-Grohé and Uribe (2004), 

Kollmann (2005) and Lombardo and Sutherland (2007)). That approximation provides the most 

tractable non-linear solution technique for medium-scale models, and has thus widely been used 

in macroeconomics (see Kollmann (2002) and Kollmann, Kim and Kim (2011) for detailed 

references).  

When simulating second-order accurate model solutions, it is common to use the 

‘pruning’ scheme of Kim, Kim, Schaumburg and Sims (2008), under which second-order terms 

are replaced by products of the linearized solution. This paper assumes that the ‘pruned’ second-

order model is the true data generating process (DGP). The method presented here exploits the 

fact that the state equation of the pruned system is linear in a state vector that consists of 

variables solved to second- and first-order accuracy, and of products of first-order accurate 

variables. I apply the Kalman filter to that state equation. In Monte Carlo experiments, the filter 

here generates more accurate estimates of latent state variables than the standard particle filter, 

especially when the model has strong curvature or when shocks are large. Importantly, the filter 

here is much faster than particle filters, as it is not based on stochastic simulations. The present 

filter is also more accurate than a conventional Kalman filter that treats the linearized model as 

                                                 
1
 See Fernández-Villaverde and Rubio-Ramírez (2007) and An and Schorfheide (2007) for early applications. 
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the true DGP.
2
 Due to its high speed, the filter presented here is suited for the estimation of 

model parameters; a quasi-maximum likelihood procedure can be used for that purpose.  

 

2. Model format and filter  

Model format and second-order solution 

Many widely-used DSGE models can be expressed as:  

                                                          1 1( , , ) 0,t t t tE G                                                              (1)   

where tE  is the mathematical expectation conditional on date t information; 
2: n m nG R R   is a 

function, and t  is an nx1 vector of endogenous and exogenous variables known at t; 1t   
is an 

mx1 vector of innovations to exogenous variables. In what follows, t  
is Gaussian:

2(0, ),t N   
 

where   is a scalar that indexes the size of shocks. The solution of model (1) is a "policy 

function" 1 1( , , ),t t tF       such that 11
( , ) 0( , , ),t t tt t

E G F   
  .t This paper focuses on 

second-order accurate model solutions, namely on second-order Taylor series expansions of the 

policy function around a deterministic stead state, i.e. around  0  and a point   such that 

( ,0,0).F 
 Let t t   . For a  qx1 column vector  x  whose i-th element is denoted ix , let  

             
1 2 1 2 1 2 2 2 3 2 1 2 1 2( ) ( ') (( ) , ,.., ,( ) , ,.., ,....,( ) , ,( ) ),xnq q q q qP x vech xx x x x x x x x x x x x x x x  

  

be a vector consisting of all squares and cross-products of the elements of x.
 3

 The second-order 

accurate model solution can be written as 

                         
2

1 0 1 2 1 11 12 1 22 1( ) ( ) ( ),t t t t t t tF F F F P F F P                                           (2) 

where 0 1 2 11 12 22, , , , ,F F F F F F  are vectors/matrices that are functions of structural model 

parameters, but that do not depend on   (Sims (2000), Schmitt-Grohé and Uribe (2004)). The 

first-order accurate (linearized) model solution is:  

                                              
(1) (1)

1 1 2 1.t t tF F                                                                   (3) 

The superscript 
(1) 

denotes a variable solved to first-order accuracy. It is assumed that all 

eigenvalues of 1F  are strictly inside the unit circle, i.e. that the linearized model is stationary.  

                                                 
2
 The literature has discussed ‘Extended Kalman filters’, i.e. Kalman filters applied to linear approximations of non-

linear models; e.g., Harvey (1989). 
3
For a square matrix M, vech(M) is the column vector obtained by vertically stacking the elements of M that are on 

or below the main diagonal.  
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Pruning 

As discussed above, I use the ‘pruning’ scheme of Kim et al. (2008) under which second-order 

terms are replaced by products of the linearized solution--i.e. ( )tP  and 1t t    are substituted 

by 
(1)( )tP  and 

(1)

1,t t   respectively. With pruning, the solution (2) is thus replaced by:   

                             
2 (1) (1)

1 0 1 2 1 11 12 1 22 1( ) ( ).t t t t t t tF F F F P F F P                                      (4) 

Note that
 

(1)( ) ( )t tP P   and 
(1)

1 1t t t t        hold, up to second-order accuracy. Thus, 

(4) is a valid second-order accurate solution. In repeated applications of (2), third and higher-

order terms of state variables appear; e.g., when 1t  is quadratic in ,t  then 2t  is quartic in 

;t  pruning removes these higher-order terms. The motivation for pruning is that (2) has 

extraneous steady states (not present in the original model)--some of these steady states mark 

transitions to unstable behavior. Large shocks can thus move the model into an unstable region. 

Pruning overcomes this problem. If the first-order solution is stable, then the pruned second-

order solution (4) too is stable. The subsequent discussion assumes that the true DGP is given by 

the pruned system (4). 
 

Augmented state equation 

The law of motion of 
(1)( )tP   can be expressed as 

(1) (1) (1)

1 11 12 1 22 1( ) ( ) ( )t t t t tP K P K K P          , 

where 11 12 22, ,K K K  are matrices that are functions of 1F  and 2F . Stacking this matrix equation, as 

well as (3) and (4) gives the following state equation:  

   

2

1 0 1 11 2 12 22

(1) (1) (1)

1 11 1 12 1 22 1

(1) (1)

1 1 2

0

( ) 0 0 0 ( ) 0 ( ) ( )

0 0 0 0 0

t t

t t t t t t

t t

F F F F F F

P K P K K P

F F

  

     

 



   



            
                             
                        

.      (5) 
  

(5) can be written as: 
(1)

1 0 1 2 1 12 1 22 1( ) ( ),t t t t t tZ g G Z G G G P            with 
(1) (1)

