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1 Introduction

This paper reviews econometric methods for large linear panel data models subject to error cross-

sectional dependence. Early panel data literature assumed cross-sectionally independent errors and

homogeneous slopes. Heterogeneity across units was confined to unit-specific intercepts, treated

as fixed or random (see, e.g. the survey by Chamberlain (1984)). Dependence of errors was only

considered in spatial models, but not in standard panels. However, with an increasing availability

of data (across countries, regions, or industries), the panel literature moved from predominantly

micro panels, where the cross dimension (N) is large and the time series dimension (T ) is small,

to models with both N and T large, and it has been recognized that, even after conditioning on

unit-specific regressors, individual units, in general, need not be cross-sectionally independent.

Ignoring cross-sectional dependence of errors can have serious consequences, and the presence of

some form of cross-sectional correlation of errors in panel data applications in economics is likely to

be the rule rather than the exception. Cross correlations of errors could be due to omitted common

effects, spatial effects, or could arise as a result of interactions within socioeconomic networks.

Conventional panel estimators such as fixed or random effects can result in misleading inference

and even inconsistent estimators, depending on the extent of cross-sectional dependence and on

whether the source generating the cross-sectional dependence (such as an unobserved common

shock) is correlated with regressors (Phillips and Sul (2003); Andrews (2005); Phillips and Sul

(2007); Sarafidis and Robertson (2009)). Correlation across units in panels may also have serious

drawbacks on commonly used panel unit root tests, since several of the existing tests assume

independence. As a result, when applied to cross-sectionally dependent panels, such unit root

tests can have substantial size distortions (O’Connell (1998)). If, however, the extent of cross-

sectional dependence of errors is suffi ciently weak, or limited to a suffi ciently small number of cross-

sectional units, then its consequences on conventional estimators will be negligible. Furthermore,

the consistency of conventional estimators can be affected only when the source of cross-sectional

dependence is correlated with regressors. The problem of testing for the extent of cross-sectional

correlation of panel residuals and modelling the cross-sectional dependence of errors are therefore

important issues.

In the case of panel data models where the cross section dimension is short and the time series

dimension is long, the standard approach to cross-sectional dependence is to consider the equations
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from different cross-sectional units as a system of seemingly unrelated regression equations (SURE),

and then estimate it by Generalized Least Squares techniques (see Zellner (1962)). This approach

assumes that the source generating cross-sectional dependence is not correlated with regressors and

this assumption is required for the consistency of the SURE estimator. If the time series dimension

is not suffi ciently large, and in particular if N > T , the SURE approach is not feasible.

Currently, there are two main strands in the literature for dealing with error cross-sectional

dependence in panels where N is large, namely the spatial econometric and the residual multifac-

tor approaches. The spatial econometric approach assumes that the structure of cross-sectional

correlation is related to location and distance among units, defined according to a pre-specified

metric given by a ‘connection or spatial’matrix that characterizes the pattern of spatial depen-

dence according to pre-specified rules. Hence, cross-sectional correlation is represented by means

of a spatial process, which explicitly relates each unit to its neighbors (see Whittle (1954), Moran

(1948), Cliff and Ord (1973 and 1981), Anselin (1988 and 2001), Haining (2003, Chapter 7), and

the recent survey by Lee and Yu (2013)). This approach, however, typically does not allow for

slope heterogeneity across the units and requires a priori knowledge of the weight matrix.

The residual multifactor approach assumes that the cross dependence can be characterized by

a small number of unobserved common factors, possibly due to economy-wide shocks that affect

all units albeit with different intensities. Geweke (1977) and Sargent and Sims (1977) introduced

dynamic factor models, which have more recently been generalized to allow for weak cross-sectional

dependence by Forni and Lippi (2001), Forni et al. (2000) and Forni et al. (2004). This approach

does not require any prior knowledge regarding the ordering of individual cross section units.

The main focus of this paper is on estimation and inference in the case of large N and T

panel data models with a common factor error structure. We provide a synthesis of the alternative

approaches proposed in the literature (such principal components and common correlated effects

approaches), with particular focus on key assumptions and their consequences from the practition-

ers’view point. In particular, we discuss robustness of estimators to cross-sectional dependence of

errors, consequences of coeffi cient heterogeneity, discuss panels with strictly or weakly exogenous

regressors, including panels with a lagged dependent variable, and highlight how to test for residual

cross-sectional dependence.

The outline of the paper is as follows: an overview of the different types of cross-sectional
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dependence is provided in Section 2. The analysis of cross-sectional dependence using a factor

error structure is presented in Section 3. A review of estimation and inference in the case of large

panels with a multifactor error structure and strictly exogenous regressors is provided in Section 4,

and its extension to models with lagged dependent variables and/or weakly exogenous regressors

is given in Section 5. A review of tests of error cross-sectional dependence in static and dynamics

panels is presented in Section 6. Section 7 discusses application of common correlated effects

estimators and tests of error cross-sectional dependence to unbalanced panels, and the final section

concludes.

2 Types of Cross-Sectional Dependence

A better understanding of the extent and nature of cross-sectional dependence of errors is an

important issue in the analysis of large panels. This section introduces the notions of weak and

strong cross-sectional dependence and the notion of exponent of cross-sectional dependence to

characterize the correlation structure of {zit} over the cross-sectional dimension, i, at a given point

in time, t. Consider the double index process {zit, i ∈ N, t ∈ Z} , where zit is defined on a suitable

probability space, the index t refers to an ordered set such as time, and i refers to units of an

unordered population. We make the following assumption:

ASSUMPTION CSD.1: For each t ∈ T ⊆ Z, zt = (z1t, ..., zNt)
′ has mean E (zt) = 0, and

variance V ar (zt) = Σt, where Σt is an N ×N symmetric, nonnegative definite matrix. The (i, j)-

th element of Σt, denoted by σij,t, is bounded such that 0 < σii,t ≤ K, for i = 1, 2, ..., N , where K

is a finite constant independent of N .

Instead of assuming unconditional mean and variances, one could consider conditioning on a

given information set, Ωt−1, for t = 1, 2, ..., T , as done in Chudik et al. (2011). The assumption of

zero means can also be relaxed to E (zt) = µ (or E (zt |Ωt−1 ) = µt−1). The covariance matrix, Σt,

fully characterizes cross-sectional correlations of the double index process {zit}, and this section

discusses summary measures based on the elements of Σt that can be used to characterize the

extent of the cross-sectional dependence in zt.

Summary measures of cross-sectional dependence based on Σt can be constructed in a number

of different ways. One possible measure, that has received a great deal of attention in the literature,
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is the largest eigenvalue of Σt, denoted by λ1 (Σt). See, for example, Bai and Silverstein (1998),

Hachem et al. (2005) and Yin et al. (1988). However, the existing work in this area suggests that the

estimates of λ1 (Σt) based on sample estimates of Σt could be very poor when N is large relative to

T , and consequently using estimates of λ1 (Σt) for the analysis of cross-sectional dependence might

be problematic in cases where T is not suffi ciently large relative to N . Accordingly, other measures

based on matrix norms of Σt have also been used in the literature. One prominent choice is the

absolute column sum matrix norm, defined by ‖Σt‖1 = maxj∈{1,2,...,N}
∑N

i=1 |σij,t|, which is equal

to the absolute row sum matrix norm of Σt, defined by ‖Σt‖∞ = maxi∈{1,2,...,N}
∑N

j=1 |σij,t|, due to

the symmetry of Σt. It is easily seen that |λ1 (Σt)| ≤
√
‖Σt‖1 ‖Σt‖∞ = ‖Σt‖1. See Chudik et al.

(2011). Another possible measure of cross-sectional dependence can be based on the behavior of

(weighted) cross-sectional averages which is often of interest in panel data econometrics, as well as

in macroeconomics and finance where the object of the analysis is often the study of aggregates or

portfolios of asset returns. In view of this, Bailey et al. (2012) and Chudik et al. (2011) suggest

to summarize the extent of cross-sectional dependence based on the behavior of cross-sectional

averages z̄wt =
∑N

i=1witzit = w′tzt, at a point in time t, for t ∈ T , where zt satisfies Assumption

CSD.1 and the sequence of weight vectors wt satisfies the following assumption.

ASSUMPTION CSD.2: Let wt = (w1t, ..., wNt)
′, for t ∈ T ⊆ Z and N ∈ N, be a vector of

non-stochastic weights. For any t ∈ T , the sequence of weight vectors {wt} of growing dimension

(N →∞) satisfies the ‘granularity’conditions:

‖wt‖ =
√

w′twt = O
(
N−

1
2

)
, (1)

wjt
‖wt‖

= O
(
N−

1
2

)
uniformly in j ∈ N. (2)

Assumption CSD.2, known in finance as the granularity condition, ensures that the weights {wit}

are not dominated by a few of the cross section units.1 Although we have assumed the weights

to be non-stochastic, this is done for expositional convenience and can be relaxed by allowing the

weights, wt, to be random but distributed independently of zt. Chudik et al. (2011) define the

concepts of weak and strong cross-sectional dependence based on the limiting behavior of z̄wt at a

1Conditions (1)-(2) imply existence of a finite constant K (which does not depend on i or N) such that |wit| <
KN−1 for any i = 1, 2, ..., N and any N ∈ N.
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given point in time t ∈ T , as N →∞.

Definition 1 (Weak and strong cross-sectional dependence) The process {zit} is said to be

cross-sectionally weakly dependent (CWD) at a given point in time t ∈ T , if for any sequence of

weight vectors {wt} satisfying the granularity conditions (1)-(2) we have

lim
N→∞

V ar(w′tzt) = 0. (3)

{zit} is said to be cross-sectionally strongly dependent (CSD) at a given point in time t ∈ T , if

there exists a sequence of weight vectors {wt} satisfying (1)-(2) and a constant K independent of

N such that for any N suffi ciently large (and as N →∞)

V ar(w′tzt) ≥ K > 0. (4)

The above concepts can also be defined conditional on a given information set, Ωt−1, see

Chudik et al. (2011). The choice of the conditioning set largely depends on the nature of the

underlying processes and the purpose of the analysis. For example, in the case of dynamic station-

ary models, the information set could contain all lagged realizations of the process {zit}, that is

Ωt−1 = {zt−1, zt−2, ....}, whilst for dynamic non-stationary models, such as unit root processes, the

information included in Ωt−1, could start from a finite past. Conditioning information set could

also contain contemporaneous realizations, which might be useful in applications where a particular

unit has a dominant influence on the rest of the units in the system. For further details, see Chudik

and Pesaran (2013c).

