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Abstract
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paper begins with a review of the concepts of weak and strong cross-sectional dependence,
and discusses the exponent of cross-sectional dependence that characterizes the different
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1 Introduction

This paper reviews econometric methods for large linear panel data models subject to error cross-
sectional dependence. Early panel data literature assumed cross-sectionally independent errors and
homogeneous slopes. Heterogeneity across units was confined to unit-specific intercepts, treated
as fixed or random (see, e.g. the survey by Chamberlain (1984))). Dependence of errors was only
considered in spatial models, but not in standard panels. However, with an increasing availability
of data (across countries, regions, or industries), the panel literature moved from predominantly
micro panels, where the cross dimension (V) is large and the time series dimension (7) is small,
to models with both N and T large, and it has been recognized that, even after conditioning on
unit-specific regressors, individual units, in general, need not be cross-sectionally independent.

Ignoring cross-sectional dependence of errors can have serious consequences, and the presence of
some form of cross-sectional correlation of errors in panel data applications in economics is likely to
be the rule rather than the exception. Cross correlations of errors could be due to omitted common
effects, spatial effects, or could arise as a result of interactions within socioeconomic networks.
Conventional panel estimators such as fixed or random effects can result in misleading inference
and even inconsistent estimators, depending on the extent of cross-sectional dependence and on
whether the source generating the cross-sectional dependence (such as an unobserved common
shock) is correlated with regressors (Phillips and Sul (2003); |Andrews (2005); Phillips and Sul
(2007); [Sarafidis and Robertson (2009)). Correlation across units in panels may also have serious
drawbacks on commonly used panel unit root tests, since several of the existing tests assume
independence. As a result, when applied to cross-sectionally dependent panels, such unit root
tests can have substantial size distortions (O’Connell (1998)). If, however, the extent of cross-
sectional dependence of errors is sufficiently weak, or limited to a sufficiently small number of cross-
sectional units, then its consequences on conventional estimators will be negligible. Furthermore,
the consistency of conventional estimators can be affected only when the source of cross-sectional
dependence is correlated with regressors. The problem of testing for the extent of cross-sectional
correlation of panel residuals and modelling the cross-sectional dependence of errors are therefore
important issues.

In the case of panel data models where the cross section dimension is short and the time series

dimension is long, the standard approach to cross-sectional dependence is to consider the equations



from different cross-sectional units as a system of seemingly unrelated regression equations (SURE),
and then estimate it by Generalized Least Squares techniques (see |Zellner (1962))). This approach
assumes that the source generating cross-sectional dependence is not correlated with regressors and
this assumption is required for the consistency of the SURE estimator. If the time series dimension
is not sufficiently large, and in particular if N > T, the SURE approach is not feasible.

Currently, there are two main strands in the literature for dealing with error cross-sectional
dependence in panels where N is large, namely the spatial econometric and the residual multifac-
tor approaches. The spatial econometric approach assumes that the structure of cross-sectional
correlation is related to location and distance among units, defined according to a pre-specified
metric given by a ‘connection or spatial’ matrix that characterizes the pattern of spatial depen-
dence according to pre-specified rules. Hence, cross-sectional correlation is represented by means
of a spatial process, which explicitly relates each unit to its neighbors (see Whittle (1954), [Moran
(1948)l, [Cliff and Ord, (1973 and [1981)), |Anselin| (1988| and [2001)), Haining| (2003, Chapter 7), and
the recent survey by Lee and Yu (2013)). This approach, however, typically does not allow for
slope heterogeneity across the units and requires a priori knowledge of the weight matrix.

The residual multifactor approach assumes that the cross dependence can be characterized by
a small number of unobserved common factors, possibly due to economy-wide shocks that affect
all units albeit with different intensities. Geweke (1977) and Sargent and Sims (1977)| introduced
dynamic factor models, which have more recently been generalized to allow for weak cross-sectional
dependence by |Forni and Lippi (2001), [Forni et al. (2000)| and Forni et al. (2004)l This approach
does not require any prior knowledge regarding the ordering of individual cross section units.

The main focus of this paper is on estimation and inference in the case of large N and T
panel data models with a common factor error structure. We provide a synthesis of the alternative
approaches proposed in the literature (such principal components and common correlated effects
approaches), with particular focus on key assumptions and their consequences from the practition-
ers’ view point. In particular, we discuss robustness of estimators to cross-sectional dependence of
errors, consequences of coefficient heterogeneity, discuss panels with strictly or weakly exogenous
regressors, including panels with a lagged dependent variable, and highlight how to test for residual
cross-sectional dependence.

The outline of the paper is as follows: an overview of the different types of cross-sectional



dependence is provided in Section 2. The analysis of cross-sectional dependence using a factor
error structure is presented in Section 3. A review of estimation and inference in the case of large
panels with a multifactor error structure and strictly exogenous regressors is provided in Section 4,
and its extension to models with lagged dependent variables and/or weakly exogenous regressors
is given in Section 5. A review of tests of error cross-sectional dependence in static and dynamics
panels is presented in Section 6. Section 7 discusses application of common correlated effects
estimators and tests of error cross-sectional dependence to unbalanced panels, and the final section

concludes.

2 Types of Cross-Sectional Dependence

A better understanding of the extent and nature of cross-sectional dependence of errors is an
important issue in the analysis of large panels. This section introduces the notions of weak and
strong cross-sectional dependence and the notion of exponent of cross-sectional dependence to
characterize the correlation structure of {z;;} over the cross-sectional dimension, i, at a given point
in time, t. Consider the double index process {z;,7 € N,t € Z}, where z;; is defined on a suitable
probability space, the index t refers to an ordered set such as time, and ¢ refers to units of an

unordered population. We make the following assumption:

ASSUMPTION CSD.1: For each t € T C Z, z; = (z14,..., 2n¢) has mean E (z;) = 0, and
variance Var (z;) = ¥;, where ¥; is an N x N symmetric, nonnegative definite matrix. The (¢, j)-
th element of X4, denoted by 0+, is bounded such that 0 < 04 < K, for i = 1,2,..., N, where K

is a finite constant independent of V.

Instead of assuming unconditional mean and variances, one could consider conditioning on a
given information set, ;_1, for t = 1,2, ..., T, as done in (Chudik et al. (2011). The assumption of
zero means can also be relaxed to E (z;) = p (or E (2 |%4—1) = p4_;). The covariance matrix, 3,
fully characterizes cross-sectional correlations of the double index process {z;}, and this section
discusses summary measures based on the elements of 3; that can be used to characterize the
extent of the cross-sectional dependence in z;.

Summary measures of cross-sectional dependence based on ¥; can be constructed in a number

of different ways. One possible measure, that has received a great deal of attention in the literature,



is the largest eigenvalue of 3;, denoted by A; (¥;). See, for example, |Bai and Silverstein (1998),
Hachem et al. (2005) and|Yin et al. (1988). However, the existing work in this area suggests that the
estimates of Aj (3;) based on sample estimates of ¥; could be very poor when N is large relative to
T, and consequently using estimates of A; (2£;) for the analysis of cross-sectional dependence might
be problematic in cases where T is not sufficiently large relative to N. Accordingly, other measures
based on matrix norms of 3; have also been used in the literature. One prominent choice is the
absolute column sum matrix norm, defined by [|3;||; = max;jc(12,. n SN | |oij4], which is equal
to the absolute row sum matrix norm of 3, defined by || 2|, = max;eq12.. .3 Zjvﬂ |oij.t|, due to
the symmetry of 3. It is easily seen that [\ (2¢)| < /[, [Zt]o = |IZ¢ll;- See Chudik et al.
(2011). Another possible measure of cross-sectional dependence can be based on the behavior of
(weighted) cross-sectional averages which is often of interest in panel data econometrics, as well as
in macroeconomics and finance where the object of the analysis is often the study of aggregates or
portfolios of asset returns. In view of this, Bailey et al. (2012) and |Chudik et al. (2011)| suggest
to summarize the extent of cross-sectional dependence based on the behavior of cross-sectional
averages Zyt = Zf\; 1 WitZit = Wgzt, at a point in time ¢, for ¢ € 7, where z; satisfies Assumption

CSD.1 and the sequence of weight vectors w; satisfies the following assumption.

ASSUMPTION CSD.2: Let w; = (wy,...,wny)’, for t € T C Z and N € N, be a vector of
non-stochastic weights. For any ¢ € 7, the sequence of weight vectors {w;} of growing dimension

(N — o0) satisfies the ‘granularity’ conditions:

I[will = /wiwe = 0 (N7%). M

=0 (N*%> uniformly in j € N. (2)

lwell

’w]’t

Assumption CSD.2, known in finance as the granularity condition, ensures that the weights {w;; }
are not dominated by a few of the cross section unitsﬂ Although we have assumed the weights
to be non-stochastic, this is done for expositional convenience and can be relaxed by allowing the
weights, wy, to be random but distributed independently of z;. |Chudik et al. (2011)| define the

concepts of weak and strong cross-sectional dependence based on the limiting behavior of Z,; at a

! Conditions — imply existence of a finite constant K (which does not depend on ¢ or N) such that |ws| <
KN~ forany i =1,2,...,N and any N € N.



given point in time t € 7, as N — oo.

Definition 1 (Weak and strong cross-sectional dependence) The process {zi} is said to be
cross-sectionally weakly dependent (CWD) at a given point in time t € T, if for any sequence of
weight vectors {w:} satisfying the granularity conditions -(@ we have

lim Var(wiz) = 0. (3)

N—o0

{zit} is said to be cross-sectionally strongly dependent (CSD) at a given point in time t € T, if
there exists a sequence of weight vectors {w;} satisfying —(@ and a constant K independent of

N such that for any N sufficiently large (and as N — o0)

Var(wizi) > K > 0. (4)

The above concepts can also be defined conditional on a given information set, €2;_1, see
Chudik et al. (2011)l The choice of the conditioning set largely depends on the nature of the
underlying processes and the purpose of the analysis. For example, in the case of dynamic station-
ary models, the information set could contain all lagged realizations of the process {z;}, that is
Qi1 ={2¢-1,2%t—2, ....}, whilst for dynamic non-stationary models, such as unit root processes, the
information included in £2;_1, could start from a finite past. Conditioning information set could
also contain contemporaneous realizations, which might be useful in applications where a particular
unit has a dominant influence on the rest of the units in the system. For further details, see |[Chudik
and Pesaran (2013c)l

The following proposition establishes the relationship between weak cross-sectional dependence

and the asymptotic behavior of the largest eigenvalue of 3.
Proposition 1 The following statements hold:

(i) The process {zit} is CWD at a point in time t € T, if A1 (2¢) is bounded in N or increases

at the rate slower than N.