1 1 1 1( ' , ( ) ', ') ',t t t tZ P     
 

while 0 1 2 12, , ,g G G G  and 22G  are the first to fifth coefficient vectors/matrices on the right-hand 

side of (5), respectively.  Thus,  

                                                              1 0 1 1t t tZ G G Z u    ,                                                         (6) 

where 0 0 22 1( ( )),tG g G E P e  
 
while 

(1)

1 2 1 12 1 22 1 1( ) [ ( ) ( ( ))]t t t t t tu G G G P E P            
 
is a serially 

uncorrelated, mean zero, disturbance. Note that the state equation (6) is linear in the augmented 
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state vector tZ  consisting of the second- and first-order accurate variables, and of the squares and 

cross-products of first-order accurate variables.
 4

 
 

 

Observation equation 

At t=1,..,T,  the analyst observes yn  variables that are linear functions of the state vector t  plus 

i.i.d. measurement error that is independent of the state vector, at all leads and lags: 

where 
 
is an xyn n  matrix and (0, )t N    is an x1yn

 
vector of measurement errors;   is a 

diagonal matrix. The observation equation can be written as:  

                                                      
,t t ty Z    with ( ,0).                                                       (7)        

 

The filter 

Let 1{ }t ty     be the observables known at date t; , ( | )t tX X 

 
 

and 

, , ,([ ][ ]' | )X

t t t t tV E X X X X 

     
 
denote the conditional mean and variance of the column vector 

,tX  given .  Unconditional means and variances are denoted by ( )tE X  and ( ).tV X   

Given , ,, ,Z

t t t tZ V  the 1
st
 and 2

nd
 conditional moments of the augmented state vector tZ

conditional on t , we can compute  moments of 1tZ   
conditional on t  using (6):   

                                                           1, 0 1 ,t t t tZ G G Z   ,                                                              (8) 

                                                     1, 1 , 1 1,'Z Z u

t t t t t tV GV G V   , with                                                      (9) 

(1)(1) (1) (1) (1)

1, 2 2 12 , 2 2 , 12 12 , , , 12 22 1 22' ( ) ' ( ) ' ' {( ') } ' ( ( )) 'u

t t t t t t t t t t t t tV G V G G G G G G V G G V P G

                   (10)  

(see Appendix).   

To generate 1, 1 1, 1, ,Z

t t t tZ V     
I apply the linear updating equation of the standard Kalman 

filter (e.g., Hamilton (1994, ch.13)) to the state-space representation (6),(7):  

                                       1, 1 1, 1 1,( ),t t t t t t t tZ Z y y          with 1, 1, ,t t t ty Z   
                           

    (11) 

                                                 
4
 Aruoba, Bocola and Schorfheide (2012) estimate a pruned univariate quadratic time series model, using particle 

filter methods. These authors discard the term that is quadratic in 1t   on the right-hand side of (4). By contrast, the 

paper here allows for non-zero coefficients on second-order terms in 1,t  and it develops a deterministic filter that 

can be applied to multivariate models. Andreasen et al. (2013) also derive a multivariate pruned state equation for 

second-order accurate models (I learnt about that paper after the present research was completed); these authors use 

that equation to derive a simulated methods of moments estimator for DSGE models; by contrast, the paper here 

focuses on filtering latent state variables. 

,t t ty   
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            and 
1

1, 1,'{ } ,Z Z

t t t t tV V  

    
     

1

1, 1 1, 1, 1, 1,'{ ' } .Z Z Z Z Z

t t t t t t t t t tV V V V V



                         (12)  

The filter is started with the unconditional mean and variance of 0:Z
 0,0 0( ),Z E Z 0,0 0( );ZV V Z

 

1, 1t tZ    
and 1, 1

Z

t tV    for 0t  are computed by iterating on (8)-(12). Henceforth, I refer to this filter 

as the ‘KalmanQ’ filter. Computer code that implements KalmanQ is available on my web page. 

0 0( ), ( )E Z V Z  and 1,

u

t tV   can be computed exactly; see the Appendix. The linear updating 

formula (11) would be an exact algorithm for computing the conditional expectation 1, 1,t tZ   if 

1tZ   and the observables were (jointly) Gaussian (then 1, 1t tZ    would be a linear function of the 

data). This condition is not met in the second-order model, as the disturbance 1tu  of the state 

equation (6) is non-Gaussian.  However, as shown below, the KalmanQ filter closely tracks the 

true latent variables.
5
  

When the linearized model is the true DGP (i.e. when 0 11 12 220, 0, 0, 0),F F F F   
 
then the 

filter here is identical to the conventional linear Kalman filter, and the updating formula (11) 

holds exactly. In the presence of second-order model terms, KalmanQ is more accurate than a 

conventional Kalman filter that assumes that the linearized model (3) is the true DGP; see below.  

 

 

Quasi-maximum likelihood estimation of model parameters 

If model parameters are unknown, then a quasi-maximum likelihood (QML) estimate of those 

parameters can be obtained by maximizing the function , 1 , 11
( | ) ln ( | ( ); ( )),

TT y

t t t t tt
L h y y V   
  with 

respect to the vector of unknown parameters, .  Here ( | ; )h y V is the multivariate normal density 

with mean   and variance V.  For a given ,  , 1 , 1( ) ( )t t t ty Z    is the prediction of ty  generated 

by KalmanQ, based on date t-1 information, 
1;t  , 1 , 1( ) ( ) 'y Z

t t t tV V      is the conditional 

variance of ,ty given 
1.t  Under conditions discussed in Hamilton (1994, ch.13), the QML 

estimator 
QML

T  is asymptotically normal: 
1 1

2 1 2( ) (0,( ( ) ) )QML

TT N J J J   

  , where   is the true 

                                                 
5
 Without Gaussianity, 1, 1t tZ    is a non-linear function of data 

1:t  1, 1 1( , )tt t tZ y    . (11) can be viewed as a linear 

approximation of this function: 1, 1 1( ),t t t tZ y y      with 
11 1( , ) / | .

t

t

t t t y yy y 
      By the Law of Iterated 

Expectations, 1, 1, 1( | )tt t t tZ E Z    , and thus: 1, 1 1, 1 1,( ).t t t t t t t tZ Z y y       
 
 Recall that the observable 1ty   is a linear 

function of 
1tZ   

(see (7));
 
this may help to explain the good performance of the linear updating rule.
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parameter vector and 
T1

1 t 0 t 0t 1
J plimT ( ) ( ) '   


  , with t 0 t 0( ) log(h ( ))/ ,    

z

t t t,t 1 0 t,t 1 0h ( ) h(y |y ( );V ( ))   
  
and 

T1 2

2 t 0t 1
J plimT log(h ( ))/ '.  