The following proposition establishes the relationship between weak cross-sectional dependence

and the asymptotic behavior of the largest eigenvalue of Σt.

Proposition 1 The following statements hold:

(i) The process {zit} is CWD at a point in time t ∈ T , if λ1 (Σt) is bounded in N or increases

at the rate slower than N .

(ii) The process {zit} is CSD at a point in time t ∈ T , if and only if for any N suffi ciently large

(and as N →∞), N−1λ1 (Σt) ≥ K > 0.
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Proof. First, suppose λ1 (Σt) is bounded in N or increases at the rate slower than N . We have

V ar(w′tzt) = w′tΣtwt ≤
(
w′twt

)
λ1 (Σt) , (5)

and under the granularity conditions (1)-(2) it follows that

lim
N→∞

V ar(w′tzt) = 0,

namely that {zit} is CWD, which proves (i). Proof of (ii) is provided in Chudik, Pesaran, and

Tosetti (2011)

It is often of interest to know not only whether z̄wt converges to its mean, but also the rate

at which this convergence (if at all) takes place. To this end, Bailey et al. (2012) propose to

characterize the degree of cross-sectional dependence by an exponent of cross-sectional dependence

defined by the rate of change of V ar(z̄wt) in terms of N . Note that in the case where zit are

independently distributed across i, we have V ar(z̄wt) = O
(
N−1

)
, whereas in the case of strong

cross-sectional dependence V ar(z̄wt) ≥ K > 0. There is, however, a range of possibilities in between,

where V ar(z̄wt) decays but at a rate slower than N−1. In particular, using a factor framework,

Bailey et al. (2012) show that in general

V ar(z̄wt) = κ0N
2(α−1) + κ1N

−1 +O(Nα−2), (6)

where κi > 0 for i = 0 and 1, are bounded in N , which will be time invariant in the case of

stationary processes. Since the rate at which V ar(z̄wt) tends to zero with N cannot be faster

than N−1, the range of α identified by V ar(z̄wt) lies in the restricted interval −1 < 2α − 2 ≤ 0

or 1/2 < α ≤ 1. Note that (3) holds for all values of α < 1, whereas (4) holds only for α = 1.

Hence the process with α < 1 is CWD, and a CSD process has the exponent α = 1. Bailey et al.

(2012) show that under certain conditions on the underlying factor model, α is identified in the

range 1/2 < α ≤ 1, and can be consistently estimated. Alternative bias-adjusted estimators of α

are proposed and shown by Monte Carlo experiments to have satisfactory small sample properties.

A particular form of a CWD process arises when pair-wise correlations take non-zero values

only across finite subsets of units that do not spread widely as the sample size increases. A

similar situation arises in the case of spatial processes, where direct dependence exists only amongst
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adjacent observations, and the indirect dependence is assumed to decay with distance. For further

details see Pesaran and Tosetti (2011).

Since λ1 (Σt) ≤ ‖Σt‖1, it follows from (5) that both the spectral radius and the column norm

of the covariance matrix of a CSD process will be increasing at the rate N . Similar situations

also arise in the case of time series processes with long memory or strong temporal dependence

where autocorrelation coeffi cients are not absolutely summable. Along the cross section dimension,

common factor models represent examples of strong cross-sectional dependence.

3 Common Factor Models

Consider the m factor model for {zit}

zit = γi1f1t + γi2f2t + ...+ γimfmt + eit, i = 1, 2, ..., N, (7)

which can be written more compactly as

zt = Γf t + et, (8)

where ft = (f1t, f2t, ..., fmt)
′, et = (e1t, e2t, ..., eNt)

′, and Γ = (γij), for i = 1, 2, ..., N , j = 1, 2, ...,m,

is an N × m matrix of fixed coeffi cients, known as factor loadings. The common factors, ft, si-

multaneously affect all cross-sectional units, albeit with different degrees as measured by γi =

(γi1, γi2, ..., γim)′. Examples of observed common factors that tend to affect all households’and

firms’consumption and investment decisions include interest rates and oil prices. Aggregate de-

mand and supply shocks represent examples of common unobserved factors. In multifactor models,

interdependence arises from reaction of units to some external events. Further, according to this

representation, correlation between any pair of units does not depend on how far these observations

are apart, and violates the distance decay effect that underlies the spatial interaction model.

The following assumptions are typically made regarding the common factors, f`t, and the idio-

syncratic errors, eit.

ASSUMPTION CF.1: The m × 1 vector ft is a zero mean covariance stationary process, with

absolutely summable autocovariances, distributed independently of eit′ for all i, t, t′, such that
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E(f2`t) = 1 and E(f`tf`′t) = 0, for ` 6= `′ = 1, 2, ...,m.

ASSUMPTION CF.2: V ar (eit) = σ2i < K < ∞, eit and ejt are independently distributed for

all i 6= j and for all t. Specifically, maxi
(
σ2i
)

= σ2max < K <∞.

Assumption CF.1 is an identification condition, since it is not possible to separately identify ft

and Γ. The above factor model with a fixed number of factors and cross-sectionally independent

idiosyncratic errors is often referred to as an exact factor model. Under the above assumptions,

the covariance of zt is given by

E
(
ztz
′
t

)
= ΓΓ′ + V,

where V is a diagonal matrix with elements σ2i on the main diagonal.

The assumption that the idiosyncratic errors, eit, are cross-sectionally independent is not nec-

essary and can be relaxed. The factor model that allows the idiosyncratic shocks, eit, to be cross-

sectionally weakly correlated is known as the approximate factor model. See Chamberlain (1983).

In general, the correlation patterns of the idiosyncratic errors can be characterized by

et = Rεt, (9)

where εt = (ε1t, ε2t, ..., εNt)
′ ∼ (0, IN ). In the case of this formulation V = RR′, which is no longer

diagonal whenR is not diagonal, and further identification restrictions are needed so that the factor

specification can be distinguished from the cross-sectional dependence assumed for the idiosyncratic

errors. To this end it is typically assumed that R has bounded row and column sum matrix norms

(so that the cross-sectional dependence of et is suffi ciently weak) and the factor loadings are such

that limN→∞(N−1Γ′Γ) is a full rank matrix.

A leading example of R arises in the context of the first-order spatial autoregressive, SAR(1),

model, defined by

et = ρWet + Λεt, (10)

where Λ is a diagonal matrix with strictly positive and bounded elements, 0 < σi <∞, ρ is a spatial

autoregressive coeffi cient, and the matrix W is the ‘connection or spatial’weight matrix which is

taken as given. Assuming that (IN − ρW) is invertible, we then have R = (IN − ρW)−1Λ. In the

spatial literature, W is assumed to have non-negative elements and is typically row-standardized
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so that ‖W‖∞ = 1. Under these assumptions, |ρ| < 1 ensures that |ρ| ‖W‖∞ < 1, and we have

‖R‖∞ = ‖Λ‖∞
∥∥IN + ρW+ρ2W2 + ....

∥∥
∞

≤ ‖Λ‖∞
[
1 + |ρ| ‖W‖∞ + |ρ|2 ‖W‖2∞ + ...

]
=

‖Λ‖∞
1− |ρ| ‖W‖∞

< K <∞,

where ‖Λ‖∞ = maxi(σi) <∞. Similarly, ‖R‖1 < K <∞, if it is further assumed that |ρ| ‖W‖1 <

1. In general, R = (IN − ρW)−1Λ has bounded row and column sum matrix norms if |ρ| <

min (1/ ‖W‖1 , 1/ ‖W‖∞). In the case where W is a row and column stochastic matrix (often

assumed in the spatial literature) this suffi cient condition reduces to |ρ| < 1, which also ensures the

invertibility of (IN − ρW). Note that for a doubly stochastic matrix ρ(W) = ‖W‖1 = ‖W‖∞ = 1,

where ρ (W) is the spectral radius of W. It turns out that almost all spatial models analyzed in the

spatial econometrics literature characterize weak forms of cross-sectional dependence. See Sarafidis

and Wansbeek (2012) for further discussion.

Turning now to the factor representation, to ensure that the factor component of (8) represents

strong cross-sectional dependence (so that it can be distinguished from the idiosyncratic errors) it

is suffi cient that the absolute column sum matrix norm of ‖Γ‖1 = maxj∈{1,2,...,N}
∑N

i=1

∣∣γij∣∣ rises
with N at the rate N , which implies that limN→∞(N−1Γ′Γ) is a full rank matrix, as required

earlier.

The distinction between weak and strong cross-sectional dependence in terms of factor loadings

are formalized in the following definition.

Definition 2 (Strong and weak factors) The factor f`t is said to be strong if

lim
N→∞

N−1
N∑
i=1

|γi`| = K > 0. (11)

The factor f`t is said to be weak if

lim
N→∞

N∑
i=1

|γi`| = K <∞. (12)

It is also possible to consider intermediate cases of semi-weak or semi-strong factors. In general,
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let α` be a positive constant in the range 0 ≤ α` ≤ 1 and consider the condition

lim
N→∞

N−α`
N∑
i=1

|γi`| = K <∞. (13)

Strong and weak factors correspond to the two values of α` = 1 and α` = 0, respectively. For

any other values of α` ∈ (0, 1) the factor f`t can be said to be semi-strong or semi-weak. It will

prove useful to associate the semi-weak factors with values of 0 < α` < 1/2, and the semi-strong

factors with values of 1/2 ≤ α` < 1. In a multi-factor set up the overall exponent can be defined

by α = max(α1, α2, ..., αm).