(i) The process {zit} is CSD at a point in time t € T, if and only if for any N sufficiently large
(and as N — 00), N~1)\; (Z;) > K > 0.



Proof. First, suppose A; (¥;) is bounded in N or increases at the rate slower than N. We have
Var(wizy) = wiSiwy < (wyiwy) A (), (5)
and under the granularity conditions — it follows that

lim Var(wiz) =0,
N—o0

namely that {z;} is CWD, which proves (i). Proof of (ii) is provided in |[Chudik, Pesaran, and
Tosetti (2011) m

It is often of interest to know not only whether Z,; converges to its mean, but also the rate
at which this convergence (if at all) takes place. To this end, Bailey et al. (2012) propose to
characterize the degree of cross-sectional dependence by an exponent of cross-sectional dependence
defined by the rate of change of Var(z,:) in terms of N. Note that in the case where z; are
independently distributed across i, we have Var(z,) = O (N *1), whereas in the case of strong
cross-sectional dependence Var(Z,;) > K > 0. There is, however, a range of possibilities in between,
where Var(Z,:) decays but at a rate slower than N~!. In particular, using a factor framework,

Bailey et al. (2012) show that in general
Var(zu) = kN> + 5 N™H 4+ O(N ), (6)

where k; > 0 for ¢ = 0 and 1, are bounded in N, which will be time invariant in the case of
stationary processes. Since the rate at which Var(z,;) tends to zero with N cannot be faster
than N~! the range of « identified by Var(z,) lies in the restricted interval —1 < 2a —2 < 0
or 1/2 < a < 1. Note that holds for all values of o < 1, whereas holds only for a = 1.
Hence the process with a@ < 1 is CWD, and a CSD process has the exponent « = 1. [Bailey et al.
(2012)| show that under certain conditions on the underlying factor model, « is identified in the
range 1/2 < a < 1, and can be consistently estimated. Alternative bias-adjusted estimators of «
are proposed and shown by Monte Carlo experiments to have satisfactory small sample properties.

A particular form of a CWD process arises when pair-wise correlations take non-zero values
only across finite subsets of units that do not spread widely as the sample size increases. A

similar situation arises in the case of spatial processes, where direct dependence exists only amongst



adjacent observations, and the indirect dependence is assumed to decay with distance. For further
details see |Pesaran and Tosetti (2011).

Since A1 (3;) < || 2|y, it follows from that both the spectral radius and the column norm
of the covariance matrix of a CSD process will be increasing at the rate N. Similar situations
also arise in the case of time series processes with long memory or strong temporal dependence
where autocorrelation coefficients are not absolutely summable. Along the cross section dimension,

common factor models represent examples of strong cross-sectional dependence.

3 Common Factor Models

Consider the m factor model for {z;}

Zit = Yir f1e + Vo for + oo F Vi St e, 1=1,2,.., N, (7)
which can be written more compactly as
Zy = Fft + €, (8)

where f; = (fit, fat, -, fmt)'s € = (€1, €215 -, ent)’, and T' = (), for i = 1,2,..., N, j = 1,2,...,m,
is an N x m matrix of fixed coefficients, known as factor loadings. The common factors, f;, si-
multaneously affect all cross-sectional units, albeit with different degrees as measured by ~, =
(Yi1sYias -+ Vim) - Examples of observed common factors that tend to affect all households’ and
firms’ consumption and investment decisions include interest rates and oil prices. Aggregate de-
mand and supply shocks represent examples of common unobserved factors. In multifactor models,
interdependence arises from reaction of units to some external events. Further, according to this
representation, correlation between any pair of units does not depend on how far these observations
are apart, and violates the distance decay effect that underlies the spatial interaction model.

The following assumptions are typically made regarding the common factors, fp, and the idio-

syncratic errors, e;.

ASSUMPTION CF.1: The m x 1 vector f; is a zero mean covariance stationary process, with

absolutely summable autocovariances, distributed independently of e; for all 4,¢,t/, such that



E(f2) =1 and E(fufem) =0, for £ £ =1,2,...,m.
ASSUMPTION CF.2: Var (eir) = 012 < K < 00, ¢;; and ej; are independently distributed for

all i # j and for all t. Specifically, max; (022) =02, <K < oo.

max

Assumption CF'.1 is an identification condition, since it is not possible to separately identify f;
and I'. The above factor model with a fixed number of factors and cross-sectionally independent
idiosyncratic errors is often referred to as an exact factor model. Under the above assumptions,
the covariance of z; is given by

E (zzy) =TT +V,

where V is a diagonal matrix with elements a? on the main diagonal.

The assumption that the idiosyncratic errors, e;;, are cross-sectionally independent is not nec-
essary and can be relaxed. The factor model that allows the idiosyncratic shocks, e;, to be cross-
sectionally weakly correlated is known as the approximate factor model. See |Chamberlain (1983),

In general, the correlation patterns of the idiosyncratic errors can be characterized by

€ = REt7 (9)

where €; = (14, €2¢, ..., ent)’ ~ (0,Iy). In the case of this formulation V = RR’, which is no longer
diagonal when R is not diagonal, and further identification restrictions are needed so that the factor
specification can be distinguished from the cross-sectional dependence assumed for the idiosyncratic
errors. To this end it is typically assumed that R has bounded row and column sum matrix norms
(so that the cross-sectional dependence of e; is sufficiently weak) and the factor loadings are such
that limpy_,oo (N 1I'T) is a full rank matrix.
A leading example of R arises in the context of the first-order spatial autoregressive, SAR(1),
model, defined by
e; = pWe; + Agy, (10)

where A is a diagonal matrix with strictly positive and bounded elements, 0 < o; < 0o, p is a spatial
autoregressive coefficient, and the matrix W is the ‘connection or spatial’ weight matrix which is
taken as given. Assuming that (Iy — pW) is invertible, we then have R = (Iy — pW) ! A. In the

spatial literature, W is assumed to have non-negative elements and is typically row-standardized



so that ||W]|, = 1. Under these assumptions, |p| < 1 ensures that |p| W], < 1, and we have

IRl = Al [Ty + pWAp2W? 4+ .|

o0

Al
< Al [1+ oWl + o W2 + ] =

= Pl K <o,
L—|pl [[W]|4

where ||A]|, = max;(0;) < co. Similarly, |R||; < K < oo, if it is further assumed that |p| |[W]|; <
1. In general, R = (Iy — pW) ' A has bounded row and column sum matrix norms if |p| <
min (1/ |W];,1/||W]|,)- In the case where W is a row and column stochastic matrix (often
assumed in the spatial literature) this sufficient condition reduces to |p| < 1, which also ensures the
invertibility of (Iny — pW). Note that for a doubly stochastic matrix p(W) = |[|[W]|; = W] =1,
where p (W) is the spectral radius of W. It turns out that almost all spatial models analyzed in the
spatial econometrics literature characterize weak forms of cross-sectional dependence. See|Sarafidis
and Wansbeek (2012)| for further discussion.

Turning now to the factor representation, to ensure that the factor component of represents
strong cross-sectional dependence (so that it can be distinguished from the idiosyncratic errors) it
is sufficient that the absolute column sum matrix norm of |||, = max;jef 2. N} Zfil ‘%’j’ rises
with N at the rate N, which implies that limy . (N~!I'T) is a full rank matrix, as required
earlier.

The distinction between weak and strong cross-sectional dependence in terms of factor loadings

are formalized in the following definition.

Definition 2 (Strong and weak factors) The factor fy is said to be strong if

N
. -1 .
Jm NS bl = K >0 (11)
The factor fo is said to be weak if
N
dim % il = K < o (12)
1=

It is also possible to consider intermediate cases of semi-weak or semi-strong factors. In general,

10



let oy be a positive constant in the range 0 < ay < 1 and consider the condition

N
Jim N7 = K < )
1=

Strong and weak factors correspond to the two values of ay = 1 and «ay = 0, respectively. For
any other values of ay € (0,1) the factor fy can be said to be semi-strong or semi-weak. It will
prove useful to associate the semi-weak factors with values of 0 < ay < 1/2, and the semi-strong
factors with values of 1/2 < ay < 1. In a multi-factor set up the overall exponent can be defined

by a = max(aq, g, ..., Q).

Example 1 Suppose that zj; are generated according to the simple factor model, ziy = v;ft + €,
where f; is independently distributed of v;, and ey ~ IID(0,0?), for alli and t, o is non-stochastic
for expositional simplicity and bounded, E (ftz) = a?c < 00, E(ft) = 0 and fi is independently

distributed of e; for all i,t and t'. The factor loadings are given by

vi = v, fori=1,2,.. [NY] (14)

vi = 0 fori=[N*]+1,[N"]+2,..,N, (15)

for some constant oy € [0,1], where [N*] is the integer part of N*v, p # 0, and v; are IID
with mean 0 and the finite variance, 012] Note that SN | |v;] = O, (IN®]) and the factor f; with
loadings vy, is strong for a, = 1, weak for ay = 0 and semi-weak or semi-strong for 0 < a, < 1.

Consider the variance of the (simple) cross-sectional averages zy = N1 Zf\;l Zit
Vary (z;) = Var (Zt ‘{%}z]\;) = ’7%\70? + N~15%, (16)

where (dropping the integer part sign, [.], for further clarity)

N Ny ;N
a1 a1 _ -1 -1 ,
In = N Z;%-N z;%—MNM + N <Navz;%>

1= 1= 1=

N
oy = N> o7>0.
=1

2 The assumption of zero loadings for i > [N®7] could be relaved so long as Zﬁ\;[zvaw].u |v;] = Op (1). But for
expositional simplicity we maintain v, =0 for i = [N* ]+ 1,[N*'] +2,...,N.

11



But, noting that

E (’T}/N) = MNavilv VCLT‘(;)/N) = Na7720-1217

we have

E (%) = [E (i) + Var(yy) = N2 4 Nor202

Therefore, using this result in (@, we now have

Var(z) = E[Vary (%)) =oju®N*©D + 63 N~ 4 o207 N2 (17)

= UfchNQ(%_l) + 63N+ 0 (N*2). (18)

Thus the exponent of cross-sectional dependence of z;, denoted as o, and the exponent a.y coincide
in this example, so long as oy > 1/2. When o, = 1/2, one can not use Var (z;) to distinguish the
factor effects from those of the idiosyncratic terms. Of course, this does not necessarily mean that
other more powerful techniques can not be found to distinguish such weak factor effects from the
effects of the idiosyncratic terms. Finally, note also that in this example Zf\il ’y? =0, (N*), and

the largest eigenvalue of the N x N covariance matrix, Var (z;), also rises at the rate of N*v.