      

 

3. Monte Carlo evidence 

3.1. A textbook RBC model 

The method is tested for a basic RBC model. Assume a representative infinitely-lived household 

whose  date t expected lifetime utility tV  is given by 
1 1 1/1 1

11 1 1/
{ } ,t t t t t tV C N EV 

    

 
   where

 tC
 

and tN   are consumption and hours worked, at t, respectively. 0  and 0  are the risk 

aversion coefficient and the (Frisch) labor supply elasticity. t  is an exogenous taste (discount 

factor) shock of unit unconditional mean. 0 1   is the steady state subjective discount factor. 

The household maximizes expected life-time utility subject to the resource constraint 

1

1 (1 ) ,t t t t t tC K K N K  

      where 1tK   is the end-of-period t capital stock; 
1

t t t tY K N    is 

output. 0 , 1   are the capital share and the capital depreciation rate, respectively. 0t 
 
is 

exogenous total factor productivity (TFP). The household’s first-order conditions are:  

                  
1 1

1 1 1 1( / ) ( 1 ) 1t t t t t t tE C C K N        

       ,   
1/(1 )t t t t tC K N N       . 

The forcing variables follow independent autoregressive processes: 1 ,ln( ) ln( )t t t     

1 ,ln( ) ln( ) ,t t t      0 , 1,     where ,t  
 and 

 ,t  
are normal i.i.d. white noises with 

standard deviations   and ,  respectively. 

The numerical simulations discussed below assume 0.99, 4, 0.3, 0.025,        

0.99;   
 

parameter values in that range are standard in quarterly macro models. The 

parameter   that scales the size of the shocks is normalized as 1.
 The risk aversion coefficient 

is set at a high value, 10,  so that the model has enough curvature to allow for non-negligible 

differences between the second-order accurate and linear model approximations. One model 

variant assumes shocks that are much larger than the shocks in standard macro models, in order 

to generate big differences between the two approximations: 0.20,   0.01  . I refer to this 

variant as the ‘big shocks’ variant. I also consider a second ‘small shocks’ variant, in which the 

standard deviations of shocks are twenty time smaller: 0.01,  0.0005   (conventional RBC  
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models assume that the standard deviation of TFP innovations is about 1%; e.g., Kollmann 

(1996)).
 6

 

The observables are assumed to be GDP, consumption, investment and hours worked; 

measurement error is added to the logs of these variables. Measurement error has a standard 

deviation of 0.04 (0.002) in the model variant with big (small) shocks.  

Chris Sims’ MATLAB program gensys2 is used to compute first- and second-order 

accurate model solutions. The model is approximated in terms of logged variables (the state- and 

observation equations are expressed in terms of logged variables).  

 

Predicted standard deviations 

Table 1 reports unconditional standard deviations of 7 logged variables (GDP, consumption, 

investment, capital, hours, TFP and the taste shock )  generated by the first- and second-order 

approximations.
7
 Model variants with both shocks, and variants with just one type of shock, are 

considered; moments for non-HP filtered variables are shown, as well as moments of HP filtered 

variables (smoothing parameter: 1600).   

 In the ‘big shocks’ model variant, the standard deviations of endogenous variables are 

huge; e.g., with both shocks, the standard deviation of (non-HP filtered) GDP is 176% (82%) 

under the second-order (first-order) approximation; GDP is thus about twice as volatile under the 

second-order approximation (than in the linearized model).
8
  The capital stock, investment and 

hours worked (non-HP filtered) are about one-half more volatile under the second-order 

approximation than under the linear approximation. By contrast, consumption volatility is similar 

across the two approximations. Consumption is much less volatile than GDP, due to the assumed 

high risk aversion of the household. The preference shock ( )  is the main source of fluctuations 

in the capital stock, GDP and investment; TFP shocks are the main drivers of consumption.  The 

correlation between the second- and first-order approximations of a given variable is noticeably 

below unity, in the model variant with big shocks: e.g., about 0.7 for capital and investment, and 

0.5 for GDP.  

                                                 
6
 The relative size of the TFP and taste shocks assumed here (i.e.   20-times larger than )  ensures that each 

shock accounts for a non-negligible share of the variance of the endogenous variables; see below.  
7
The statistics are shown for variables without measurement error. The ranking of volatilities generated by the two  

approximations and shocks is not affected by the presence of measurement error.  
8
HP filtered variables are markedly less volatile than non-HP filtered variables; however, volatility remains much 

higher under the second-order approximation than under the linear approximation, in the ‘big shocks’ variant. E.g. 

the standard dev. of HP filtered GDP is 47% (23%) under the second- (first-) order approximation.  
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The ‘small shocks’ model variant generates much smaller standard deviations of 

endogenous variables that are roughly in line with predicted moments reported in the RBC 

literature (e.g., Kollmann (1996)); e.g., the predicted standard deviation of HP-filtered GDP and 

investment are about 1% and 5%, respectively (with both shocks). With small shocks, it remains 

true that variables are more volatile in the second-order model than in the linearized model, 

however, the difference is barely noticeable. E.g., the ratio of the GDP [investment] standard 

dev. across the 2
nd

/1
st
 order approximations is merely 1.005 [1.002]. 