Example 1 Suppose that zit are generated according to the simple factor model, zit = γift + eit,

where ft is independently distributed of γi, and eit ∼ IID(0, σ2i ), for all i and t, σ
2
i is non-stochastic

for expositional simplicity and bounded, E
(
f2t
)

= σ2f < ∞, E (ft) = 0 and ft is independently

distributed of eit′ for all i, t and t′. The factor loadings are given by

γi = µ+ vi, for i = 1, 2, ..., [Nαγ ] (14)

γi = 0 for i = [Nαγ ] + 1, [Nαγ ] + 2, ..., N , (15)

for some constant αγ ∈ [0, 1], where [Nαγ ] is the integer part of Nαγ , µ 6= 0, and vi are IID

with mean 0 and the finite variance, σ2v.
2 Note that

∑N
i=1 |γi| = Op ([Nαγ ]) and the factor ft with

loadings γi is strong for αγ = 1, weak for αγ = 0 and semi-weak or semi-strong for 0 < αγ < 1.

Consider the variance of the (simple) cross-sectional averages z̄t = N−1
∑N

i=1 zit

V arN (z̄t) = V ar
(
z̄t

∣∣∣{γi}Ni=1) = γ̄2Nσ
2
f +N−1σ̄2N , (16)

where (dropping the integer part sign, [.] , for further clarity)

γ̄N = N−1
N∑
i=1

γi = N−1
Nαγ∑
i=1

γi = µNαγ−1 +Nαγ−1

(
1

Nαγ

Nαγ∑
i=1

vi

)

σ̄2N = N−1
N∑
i=1

σ2i > 0.

2The assumption of zero loadings for i > [Nαγ ] could be relaxed so long as
∑N
i=[Nαγ ]+1 |γi| = Op (1). But for

expositional simplicity we maintain γi = 0 for i = [N
αγ ] + 1, [Nαγ ] + 2, ..., N .
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But, noting that

E (γ̄N ) = µNαγ−1, V ar(γ̄N ) = Nαγ−2σ2v,

we have

E
(
γ̄2N
)

= [E (γ̄N )]2 + V ar(γ̄N ) = µ2N2(αγ−1) +Nαγ−2σ2v.

Therefore, using this result in (16), we now have

V ar (z̄t) = E [V arN (z̄t)] = σ2fµ
2N2(αγ−1) + σ̄2NN

−1 + σ2vσ
2
fN

αγ−2 (17)

= σ2fµ
2N2(αγ−1) + σ̄2NN

−1 +O
(
Nαγ−2) . (18)

Thus the exponent of cross-sectional dependence of zit, denoted as αz, and the exponent αγ coincide

in this example, so long as αγ > 1/2. When αγ = 1/2, one can not use V ar (z̄t) to distinguish the

factor effects from those of the idiosyncratic terms. Of course, this does not necessarily mean that

other more powerful techniques can not be found to distinguish such weak factor effects from the

effects of the idiosyncratic terms. Finally, note also that in this example
∑N

i=1 γ
2
i = Op (Nαγ ), and

the largest eigenvalue of the N ×N covariance matrix, V ar (zt) , also rises at the rate of Nαγ .

The relationship between the notions of CSD and CWD and the definitions of weak and strong

factors are explored in the following theorem.

Theorem 2 Consider the factor model (8) and suppose that Assumptions CF.1-CF.2 hold, and

there exists a positive constant α = max(α1, α2, ..., αm) in the range 0 ≤ α ≤ 1, such that condition

(13) is met for any ` = 1, 2, ..,m. Then the following statements hold:

(i) The process {zit} is cross-sectionally weakly dependent at a given point in time t ∈ T if α < 1,

which includes cases of weak, semi-weak or semi-strong factors, f`t, for ` = 1, 2, ...,m.

(ii) The process {zit} is cross-sectionally strongly dependent at a given point in time t ∈ T if and

only if there exists at least one strong factor.

Proof is provided in Chudik, Pesaran, and Tosetti (2011).

Since a factor structure can lead to strong as well as weak forms of cross-sectional dependence,

cross-sectional dependence can also be characterized more generally by the following N factor
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representation

zit =
N∑
j=1

γijfjt + εit, for i = 1, 2, ..., N ,

where εit is independently distributed across i. Under this formulation, to ensure that the variance

of zit is bounded in N , we also require that

N∑
`=1

|γi`| ≤ K <∞, for i = 1, 2, ..., N. (19)

zit can now be decomposed as

zit = zsit + zwit , (20)

where

zsit =
m∑
`=1

γi`f`t; zwit =
N∑

`=m+1

γi`f`t + εit, (21)

and γi` satisfy conditions (11) for ` = 1, ...,m, where m must be finite in view of the absolute

summability condition (19) that ensures finite variances. Remaining loadings γi` for ` = m+1,m+

2, ..., N must satisfy either (12) or (13) for some α < 1.3 In the light of Theorem 2, it can be shown

that zsit is CSD and zwit is CWD. Also, notice that when zit is CWD, we have a model with no

strong factors and potentially an infinite number of weak or semi-strong factors. Seen from this

perspective, spatial models considered in the literature can be viewed as an N weak factor model.

Consistent estimation of factor models with weak or semi-strong factors may be problematic,

as evident from the following example.

Example 3 Consider the single factor model with known factor loadings

zit = γift + εit, εit ∼ IID
(
0, σ2

)
.

The least squares estimator of ft, which is the best linear unbiased estimator, is given by

f̂t =

∑N
i=1 γizit∑N
i=1 γ

2
i

, V ar
(
f̂t

)
=

σ2∑N
i=1 γ

2
i

.

In the weak factor case where
∑N

i=1 γ
2
i is bounded in N , then V ar

(
f̂t

)
does not vanish as N →∞,

3Note that the number of factors with α` > 0 is limited by the absolute summability condition (19).
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and f̂t need not be a consistent estimator of ft. See also Onatski (2012).

Presence of weak or semi-strong factors in errors does not affect consistency of conventional

panel data estimators, but affects inference, as is evident from the following example.

Example 4 Consider the following panel data model

yit = βxit + uit, uit = γift + εit,

where

xit = δift + vit.

To simplify the exposition we assume that, εit, vjs and ft′ are independently, and identically dis-

tributed across all i, j, t,s and t′, as εit ∼ IID
(
0, σ2ε

)
, vit ∼ IID

(
0, σ2v

)
, and ft ∼ IID (0, 1). The

pooled estimator of β satisfies

√
NT

(
β̂P − β

)
=

1√
NT

∑N
i=1

∑T
t=1 xituit

1
NT

∑N
i=1

∑T
t=1 x

2
it

, (22)

where the denominator converges in probability to σ2v + limN→∞N
−1∑N

i=1 δ
2
i > 0, while the nu-

merator can be expressed, after substituting for xit and uit, as

1√
NT

N∑
i=1

T∑
t=1

xituit =
1√
NT

N∑
i=1

T∑
t=1

γiδif
2
t +

1√
NT

N∑
i=1

T∑
t=1

(δiftεit + γivitft + vitεit) . (23)

Under the above assumptions it is now easily seen that the second term in the above expression is

Op(1), but the first term can be written as

1√
NT

N∑
i=1

T∑
t=1

γiδif
2
t =

1√
N

N∑
i=1

γiδi ·
1√
T

T∑
t=1

f2t

=
1√
N

N∑
i=1

γiδi ·Op
(
T 1/2

)
.

Suppose now that ft is a factor such that loadings γi and δi are given by (14)-(15) with the exponents

αγ and αδ (0 ≤ αγ,αδ ≤ 1), respectively, and let α = min (αγ , αδ). It then follows that
∑N

i=1 γiδi =

14



Op (Nα), and

1√
NT

N∑
i=1

T∑
t=1

γiδif
2
t = Op(N

α−1/2T 1/2).

Therefore, even if α < 1 the first term in (23) diverges, and overall we have β̂P −β = Op(N
α−1) +

Op(T
−1/2N−1/2). It is now clear that even if ft is not a strong factor, the rate of convergence of β̂P

and its asymptotic variance will still be affected by the factor structure of the error term. In the case

where α = 0, and the errors are spatially dependent, the variance matrix of the pooled estimator also

depends on the nature of the spatial dependence which must be taken into account when carrying

out inference on β. See Pesaran and Tosetti (2011) for further results and discussions.

Weak, strong and semi-strong common factors may be used to represent very general forms of

cross-sectional dependence. For example, a factor process with an infinite number of weak factors,

and no idiosyncratic errors can be used to represent spatial processes. In particular, the spatial

model (9) can be represented by eit =
N∑
j=1

γijfjt, where γij = rij and fjt = εjt. Strong factors

can be used to represent the effect of the cross section units that are “dominant”or pervasive, in

the sense that they impact all the other units in the sample and their effect does not vanish as

N tends to infinity, (Chudik and Pesaran (2013c)). As argued in Holly, Pesaran, and Yagamata

(2011), a large city may play a dominant role in determining house prices nationally. Semi-strong

factors may exist if there is a cross section unit or an unobserved common factor that affects only

a subset of the units and the number of affected units rise more slowly than the total number of

units. Estimates of the exponent of cross-sectional dependence reported by Bailey, Kapetanios,

and Pesaran (2012, Tables 1 and 2) suggest that for typical large macroeconomic data sets the

estimates of α fall in the range of 0.77− 0.92, which fall short of 1 assumed in the factor literature.