The relationship between the notions of CSD and CWD and the definitions of weak and strong

factors are explored in the following theorem.

Theorem 2 Consider the factor model (@ and suppose that Assumptions CF.1-CF.2 hold, and
there exists a positive constant o = max(ay, g, ..., apy,) in the range 0 < o < 1, such that condition

is met for any £ = 1,2,..,m. Then the following statements hold:

(i) The process {ziy} is cross-sectionally weakly dependent at a given point in timet € T if a < 1,

which includes cases of weak, semi-weak or semi-strong factors, fu, for £ =1,2,...,m.

(i) The process {zy} is cross-sectionally strongly dependent at a given point in time t € T if and

only if there exists at least one strong factor.

Proof is provided in |Chudik, Pesaran, and Tosetti (2011).
Since a factor structure can lead to strong as well as weak forms of cross-sectional dependence,

cross-sectional dependence can also be characterized more generally by the following N factor

12



representation

N
Zit = Z’Yijfjt + ey, fori=1,2,..., N,
j=1

where €;; is independently distributed across ¢. Under this formulation, to ensure that the variance

of z; is bounded in N, we also require that

N
> vl € K < oo, fori=1,2,...,N. (19)
/=1
zit can now be decomposed as
zit = 23 + 233, (20)
where
m N
2= valws #= Y vlu+eu (21)
(=1 {=m+1

and 7;, satisfy conditions for £ = 1,...,m, where m must be finite in view of the absolute
summability condition that ensures finite variances. Remaining loadings v,, for £ = m+1, m+
2, ..., N must satisfy either or for some a < 1E| In the light of Theorem [2}, it can be shown
that 2}, is CSD and 2} is CWD. Also, notice that when z; is CWD, we have a model with no
strong factors and potentially an infinite number of weak or semi-strong factors. Seen from this
perspective, spatial models considered in the literature can be viewed as an N weak factor model.

Consistent estimation of factor models with weak or semi-strong factors may be problematic,

as evident from the following example.

Example 3 Consider the single factor model with known factor loadings
zit =ift + €y, €~ I1ID (0,07).

The least squares estimator of fr, which is the best linear unbiased estimator, is given by

2

N
~ o .2 ~
fi = 722—]\} i ;t, Var (ft> = 713 5
Zi:l Yi Zi:l i

In the weak factor case where Zf\il 72 is bounded in N, then Var (ft> does not vanish as N — oo,

3Note that the number of factors with ay > 0 is limited by the absolute summability condition ,

13



and ft need not be a consistent estimator of f;. See also|Onatski (2012).

Presence of weak or semi-strong factors in errors does not affect consistency of conventional

panel data estimators, but affects inference, as is evident from the following example.

Example 4 Consider the following panel data model
Yit = Brit + Wi, wir =V [t + Eit,

where

Tt = 03 fr + vit.

To simplify the exposition we assume that, e, vjs and fy are independently, and identically dis-
tributed across all i,j,t,s and t', as ejy ~ IID (O,Jg), vig ~ 11D (O,Ug), and fy ~ 11D (0,1). The
pooled estimator of B satisfies
A_SN ST i
- =1 t=1 Lt Uit
VNT (Bp - ) = L , (22)

1 N T
NT Doim1 D=1 951215

where the denominator converges in probability to o2 4+ limy_,oo N~} Zfil 62 > 0, while the nu-

merator can be expressed, after substituting for x; and u;, as

T N T T
1 1 1
\/ﬁ Z TitUit = \/ﬁ Z Z 'Yi(siftQ + ﬁ Z (5ift5it + %’Uitft + Uitgit) : (23)

i=1 t=1 =1 t=1 =1 t=1

Under the above assumptions it is now easily seen that the second term in the above expression is

Op(1), but the first term can be written as

T ) | N 1 I )
WZZ%&E = \/N;’Wsi'ﬁ;ft

i=1 t=1

_ Ly §;- O, (T2
= \/N;’Yiz' p( )

Suppose now that f; is a factor such that loadings v; and 6; are given by — with the exponents

ay and a5 (0 < ay,a5 < 1), respectively, and let = min (o, as). It then follows that Zfil v;0; =

14



Op (N%), and

T

1 _

T O 2 ibifE = Op(NTHATI),
=1 t=1

1=

N

Therefore, even if a < 1 the first term in diverges, and overall we have BP —B=0,(N*"1)+
Op(T_l/QN_1/2). It is now clear that even if f; is not a strong factor, the rate of convergence of BP
and its asymptotic variance will still be affected by the factor structure of the error term. In the case
where o = 0, and the errors are spatially dependent, the variance matriz of the pooled estimator also
depends on the nature of the spatial dependence which must be taken into account when carrying

out inference on [3. See|Pesaran and Tosetti (2011) for further results and discussions.

Weak, strong and semi-strong common factors may be used to represent very general forms of
cross-sectional dependence. For example, a factor process with an infinite number of weak factors,
and no idiosyncratic errors can be used ‘]c\? represent spatial processes. In particular, the spatial
model can be represented by e;; = Z%’j [jt, where ~;; = ri; and fj; = g;. Strong factors
can be used to represent the effect of th(]e:clross section units that are “dominant” or pervasive, in
the sense that they impact all the other units in the sample and their effect does not vanish as
N tends to infinity, (Chudik and Pesaran (2013c)). As argued in Holly, Pesaran, and Yagamata
(2011), a large city may play a dominant role in determining house prices nationally. Semi-strong
factors may exist if there is a cross section unit or an unobserved common factor that affects only
a subset of the units and the number of affected units rise more slowly than the total number of
units. Estimates of the exponent of cross-sectional dependence reported by Bailey, Kapetanios,
and Pesaran| (2012, Tables 1 and 2) suggest that for typical large macroeconomic data sets the
estimates of « fall in the range of 0.77 — 0.92, which fall short of 1 assumed in the factor literature.

For cross country quarterly real GDP growth, inflation and real equity prices the estimates of «

are much closer to unity and tend to be around 0.97.
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4 Large Panels with Strictly Exogenous Regressors and a Factor

Error Structure

Consider the following heterogeneous panel data model
yir = ogdy + BiXir + wi, (24)

where d; is a n x 1 vector of observed common effects (including deterministics such as intercepts
or seasonal dummies), x;; is a k x 1 vector of observed individual-specific regressors on the ith

cross-section unit at time ¢, and disturbances, u;;, have the following common factor structure

Wit = Vi 1t + VioSor + oo + Vi Smt + €it = Yk + e, (25)

in which f; = (fit, fat, .-, fmt)" 18 an m-dimensional vector of unobservable common factors, and
Yi = (Vi1s Vizs - Vim) i the associated m x 1 vector of factor loadings. The number of factors, m,
is assumed to be fixed relative to IV, and in particular m << N. The idiosyncratic errors, e;, could
be CWD, for example, being generated by a spatial process, or, more generally, by a weak factor
structure. For estimation purposes, as in the case of panels with group effects, the factor loadings,
v,, could be either random or fixed unknown coefficients. We distinguish between the homogeneous
coefficient case where B8, = 3 for all 4, and the heterogeneous case where 3; are random draws
from a given distribution. In the latter case, we assume that the object of interest is the mean
coefficients, 3 = E (3;), for all i. When the regressors, x;;, are strictly exogenous and the deviations
v; = B; — B are distributed independently of the errors and the regressors, the mean coefficients,
B3, can be consistently estimated using pooled as well as mean group estimation procedures. But
only mean group estimation will be consistent if the regressors are weakly exogenous and/or if the
deviations are correlated with the regressors/ errorsﬂ

The assumption of slope homogeneity is also crucially important for the derivation of the as-
ymptotic distribution of the pooled or the mean group estimators of 3. Under slope homogeneity,
the asymptotic distribution of the estimator of 3 typically converges at the rate of v/ NT, whilst

under slope heterogeneity the rate is v N. In view of the uncertainty regarding the assumption of

4Pooled estimation is carried out assuming that B; = B for all 4, whilst mean group estimation allows for slope
heterogeneity and estimates 3 by the average of the individual estimates of 3, (Pesaran and Smith (1995)).
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slope heterogeneity, non-parametric estimators of the variance matrix of the pooled and mean group
estimators are proposed.[ﬂ In the following sub-sections we review a number of different estimators

of B proposed in the literature.

4.1 PC estimators

The principal components (PC) approach proposed by (Coakley, Fuertes, and Smith (2002)| and Bai
(2009), by requiring that N~'I'T" tends to a positive definite matrix, implicitly assumes that all
the unobserved common factors in are strong. Coakley, Fuertes, and Smith (2002) consider
the panel data model with strictly exogenous regressors and homogeneous slopes (i.e., 8, = 3),
and propose a two-stage estimation procedure. In the first stage, PCs are extracted from the OLS
residuals as proxies for the unobserved variables, and in the second step the estimated factors are

treated as observable and the following augmented regression is estimated
Yit = Oé;dt + B,Xit + '7;& + ity for i = 1, 2, ceey N, t = 1, 2, ...,T, (26)

where f; is an m x 1 vector of principal components of the residuals computed in the first stage.
The resultant estimator of 3 is consistent for N and T large, so long as f; and the regressors, x;,
are uncorrelated. However, if the factors and the regressors are correlated, as it is likely to be the
case in practice, the two-stage estimator becomes inconsistent (Pesaran (2006)).

Building on |Coakley, Fuertes, and Smith (2002), Bai (2009) has proposed an iterative method
which consists of alternating the PC method applied to OLS residuals and the least squares esti-
mation of , until convergence. In particular, to simplify the exposition suppose a; = 0. Then

the least squares estimator of 3 and F is the solution of the following set of non-linear equations:
N -1 N
IBPC = (Z X;MFXZ> Z X;Mﬁyi,
i=1 i=1

% ; <Yi — Xz’BPC) (yi — XiBPC),F — FV,

/. . . /.
where X; = (x;1,X;2, ..., X;7)  is the matrix of observations on x;;, y; = (¥i1, Yi2, ..., yir) is the vector

" a1 o o PO ~\/ N
of observations on y;;, My = I — F <F’F> F,F= (fl,fg, ...,fT) , and V is a diagonal matrix

Tests of slope homogeneity hypothesis in static and dynamic panels are discussed in [Pesaran and Yamagata
(2008).
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~ ~ /
with the m largest eigenvalues of the matrix ﬁ vaz 1y — Xi8 PC) ( i — X0 PC) arranged in
a decreasing order. The solution 3 PC F and ¥, = (f" ]?‘>_ B <yi - X3 PC) minimizes the sum
of squared residuals function,

N
SRyt (B, vty A8HL)) = Y (vi = XiB— Fv) (vi — XiB = F7y),

i=1
where F = (fi,f,...,f7)’. This function is a Gaussian quasi maximum likelihood function of the
model and in this respect, Bai’s iterative principal components estimator can also be seen as a
quasi maximum likelihood estimator, since it minimizes the quasi likelihood function.