 

Filter accuracy 

I generate 50 simulation runs of T=500 and of T=100 periods, using the second-order (pruned) 

state equation of the RBC model. Each run is initialized at the unconditional mean of the state 

vector. I apply the KalmanQ filter to the simulated series (with measurement error). I also use a 

conventional Kalman filter, referred to as ‘KalmanL’,  that treats the linearized model (3) as the 

true DGP. In addition, the standard particle filter--referred to a ‘PF(p)’, where p is the number of 

particles--as described in An and Schorfheide (2007) is applied to the pruned state equation (4); 

for the simulation runs with T=500 periods, 100,000 particles are employed; for runs with T=100 

periods, versions of the PF with 100,000 and with 500,000 particles are used.
9
 Accuracy is 

evaluated for the 7 logged variables considered in Table 1.  

 In each simulation run s=1,..,50, the root mean square error (RMSE) is computed, across 

all (logged) 7 variables,
 

2 1/ 21 7
1 1, , , ,7

( ( ) ) ,i iT
i ts All s t s t tT

RMSE       and separately for each individual 

variable i=1,..7, 
2 1/ 21

, 1 , , ,( ( ) ) ,T i i

s i t s t s t tRMSE  
    

 
where ,

i

s t  is the true date t value of variable i in 

run s,  while , ,

i

s t t  is the filtered estimate (conditional expectation) of that variable, given the 

date t information set. Table 2 reports RMSEs that are averaged across simulation runs. In the 

Panels labeled ‘Average RMSEs’, Column (1) shows average RMSE, across all 7 variables, 

501
1 ,50

,s s ALLRMSE while Cols. (2)-(8) separately show average RMSEs for each individual 

variable i, 
501

1 ,50
.s s iRMSE  Also reported are maximum estimation errors across all variables, 

periods and runs, as well as maximum estimation errors for each variable i (across all periods 

and all simulation runs); see Panels labeled ‘Maximum Errors’. These accuracy measures are 

                                                 
9
 I apply KalmanL to de-meaned series, as the linearized model implies that the unconditional mean of state 

variables, expressed as differences from steady state, is zero, while variables generated from the second-order model 

have a non-zero mean. The initial particles used for the particle filter are drawn from a multi-variate normal 

distribution whose mean and variance are set to unconditional moments of the state vector.  
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reported for each of the filters (see rows labeled ‘KalmanQ’, ‘PF(100,000)’, ‘PF(500,000)’, and 

‘KalmanL’). In addition, I report the fraction of simulation runs in which the KalmanQ filter 

generates lower RMSEs and lower maximum estimation error than the other filters.  

Table 2 shows that the KalmanQ filter is more accurate than the other filters, in all (or 

almost all) simulation runs—this holds for both the ‘big shocks’ and ‘small shocks’ model 

variants. The conventional KalmanL filter, is least accurate.  

Average RMSEs generated by KalmanQ are often orders of magnitudes smaller than the 

RMSE’s generated by the particle filter, and that even when 500,000 particles are used. E.g., for 

the simulation runs of the ‘big shocks’ model variant with T=100 periods, the average RMSEs 

for GDP are 0.039, 0.755, 0.527 and 1.488, respectively, for KalmanQ, PF(100,000), 

PF(500,000), and for KalmanL; the corresponding maximum errors are 0.160, 10.615, 4.548 and 

9.826, respectively (see Panel (a.2), Col. (2)).  

For the ‘small shocks’ simulation runs with T=100 periods, the average RMSEs for GDP 

are 0.0007, 0.0060, 0.0046 and 0.0224, for KalmanQ, PF(100,000), PF(500,000) and KalmanL 

respectively, while corresponding maximum errors are 0.0033, 0.0319, 0.0224 and 0.0918 (see 

Panel (b.2)). Not surprisingly, all the filters are more accurate when shocks are small, and thus, 

the absolute accuracy differences between the filters are smaller. However, the relative 

improvement in accuracy from using the KalmanQ filter remains sizable.  
 

Computing time 

KalmanQ, the particle filters with 100,000 and 500,000 particles, and KalmanL require 0.03, 

14.69, 81.21 and 0.01 seconds, respectively, to filter simulated series of T=100 periods generated 

by the RBC model, on a desktop computer with a 64-bit operating system and a 3.4 Ghz 

processor. For a series of T=500 periods, the corresponding computing times are 0.12, 73.72, 

401.58 and 0.04 seconds, respectively. Thus, the KalmanQ filter is about 500 (3000) times faster 

than the particle filter with 100,000 (500,000) particles.  

For a sufficiently large number of particles, the particle filter is (asymptotically) an exact 

algorithm for computing the conditional expectation of the state vector. However, the 

experiments in Table 2 suggest that a very large number of particles (above 500,000) is needed 

to outperform KalmanQ; the computational cost of using such a large number of particles would 

be substantial. 
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Evaluating the QML parameter estimates 

For 20 simulations runs of the ‘big shocks’ and ‘small shocks’ model variants, I computed quasi-

maximum likelihood (QML) estimates of the risk aversion coefficient ( ),  the labor supply 

elasticity ( ),  the autocorrelations of the forcing variables ( , )    and the standard deviations 

of the innovations to the forcing variables ( , ).    Table 3 reports the mean and median 

parameter estimates, and the standard deviation of the estimates, across the sample of 20 

estimates per model variant. The parameters are tightly estimated; mean and median parameter 

estimates are close to the true parameter values.
10

 

 

3.2. State equations with randomly drawn coefficients 

Many other Monte Carlo experiments confirmed that the KalmanQ filter is competitive with the 

particle filter, in terms of accuracy of the estimated state variables. Tables 4 and 5 consider 

model variants in which the coefficients of the state equation (4) are drawn randomly from 

normal distributions. In both Tables, Panel (a) pertains to models with n=20 variables, while 

Panel (b) assumes n=7 variables; I refer to the models in Panels (a) and (b) as ‘large models’, and 

as ‘small models’, respectively. In both set-ups, 7m  independent exogenous innovations, and 

4Yn  observables are assumed. In all variants, the standard deviations of the (independent) 

exogenous innovations and of measurement errors are set at 1%.
11

  The elements of 0F  are 

independent draws from N(0,1) that are scaled by a common factor so that the largest element of 

0F  is 
2(0.01)  in absolute value. The elements of 1F  are independent draws from N(0,1) that are 

scaled by a common factor so that the largest eigenvalue of 1F  has an absolute value of  0.99.  