For cross country quarterly real GDP growth, inflation and real equity prices the estimates of α

are much closer to unity and tend to be around 0.97.
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4 Large Panels with Strictly Exogenous Regressors and a Factor

Error Structure

Consider the following heterogeneous panel data model

yit = α′idt + β′ixit + uit, (24)

where dt is a n× 1 vector of observed common effects (including deterministics such as intercepts

or seasonal dummies), xit is a k × 1 vector of observed individual-specific regressors on the ith

cross-section unit at time t, and disturbances, uit, have the following common factor structure

uit = γi1f1t + γi2f2t + ...+ γimfmt + eit = γ ′ift + eit, (25)

in which ft = (f1t, f2t, ..., fmt)
′ is an m-dimensional vector of unobservable common factors, and

γi = (γi1, γi2, ..., γim)′ is the associated m× 1 vector of factor loadings. The number of factors, m,

is assumed to be fixed relative to N , and in particular m << N . The idiosyncratic errors, eit, could

be CWD, for example, being generated by a spatial process, or, more generally, by a weak factor

structure. For estimation purposes, as in the case of panels with group effects, the factor loadings,

γi, could be either random or fixed unknown coeffi cients. We distinguish between the homogeneous

coeffi cient case where βi = β for all i, and the heterogeneous case where βi are random draws

from a given distribution. In the latter case, we assume that the object of interest is the mean

coeffi cients, β = E (βi), for all i. When the regressors, xit, are strictly exogenous and the deviations

υi = βi − β are distributed independently of the errors and the regressors, the mean coeffi cients,

β, can be consistently estimated using pooled as well as mean group estimation procedures. But

only mean group estimation will be consistent if the regressors are weakly exogenous and/or if the

deviations are correlated with the regressors/errors.4

The assumption of slope homogeneity is also crucially important for the derivation of the as-

ymptotic distribution of the pooled or the mean group estimators of β. Under slope homogeneity,

the asymptotic distribution of the estimator of β typically converges at the rate of
√
NT , whilst

under slope heterogeneity the rate is
√
N . In view of the uncertainty regarding the assumption of

4Pooled estimation is carried out assuming that βi = β for all i, whilst mean group estimation allows for slope
heterogeneity and estimates β by the average of the individual estimates of βi (Pesaran and Smith (1995)).
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slope heterogeneity, non-parametric estimators of the variance matrix of the pooled and mean group

estimators are proposed.5 In the following sub-sections we review a number of different estimators

of β proposed in the literature.

4.1 PC estimators

The principal components (PC) approach proposed by Coakley, Fuertes, and Smith (2002) and Bai

(2009), by requiring that N−1Γ′Γ tends to a positive definite matrix, implicitly assumes that all

the unobserved common factors in (25) are strong. Coakley, Fuertes, and Smith (2002) consider

the panel data model with strictly exogenous regressors and homogeneous slopes (i.e., βi = β),

and propose a two-stage estimation procedure. In the first stage, PCs are extracted from the OLS

residuals as proxies for the unobserved variables, and in the second step the estimated factors are

treated as observable and the following augmented regression is estimated

yit = α′idt + β′xit + γ ′if̂t + εit, for i = 1, 2, ..., N ; t = 1, 2, ..., T, (26)

where f̂t is an m × 1 vector of principal components of the residuals computed in the first stage.

The resultant estimator of β is consistent for N and T large, so long as ft and the regressors, xit,

are uncorrelated. However, if the factors and the regressors are correlated, as it is likely to be the

case in practice, the two-stage estimator becomes inconsistent (Pesaran (2006)).

Building on Coakley, Fuertes, and Smith (2002), Bai (2009) has proposed an iterative method

which consists of alternating the PC method applied to OLS residuals and the least squares esti-

mation of (26), until convergence. In particular, to simplify the exposition suppose αi = 0. Then

the least squares estimator of β and F is the solution of the following set of non-linear equations:

β̂PC =

(
N∑
i=1

X′iMF̂Xi

)−1 N∑
i=1

X′iMF̂yi,

1

NT

N∑
i=1

(
yi −Xiβ̂PC

)(
yi −Xiβ̂PC

)′
F̂ = F̂V̂,

whereXi = (xi1,xi2, ...,xiT )′ is the matrix of observations on xit, yi = (yi1, yi2, ..., yiT )′ is the vector

of observations on yit, MF̂ = IT − F̂
(
F̂′F̂

)−1
F̂′, F̂ =

(
f̂1, f̂2, ..., f̂T

)′
, and V̂ is a diagonal matrix

5Tests of slope homogeneity hypothesis in static and dynamic panels are discussed in Pesaran and Yamagata
(2008).
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with the m largest eigenvalues of the matrix 1
NT

∑N
i=1

(
yi −Xiβ̂PC

)(
yi −Xiβ̂PC

)′
arranged in

a decreasing order. The solution β̂PC , F̂ and γ̂i =
(
F̂′F̂

)−1
F̂′
(
yi −Xiβ̂PC

)
minimizes the sum

of squared residuals function,

SSRNT

(
β, {γi}Ni=1 , {ft}

T
t=1

)
=

N∑
i=1

(yi −Xiβ − Fγi)
′ (yi −Xiβ − Fγi) ,

where F = (f1, f2, ..., fT )′. This function is a Gaussian quasi maximum likelihood function of the

model and in this respect, Bai’s iterative principal components estimator can also be seen as a

quasi maximum likelihood estimator, since it minimizes the quasi likelihood function.

Bai (2009) shows that such an estimator is consistent even if common factors are correlated with

the explanatory variables. Specifically, the least square estimator of β obtained from the above

procedure, β̂PC , is consistent if both N and T tend to infinity, without any restrictions on the

ratio T/N . When in addition T/N → K > 0, β̂PC converges at the rate
√
NT , but the limiting

distribution of
√
NT

(
β̂PC − β

)
does not necessarily have a zero mean. Nevertheless, Bai shows

that the asymptotic bias can be consistently estimated and proposes a bias corrected estimator.

But it is important to bear in mind that PC-based estimators generally require the determination

of the unknown number of strong factors (PCs), m, to be included in the second stage of estimation,

and this can introduce some degree of sampling uncertainty into the analysis. There is now a

large literature that considers the estimation of m, assuming all the m factors to be strong. See,

for example, Bai and Ng (2002 and 2007), Kapetanios (2004 and 2010), Amengual and Watson

(2007), Hallin and Liska (2007), Onatski (2009 and 2010), Ahn and Horenstein (2013), Breitung

and Pigorsch (2013), Choi and Jeong (2013) and Harding (2013). There are also a number of

useful surveys by Bai and Ng (2008), Stock and Watson (2011) and Breitung and Choi (2013),

amongst others, that can be consulted for detailed discussions of these methods and additional

references. An extensive Monte Carlo investigation into the small sample performance of different

selection/estimation methods is provided in Choi and Jeong (2013).

4.2 CCE estimators

Pesaran (2006) suggests the Common Correlated Effects (CCE) estimation procedure that consists

of approximating the linear combinations of the unobserved factors by cross-sectional averages of
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the dependent and explanatory variables, and then running standard panel regressions augmented

with these cross-sectional averages. Both pooled and mean group versions are proposed, depending

on the assumption regarding the slope homogeneity.

Under slope heterogeneity the CCE approach assumes that β′is follow the random coeffi cient

model

βi = β + υi, υi ∼ IID(0,Ωυ) for i = 1, 2, ..., N,

where the deviations, υi, are distributed independently of ejt,xjt, and dt, for all i, j and t. Since

in many empirical applications where cross-sectional dependence is caused by unobservable factors,

these factors are correlated with the regressors, and the following model for the individual-specific

regressors in (24) is adopted

xit = A′idt + Γ′ift + vit, (27)

where Ai and Γi are n × k and m × k factor loading matrices with fixed components, vit is the

idiosyncratic component of xit distributed independently of the common effects ft′ and errors ejt′

for all i, j, t and t′. However, vit is allowed to be serially correlated, and cross-sectionally weakly

correlated.

Equations (24), (25) and (27) can be combined into the following system of equations

zit =

 yit

xit

 = B′idt + C′ift + ξit, (28)

where

ξit =

 eit + β′ivit

vit

 ,

Bi = ( αi Ai )

 1 0

βi Ik

 , Ci = ( γi Γi )

 1 0

βi Ik

 .

Consider the weighted average of zit using the weights wi satisfying the granularity conditions

(1)-(2):

z̄wt = B̄′wdt + C̄′wft + ξ̄wt,
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where

z̄wt =
N∑
i=1

wizit,

B̄w =
N∑
i=1

wiBi , C̄w =
N∑
i=1

wiCi, and ξ̄wt =
N∑
i=1

wiξit.

Assume that6

Rank(C̄w) = m ≤ k + 1, (29)

we have

ft = (C̄wC̄′w)−1C̄w

(
z̄wt − B̄′wdt − ξ̄wt

)
. (30)

Under the assumption that eit’s and vit’s are CWD processes, it is possible to show that (see

Pesaran and Tosetti (2011))

ξ̄wt
q.m.→ 0, (31)

which implies

ft − (C̄wC̄′w)−1C̄w

(
z̄wt − B̄′dt

) q.m.→ 0, as N →∞, (32)

where

C = lim
N→∞

(C̄w) = Γ̃

 1 0

β Ik

 , (33)

Γ̃ = (E(γi), E(Γi)), and β = E(βi). Therefore, the unobservable common factors, ft, can be well

approximated by a linear combination of observed effects, dt, the cross-sectional averages of the

dependent variable, ȳwt, and those of the individual-specific regressors, x̄wt.

When the parameters of interest are the cross-sectional means of the slope coeffi cients, β, we

can consider two alternative estimators, the CCE Mean Group (CCEMG) estimator, originally

proposed by Pesaran and Smith (1995), and the CCE Pooled (CCEP) estimator. Let M̄w be

defined by

M̄w = IT − H̄w(H̄′wH̄w)+H̄′w, (34)

where A+ denotes the Moore-Penrose inverse of matrix A, H̄w = (D, Z̄w), and D and Z̄w are,

respectively, the matrices of the observations on dt and z̄wt = (ȳwt, x̄
′
wt)
′.