Bai (2009)| shows that such an estimator is consistent even if common factors are correlated with
the explanatory variables. Specifically, the least square estimator of 3 obtained from the above
procedure, B pc» is consistent if both N and T tend to infinity, without any restrictions on the
ratio 7/N. When in addition T/N — K > 0, B8pc converges at the rate v/NT, but the limiting
distribution of vV NT (B PC — B) does not necessarily have a zero mean. Nevertheless, Bai shows
that the asymptotic bias can be consistently estimated and proposes a bias corrected estimator.

But it is important to bear in mind that PC-based estimators generally require the determination
of the unknown number of strong factors (PCs), m, to be included in the second stage of estimation,
and this can introduce some degree of sampling uncertainty into the analysis. There is now a
large literature that considers the estimation of m, assuming all the m factors to be strong. See,
for example, Bai and Ng| (2002 and [2007)), |Kapetanios (2004 and [2010), |]Amengual and Watson
(2007), Hallin and Liska (2007), Onatski (2009 and [2010), /Ahn and Horenstein (2013), Breitung
and Pigorsch (2013), (Choi and Jeong (2013) and Harding (2013)l There are also a number of
useful surveys by Bai and Ng (2008), Stock and Watson (2011) and Breitung and Choi (2013),
amongst others, that can be consulted for detailed discussions of these methods and additional
references. An extensive Monte Carlo investigation into the small sample performance of different

selection/estimation methods is provided in |Choi and Jeong (2013).

4.2 CCE estimators

Pesaran (2006) suggests the Common Correlated Effects (CCE) estimation procedure that consists

of approximating the linear combinations of the unobserved factors by cross-sectional averages of
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the dependent and explanatory variables, and then running standard panel regressions augmented
with these cross-sectional averages. Both pooled and mean group versions are proposed, depending
on the assumption regarding the slope homogeneity.

Under slope heterogeneity the CCE approach assumes that 3.s follow the random coefficient
model

B;=B+wv;, vi~IID(0,Q,) fori=1,2,..,N,

where the deviations, v;, are distributed independently of ej;, x;, and dy, for all 4, j and ¢. Since
in many empirical applications where cross-sectional dependence is caused by unobservable factors,
these factors are correlated with the regressors, and the following model for the individual-specific
regressors in is adopted

xi = Aldy + Tify + v, (27)

where A; and I'; are n X k and m x k factor loading matrices with fixed components, v;; is the
idiosyncratic component of x;; distributed independently of the common effects fi; and errors ejy
for all 4,7,t and t. However, v;; is allowed to be serially correlated, and cross-sectionally weakly
correlated.

Equations , and can be combined into the following system of equations

Yit
zp=| | =Bid+Cif; + &, (28)
Xit
where
eit + Bivit
Eit = ’ )
Vit
1 0 1 0
Bi:(ai Al) aCi:(’Yi Fi)
Bi Ik Bi Ik

Consider the weighted average of z;; using the weights w; satisfying the granularity conditions

@-@:

Zwt = Blyd; + Cl f + &,
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where

N
Zyt = E W;Zit,
i=1

N N N
Bw = ZwiBi y Cw = ZwiCi, and Ewt = Zwigit'
i=1 i=1 i=1
Assume thatl]
Rank(Cy,) =m < k+ 1, (29)
we have
f, = (CuCl,) 'Cy (2w — Blydy — €,y) - (30)

Under the assumption that e;’s and vy’s are CWD processes, it is possible to show that (see

Pesaran and Tosetti (2011)))

fwt — 07 (31)
which implies
f, — (CuC,,) 'Cy (Zuwt — B'dy) 20, as N — oo, (32)
where
_ - 1 0
C= ]\}ln’l (Cyp)=T , (33)

T = (E(y;), E(T;)), and 8 = E(B;). Therefore, the unobservable common factors, f;, can be well
approximated by a linear combination of observed effects, d;, the cross-sectional averages of the
dependent variable, ¥, and those of the individual-specific regressors, X.

When the parameters of interest are the cross-sectional means of the slope coefficients, 3, we
can consider two alternative estimators, the CCE Mean Group (CCEMG) estimator, originally
proposed by [Pesaran and Smith (1995), and the CCE Pooled (CCEP) estimator. Let M,, be
defined by

Mw = IT - I:Iw(ﬁiuﬁw)JrI:I'lwa (34)

where AT denotes the Moore-Penrose inverse of matrix A, H, = (D,Z,), and D and Z,, are,

respectively, the matrices of the observations on d¢ and Zy: = (Gut, Xiy)'

5This assumption can be relaxed. See [Pesaran (2006)!
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The CCEMG is a simple average of the estimators of the individual slope coefficient|

N
Beepme =N Bocr, (35)
=1
where
Boop: = (XiM,X;) ' X[ M,y;. (36)

Pesaran (2006 )| shows that, under some general conditions, BCC EMG 18 asymptotically unbiased for
B, and as (N,T) — oo,

VNBeopue - B) > N0, Scopuc). (37)

where Zcopnma = Q. A consistent estimator of the variance of B para, denoted by Var <BCC B MG) ,

can be obtained by adopting the non-parametric estimator:

N
., R 1 . . . .
Var (BCCEMG) = N"'Sccpme = NN-1) > (Boori—Bocrme) Bocri—Boorma)' (38)
i=1
The CCEP estimator is given by
N -1 N
Bocep = (Z wiX;Msz') > wiX{Myy;. (39)
i=1 i=1

Under some general conditions, Pesaran (2006 )| proves that BCC gp is asymptotically unbiased for

B, and, as (N,T) — oo,

N ~1/2
(Z w?) (BCCEP - ﬁ) 4 N(0, Scerp),

=1

where

Scepp = IR
N N
* : . *— 13 -1 52 ) )
o= lim (Z;wz) R* = lim_ [N ;wl(EZQUEL) ,
T, = plim (T7'XM,X;), and @; = =

vV N1 Zz]\il wz'2

"Pesaran (2006)| also considered a weighted average of individual bs, with weights inversely proportional to the
individual variances.
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A consistent estimator of Var (BCCEP) , denoted by Var (BCCEP>, is given by

N N
Var <BC’CEP> = (Z wf) Sccpp = (Z wf) IR (40)
i1 i=1
where
N —_
.. X/ M, X,
o= Yw ( Lo )
i=1
) 1 &, (XIM,X; X/ M, X;
~ ! wW 4™ > > 2 e / . w=<x
R* = N o2 <1T> (Beeri — Boecema)Bocr, — Becrme) <ZT> ‘
i—1

The rate of convergence of BCC v and BCC rp is VN when Q, # 0. Note that even if 3, were
observed for all 4, the estimate of 8 = E (3;) cannot converge at a faster rate than v/N. If the
individual slope coefficients 3; are homogeneous (namely if £, = 0), Bocpyme and Boopp are still
consistent and converge at the rate V/NT rather than v N.

Advantage of the nonparametric estimators f]CCE va and 2()() gp is that they do not require
knowledge of the weak cross-sectional dependence of e;; (provided it is sufficiently weak) nor the
knowledge of serial correlation of e;;. An important question is whether the non-parametric vari-
ance estimators Var (BCCE MG) and Var (BCC Ep> can be used in both cases of homogeneous
and heterogeneous slopes. As established in [Pesaran and Tosetti (2011), the asymptotic distri-
bution of BCCE ve and BCCE p depends on nuisance parameters when slopes are homogeneous
(2, = 0), including the extent of cross-sectional correlations of e; and their serial correlation
structure. However, it can be shown that the robust non-parametric estimators Var (BCOEMG>
and Var (BCC Ep) are consistent when the regressor-specific components, v;;, are independently
distributed across .

The CCE continues to be applicable even if the rank condition is not satisfied. Failure of the
rank condition can occur if there is an unobserved factor for which the average of the loadings in the
y;t and x;; equations tends to a zero vector. This could happen if, for example, the factor in question
is weak, in the sense defined above. Another possible reason for failure of the rank condition is
if the number of unobservable factors, m, is larger than k + 1, where k is the number of the
unit-specific regressors included in the model. In such cases, common factors cannot be estimated

from cross-sectional averages. However, it is possible to show that the cross-sectional means of
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the slope coefficients, 3,, can still be consistently estimated, under the additional assumption that
the unobserved factor loadings, =;, in equation are independently and identically distributed
across 4, and of ej;, vj;, and g, = (dj,f])’ for all 4,5 and ¢, and uncorrelated with the loadings
attached to the regressors, I';. The consequences of the correlation between loadings ~; and T';
for the performance of CCE estimators in the rank deficient case are documented in [Sarafidis and
Wansbeek (2012).

An advantage of the CCE approach is that it yields consistent estimates under a variety of
situations. Kapetanios, Pesaran, and Yagamata (2011) consider the case where the unobservable
common factors follow unit root processes and could be cointegrated. They show that the asymp-
totic distribution of panel estimators in the case of I(1) factors is similar to that in the stationary
case. Pesaran and Tosetti (2011)| prove consistency and asymptotic normality for CCE estimators
when {e;;} are generated by a spatial process. (Chudik, Pesaran, and Tosetti (2011) prove consis-
tency and asymptotic normality of the CCE estimators when errors are subject to a finite number
of unobserved strong factors and an infinite number of weak and/or semi-strong unobserved com-
mon factors as in —, provided that certain conditions on the loadings of the infinite factor
structure are satisfied. A further advantage of the CCE approach is that it does not require an a
priori knowledge of the number of unobserved common factors.