The elements of 2F  are independent draws from N(0,1). In one set of simulations, referred to as   

‘strong curvature’ simulations, all elements of 11 12 22, ,F F F  are independent draws from N(0,1); in 

another set of simulations with ‘weak curvature’, the elements of 11 12 22, ,F F F  are independent 

draws from 
2(0,(0.01) ),N  so that curvature is much smaller, on average. For both the ‘large’ and 

‘small’ model variants, 50 random ‘strong curvature’ coefficient sets, and 50 random ‘weak 

                                                 
10

 A more detailed evaluation of the small sample properties of the QML estimator is left for future research.  
11 2 2(.01) ; (.01) .

ym nI I     As before, the parameter   that scales the size of the shocks is normalized as 1.  
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curvature’ coefficient sets were drawn. For each of the 200 random sets of coefficient, the model 

was simulated over T=100 periods.  

 Table 4 reports averaged standard deviations of model variables (elements of )t across 

the draws for the ‘large’ and ‘small’ model variants (see Panels (a) and (b), respectively) with 

‘strong curvature’ (Col. (1)) and with ‘weak curvature’ (Col. (2)).
12

 The ‘strong curvature’  

model variants generate much greater average standard deviations (above 240%) than the ‘weak 

curvature’ variants (about 10%). In ‘strong curvature’ model variants, average predicted 

volatility is several time larger than in corresponding linear structures (in which 0 2 11 12 22, , , ,F F F F F  

are set to zero). By contrast, in the ‘weak curvature’ variants, volatility is only slightly higher 

than in corresponding linear structures.  

Table 5 evaluates the accuracy of the KalmanQ, PF(100,000) and KalmanL filters, for 

each of the four model classes (large/small models with strong/weak curvature). For each model 

class, the KalmanQ filter generates the lowest average RMSEs and the lowest maximum errors. 

For example, for the ‘large models’, the average RMSEs of KalmanQ, PF(100,000) and 

KalmanL are 0.155, 31.243 and 2.978, respectively, under ‘strong curvature’, and 0.031, 0.085 

and 0.052, respectively under ‘weak curvature’ (see Panel (a)). 

 

4. Conclusion 

This paper has developed a novel approach for the estimation of latent state variables in DSGE 

models that are solved using a second-order accurate approximation. By contrast to particle 

filters, no stochastic simulations are needed for the filter here--the present method is thus much 

faster than particle filters. In Monte Carlo experiments, the filter here generates more accurate 

estimates of latent state variables than the standard particle filter, especially when the model has 

strong curvature or when shocks are large. The present filter is also more accurate than a Kalman 

filter that treats the linearized model as the true DGP. Due to its high speed, the filter presented 

here is suited for the estimation of model parameters; a quasi-maximum likelihood procedure 

can be used for that purpose. 

 

 

 

                                                 
12

For each set of coefficients, the standard deviation of each variable was computed; then, standard deviations were 

averaged across variables and coefficient draws, for each model class (large/small models with strong/weak curvature). 
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APPENDIX: Computing moments of the state vector (for filter formula) 

The unconditional mean and variance of the state vector 1tZ  of the augmented state equation 

(5) are given by: 
1

1 1 0( ) ( )tE Z I G G

    and
 1 1 1 1 1( ) ( ) ' ( )t t tV Z GV Z G V u    , respectively. Stationarity 

of 1tZ   (which holds under the assumption that all eigenvalues of 1F  are strictly inside the unit 

circle) implies 1( ) ( ),t tE Z E Z  1( ) ( ).t tV Z V Z 
 

Once 1( )tV u   has been determined, 1( )tV Z   can 

efficiently be computed using a doubling algorithm. Note that 
(1)

1 20
( )i

t t ii
F F 




 and recall that 

                                  
(1)

1 2 1 12 1 22 1 1[ ( ) ( ( ))].t t t t t tu G G G P E P            
                                  

(A.1)
 

(1) (1)

1( ) 0, ( ) 0,t t tE E      (1)

1 1(( ) ' ) 0,t t tE      (1)

1 1(( ) ( ) ') 0t t tE P      hold as 1t   has mean 

zero and is serially independent. Hence, the covariances between the first and second right-hand 

side (rhs) terms in (A.1), and between the second and third rhs terms are zero. Normality of 1t   

implies that the unconditional mean of all third order products of elements of  1t   is zero 

(Isserlis’ theorem): 1 1 0i j k

t t tE      for all i,j,k=1,..,m, where 1

h

t   is the h-th element of 1t  . Thus 

the covariance between the first and third rhs terms in (A.1) too is zero. Note that 
(1) (1)

1( ) ( ) ,t t tV V       with  
(1) (1)

1 1 2 2( ) ( ) ' '.t tV FV F F F     Thus,  

                                   
(1)

1 2 2 12 12 22 1 22( ) ' ( ( ) ) ' ( ( )) '.t t tV u G G G V G G V P G       
 

1( ( ))tV P   , the variance of 
 

               
1 1 1 2 1 2 2 2 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1( ) ( , ,..., , ,..., ,..., , , )m m m m m m m m

t t t t t t t t t t t t t t t t tP                   

                 ,  

can be computed as follows. For i=1,..,m,  let ie  be a column vector whose i-th element is 1, 

while all other elements are zero. Thus 1 1'
i

t t ie    and 1 1' .j

t t je    Hence,  1 1 1 1'i j

t t t ij t        , 

with 1
2
( ' ').ij i j j ie e e e  

 
Note that 1 1( ' ) ( )t ij t ijE trace       , 1 1( ' )t ij tVar    

2 ( )ij ijtrace        and 1 1 1 1( ' , ' ) 2 ( )t ij t t kl t ij klCov trace               
 
 (normality of 1t   is 

needed for the second and third formulae); see Magnus (1978). These formulae allow to compute 

the variance of elements of the vector 1( )tP    and the covariance between any two elements of 

that vector, which pins down all elements of the matrix 1( ( ))tV P   .   
                 