6This assumption can be relaxed. See Pesaran (2006).
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The CCEMG is a simple average of the estimators of the individual slope coeffi cients7

β̂CCEMG = N−1
N∑
i=1

β̂CCE,i, (35)

where

β̂CCE,i = (X′iM̄wXi)
−1X′iM̄wyi. (36)

Pesaran (2006) shows that, under some general conditions, β̂CCEMG is asymptotically unbiased for

β, and as (N,T )→∞,
√
N(β̂CCEMG − β)

d→ N(0,ΣCCEMG), (37)

whereΣCCEMG = Ωv. A consistent estimator of the variance of β̂CCEMG, denoted by V ar
(
β̂CCEMG

)
,

can be obtained by adopting the non-parametric estimator:

V̂ ar
(
β̂CCEMG

)
= N−1Σ̂CCEMG =

1

N (N − 1)

N∑
i=1

(β̂CCE,i−β̂CCEMG)(β̂CCE,i−β̂CCEMG)′. (38)

The CCEP estimator is given by

β̂CCEP =

(
N∑
i=1

wiX
′
iM̄wXi

)−1 N∑
i=1

wiX
′
iM̄wyi. (39)

Under some general conditions, Pesaran (2006) proves that β̂CCEP is asymptotically unbiased for

β, and, as (N,T )→∞,

(
N∑
i=1

w2i

)−1/2 (
β̂CCEP − β

)
d→ N(0,ΣCCEP ),

where

ΣCCEP = Ψ∗−1R∗Ψ∗−1,

Ψ∗ = lim
N→∞

(
N∑
i=1

wiΣi

)
, R∗ = lim

N→∞

[
N−1

N∑
i=1

w̃2i (ΣiΩυΣi)

]
,

Σi = p lim
T→∞

(
T−1X′iM̄wXi

)
, and w̃i =

wi√
N−1

∑N
i=1w

2
i

.

7Pesaran (2006) also considered a weighted average of individual b̂i, with weights inversely proportional to the
individual variances.
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A consistent estimator of V ar
(
β̂CCEP

)
, denoted by V̂ ar

(
β̂CCEP

)
, is given by

V̂ ar
(
β̂CCEP

)
=

(
N∑
i=1

w2i

)
Σ̂CCEP =

(
N∑
i=1

w2i

)
Ψ̂∗−1R̂∗Ψ̂∗−1, (40)

where

Ψ̂∗ =
N∑
i=1

wi

(
X′iM̄wXi

T

)
,

R̂∗ =
1

N − 1

N∑
i=1

w̃2i

(
X′iM̄wXi

T

)
(β̂CCE,i − β̂CCEMG)(β̂CCE,i − β̂CCEMG)′

(
X′iM̄wXi

T

)
.

The rate of convergence of β̂CCEMG and β̂CCEP is
√
N when Ωυ 6= 0. Note that even if βi were

observed for all i, the estimate of β = E (βi) cannot converge at a faster rate than
√
N . If the

individual slope coeffi cients βi are homogeneous (namely if Ωυ = 0), β̂CCEMG and β̂CCEP are still

consistent and converge at the rate
√
NT rather than

√
N .

Advantage of the nonparametric estimators Σ̂CCEMG and Σ̂CCEP is that they do not require

knowledge of the weak cross-sectional dependence of eit (provided it is suffi ciently weak) nor the

knowledge of serial correlation of eit. An important question is whether the non-parametric vari-

ance estimators V̂ ar
(
β̂CCEMG

)
and V̂ ar

(
β̂CCEP

)
can be used in both cases of homogeneous

and heterogeneous slopes. As established in Pesaran and Tosetti (2011), the asymptotic distri-

bution of β̂CCEMG and β̂CCEP depends on nuisance parameters when slopes are homogeneous

(Ωυ = 0), including the extent of cross-sectional correlations of eit and their serial correlation

structure. However, it can be shown that the robust non-parametric estimators V̂ ar
(
β̂CCEMG

)
and V̂ ar

(
β̂CCEP

)
are consistent when the regressor-specific components, vit, are independently

distributed across i.

The CCE continues to be applicable even if the rank condition (29) is not satisfied. Failure of the

rank condition can occur if there is an unobserved factor for which the average of the loadings in the

yit and xit equations tends to a zero vector. This could happen if, for example, the factor in question

is weak, in the sense defined above. Another possible reason for failure of the rank condition is

if the number of unobservable factors, m, is larger than k + 1, where k is the number of the

unit-specific regressors included in the model. In such cases, common factors cannot be estimated

from cross-sectional averages. However, it is possible to show that the cross-sectional means of

22



the slope coeffi cients, βi, can still be consistently estimated, under the additional assumption that

the unobserved factor loadings, γi, in equation (25) are independently and identically distributed

across i, and of ejt, vjt, and gt = (d′t, f
′
t)
′ for all i, j and t, and uncorrelated with the loadings

attached to the regressors, Γi. The consequences of the correlation between loadings γi and Γi

for the performance of CCE estimators in the rank deficient case are documented in Sarafidis and

Wansbeek (2012).

An advantage of the CCE approach is that it yields consistent estimates under a variety of

situations. Kapetanios, Pesaran, and Yagamata (2011) consider the case where the unobservable

common factors follow unit root processes and could be cointegrated. They show that the asymp-

totic distribution of panel estimators in the case of I(1) factors is similar to that in the stationary

case. Pesaran and Tosetti (2011) prove consistency and asymptotic normality for CCE estimators

when {eit} are generated by a spatial process. Chudik, Pesaran, and Tosetti (2011) prove consis-

tency and asymptotic normality of the CCE estimators when errors are subject to a finite number

of unobserved strong factors and an infinite number of weak and/or semi-strong unobserved com-

mon factors as in (20)-(21), provided that certain conditions on the loadings of the infinite factor

structure are satisfied. A further advantage of the CCE approach is that it does not require an a

priori knowledge of the number of unobserved common factors.

In a Monte Carlo (MC) study, Coakley, Fuertes, and Smith (2006) compare ten alternative

estimators for the mean slope coeffi cient in a linear heterogeneous panel regression with strictly

exogenous regressors and unobserved common (correlated) factors. Their results show that, overall,

the mean group version of the CCE estimator stands out as the most effi cient and robust. These

conclusions are in line with those in Kapetanios and Pesaran (2007) and Chudik, Pesaran, and

Tosetti (2011), who investigate the small sample properties of CCE estimators and the estimators

based on principal components. The MC results show that PC augmented methods do not perform

as well as the CCE approach, and can lead to substantial size distortions, due, in part, to the

small sample errors in the number of factors selection procedure. In a recent theoretical study,

Westerlund and Urbain (2011) investigate the merits of the CCE and PC estimators in the case of

homogeneous slopes and known number of unobserved common factors and find that, although the

PC estimates of factors are more effi cient than the cross-sectional averages, the CCE estimators of

slope coeffi cients generally perform the best.
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5 Dynamic Panel Data Models with a Factor Error Structure

The problem of estimation of panels subject to cross-sectional error dependence becomes much

more complicated once the assumption of strict exogeneity of the unit-specific regressors is relaxed.

One important example, is the panel data model with lagged dependent variables and unobserved

common factors (possibly correlated with the regressors):8

yit = λiyi,t−1 + β′ixit + uit, (41)

uit = γ ′ift + eit, (42)

for i = 1, 2, ..., N ; t = 1, 2, ..., T . It is assumed that |λi| < 1, and the dynamic processes have

started a long time in the past. As in the previous section, we distinguish between the case of

homogeneous coeffi cients, where λi = λ and βi = β for all i, and the heterogeneous case, where λi

and βi are randomly distributed across units and the object of interest are the mean coeffi cients

λ = E (λi) and β = E (βi). This distinction is more important for dynamic panels, since not only

the rate of convergence is affected by the presence of coeffi cient heterogeneity, but, as shown by

Pesaran and Smith (1995), pooled least squares estimators are no longer consistent in the case of

dynamic panel data models with heterogeneous coeffi cients.

It is convenient to define the vector of regressors ζit = (yi,t−1,x′it)
′ and the corresponding

parameter vector πi =
(
λi,β

′
i

)′ so that (41) can be written as
yit = π′iζit + uit. (43)

5.1 Quasi maximum likelihood estimator

Moon andWeidner (2010) assume πi = π for all i and develop a Gaussian quasi maximum likelihood

estimator (QMLE) of the homogeneous coeffi cient vector π.9 The QMLE of π is

π̂QMLE = arg min
π∈B

LNT (π) ,

8Fixed effects and observed common factors (denoted by dt previously) can also be included in the model. They
are excluded to simplify the notations.

9See also Lee, Moon, and Weidner (2012) for an extension of this framework to panels with measurement errors.
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where B is a compact parameter set assumed to contain the true parameter values, and the objective

function is the profile likelihood function:

LNT (π) = min
{γi}Ni=1,{ft}

T
t=1

1

NT

N∑
i=1

(yi −Ξiπ − Fγi)
′ (yi −Ξiπ − Fγi) ,

where

Ξi =



yi1 x′i,2

yi,2 x′i,3
...

...

yi,T−1 x′iT


.

Both π̂QMLE and β̂PC minimize the same objective function and therefore, when the same set of

regressors is considered, these two estimators are numerically the same, but there are important

differences in their bias-corrected versions and in other aspects of the analysis of Bai (2009) and

the analysis of Moon and Weidner (2010). The latter paper allows for more general assumptions

on regressors, including the possibility of weak exogeneity, and adopts a quadratic approximation

of the profile likelihood function, which allows the authors to work out the asymptotic distribution

and to conduct inference on the coeffi cients.

Moon and Weidner (MW) show that π̂QMLE is a consistent estimator of π, as (N,T ) → ∞

without any restrictions on the ratio T/N . To derive the asymptotic distribution of π̂QMLE ,

MW require T/N → κ, 0 < κ < ∞, as (N,T ) → ∞, and assume that the idiosyncratic er-

rors, eit, are cross-sectionally independent. Under certain high level assumptions, they show that
√
NT (π̂QMLE − π) converges to a normal distribution with a non-zero mean, which is due to two

types of asymptotic bias. The first follows from the heteroskedasticity of the error terms, as in Bai

(2009), and the second is due to the presence of weakly exogenous regressors. The authors provide

consistent estimators of these two components, and propose a bias-corrected QMLE.

There are, however, two important considerations that should be born in mind when using the

QMLE proposed by MW. First, it is developed for the case of full slope homogeneity, namely under

πi = π for all i. This assumption, for example, rules out the inclusion of fixed effects into the

model which can be quite restrictive in practice. Although, the unobserved factor component, γ ′ift,

does in principle allow for fixed effects if the first element of ft can be constrained to be unity at

the estimation stage. A second consideration is the small sample properties of QMLE in the case
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of models with fixed effects, which are of primarily interest in empirical applications. Simulations

reported in Chudik and Pesaran (2013b) suggests that the bias correction does not go far enough

and the QMLE procedure could yield tests which are grossly over-sized. To check the robustness of

the QMLE to the presence of fixed effects, we carried out a small Monte Carlo experiment in the

case of a homogeneous AR(1) panel data model with fixed effects, λi = 0.70, and N = T = 100.