In a Monte Carlo (MC) study, Coakley, Fuertes, and Smith (2006) compare ten alternative
estimators for the mean slope coefficient in a linear heterogeneous panel regression with strictly
exogenous regressors and unobserved common (correlated) factors. Their results show that, overall,
the mean group version of the CCE estimator stands out as the most efficient and robust. These
conclusions are in line with those in Kapetanios and Pesaran (2007)| and |Chudik, Pesaran, and
Tosetti (2011), who investigate the small sample properties of CCE estimators and the estimators
based on principal components. The MC results show that PC augmented methods do not perform
as well as the CCE approach, and can lead to substantial size distortions, due, in part, to the
small sample errors in the number of factors selection procedure. In a recent theoretical study,
Westerlund and Urbain (2011)| investigate the merits of the CCE and PC estimators in the case of
homogeneous slopes and known number of unobserved common factors and find that, although the
PC estimates of factors are more efficient than the cross-sectional averages, the CCE estimators of

slope coefficients generally perform the best.
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5 Dynamic Panel Data Models with a Factor Error Structure

The problem of estimation of panels subject to cross-sectional error dependence becomes much
more complicated once the assumption of strict exogeneity of the unit-specific regressors is relaxed.
One important example, is the panel data model with lagged dependent variables and unobserved

common factors (possibly correlated with the regressors)ﬁ

Yit = AYit—1 + Bixi + wit, (41)

ur = vk + e, (42)

fori = 1,2,..,N;t =1,2,....,T. It is assumed that |A;| < 1, and the dynamic processes have
started a long time in the past. As in the previous section, we distinguish between the case of
homogeneous coefficients, where \; = A and 8; = 3 for all 4, and the heterogeneous case, where \;
and 3, are randomly distributed across units and the object of interest are the mean coefficients
A= FE(\) and B8 = E (3;). This distinction is more important for dynamic panels, since not only
the rate of convergence is affected by the presence of coefficient heterogeneity, but, as shown by
Pesaran and Smith (1995), pooled least squares estimators are no longer consistent in the case of
dynamic panel data models with heterogeneous coefficients.

It is convenient to define the vector of regressors {;; = (yi,t_l,xgt)/ and the corresponding

parameter vector m; = ()\i, ,3;)/ so that can be written as
Yir = i Cyy + it (43)

5.1 Quasi maximum likelihood estimator

Moon and Weidner (2010) assume 7r; = 7 for all i and develop a Gaussian quasi maximum likelihood

estimator (QMLE) of the homogeneous coefficient vector ’/TEI The QMLE of 7 is

froumre = argminL N (),
weh

8Fixed effects and observed common factors (denoted by d; previously) can also be included in the model. They
are excluded to simplify the notations.
9See also [Lee, Moon, and Weidner (2012)|for an extension of this framework to panels with measurement errors.
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where B is a compact parameter set assumed to contain the true parameter values, and the objective

function is the profile likelihood function:

| X
— (yi—Enm—Fv) (yi—Eim —Fv,),

Lyt () = min
(e, NT =
where

!
Yi1 X2

!
- Yi2 Xi3

!
Yir—-1 X;p

Both #tgy e and B pc Mminimize the same objective function and therefore, when the same set of
regressors is considered, these two estimators are numerically the same, but there are important
differences in their bias-corrected versions and in other aspects of the analysis of [Bai (2009) and
the analysis of [Moon and Weidner (2010). The latter paper allows for more general assumptions
on regressors, including the possibility of weak exogeneity, and adopts a quadratic approximation
of the profile likelihood function, which allows the authors to work out the asymptotic distribution
and to conduct inference on the coefficients.

Moon and Weidner (MW) show that #ga/rr is a consistent estimator of 7, as (N,T) — oo
without any restrictions on the ratio 7'/N. To derive the asymptotic distribution of gk,
MW require T/N — 3, 0 < 3 < oo, as (N,T) — oo, and assume that the idiosyncratic er-
rors, e;, are cross-sectionally independent. Under certain high level assumptions, they show that
VNT (fomrLE — ™) converges to a normal distribution with a non-zero mean, which is due to two
types of asymptotic bias. The first follows from the heteroskedasticity of the error terms, as in |Bai
(2009)}, and the second is due to the presence of weakly exogenous regressors. The authors provide
consistent estimators of these two components, and propose a bias-corrected QMLE.

There are, however, two important considerations that should be born in mind when using the
QMLE proposed by MW. First, it is developed for the case of full slope homogeneity, namely under
7; = 7 for all 4. This assumption, for example, rules out the inclusion of fixed effects into the
model which can be quite restrictive in practice. Although, the unobserved factor component, vf;,
does in principle allow for fixed effects if the first element of f; can be constrained to be unity at

the estimation stage. A second consideration is the small sample properties of QMLE in the case
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of models with fixed effects, which are of primarily interest in empirical applications. Simulations
reported in |(Chudik and Pesaran (2013b) suggests that the bias correction does not go far enough
and the QMLE procedure could yield tests which are grossly over-sized. To check the robustness of
the QMLE to the presence of fixed effects, we carried out a small Monte Carlo experiment in the
case of a homogeneous AR(1) panel data model with fixed effects, A; = 0.70, and N = T = 100.
Using R = 2,000 replications, the bias of the bias-corrected QMLE, XQMLE, turned out to be

—0.024, and tests based on ;\Q MLE were grossly oversized with the size exceeding 60%.

5.2 PC estimators for dynamic panels

Song (2013) extends Bai (2009)s approach to dynamic panels with heterogeneous coefficients. The
focus of Song’s analysis is on the estimation of unit-specific coefficients 7; = ()\Z-, ﬂg)/. In particular,
Song proposes an iterated least squares estimator of 7r;, and shows as in|Bai (2009) that the solution
can be obtained by alternating the PC method applied to the least squares residuals and the least
squares estimation of until convergence. In particular, the least squares estimators of 7r; and

F are the solution to the following set of non-linear equations

. - _\—1 = ‘
i pc = (:;Mﬁ.:i) EiMgy;, fori=1,2,...,N, (44)

[1
[1

N
1 A A o
NT E (yi — Bitipc) (yi — Biftipc) F = FV. (45)
=1

Song (2013)|establishes consistency of #; pc when (N, T') — oo without any restrictions on 7'/N.
If in addition 7/N? — 0, Song (2013) shows that #; pc is v/T consistent, and derives the asymptotic
distribution under some additional requirements including the cross-sectional independence of e;;.
Song (2013)| does not provide theoretical results on the estimation of the mean coefficients = =
E (m;), but he considers the following mean group estimator based on the individual estimates
i PC,

|
Tpome = 5 > #ire,
i—1

in a Monte Carlo study and finds that 75~ has satisfactory small sample properties in terms
of bias and root mean squared error. But he does not provide any results on the asymptotic
distribution of % ;. However, results of a Monte Carlo study presented in |Chudik and Pesaran

(2013b) suggest that /N (5o q — ) is asymptotically normally distributed with mean zero and
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a covariance matrix that can be estimated by (as in the case of the CCEMG estimator),

N
— 1
V A8 — =S _ =S =S _ =S /‘
ar (Fpcnma) N(N=-1) (N 1) ZZ; (77 — Tue) (7 — Tya)

The test results based on this conjecture tend to perform well so long as T is sufficiently large.
However, as with the other PC based estimators, knowledge of the number of factors and the
assumption that the factors under consideration are strong continue to play an important role in

the small sample properties of the tests based on #3;5pc-

5.3 Dynamic CCE estimators

The CCE approach as it was originally proposed in [Pesaran (2006) does not cover the case where
the panel includes a lagged dependent variable or weakly exogenous regressorsm Extension of the
CCE approach to dynamic panels with heterogeneous coefficients and weakly exogenous regressors
is proposed by (Chudik and Pesaran (2013b)l In what follows we refer to this extension as dynamic
CCE.

The inclusion of a lagged dependent variable amongst the regressors has three main consequences
for the estimation of the mean coefficients. The first is the well known time series bias[l]| which
affects the individual specific estimates and is of order O (T _1). The second consequence is that
the full rank condition becomes necessary for consistent estimation of the mean coefficients unless
the f; is serially uncorrelated. The third complication arises from the interaction of dynamics and
coefficient heterogeneity, which leads to infinite lag order relationships between unobserved common
factors and cross-sectional averages of the observables when N is large. This issue also arises in
cross-sectional aggregation of heterogeneous dynamic models. See|Granger (1980)| and Chudik and
Pesaran (2013a).

To illustrate these complications, using and recalling assumption |\;| < 1, for all 4, then

we have

oo oo o0
vie = 3 ANBXito+ Y N+ Neire (46)
=0 =0 =0

Taking weighted cross-sectional averages, and assuming independence of \;, 3;, and «,;, strict

19See [Everaert and Groote (2012) who derive the asymptotic bias of the CCE pooled estimator in the case of
dynamic homogeneous panels.
"' This bias was first quantified in the case of a simple AR(1) model by [Hurwicz (1950)}
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exogeneity of x;;, and weak cross-sectional dependence of {e;; }, we obtain (following the arguments

in |(Chudik and Pesaran (2013a))),

Yur = a (L)Y + a (L) Bt + & (47)

where a (L) = > 02, aeLt, with ay = F ()\f), B = E(B;), and v = E(;). Under the assumption
that the idiosyncratic errors are cross-sectionally weakly dependent, we have &, 2,0, as N — 0,
with the rate of convergence depending on the degree of cross-sectional dependence of {e;;} and
the granularity of w. In the case where w satisfies the usual granularity conditions -, and
the exponent of cross-sectional dependence of e;; is e < 1/2, we have £, = O, (N -1/ 2). In the

special case where 3 = 0 and m = 1, (47) reduces to

Juwt =0 (L) fr + Op (N_l/Q) .

The extent to which f; can be accurately approximated by %,,, and its lagged values depends on
the rate at which, ay = F ()\f), the coefficients in the polynomial lag operator, a (L), decay with ¢,
and the size of the cross section dimension, N. The coefficients in a (L) are given by the moments
of \; and therefore these coefficients need not be absolute summable if the support of A; is not
sufficiently restricted in the neighborhood of the unit circle (see |Granger (1980) and |Chudik and
Pesaran (2013a))). Assuming that for all ¢ the support of A; lies strictly within the unit circle, it is
then easily seen that ay will then decay exponentially and for N sufficiently large, f; can be well
approximated by 7,, and a number of its lagged ValuesE The number of lagged values of 7,,;
needed to approximate f; rises with 1" but at a slower rateE

In the general case where 3 is nonzero, x;; are weakly exogenous, and m > 1, |(Chudik and
Pesaran (2013b) show that there exists the following large N distributed lag relationship between

the unobserved common factors and cross-sectional averages of the dependent variable and the

"2For example if \; is distributed uniformly over the range (0,b) where 0 < b < 1, we have ay = E(\f) = b*/(1+4),
which decays exponentially with £.