Conditional variance of state-form disturbance 

To derive the formula for the conditional variance of 1tu   ((10) in main text) these facts are used: 

(i) 
(1) (1)

1 1 ,(( ) ' | ) ,t

t t t t tE          with 
(1) (1)

, ( | ).t

t t tE    

(ii) 
(1)(1) (1) (1) (1) (1) (1) (1) (1)

1 1 1 1 , , ,(( )( )'| ) (( ') ( ')| ) (( ')| ) ( ') .t t t

t t t t t t t t t t t t t t t tE E E V 

                            

(Note that 
(1) (1) (1) (1) (1)

, ( '| ) ( | ) ( | ) 't t t

t t t t t tV E E E         
(1) (1) (1) (1)

, ,( '| ) ' .t

t t t t t tE      )  

(iii) 1 1( ( ) ' | ) 0,t

t tE P     
 

(1)

1 1( ( )( ) ' | ) 0t

t t tE P       (due to Isserlis’ theorem). Thus, the conditional 

covariance between the 1
st
 and 3

rd
 rhs terms in (A.1) and between th 2

nd
 and 3

rd
 rhs terms is zero.  
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Table 1.  RBC model: predicted standard deviations  
 

 Y C I K N     
  

 (1) (2) (3) (4) (5) (6) (7) 
 

(a) Model variant with big shocks ( 0.20, 0.01)     

(a.1) Non-HP filtered variables 
Second-order model approximation 

Both shocks                1.757 0.300 5.366 3.400 2.609 1.418 0.071 

Just   shock 0.492 0.264 1.387 0.959 1.761 1.418 0.000 

Just   shock 1.558 0.133 4.799 3.096 1.762 0.000 0.071 

Linearized model  

Both shocks 0.817 0.276 3.269 2.364 1.862 1.418 0.071 

Just   shock 0.469 0.264 1.285 0.929 1.751 1.418 0.000 

Just   shock 0.669 0.083 3.006 2.174 0.634 0.000 0.071  

(a.2) HP filtered variables 
Second-order model approximation 

Both shocks 0.469 0.053 1.962 0.115 0.688 0.259 0.013 

Just   shock 0.124 0.037 0.483 0.038 0.212 0.259 0.000  

Just   shock 0.420 0.034 1.706 0.104 0.608 0.000 0.013  

Linearized model  

Both shocks 0.229 0.041 1.059 0.095 0.350 0.259 0.013  

Just   shock 0.118 0.037 0.416 0.037 0.205 0.259 0.000  

Just   shock 0.196 0.016 0.974 0.087 0.284 0.000 0.013   
 

(b) Model variant with small shocks ( 0.01, 0.0005)     

(b.1) Non-HP filtered variables 
Second-order model approximation 

Both shocks                0.041 0.014 0.164 0.118 0.093 0.071 0.004  

Just   shock  0.023 0.013 0.064 0.046 0.088 0.071 0.000 

Just   shock 0.034 0.004 0.151 0.109 0.032 0.000 0.004  

Linearized model  

Both shocks 0.041 0.014 0.163 0.118 0.093 0.071 0.004 

Just   shock 0.023 0.013 0.064 0.046 0.088 0.071 0.000 

Just   shock 0.033 0.004 0.150 0.109 0.032 0.000 0.004  

(b.2) HP filtered variables 
Second-order model approximation 

Both shocks 0.011 0.002 0.053 0.005 0.018 0.013 0.001  

Just   shock 0.006 0.002 0.021 0.002 0.010 0.013 0.000  

Just   shock 0.010 0.001 0.049 0.004 0.014 0.000 0.001 

Linearized model  

Both shocks 0.011 0.002 0.053 0.005 0.018 0.013 0.001  

Just   shock 0.006 0.002 0.021 0.002 0.010 0.013 0.000  

Just   shock 0.010 0.001 0.049 0.004 0.014 0.000 0.001    
Note: Standard deviations (std.) of logged variables (listed above Cols. (1)-(7)), without measurement error, are shown for 

the RBC model in Section 3.1. The std. were computed using the formulae in the Appendix. Std. are not reported in %.  

Panel (a) (‘Big shocks’) assumes std. of  innovations to TFP ( )  and the taste parameter   of 20% and 1%, respectively. 

Panel (b) (‘Small shocks’) sets these std. at 1% and 0.05%, respectively.  Rows labeled ‘Both shocks’; ‘Just   shock’; and 

‘Just  shock’ show moments predicted with simultaneous two shocks; with just the TFP shock; and with just the taste shock, 

respectively. Panels (a.1) and (b.1) report moments of Non-HP filtered variables; Panels (a.2) and (b.2) pertain to HP filtered 

variables (smoothing parameter: 1600). Y: GDP; C: consumption; I: gross investment; K: capital stock; N: hours worked.  
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Table 2.  RBC model: accuracy of filters 
 

 All variables Y C I K N      
 

 (1) (2) (3) (4) (5) (6) (7) (8) 

 

(a) Model variant with big shocks ( 0.20, 0.01)     

 

(a.1) 50 simulation runs with T=500 periods 

Average RMSEs      
KalmanQ 0.157 0.038 0.006 0.040 0.387 0.039 0.127 0.022 

PF (100,000) 1.189 1.022 0.188 0.907 2.193 1.447 0.873 0.070 

KalmanL 1.939 1.659 0.184 1.605 4.183 0.770 1.143 0.082 
  

Maximum Errors    
KalmanQ 3.448 0.209 0.024 0.164 3.448 0.166 1.198 0.236   

PF (100,000) 20.188 15.750 1.927 10.451 20.188 19.842 4.236 0.563  

KalmanL 14.824 14.824 1.275 7.849 13.071 3.820 12.039 0.568  
  

Fraction of runs in which RMSE is lower for KalmanQ than for other filters 

PF (100,000) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.98  

KalmanL 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.96  

Fraction of runs in which maximum error is lower for KalmanQ than for other filters 