Using R = 2, 000 replications, the bias of the bias-corrected QMLE, λ̂QMLE , turned out to be

−0.024, and tests based on λ̂QMLE were grossly oversized with the size exceeding 60%.

5.2 PC estimators for dynamic panels

Song (2013) extends Bai (2009)’s approach to dynamic panels with heterogeneous coeffi cients. The

focus of Song’s analysis is on the estimation of unit-specific coeffi cients πi =
(
λi,β

′
i

)′. In particular,
Song proposes an iterated least squares estimator of πi, and shows as in Bai (2009) that the solution

can be obtained by alternating the PC method applied to the least squares residuals and the least

squares estimation of (41) until convergence. In particular, the least squares estimators of πi and

F are the solution to the following set of non-linear equations

π̂i,PC =
(
Ξ′iMF̂Ξi

)−1
Ξ′iMF̂yi, for i = 1, 2, ..., N , (44)

1

NT

N∑
i=1

(yi −Ξiπ̂i,PC) (yi −Ξiπ̂i,PC)′ F̂ = F̂V̂. (45)

Song (2013) establishes consistency of π̂i,PC when (N,T )→∞ without any restrictions on T/N .

If in addition T/N2 → 0, Song (2013) shows that π̂i,PC is
√
T consistent, and derives the asymptotic

distribution under some additional requirements including the cross-sectional independence of eit.

Song (2013) does not provide theoretical results on the estimation of the mean coeffi cients π =

E (πi), but he considers the following mean group estimator based on the individual estimates

π̂i,PC ,

π̂sPCMG =
1

N

N∑
i=1

π̂i,PC ,

in a Monte Carlo study and finds that π̂sPCMG has satisfactory small sample properties in terms

of bias and root mean squared error. But he does not provide any results on the asymptotic

distribution of π̂sPCMG. However, results of a Monte Carlo study presented in Chudik and Pesaran

(2013b) suggest that
√
N (π̂sPCMG − π) is asymptotically normally distributed with mean zero and
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a covariance matrix that can be estimated by (as in the case of the CCEMG estimator),

V̂ ar (π̂sPCMG) =
1

N (N − 1)

N∑
i=1

(π̂si − π̂sMG) (π̂si − π̂sMG)′ .

The test results based on this conjecture tend to perform well so long as T is suffi ciently large.

However, as with the other PC based estimators, knowledge of the number of factors and the

assumption that the factors under consideration are strong continue to play an important role in

the small sample properties of the tests based on π̂sMGPC .

5.3 Dynamic CCE estimators

The CCE approach as it was originally proposed in Pesaran (2006) does not cover the case where

the panel includes a lagged dependent variable or weakly exogenous regressors.10 Extension of the

CCE approach to dynamic panels with heterogeneous coeffi cients and weakly exogenous regressors

is proposed by Chudik and Pesaran (2013b). In what follows we refer to this extension as dynamic

CCE.

The inclusion of a lagged dependent variable amongst the regressors has three main consequences

for the estimation of the mean coeffi cients. The first is the well known time series bias,11 which

affects the individual specific estimates and is of order O
(
T−1

)
. The second consequence is that

the full rank condition becomes necessary for consistent estimation of the mean coeffi cients unless

the ft is serially uncorrelated. The third complication arises from the interaction of dynamics and

coeffi cient heterogeneity, which leads to infinite lag order relationships between unobserved common

factors and cross-sectional averages of the observables when N is large. This issue also arises in

cross-sectional aggregation of heterogeneous dynamic models. See Granger (1980) and Chudik and

Pesaran (2013a).

To illustrate these complications, using (41) and recalling assumption |λi| < 1, for all i, then

we have

yit =
∞∑
`=0

λ`iβ
′
ixi,t−` +

∞∑
`=0

λ`iγ
′
ift−` +

∞∑
`=0

λ`iei,t−`. (46)

Taking weighted cross-sectional averages, and assuming independence of λi, βi, and γi, strict

10See Everaert and Groote (2012) who derive the asymptotic bias of the CCE pooled estimator in the case of
dynamic homogeneous panels.
11This bias was first quantified in the case of a simple AR(1) model by Hurwicz (1950).
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exogeneity of xit, and weak cross-sectional dependence of {eit}, we obtain (following the arguments

in Chudik and Pesaran (2013a)),

ywt = a (L)γ ′ft + a (L)β′xwt + ξwt, (47)

where a (L) =
∑∞

`=0 a`L
`, with a` = E

(
λ`i
)
, β = E(βi), and γ = E(γi). Under the assumption

that the idiosyncratic errors are cross-sectionally weakly dependent, we have ξwt
p→ 0, as N →∞,

with the rate of convergence depending on the degree of cross-sectional dependence of {eit} and

the granularity of w. In the case where w satisfies the usual granularity conditions (1)-(2), and

the exponent of cross-sectional dependence of eit is αe ≤ 1/2, we have ξwt = Op
(
N−1/2

)
. In the

special case where β = 0 and m = 1, (47) reduces to

ywt = γa (L) ft +Op

(
N−1/2

)
.

The extent to which ft can be accurately approximated by ywt and its lagged values depends on

the rate at which, a` = E
(
λ`i
)
, the coeffi cients in the polynomial lag operator, a (L) , decay with `,

and the size of the cross section dimension, N . The coeffi cients in a (L) are given by the moments

of λi and therefore these coeffi cients need not be absolute summable if the support of λi is not

suffi ciently restricted in the neighborhood of the unit circle (see Granger (1980) and Chudik and

Pesaran (2013a)). Assuming that for all i the support of λi lies strictly within the unit circle, it is

then easily seen that α` will then decay exponentially and for N suffi ciently large, ft can be well

approximated by ywt and a number of its lagged values.
12 The number of lagged values of ywt

needed to approximate ft rises with T but at a slower rate.13

In the general case where β is nonzero, xit are weakly exogenous, and m ≥ 1, Chudik and

Pesaran (2013b) show that there exists the following large N distributed lag relationship between

the unobserved common factors and cross-sectional averages of the dependent variable and the

12For example if λi is distributed uniformly over the range (0, b) where 0 < b < 1, we have α` = E(λ`i) = b`/(1+ `),
which decays exponentially with `.
13The number of lags cannot increase too fast, otherwise there will not be a suffi cient number of observations to

accurately estimate the parameters, whilst at the same time a suffi cient number of lags are needed to ensure that the
factors are well approximated. Setting the number of lags equal to T 1/3 seems to be a good choice, balancing the
effects of the above two opposing considerations. See Berk (1974), Said and Dickey (1984), and Chudik and Pesaran
(2013c) for a related discussion on the choice of lag truncation for estimation of infinite order autoregressive models.
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regressors, z̄wt = (ȳwt, x̄
′
wt)
′,

Λ (L) Γ̃′ft = z̄wt +Op

(
N−1/2

)
,

where as before Γ̃ = E (γi,Γi) and the decay rate of the matrix coeffi cients in Λ (L) depends on the

heterogeneity of λi and βi and other related distributional assumptions. The existence of a large

N relationship between the unobserved common factors and cross-sectional averages of variables is

not surprising considering that only the components with the largest exponents of cross-sectional

dependence can survive cross-sectional aggregation with granular weights. Assuming Γ̃ has full row

rank, i.e. rank
(
Γ̃
)

= m, and the distributions of coeffi cients are such that Λ−1 (L) exists and has

exponentially decaying coeffi cients yields the following unit-specific dynamic CCE regressions,

yit = λiyi,t−1 + β′ixit +

pT∑
`=0

δ′i`z̄w,t−` + eyit, (48)

where z̄wt and its lagged values are used to approximate ft. The error term eyit consists of three

parts: an idiosyncratic term, eit, an error component due to the truncation of possibly infinite dis-

tributed lag function, and an Op
(
N−1/2

)
error component due to the approximation of unobserved

common factors based on large N relationships.

Chudik and Pesaran (2013b) consider the least squares estimates of πi =
(
λi,β

′
i

)′ based on
the above dynamic CCE regressions, denoted as π̂i =

(
λ̂i, β̂

′
i

)′
, and the mean group estimate of

π = E (πi) based on π̂i. To define these estimators, we introduce the following data matrices

Ξ̃i =



yipT x′i,pT+1

yi,pT+1 x′i,pT+2
...

...

yi,T−1 x′iT


, Q̄w =



z̄′w,pT+1 z̄′w,pT · · · z̄′w,1

z̄′w,pT+2 z̄′w,pT+1 · · · z̄′w,2
...

...
...

z̄′w,T z̄′w,T−1 · · · z̄′w,T−pT


, (49)

and the projection matrix M̄q = IT−pT − Q̄w

(
Q̄′wQ̄w

)+
Q̄′w, where IT−pT is a (T − pT )× (T − pT )

dimensional identity matrix.14 pT should be set such that p2T /T tends to zero as pT and T both

tend to infinity. Monte Carlo experiments reported in Chudik and Pesaran (2013b) suggest that

setting pT = T 1/3 could be a good choice in practice.

14Matrices Ξi, Q̄w, and M̄q depend also on pT , N and T , but we omit these subscripts to simplify notations.
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The individual estimates, π̂i, can now be written as

π̂i =
(
Ξ̃′iM̄qΞ̃i

)−1
Ξ̃′iM̄qỹi, (50)

where ỹi = (yi,pT+1, yi,pT+2, ..., yi,T )′. The mean group estimator of π = E (πi) =
(
λ,β′

)′ is given
by

π̂MG =
1

N

N∑
i=1

π̂i. (51)

Chudik and Pesaran (2013b) show that π̂i and π̂MG are consistent estimators of πi and π,

respectively, assuming that the rank condition is satisfied and (N,T, pT )→∞ such that p3T /T → κ,

0 < κ <∞, but without any restrictions on the ratio N/T . The rank condition is necessary for the

consistency of π̂i because the unobserved factors are allowed to be correlated with the regressors. If

the unobserved common factors were serially uncorrelated (but still correlated with xit), then π̂MG

is consistent also in the rank deficient case, despite the inconsistency of π̂i, so long as factor loadings

are independently, identically distributed across i. The convergence rate of π̂MG is
√
N due to the

heterogeneity of the slope coeffi cients. Chudik and Pesaran (2013b) show that π̂MG converges to a

normal distribution as (N,T, pT )→∞ such that p3T /T → κ1 and T/N → κ2, 0 < κ1,κ2 <∞. The

ratio N/T needs to be restricted for conducting inference, due to the presence of small time series

bias. In the full rank case, the asymptotic variance of π̂MG is given by the variance of πi alone.