13The number of lags cannot increase too fast, otherwise there will not be a sufficient number of observations to
accurately estimate the parameters, whilst at the same time a sufficient number of lags are needed to ensure that the
factors are well approximated. Setting the number of lags equal to T3 seems to be a good choice, balancing the
effects of the above two opposing considerations. See Berk (1974)| [Said and Dickey (1984), and |[Chudik and Pesaran
(2013c)| for a related discussion on the choice of lag truncation for estimation of infinite order autoregressive models.
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_ — s/
regressors, Zyt = (Yuwt, Xyyr)

A (L)', = Zyy + O, (N*W) ,

where as before T' = E (v;,T;) and the decay rate of the matrix coefficients in A (L) depends on the
heterogeneity of A\; and 3; and other related distributional assumptions. The existence of a large
N relationship between the unobserved common factors and cross-sectional averages of variables is
not surprising considering that only the components with the largest exponents of cross-sectional
dependence can survive cross-sectional aggregation with granular weights. Assuming T has full row
rank, i.e. rank (f‘) = m, and the distributions of coefficients are such that A~! (L) exists and has

exponentially decaying coefficients yields the following unit-specific dynamic CCE regressions,

pr
Yit = Nithii-1 + BiXit + Y 8iZui—o + ey, (48)
=0

where Z,,; and its lagged values are used to approximate f;. The error term e,;; consists of three
parts: an idiosyncratic term, e;, an error component due to the truncation of possibly infinite dis-
tributed lag function, and an O, (N -1/ 2) error component due to the approximation of unobserved
common factors based on large N relationships.

Chudik and Pesaran (2013b)| consider the least squares estimates of m; = ()\i, B;), based on
the above dynamic CCE regressions, denoted as #; = <5\Z, B;)l, and the mean group estimate of

7 = E (m;) based on 7;. To define these estimators, we introduce the following data matrices

) / =/ =/ . =/
Yipr  Xipr+1 Zwpr+1  Zwpr Zw,1
; x/ 7 z e z!
= Yipr+1 i,pr+2 N wpr+2  “w,pr+1 w,2 49
—y — 9 Qu) - ? ( )
; x! z! z! a7
Yi, -1 iT w,T w,T—1 w,T—pr

and the projection matrix My = Iy, — Qu (Q;]Qw)+ Q!,, where Ir_,, is a (T — pr) x (T — pr)
dimensional identity matrixE pr should be set such that p2T /T tends to zero as pr and T both
tend to infinity. Monte Carlo experiments reported in |Chudik and Pesaran (2013b) suggest that

setting pr = T3 could be a good choice in practice.

MMatrices i, Qu, and M, depend also on pr, N and T, but we omit these subscripts to simplify notations.
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The individual estimates, 7;, can now be written as

where §; = (Yiprt1, Yipp+2s - i) - The mean group estimator of w = E (m;) = ()\,,6’), is given

by

1 N
e = Zlm (51)
1=

Chudik and Pesaran (2013b)| show that 7r; and 7rj;¢ are consistent estimators of 7r; and r,
respectively, assuming that the rank condition is satisfied and (N, T, pr) — oo such that p% /T —
0 < 2 < oo, but without any restrictions on the ratio N/T'. The rank condition is necessary for the
consistency of 7; because the unobserved factors are allowed to be correlated with the regressors. If
the unobserved common factors were serially uncorrelated (but still correlated with x;;), then 7y
is consistent also in the rank deficient case, despite the inconsistency of 7;, so long as factor loadings
are independently, identically distributed across i. The convergence rate of 7 s is VN due to the
heterogeneity of the slope coefficients. (Chudik and Pesaran (2013b)| show that 75 converges to a
normal distribution as (N, T, pr) — oo such that p3T/T — s and T/N — 359, 0 < 3¢9, 309 < 00. The
ratio N/T needs to be restricted for conducting inference, due to the presence of small time series
bias. In the full rank case, the asymptotic variance of 7 /¢ is given by the variance of 7; alone.
When the rank condition does not hold, but factors are serially uncorrelated, then the asymptotic
variance depends also on other parameters, including the variance of factor loadings. In both cases
the asymptotic variance can be consistently estimated non-parametrically, as in .

Monte Carlo experiments in|Chudik and Pesaran (2013b)|show that the dynamic CCE approach
performs reasonably well (in terms of bias, RMSE, size and power). This is particularly the case
when the parameter of interest is the average slope of the regressors (3), where the small sample
results are quite satisfactory even if N and T are relatively small (around 40). But the situation is
different if the parameter of interest is the mean coefficient of the lagged dependent variable (A). In
the case of \, the CCEMG estimator suffers form the well known time series bias and tests based
on it tend to be over-sized, unless T is sufficiently large. To mitigate the consequences of this bias,
Chudik and Pesaran (2013b)| consider application of half-panel jackknife procedure (Dhaene and

Jochmans (2012)]), and the recursive mean adjustment procedure (So and Shin (1999)), both of
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which are easy to implement. The proposed jackknife bias-corrected CCEMG estimator is found to
be more effective in mitigating the time series bias, but it can not fully deal with the size distortion
when T is relatively small. Improving the small 7" sample properties of the CCEMG estimator of
A in the heterogeneous panel data models still remains a challenge to be taken on in the future.
The application of CCE approach to static panels with weakly exogenous regressors (namely
without lagged dependent variables) has not yet been investigated in the literature. In order to
investigate whether the standard CCE mean group and pooled estimators could be applied in this

setting, we conducted Monte Carlo experiments. We used the following data generating process
Yit = Cyi + Boiit + B1i%igt—1 + Wit, wir = Yif + i, (52)

and

Tit = Coi + Qi¥it—1 + Yoift + vit, (53)

fori=1,2,..,N,and t = —99,...,0,1,2,...,T with the starting values y; —100 = ®;,—100 = 0. This
set up allows for feedbacks from y; ;—1 to the regressors, thus rendering x;; weakly exogenous. The
size of the feedback is measured by ay,;. The unobserved common factors in f; and the unit-specific

components v;; are generated as independent stationary AR (1) processes:

fee = ppefi-10+<Spe, Spoe ~ IIDN (0,1~ paf) ’

Vit = PaiVit—1 + Sits Sit ~ IIDN (0,0%) , (54)

fort=1,2,...,N,{=1,2,..,m, and for t = —99,...,0,1,2, ..., T with the starting values f, 190 = 0

and v; 100 = 0. The first 100 time observations (t = —99,—98, ...,0) are discarded. We generate

Pais for i = 1,2,...N as IIDU [0,0.95], and set ps, = 0.6, for £ = 1,2,...,m. We also set 0,; =
1—[E(p,;))? for all i.

The fixed effects are generated as cy; ~ IIDN (1,1), cpi = ¢yi + Se,i, Where ¢e i ~ IIDN (0,1),
thus allowing for dependence between z;; and c¢,;. We set 31; = —0.5 for all 4, and generate 3,
as IIDU(0.5,1). We consider two possibilities for the feedback coefficients a,;: weakly exogenous
regressors where we generate «a,; as draws from ITDU(0,1) (in which case E (ay;) = 0.5), and
strictly exogenous regressors where we set ay; = 0 for all i. We consider m = 3 unobserved

common factors, with all factor loadings generated independently in the same way as in |Chudik
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and Pesaran (2013b). Similarly, the idiosyncratic errors, €;;, are generated as in|Chudik and Pesaran
(2013b)| to be heteroskedastic and weakly cross-sectionally dependent. We consider the following
combinations of sample sizes: N € {40,50, 100, 150,200}, T" € {20, 50, 100, 150,200}, and set the
number of replications to R = 2000.

The small sample results for the CCE mean group and pooled estimators (with lagged augmen-
tations) in the case of these experiments with weakly exogenous regressors are presented on the
upper panel of Table 1. The rank condition in these experiment does not hold, but this does not
seem to cause any major problems for the CCE mean group estimator, which performs very well (in
terms of bias and RMSE) for 7' > 50 and for all values of N. Also tests based on this estimator are
correctly sized and have good power properties. When T' < 50, we observe a negative bias and the
tests are oversized (the rejection rates are in the range of 9 to 75 percent, depending on the sample
size). The CCE pooled estimator, however, is no longer consistent in the case of weakly exogenous
regressors with heterogeneous coefficients, due to the bias caused by the correlation between the
slope coeflicients and the regressors. For comparison, we also provide, at the bottom panel of Table
1, the results of the same experiments but with strictly exogenous regressors (a; = 0), where the

bias is negligible and all tests are correctly sized.

6 Tests of Error Cross-Sectional Dependence

In this section we provide an overview of alternative approaches to testing the cross-sectional

independence or weak dependence of the errors in the following panel data model

vir = a; + Bt + Ui, (55)

where a; and 8, for i = 1,2,..., N are assumed to be fixed unknown coefficients, and x;; is a
k-dimensional vector of regressors. We consider both cases where the regressors are strictly and
weakly exogenous, as well as when they include lagged values of y;;.

The literature on testing for error cross-sectional dependence in large panels follows two separate
strands, depending on whether the cross section units are ordered or not. In the case of ordered
data sets (which could arise when observations are spatial or belong to given economic or social

networks) tests of cross-sectional independence that have high power with respect to such ordered
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alternatives have been proposed in the spatial econometrics literature. A prominent example of
such tests is Moran’s I test. See Moran (1948) with further developments by |Anselin (1988), |Anselin
and Bera (1998), Haining (2003), and Baltagi, Song, and Koh (2003).

In the case of cross section observations that do not admit an ordering, tests of cross-sectional
dependence are typically based on estimates of pair-wise error correlations (pij) and are applicable
when T is sufficiently large so that relatively reliable estimates of p;; can be obtained. An early
test of this type is the Lagrange multiplier (LM) test of Breusch and Pagan (1980, pp. 247-248)
which tests the null hypothesis that all pair-wise correlations are zero, namely that p;; = 0 for all
1 # j. This test is based on the average of the squared estimates of pair-wise correlations, and
under standard regularity conditions it is shown to be asymptotically (as T" — oo) distributed as
x? with N(N — 1)/2 degrees of freedom. The LM test tends to be highly over-sized in the case of
panels with relatively large N.