PF (100,000) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.98  

KalmanL 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.94 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

 

(a.2) 50 simulation runs with T=100 periods 

Average RMSEs      
KalmanQ 0.176 0.039 0.006 0.039 0.435 0.039 0.141 0.023   

PF (100,000) 0.828 0.755 0.121 0.744 1.370 0.892 0.679 0.049 

PF (500,000)  0.597    0.527 0.108 0.499 0.892 0.695 0.658 0.030 

KalmanL 1.917 1.448 0.176 2.063 3.955 0.973 0.975 0.067 
  

Maximum Errors    
KalmanQ 2.855 0.160 0.023 0.134 2.855 0.163 0.901 0.226 

PF (100,000) 13.298 10.615 1.364 9.944 13.190 13.298 2.846 0.414  

PF (500,000) 8.018 4.548 0.560 8.018 5.680 4.577 3.425 0.235  

KalmanL 11.866 9.826 0.655 8.399 11.866 3.484 5.093 0.332 
 

Fraction of runs in which RMSE is lower for KalmanQ than for other filters 

PF (100,000) 1.00 1.00 1.00 1.00 0.84 1.00 1.00 0.64  

PF (500,000) 1.00 1.00 1.00 1.00 0.84 1.00 1.00 0.68  

KalmanL 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.98  
  

Fraction of runs in which maximum error is lower for KalmanQ than for other filters 

PF (100,000) 0.96 1.00 1.00 1.00 0.84 1.00 1.00 0.80  

PF (500,000) 1.00 1.00 1.00 1.00 0.80 1.00 1.00 0.76   

KalmanL 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.96   
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
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Table 2.—ctd. 
 

 All variables Y C I K N      
 

 (1) (2) (3) (4) (5) (6) (7) (8) 

 

(b) Model variant with small shocks ( 0.01, 0.0005)   
 

 

(b.1) 50 simulation runs with T=500 periods 
Average RMSEs      
KalmanQ 0.0022 0.0007 0.0003 0.0019 0.0044 0.0019 0.0022 0.0001  

PF (100,000) 0.0222 0.0068 0.0057 0.0109 0.0180 0.0405 0.0343 0.0007 

KalmanL 0.0411 0.0163 0.0059 0.0583 0.0585 0.0397 0.0312 0.0018 
 

Maximum Errors    
KalmanQ 0.0475 0.0041 0.0011 0.0074 0.0475 0.0081 0.0163 0.0012 

PF (100,000) 0.2437 0.0434 0.0330 0.0723 0.2438 0.2295 0.1939 0.0054 

KalmanL 0.2293 0.0753 0.0248 0.2146 0.2294 0.1837 0.1512 0.0074 
 

Fraction of runs in which RMSE is lower for KalmanQ than for other filters 

PF (100,000) 1.00 1.00 1.00 1.00 0.98 1.00 1.00 1.00 

KalmanL 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00  
  

Fraction of runs in which maximum error is lower for KalmanQ than for other filters 

PF (100,000) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

KalmanL 0.98 1.00 1.00 0.98 0.92 1.00 0.98 0.94 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

 

(b.2) 50 simulation runs with T=100 periods 
Average RMSEs      
KalmanQ 0.0042 0.0007 0.0003 0.0019 0.0099 0.0019 0.0035 0.0002  

PF (100,000) 0.0244 0.0060 0.0051 0.0096 0.0368 0.0362 0.0313 0.0009 

PF (500,000) 0.0223  0.0046 0.0039 0.0074 0.0398 0.0278 0.0271 0.0010  

KalmanL 0.0508 0.0224 0.0078 0.0819 0.0716 0.0466 0.0357 0.0019  
 

Maximum Errors    
KalmanQ 0.0496 0.0033 0.0009 0.0073 0.0496 0.0068 0.0171 0.0012  

PF (100,000) 0.1866 0.0319 0.0261 0.0551 0.1866 0.1848 0.1473 0.0046  

PF (500,000) 0.2591 0.0224 0.0171 0.0402 0.2591 0.1189 0.1143 0.0065  

KalmanL 0.3001 0.0918 0.0263 0.3001 0.2900 0.1846 0.1424 0.0083  
 

Fraction of runs in which RMSE is lower for KalmanQ than for other filters 

PF (100,000) 1.00 1.00 1.00 1.00 0.94 1.00 1.00 0.98  

PF (500,000) 1.00 1.00 1.00 1.00 0.90 1.00 1.00 0.92  

KalmanL 1.00 1.00 1.00 1.00 0.94 1.00 1.00 0.90  
  

Fraction of runs in which maximum error is lower for KalmanQ than for other filters 

PF (100,000) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00         

PF (500,000) 1.00 1.00 1.00 1.00 0.92 1.00 1.00 0.96  

KalmanL 0.98 1.00 1.00 1.00 0.94 1.00 1.00 0.90  
Note:  The Table reports average Root Mean Squared Errors (RMSEs) and maximum estimation errors of estimated 

latent states, across simulation runs (errors are not expressed in %), for different variants of the RBC model; accuracy is 

reported across all logged variables (Col. (1) ‘All variables’), and separately for each logged variable (see Cols. (2)-(8) 

labeled ‘Y’,…, ' ' ); see Sect. 3.1. for further information. KalmanQ: the filter for pruned second-order models 

developed in this paper; PF(p): standard particle filter with p particles: KalmanL: standard Kalman filter that assumes 

that the linearized DSGE model is the true DGP. Panel (a) (‘Big shocks’) assumes std. of TFP and taste shock 

innovations of 20% and 1%, respectively; panel (b) (‘Small shocks’) sets these standard deviations at 1% and 0.05%, 

respectively. Y: GDP; C: consumption; I: gross investment; K: capital stock; N: hours worked; :  TFP; :  taste shock.  
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Table 3.  RBC model: distribution of quasi-maximum likelihood estimates of model 

parameters based on the KalmanQ filter 
 

               
 