When the rank condition does not hold, but factors are serially uncorrelated, then the asymptotic

variance depends also on other parameters, including the variance of factor loadings. In both cases

the asymptotic variance can be consistently estimated non-parametrically, as in (38).

Monte Carlo experiments in Chudik and Pesaran (2013b) show that the dynamic CCE approach

performs reasonably well (in terms of bias, RMSE, size and power). This is particularly the case

when the parameter of interest is the average slope of the regressors (β), where the small sample

results are quite satisfactory even if N and T are relatively small (around 40). But the situation is

different if the parameter of interest is the mean coeffi cient of the lagged dependent variable (λ). In

the case of λ, the CCEMG estimator suffers form the well known time series bias and tests based

on it tend to be over-sized, unless T is suffi ciently large. To mitigate the consequences of this bias,

Chudik and Pesaran (2013b) consider application of half-panel jackknife procedure (Dhaene and

Jochmans (2012)), and the recursive mean adjustment procedure (So and Shin (1999)), both of
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which are easy to implement. The proposed jackknife bias-corrected CCEMG estimator is found to

be more effective in mitigating the time series bias, but it can not fully deal with the size distortion

when T is relatively small. Improving the small T sample properties of the CCEMG estimator of

λ in the heterogeneous panel data models still remains a challenge to be taken on in the future.

The application of CCE approach to static panels with weakly exogenous regressors (namely

without lagged dependent variables) has not yet been investigated in the literature. In order to

investigate whether the standard CCE mean group and pooled estimators could be applied in this

setting, we conducted Monte Carlo experiments. We used the following data generating process

yit = cyi + β0ixit + β1ixi,t−1 + uit, uit = γ ′ift + εit, (52)

and

xit = cxi + αxiyi,t−1 + γ ′xift + vit, (53)

for i = 1, 2, ..., N , and t = −99, ..., 0, 1, 2, ..., T with the starting values yi,−100 = xi,−100 = 0. This

set up allows for feedbacks from yi,t−1 to the regressors, thus rendering xit weakly exogenous. The

size of the feedback is measured by αxi. The unobserved common factors in ft and the unit-specific

components vit are generated as independent stationary AR (1) processes:

ft` = ρf`ft−1,` + ςft`, ςft` ∼ IIDN
(
0, 1− ρ2f`

)
,

vit = ρxivi,t−1 + ς it, ς it ∼ IIDN
(
0, σ2vi

)
, (54)

for i = 1, 2, ..., N , ` = 1, 2, ..,m, and for t = −99, ..., 0, 1, 2, ..., T with the starting values f`,−100 = 0

and vi,−100 = 0. The first 100 time observations (t = −99,−98, ..., 0) are discarded. We generate

ρxi, for i = 1, 2, ....N as IIDU [0, 0.95], and set ρf` = 0.6, for ` = 1, 2, ...,m. We also set σvi =√
1− [E (ρxi)]

2 for all i.

The fixed effects are generated as cyi ∼ IIDN (1, 1), cxi = cyi + ςcxi, where ςcxi ∼ IIDN (0, 1),

thus allowing for dependence between xit and cyi. We set β1i = −0.5 for all i, and generate β0i

as IIDU(0.5, 1). We consider two possibilities for the feedback coeffi cients αxi: weakly exogenous

regressors where we generate αxi as draws from IIDU(0, 1) (in which case E (αxi) = 0.5), and

strictly exogenous regressors where we set αxi = 0 for all i. We consider m = 3 unobserved

common factors, with all factor loadings generated independently in the same way as in Chudik
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and Pesaran (2013b). Similarly, the idiosyncratic errors, εit, are generated as in Chudik and Pesaran

(2013b) to be heteroskedastic and weakly cross-sectionally dependent. We consider the following

combinations of sample sizes: N ∈ {40, 50, 100, 150, 200}, T ∈ {20, 50, 100, 150, 200}, and set the

number of replications to R = 2000.

The small sample results for the CCE mean group and pooled estimators (with lagged augmen-

tations) in the case of these experiments with weakly exogenous regressors are presented on the

upper panel of Table 1. The rank condition in these experiment does not hold, but this does not

seem to cause any major problems for the CCE mean group estimator, which performs very well (in

terms of bias and RMSE) for T > 50 and for all values of N . Also tests based on this estimator are

correctly sized and have good power properties. When T ≤ 50, we observe a negative bias and the

tests are oversized (the rejection rates are in the range of 9 to 75 percent, depending on the sample

size). The CCE pooled estimator, however, is no longer consistent in the case of weakly exogenous

regressors with heterogeneous coeffi cients, due to the bias caused by the correlation between the

slope coeffi cients and the regressors. For comparison, we also provide, at the bottom panel of Table

1, the results of the same experiments but with strictly exogenous regressors (αxi = 0), where the

bias is negligible and all tests are correctly sized.

6 Tests of Error Cross-Sectional Dependence

In this section we provide an overview of alternative approaches to testing the cross-sectional

independence or weak dependence of the errors in the following panel data model

yit = ai + β′ixit + uit, (55)

where ai and βi for i = 1, 2, ..., N are assumed to be fixed unknown coeffi cients, and xit is a

k-dimensional vector of regressors. We consider both cases where the regressors are strictly and

weakly exogenous, as well as when they include lagged values of yit.

The literature on testing for error cross-sectional dependence in large panels follows two separate

strands, depending on whether the cross section units are ordered or not. In the case of ordered

data sets (which could arise when observations are spatial or belong to given economic or social

networks) tests of cross-sectional independence that have high power with respect to such ordered
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alternatives have been proposed in the spatial econometrics literature. A prominent example of

such tests is Moran’s I test. See Moran (1948) with further developments by Anselin (1988), Anselin

and Bera (1998), Haining (2003), and Baltagi, Song, and Koh (2003).

In the case of cross section observations that do not admit an ordering, tests of cross-sectional

dependence are typically based on estimates of pair-wise error correlations (ρij) and are applicable

when T is suffi ciently large so that relatively reliable estimates of ρij can be obtained. An early

test of this type is the Lagrange multiplier (LM) test of Breusch and Pagan (1980, pp. 247-248)

which tests the null hypothesis that all pair-wise correlations are zero, namely that ρij = 0 for all

i 6= j. This test is based on the average of the squared estimates of pair-wise correlations, and

under standard regularity conditions it is shown to be asymptotically (as T → ∞) distributed as

χ2 with N(N − 1)/2 degrees of freedom. The LM test tends to be highly over-sized in the case of

panels with relatively large N .

In what follows we review the various attempts made in the literature to develop tests of

cross-sectional dependence when N is large and the cross-section units are unordered. But before

proceeding further, we first need to consider the appropriateness of the null hypothesis of cross-

sectional "independence" or "uncorrelatedness", that underlie the LM test of Breusch and Pagan

(1980), namely that all ρij are zero for all i 6= j, when N is large. The null that underlies the LM

test is sensible when N is small and fixed as T → ∞. But when N is relatively large and rising

with T , it is unlikely to matter if out of the total N(N − 1)/2 pair-wise correlations only a few are

non-zero. Accordingly, Pesaran (2013) argues that the null of cross-sectionally uncorrelated errors,

defined by

H0 : E (uitujt) = 0, for all t and i 6= j, (56)

is restrictive for large panels and the null of a suffi ciently weak cross-sectional dependence could be

more appropriate since mere incidence of isolated error dependencies are of little consequence for

estimation or inference about the parameters of interest, such as the individual slope coeffi cients,

βi, or their average value, E(βi) = β.

Consider the panel data model (55), and let ûit be the OLS estimator of uit defined by

ûit = yit − âi − β̂
′
ixit, (57)
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with âi, and β̂i being the OLS estimates of ai and βi, based on the T sample observations, yt,xit,

for t = 1, 2, ..., T . Consider the sample estimate of the pair-wise correlation of the residuals, ûit

and ûjt, for i 6= j

ρ̂ij = ρ̂ji =

∑T
t=1 ûitûjt(∑T

t=1 û
2
it

)1/2 (∑T
t=1 û

2
jt

)1/2 .
In the case where the uit is symmetrically distributed and the regressors are strictly exogenous,

then under the null hypothesis of no cross-sectional dependence, ρ̂ij and ρ̂is are cross-sectionally

uncorrelated for all i, j and s such that i 6= j 6= s. This follows since

E
(
ρ̂ij ρ̂is

)
=

T∑
t=1

T∑
t′=1

E
(
η̂itη̂it′ η̂jtη̂st′

)
=

T∑
t=1

T∑
t′=1

E (η̂itη̂it′)E
(
η̂jt
)
E (η̂st′) = 0. (58)

where η̂it = ûit

/(∑T
t=1 û

2
it

)1/2
. Note when xit is strictly exogenous for each i, ûit, being a linear

function of uit, for t = 1, 2, .., T , will also be symmetrically distributed with zero means, which

ensures that ηit is also symmetrically distributed around its mean which is zero. Further, under

(56) and when N is finite, it is known that (see Pesaran (2004))

√
T ρ̂ij

a∼ N(0, 1), (59)

for a given i and j, as T → ∞. The above result has been widely used for constructing tests

based on the sample correlation coeffi cient or its transformations. Noting that, from (59), T ρ̂2ij is

asymptotically distributed as a χ21, it is possible to consider the following statistic

CDLM =

√
1

N(N − 1)

N−1∑
i=1

N∑
j=i+1

(
T ρ̂2ij − 1

)
. (60)

Based on the Euclidean norm of the matrix of sample correlation coeffi cients, (60) is a version of

the Lagrange Multiplier test statistic due to Breusch and Pagan (1980). Frees (1995) first explored

the finite sample properties of the LM statistic, calculating its moments for fixed values of T and N ,

under the normality assumption. He advanced a non-parametric version of the LM statistic based

on the Spearman rank correlation coeffi cient. Dufour and Khalaf (2002) have suggested to apply

Monte Carlo exact tests to correct the size distortions of CDLM in finite samples. However, these

tests, being based on the bootstrap method applied to the CDLM , are computationally intensive,
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especially when N is large.