In what follows we review the various attempts made in the literature to develop tests of
cross-sectional dependence when N is large and the cross-section units are unordered. But before
proceeding further, we first need to consider the appropriateness of the null hypothesis of cross-
sectional "independence" or "uncorrelatedness", that underlie the LM test of |Breusch and Pagan
(1980), namely that all p;; are zero for all i # j, when N is large. The null that underlies the LM
test is sensible when NV is small and fixed as T' — co. But when N is relatively large and rising
with 7', it is unlikely to matter if out of the total N (/N — 1)/2 pair-wise correlations only a few are
non-zero. Accordingly, Pesaran (2013) argues that the null of cross-sectionally uncorrelated errors,
defined by

Hy : E (ujpuj) = 0,for all ¢ and @ # j, (56)

is restrictive for large panels and the null of a sufficiently weak cross-sectional dependence could be
more appropriate since mere incidence of isolated error dependencies are of little consequence for
estimation or inference about the parameters of interest, such as the individual slope coefficients,
3;, or their average value, E(3;) = 8.

Consider the panel data model , and let 4;; be the OLS estimator of u;; defined by

N N A/
Uit = Yit — A5 — ﬂiXit, (57)

33



with a;, and Bz being the OLS estimates of a; and 3;, based on the 7" sample observations, y:, X,
for t = 1,2,...,7. Consider the sample estimate of the pair-wise correlation of the residuals, ;;

and ¢, for i # j
T A A
Zt:l Uit Ujt

(Sma2)” (Sha)™
J

In the case where the uy is symmetrically distributed and the regressors are strictly exogenous,

Pij = Pji =

then under the null hypothesis of no cross-sectional dependence, p;; and p;, are cross-sectionally

uncorrelated for all ¢, j and s such that i # j # s. This follows since

T T T T
pl]p’LS Z Z E (’F/it’?}it/ﬁjtﬁst’) = Z Z nztnzt’ (th) E (ﬁst/) =0. (58)
t=1t'=1

t=1t¢'=1

1/2
where 7),;; = U;t / (Zt 1 un) . Note when x;; is strictly exogenous for each ¢, 4, being a linear
function of w;, for ¢ = 1,2,..,T, will also be symmetrically distributed with zero means, which
ensures that 7, is also symmetrically distributed around its mean which is zero. Further, under

and when N is finite, it is known that (see Pesaran (2004))
ﬁpw ~ N(07 1)7 (59)

for a given ¢ and j, as T' — oo. The above result has been widely used for constructing tests
based on the sample correlation coefficient or its transformations. Noting that, from , T,Z)?j is

asymptotically distributed as a x?, it is possible to consider the following statistic

N-1 N

CDpy = N(Nl—l)z > (TP —1). (60)

i=1 j=i+1

Based on the Euclidean norm of the matrix of sample correlation coefficients, is a version of
the Lagrange Multiplier test statistic due to Breusch and Pagan (1980). Frees (1995)| first explored
the finite sample properties of the LM statistic, calculating its moments for fixed values of T"and N,
under the normality assumption. He advanced a non-parametric version of the LM statistic based
on the Spearman rank correlation coefficient. Dufour and Khalaf (2002) have suggested to apply
Monte Carlo exact tests to correct the size distortions of C Dy, in finite samples. However, these

tests, being based on the bootstrap method applied to the C' Dy, are computationally intensive,
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especially when N is large.

An alternative adjustment to the LM test is proposed by Pesaran, Ullah, and Yamagata (2008)),
where the LM test is centered to have a zero mean for a fixed T. These authors also propose a
correction to the variance of the LM test. The basic idea is generally applicable, but analytical
bias corrections can be obtained only under the assumption that the regressors, x;;, are strictly
exogenous and the errors, u;; are normally distributed. Under these assumptions, Pesaran, Ullah,
and Yamagata (2008)|show that the exact mean and variance of (N — k) ﬁ?j are given by:

Hri; = E [(N— k) f?zzj] = ﬁTT (B (MiMj)L

iy = Var[(N—k)p2] = {Tr [E(MM,)]} arp + 2 {Tr [E (MiMj)ﬂ } dyr

2 2 -1
- _ (T—k—8)(T—k+2)+24 _ S (1< S
where a7 = as — (—T1k> _and agr = 3 [ el T 2 4)} M, = Iy — X, (X;Xi) X!

and X; is T x (k + 1) matrix of observations on (1,x/,)’. The adjusted LM statistic is now given

N-1 N ~2
[ (T = k)P — iy
LMagi = | = X -1 61
Adj N(N —1) 4 Z Ui 7 (o1
=1 j=1+1 J

which is asymptotically N(0,1) under Hy, T" — oo followed by N — oo. The asymptotic distri-

by

bution of LM 44 is derived under sequential asymptotics, but it might be possible to establish it
under the joint asymptotics following the method of proof in [Schott (2005) or |[Pesaran (2013)!
The application of the LM 44; test to dynamic panels or panels with weakly exogenous regressors
is further complicated by the fact that the bias corrections depend on the true values of the unknown
parameters and will be difficult to implement. The implicit null of LM tests when T and N — oo,
jointly rather than sequentially could also differ from the null of uncorrelatedness of all pair-wise
correlations. To overcome some of these difficulties, Pesaran (2004 )| has proposed a test that has

exactly mean zero for fixed values of T and N. This test is based on the average of pair-wise

T N-1 N
CDp = | pii | (62)
NV 1) g;g;ly

As it is established in , under the null hypothesis p;; and p;, are uncorrelated for all i # j # s,

correlation coeflicients

but they need not be independently distributed when T is finite. Therefore, the standard central

limit theorems cannot be applied to the elements of the double sum in when (N,T) — oo
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jointly, and as shown in |Pesaran! (2013, Theorem 2) the derivation of the limiting distribution of
CDp statistic involves a number of complications. It is also important to bear in mind that the
implicit null of the test in the case of large N depends on the rate at which T expands with V.
Indeed, as argued in [Pesaran (2004), under the null hypothesis of pi; = 0 for all 7 # j, we continue
to have (ﬁij) = 0, even when T is fixed, so long as u;; are symmetrically distributed around zero,
and the CDp test continues to hold.

Pesaran (2013)| extends the analysis of CDp test and shows that the implicit null of the test is
weak cross-sectional dependence. In particular, the implicit null hypothesis of the test depends on
the relative expansion rates of N and T Using the exponent of cross-sectional dependence, «,
developed in Bailey, Kapetanios, and Pesaran (2012)| and discussed above, Pesaran (2013) shows
that when 7' = O (N°€) for some 0 < ¢ < 1, the implicit null of the CDp test is given by 0 <
a < (2 —¢€) /4. This yields the range 0 < a < 1/4 when (N,T) — oo at the same rate such that
T /N — s for some finite positive constant s, and the range 0 < o < 1/2 when T is small relative to
N. For larger values of a, as shown by Bailey, Kapetanios, and Pesaran (2012), o can be estimated
consistently using the variance of the cross-sectional averages.

Monte Carlo experiments reported in Pesaran (2013) show that the C'Dp test has good small
sample properties for values of « in the range 0 < o < 1/4, even in cases where 7' is small relative
to IV, as well as when the test is applied to residuals from pure autoregressive panels so long as
there are no major asymmetries in the error distribution.

Other statistics have also been proposed in the literature to test for zero contemporaneous
correlation in the errors of panel data model H Using results from the literature on spacing
discussed in (Pyke (1965))), [Ng (2006)| considers a statistic based on the ¢! differences of the
cumulative normal distribution associated to the N(N — 1)/2 pair-wise correlation coefficients
ordered from the smallest to the largest, in absolute value. Building on the work of |John (1971),
and under the assumption of normal disturbances, strictly exogenous regressors, and homogeneous

slopes, Baltagi, Feng, and Kao (2011) propose a test of the null hypothesis of sphericity, defined by

HPFK . u, ~ IIDN (0,0%1y),

YPesaran (2013)| also derives the exact variance of the CDp test under the null of cross sectional independence
and proposes a slightly modified version of the C'Dp test distributed exactly with mean zero and a unit variance.
Y8 A recent review is provided by [Moscone and Tosetti (2009).
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based on the statistic

(@) wE)N-T-N |y

Jpri = 5 22T =y (63)

where § is the N x N sample covariance matrix, computed using the fixed effects residuals under the

BFK

assumption of slope homogeneity, 3; = 3. Under Hy’ "™, errors u;; are cross-sectionally independent

and homoskedastic and the Jppi statistic converges to a standardized normal distribution as

(N, T) — oo such that N/T — s for some finite positive constant ». The rejection of HPF'E

could
be caused by cross-sectional dependence, heteroskedasticity, slope heterogeneity, and/or non-normal
errors. Simulation results reported in |Baltagi, Feng, and Kao (2011) show that this test performs
well in the case of homoskedastic, normal errors, strictly exogenous regressors, and homogeneous
slopes, although it is oversized for panels with large N and small T, and is sensitive to non-
normality of disturbances. Joint assumption of homoskedastic errors and homogeneous slopes is
quite restrictive in applied work and therefore the use of the Jppx statistics as a test of cross-

sectional dependence should be approached with care.

A slightly modified version of the C' Dy s statistic, given by

N-1 N
LMS:\/N(N—T;g(lT—Q) A Z (T —1)p3; —1] (64)

has also been considered by |Schott (2005), who shows that when the LMg statistic is computed
based on normally distributed observations, as opposed to panel residuals, it converges to N(0, 1)
under p;; = 0 for all i # j as (N,T) — oo such that N/T — s for some 0 < 3 < oo. Monte
Carlo simulations reported in |Jensen and Schmidt (2011)| suggests that the LMg test has good
size properties for various sample sizes when applied to panel residuals in the case when slopes are
homogeneous and estimated using the fixed effects approach. However, the LMg test can lead to
severe over-rejection when the slopes are in fact heterogeneous and the fixed effects estimators are
used. The over-rejection of the LMg test could persist even if mean group estimates are used in
the computation of the residuals to take care of slope heterogeneity. This is because for relatively
small values of T', unlike the LM 44; statistic defined by , the LMg statistic defined by is
not guaranteed to have a zero mean exactly.

The problem of testing for cross-sectional dependence in limited dependent variable panel data
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models with strictly exogenous covariates has also been investigated by [Hsiao, Pesaran, and Pick
(2012). In this paper the authors derive a LM test and show that in terms of the generalized
residuals of |Gourieroux et al. (1987), the test reduces to the LM test of Breusch and Pagan (1980),
However, not surprisingly as with the linear panel data models, the LM test based on generalized
residuals tends to over-reject in panels with large N. They then develop a CD type test based on
a number of different residuals, and using Monte Carlo experiments they find that the CD test
preforms well for most combinations of N and 7.