  (1) (2) (3) (4) (5) (6) 
 

(a) Model variant with big shocks ( 0.20, 0.01)     

True parameter value 10.00 4.00 0.99 0.99 20.00% 1.00%  

Mean estimate 10.19 4.30 0.99 0.98 19.41% 0.95% 

Median estimate 10.01 4.11 0.99 0.98 19.04% 0.89% 

Standard dev. of estimates 0.96 1.51 0.003 0.005 2.27% 0.17% 
 

 

(b) Model variant with small shocks ( 0.01, 0.0005)   
 

True parameter value 10.00 4.00 0.99 0.99 1.00% 0.05% 

Mean estimate 10.21 5.55 0.99 0.71 0.77% 0.18%   

Median estimate 10.24 3.40 0.99 0.71 0.76% 0.14%  

Standard dev. of estimates 1.17 4.06 0.004 0.20 0.12% 0.11%  

 
Note: The Table reports true parameter values, as well as the mean, median and standard deviation of quasi- 

maximum likelihood (QML) estimates of structural model parameters based on the KalmanQ filter (developed in 

this paper), obtained for 20 different simulation runs with T=100 periods. Results are shown for the ‘big shocks’ 

variant of the RBC model (Panel (a)), and for the ‘small shocks’ variant (Panel (b)). :  risk aversion coefficient 

(Col. (1)); : Frisch labor supply elasticity (Col. (2));   
[ ] : autocorrelation of TFP [taste shock] (Cols. (3)-(4)); 

  [ ] :  standard deviation of TFP [taste shock] innovation (Cols. (5)-(6)). 

 
 

Table 4. Models with randomly drawn coefficients: standard deviations of variables 
 strong curvature weak curvature  
                                                 

                                                               (1)  (2) 

(a) Large models (n=20) 
(a.1) Non-HP filtered variables  
Second-order model  3.061 0.119 

Linearized model  0.106 0.106 

 (a.2) HP filtered variables 
Second-order model 1.089 0.094 

Linearized model  0.092 0.092 
 

(b) Small models (n=7) 
(b.1) Non-HP filtered variables 
Second-order model 2.446 0.147 

Linearized model  0.144 0.144 

 (b.2) HP filtered variables 
Second-order model  0.678 0.116 

Linearized model  0.115 0.115 
Note: Panel (a) considers models with n=20 variables (‘large models’), while Panel (b) assumes n=7 variables 

(‘small models’). The coefficients of the state equation (4) are drawn randomly. In ‘strong curvature’ [‘weak 

curvature’] experiments—see Col. (1) [Col. (2)]--all elements of the matrices of curvature coefficients 11 12 22, ,F F F  

are independent draws from N(0,1)  [N(0,(0.01)
2
]. For both the ‘large’ and ‘small’ model variants, 50 random 

‘strong curvature’ coefficient sets, and 50 random ‘strong curvature’ coefficient sets were drawn. For each of the 

resulting 200 sets of coefficients, the model was simulated over T=100 periods. For each set of coefficients, the 

standard deviation of each variable without measurement error was computed; then, standard deviations were 

averaged across all variables and coefficient draws, for each of the four model class (large/small models with 

strong/weak curvature). (The averaged standard deviations are not reported in %.)  
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Table 5. Models with randomly drawn coefficients: accuracy of filters 

 strong curvature weak curvature            
                                      

(1)   (2)                    
 

(a) Large models (n=20) 
Average RMSEs      
KalmanQ 0.155 0.0308 

PF (100,000) 31.243 0.0851 

KalmanL 2.978 0.0523 
 

Maximum Errors    
KalmanQ 4.784 0.2789  

PF (100,000) 4440.00 9.3808 

KalmanL 149.441 1.2315 
 

 

Fraction of runs in which RMSE is lower for KalmanQ than for other filters 

PF (100,000) 1.00 0.98  

KalmanL 1.00 0.94  
 

Fraction of runs in which maximum error is lower for KalmanQ than for other filters 

PF (100,000) 1.00 0.76 

KalmanL 0.98 0.74 

 

(b) Small models (n=7) 

Average RMSEs      
KalmanQ 0.035 0.0184  

PF (100,000) 38.082 0.0186 

KalmanL 1.651 0.0409 
 

Maximum Errors    
KalmanQ 1.12 0.0943 

PF (100,000) 3263.28 0.0954 

KalmanL 37.38 0.1265 
 

 

Fraction of runs in which RMSE is lower for KalmanQ than for other filters 

PF (100,000) 0.76 0.76 

KalmanL 1.00 0.96 
 

Fraction of runs in which maximum error is lower for KalmanQ than for other filters 

PF (100,000) 0.82 0.500 

KalmanL 1.00 0.660 
 

 

Note:  The Table reports average Root Mean Squared Errors (RMSE) and maximum estimation errors of estimated 

latent variables produced by three filters, across simulation runs, for versions of state equation (4) with randomly drawn 

coefficients. Panel (a) (‘Large models’) assumes n=20 variables; Panel (b) (‘Small model’) assumes n=7 variables. In  

‘strong curvature’ [‘weak curvature’] experiments (see Column 1 [2]), all elements of the matrices of curvature 

coefficients 11 12 22, ,F F F  are independent draws from N(0,1)  [N(0,(0.01)
2
]. For both the ‘large’ and ‘small’ model 

variants, 50 random ‘strong curvature’ coefficient sets, and 50 random ‘weak curvature’ coefficient sets were drawn. For 

each of the resulting 200 sets of coefficient, the model was simulated over T=100 periods. For each set of coefficients, 

the RMSE and the maximal error was computed, for each of the ‘n’ estimated latent variables; then, RMSEs were 

averaged across variables and coefficient draws, for each of the four model classes (large/small models with 

strong/weak curvature); maximum errors were likewise determined across all n variables, and across all draws, for each 

of the four model classes.  KalmanQ: the filter for pruned second-order models developed in this paper; PF(p): standard 

particle filter with p particles: KalmanL: standard Kalman filter that assumes that the linearized model is the true DGP.  