Sarafidis et al. (2009) propose a test for the null hypothesis of homogeneous cross-sectional
dependence

Hy:Var(y;) =0, (65)

in a lagged dependent variable model with regressors and residual factor structure (41))-(42) with
cross-sectionally uncorrelated idiosyncratic innovations e;; against the alternative of heterogeneous
cross-sectional dependence

Hy :Var(y;) #0. (66)

Following [Sargan (1988) and exploring two different sets of moment conditions, one valid only
under the null and the other valid under both hypotheses, [Sarafidis et al. (2009)| derive Sargan’s
difference test based on the first-differenced as well as system based GMM estimators in a large N
and fixed T setting. The null hypothesis does not imply that the errors are cross-sectionally
uncorrelated, and it allows to examine whether any cross section dependence of errors remains after
including time dummies, or after the data is transformed in terms of deviations from time-specific
averages. In such cases the C'Dp test lacks power and the test by [Sarafidis et al. (2009)| could have
some merits.

The existing literature on testing for error cross-sectional dependence, with the exception of
Sarafidis et al. (2009), have mostly focused on the case of strictly exogenous regressors. This
assumption is required for both LM 445 and Jprx tests, while |[Pesaran (2004) shows that the CDp
test is also applicable to autoregressive panel data models so long as the errors are symmetrically
distributed. The properties of the C'Dp test for dynamic panels that include weakly or strictly
exogenous regressors have not yet been investigated.

We conduct Monte Carlo experiments to investigate the performance of these tests in the case of
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dynamic panels and to shed light also on the performance of LMg test in the case of heterogeneous
slopes. We generate the dependent variable and the regressors in the same way as described in
Section with the following two exceptions. First, we introduce lags of the dependent variable
in :

Yit = Cyi + Nilii—1 + BoiTit + B1i%ii—1 + Uit, (67)

and generate \; as I1DU (0,0.8). As discussed in|Chudik and Pesaran (2013b)|the lagged dependent
variable coefficients, \;, and the feedback coefficients, a;, in (53] need to be chosen such as to ensure
the variances of y;; remain bounded. We generate ay; as IIDU (0,0.35), which ensures that this
condition is met and E (az) = 0.35/2. For comparison purposes, we also consider the case of
strictly exogenous regressors where we set \; = ay; = 0 for all &. The second exception is the
generation of the reduced form errors. In order to consider different options for cross-sectional

dependence, we use the following residual factor model to generate the errors w;;.

Uit = V9t + Eit, (68)

where g5, ~ IIDN (0, 30?) with 07 ~ x2(2), gt ~ IIDN (0,1) and the factor loadings are generated

» 2% %

as

Vi = Uy, fori=1,2,..., M,,

v, = 0,fori=My+1,M,+2,...N,

where M, = [N?], vy; ~ IIDU [, — 0.5, 1, + 0.5]. We set p1,, = 1, and consider four values of the
exponent of the cross-sectional dependence for the errors, namely o = 0,0.25,0.5 and 0.75. We also
consider the following combinations of N € {40, 50, 100, 150,200}, and T' € {20, 50, 100, 150, 200},
and use 2000 replications for all experiments.

Table 2 presents the findings for the CD,,, LM 44; and LMg tests. The rejection rates for Jprg
in all cases, including the cross-sectionally independent case of o = 0, were all close to 100%, in
part due to the error variance heteroskedasticity, and are not included in Table 2. The top panel of
Table 2 reports the test results for the case of strictly exogenous regressors, and the bottom part
gives the results for the panel data models with weakly exogenous regressors. We see that the CDp

test continues to perform well even when the panel data model contains a lagged dependent variable
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and other weakly exogenous regressors, for the combination of N and T samples considered. The
results also confirm the theoretical finding discussed above that shows the implicit null of the CDp
test is 0 < o < 0.25. In contrast, the LM 44 test tends to over-reject when the panel includes
dynamics and 7' is small compared to IN. The reported rejection rate when N = 200 and T" = 20
is 14.25 percentm Furthermore, the findings also suggest that the LM 44; test has power when the
cross-sectional dependence is very weak, namely in the case when the exponent of cross-sectional
dependence is a = 0.25. L Mg also over-rejects when T is small relative to N, but the over-rejection
is much more severe as compared to LM,q; test since in the weakly exogenous regressor case it is
not centered at zero for a fixed T'.

The over-rejection of the Jpri test in these experiments is caused by a combination of several
factors, including heteroskedastic errors and heterogeneous coefficients. In order to distinguish
between these effects, we also conducted experiments with homoskedastic errors where we set
Var (eit) = 02 = 1, for all 4, and strictly exogenous regressors (by setting a; = 0 for all i), and
consider two cases for the coefficients: heterogeneous and homogeneous (we set 3,0 = E (8,;9) = 0.75,
for all 7). The results under homoskedastic errors and homogeneous slopes are summarized in the
upper part of Table 3. As to be expected, the Jprx test has good size and power when T > 20
and « = 0. But the test tends to over-reject when 7' = 20 and N relatively large even under
these restrictions. The bottom part of Table 3 presents findings for the experiments with slope
heterogeneity, whilst maintaining the assumptions of homoskedastic errors and strictly exogenous
regressors. We see that even a small degree of slope heterogeneity can cause the Jppg test to
over-reject badly .

Finally, it is important to bear in mind that even the C'Dp test is likely to over-reject in the
case of models with weakly exogenous regressors if NV is much larger than 7. Only in the case
of models with strictly exogenous regressors, and pure autoregressive models with symmetrically
distributed disturbances, we would expect the C'Dp test to perform well even if N is much larger
than T'. To illustrate this property we provide empirical size and power results when N = 1,000
and T = 10 in Table 4. As can be seen the CDp test has the correct size when we consider panel
data models with strictly exogenous regressors or in the case of pure AR(1) models, which is in
contrast to the case of panels with weakly exogenous regressors where the size of the C'Dp test is

close to 70 percent. It is clear that the small sample properties of the CD, test for very large N

17"The rejection rates based on the LM aq4; test were above 90 percent for the sample size N = 500, 1000 and 7" = 10.
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and small T panels very much depends on whether the panel includes weakly exogenous regressors.

7 Application of CCE estimators and CD tests to unbalanced pan-

els

CCE estimators can be readily extended to unbalanced panels, a situation which frequently arises
in practice. Denote the set of cross section units with the available data on y;; and x;; in period
t as N; and the number of elements in the set by #N;. Initially, we suppose that data coverage
for the dependent variables and regressors is the same and later we relax this assumption. The
main complication of applying CCE estimator to the case of unbalanced panels is the inclusion
of cross-sectional averages in the individual regressions. There are two possibilities regarding the
units to include in the computation of cross-sectional averages, either based on the same number
of units or based on a varying number of units. In both cases, cross-sectional averages should be
constructed using at least a minimum number of units, say Npnin, which based on the current Monte

Carlo evidence suggests the value of Ny, = 20. If the same units are used, we have

1 1
U = —— Z Yit, and similarly X; = —— Z Xits
#N ieN #N ieN
fort =t,t+1,...,t where N' = ﬂE:;Nt and the starting and ending points of the sample ¢ and ¢ are
chosen to maximize the use of data subject to the constraint #N > Npin. The second possibility

utilizes data in a more efficient way,

1 1
U= 7 Z Yit, and Xy = == Z Xits
#N: icN #MN: €N

for t = t,t + 1,...,t, where t and ¢ are chosen such that #N; > Npyi, for all t = t,t +1,...,¢.
Both procedures are likely to perform similarly when #N is reasonably large, and the occurrence
of missing observations is random. In cases where new cross section units are added to the panel
over time and such additions can have systematic influences on the estimation outcomes, it might
be advisable to de-mean or de-trend the observations for individual cross section units before
computing the cross section averages to be used in the CCE regressions.

Now suppose that the cross section coverage differs for each variable. For example, the de-
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pendent variable can be available only for OECD countries, whereas some of the regressors could
be available for a larger set of countries. Then, it is preferable to utilize also data on non-OECD
countries to maximize the number of units for the computation of CS averages for each of the
individual variables.

The CD and LM tests can also be readily extended to unbalanced panels. Denote by 7;, the
set of dates over which time series observations on y;; and x;; are available for the i*" individual,
and the number of the elements in the set by #7;. For each ¢ compute the OLS residuals based on
full set of time series observations for that individual. As before, denote these residuals by ¢, for
t € 7;, and compute the pair-wise correlations of 1; and @j; using the common set of data points
in 7; N 7;. Since, the estimated residuals need not sum to zero over the common sample period p;;

could be estimated by

ZteTmTj (ait - 52) ({th - uj)

S, (= 0] [ S, (- 7)°]

f)ij =

where
7 ZteTmTj Uit
COH(LNT)

The CD (similarly the LM type) statistics for the unbalanced panel can then be computed as usual

by
N-1 N
2 .
CDp = NN-1D) E V1ijpij | (69)
=1 j—it1

where Tj; = # (7;N7;) Under the null hypothesis CDp ~ N(0,1) for T; > k + 1, Tj; > 3, and

sufficiently large V.

8 Concluding Remarks

This paper provides a review of the literature on large panel data models with cross-sectional
error dependence. The survey focusses on large N and T panel data models where a natural
ordering across cross section dimension is not available. This excludes the literature on spatial
panel econometrics, which is recently reviewed by |Lee and Yul (2010 and [2013)). We provide a brief
account of the concepts of weak and strong cross-sectional dependence, and discuss the exponent

of cross-sectional dependence that characterizes the different degrees of cross-sectional dependence.
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We then attempt a synthesis of the literature on estimation and inference in large N and T panel
data models with a common factor error structure. We distinguish between strictly and weakly
exogenous regressors and panels with homogeneous and heterogeneous slope coefficients. We also
provide an overview of tests of error cross-sectional dependence in static and dynamic panel data

models.
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Table 4: Size and power of the CDp test for large N and short T panels with strictly

and weakly exogenous regressors (nominal size is set to 5%)

a=0 a=0.25 a=0.5 a=0.75

(N,T) 10 10 10 10

Panel with strictly exogenous regressors

1000 5.10 6.30 20.50 99.90

Pure AR(1) panel

1000 5.50 6.05 22.10 100.00

Dynamic panel with weakly exogenous regressors

1000 69.45 70.70 73.95 100.00

Notes: See the notes to Tables 1 and 2, and Section [6] for further details. In particular, note that null of weak
cross-sectional dependence is characterized by a = 0 and a = 0.25, with alternatives of semi-strong and strong

cross-sectional dependence given by values of a > 1/2.
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