An alternative adjustment to the LM test is proposed by Pesaran, Ullah, and Yamagata (2008),

where the LM test is centered to have a zero mean for a fixed T . These authors also propose a

correction to the variance of the LM test. The basic idea is generally applicable, but analytical

bias corrections can be obtained only under the assumption that the regressors, xit, are strictly

exogenous and the errors, uit are normally distributed. Under these assumptions, Pesaran, Ullah,

and Yamagata (2008) show that the exact mean and variance of (N − k) ρ̂2ij are given by:

µT ij = E
[
(N − k) ρ̂2ij

]
=

1

T − kTr [E (MiMj)] ,

v2T ij = V ar
[
(N − k) ρ̂2ij

]
= {Tr [E (MiMj)]}2 a1T + 2

{
Tr
[
E (MiMj)

2
]}

a2T ,

where a1T = a2T −
(

1
T−k

)2
, and a2T = 3

[
(T−k−8)(T−k+2)+24

(T−k+2)(T−k−2)(T−k−4)

]2
, Mi = IT − X̃i

(
X̃′iX̃i

)−1
X̃′i

and X̃i is T × (k + 1) matrix of observations on (1,x′it)
′. The adjusted LM statistic is now given

by

LMAdj =

√
2

N(N − 1)

N−1∑
i=1

N∑
j=i+1

(T − k) ρ̂2ij − µT ij
vT ij

, (61)

which is asymptotically N(0, 1) under H0, T → ∞ followed by N → ∞. The asymptotic distri-

bution of LMAdj is derived under sequential asymptotics, but it might be possible to establish it

under the joint asymptotics following the method of proof in Schott (2005) or Pesaran (2013).

The application of the LMAdj test to dynamic panels or panels with weakly exogenous regressors

is further complicated by the fact that the bias corrections depend on the true values of the unknown

parameters and will be diffi cult to implement. The implicit null of LM tests when T and N →∞,

jointly rather than sequentially could also differ from the null of uncorrelatedness of all pair-wise

correlations. To overcome some of these diffi culties, Pesaran (2004) has proposed a test that has

exactly mean zero for fixed values of T and N . This test is based on the average of pair-wise

correlation coeffi cients

CDP =

√
2T

N(N − 1)

N−1∑
i=1

N∑
j=i+1

ρ̂ij

 . (62)

As it is established in (58), under the null hypothesis ρ̂ij and ρ̂is are uncorrelated for all i 6= j 6= s,

but they need not be independently distributed when T is finite. Therefore, the standard central

limit theorems cannot be applied to the elements of the double sum in (62) when (N,T ) → ∞
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jointly, and as shown in Pesaran (2013, Theorem 2) the derivation of the limiting distribution of

CDP statistic involves a number of complications. It is also important to bear in mind that the

implicit null of the test in the case of large N depends on the rate at which T expands with N .

Indeed, as argued in Pesaran (2004), under the null hypothesis of ρij = 0 for all i 6= j, we continue

to have E
(
ρ̂ij
)

= 0, even when T is fixed, so long as uit are symmetrically distributed around zero,

and the CDP test continues to hold.

Pesaran (2013) extends the analysis of CDP test and shows that the implicit null of the test is

weak cross-sectional dependence. In particular, the implicit null hypothesis of the test depends on

the relative expansion rates of N and T .15 Using the exponent of cross-sectional dependence, α,

developed in Bailey, Kapetanios, and Pesaran (2012) and discussed above, Pesaran (2013) shows

that when T = O (N ε) for some 0 < ε ≤ 1, the implicit null of the CDP test is given by 0 ≤

α < (2− ε) /4. This yields the range 0 ≤ α < 1/4 when (N,T ) → ∞ at the same rate such that

T/N → κ for some finite positive constant κ, and the range 0 ≤ α < 1/2 when T is small relative to

N . For larger values of α, as shown by Bailey, Kapetanios, and Pesaran (2012), α can be estimated

consistently using the variance of the cross-sectional averages.

Monte Carlo experiments reported in Pesaran (2013) show that the CDP test has good small

sample properties for values of α in the range 0 ≤ α ≤ 1/4, even in cases where T is small relative

to N , as well as when the test is applied to residuals from pure autoregressive panels so long as

there are no major asymmetries in the error distribution.

Other statistics have also been proposed in the literature to test for zero contemporaneous

correlation in the errors of panel data model (55).16 Using results from the literature on spacing

discussed in (Pyke (1965)), Ng (2006) considers a statistic based on the qth differences of the

cumulative normal distribution associated to the N(N − 1)/2 pair-wise correlation coeffi cients

ordered from the smallest to the largest, in absolute value. Building on the work of John (1971),

and under the assumption of normal disturbances, strictly exogenous regressors, and homogeneous

slopes, Baltagi, Feng, and Kao (2011) propose a test of the null hypothesis of sphericity, defined by

HBFK
0 : ut ∼ IIDN

(
0, σ2uIN

)
,

15Pesaran (2013) also derives the exact variance of the CDP test under the null of cross sectional independence
and proposes a slightly modified version of the CDP test distributed exactly with mean zero and a unit variance.
16A recent review is provided by Moscone and Tosetti (2009).
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based on the statistic

JBFK =
T
(
tr(Ŝ)/N

)−2
tr(Ŝ2)/N − T −N
2

− 1

2
− N

2 (T − 1)
, (63)

where Ŝ is the N×N sample covariance matrix, computed using the fixed effects residuals under the

assumption of slope homogeneity, βi = β. UnderHBFK
0 , errors uit are cross-sectionally independent

and homoskedastic and the JBFK statistic converges to a standardized normal distribution as

(N,T )→∞ such that N/T → κ for some finite positive constant κ. The rejection of HBFK
0 could

be caused by cross-sectional dependence, heteroskedasticity, slope heterogeneity, and/or non-normal

errors. Simulation results reported in Baltagi, Feng, and Kao (2011) show that this test performs

well in the case of homoskedastic, normal errors, strictly exogenous regressors, and homogeneous

slopes, although it is oversized for panels with large N and small T , and is sensitive to non-

normality of disturbances. Joint assumption of homoskedastic errors and homogeneous slopes is

quite restrictive in applied work and therefore the use of the JBFK statistics as a test of cross-

sectional dependence should be approached with care.

A slightly modified version of the CDLM statistic, given by

LMS =

√
T + 1

N(N − 1) (T − 2)

N−1∑
i=1

N∑
j=i+1

[
(T − 1) ρ̂2ij − 1

]
(64)

has also been considered by Schott (2005), who shows that when the LMS statistic is computed

based on normally distributed observations, as opposed to panel residuals, it converges to N(0, 1)

under ρij = 0 for all i 6= j as (N,T ) → ∞ such that N/T → κ for some 0 < κ < ∞. Monte

Carlo simulations reported in Jensen and Schmidt (2011) suggests that the LMS test has good

size properties for various sample sizes when applied to panel residuals in the case when slopes are

homogeneous and estimated using the fixed effects approach. However, the LMS test can lead to

severe over-rejection when the slopes are in fact heterogeneous and the fixed effects estimators are

used. The over-rejection of the LMS test could persist even if mean group estimates are used in

the computation of the residuals to take care of slope heterogeneity. This is because for relatively

small values of T , unlike the LMAdj statistic defined by (61), the LMS statistic defined by (64) is

not guaranteed to have a zero mean exactly.

The problem of testing for cross-sectional dependence in limited dependent variable panel data
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models with strictly exogenous covariates has also been investigated by Hsiao, Pesaran, and Pick

(2012). In this paper the authors derive a LM test and show that in terms of the generalized

residuals of Gourieroux et al. (1987), the test reduces to the LM test of Breusch and Pagan (1980).

However, not surprisingly as with the linear panel data models, the LM test based on generalized

residuals tends to over-reject in panels with large N . They then develop a CD type test based on

a number of different residuals, and using Monte Carlo experiments they find that the CD test

preforms well for most combinations of N and T .

Sarafidis et al. (2009) propose a test for the null hypothesis of homogeneous cross-sectional

dependence

H0 : V ar (γi) = 0, (65)

in a lagged dependent variable model with regressors and residual factor structure (41)-(42) with

cross-sectionally uncorrelated idiosyncratic innovations eit against the alternative of heterogeneous

cross-sectional dependence

H1 : V ar (γi) 6= 0. (66)

Following Sargan (1988) and exploring two different sets of moment conditions, one valid only

under the null and the other valid under both hypotheses, Sarafidis et al. (2009) derive Sargan’s

difference test based on the first-differenced as well as system based GMM estimators in a large N

and fixed T setting. The null hypothesis (65) does not imply that the errors are cross-sectionally

uncorrelated, and it allows to examine whether any cross section dependence of errors remains after

including time dummies, or after the data is transformed in terms of deviations from time-specific

averages. In such cases the CDP test lacks power and the test by Sarafidis et al. (2009) could have

some merits.

The existing literature on testing for error cross-sectional dependence, with the exception of

Sarafidis et al. (2009), have mostly focused on the case of strictly exogenous regressors. This

assumption is required for both LMAdj and JBFK tests, while Pesaran (2004) shows that the CDP

test is also applicable to autoregressive panel data models so long as the errors are symmetrically

distributed. The properties of the CDP test for dynamic panels that include weakly or strictly

exogenous regressors have not yet been investigated.

We conduct Monte Carlo experiments to investigate the performance of these tests in the case of
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dynamic panels and to shed light also on the performance of LMS test in the case of heterogeneous

slopes. We generate the dependent variable and the regressors in the same way as described in

Section 5.3 with the following two exceptions. First, we introduce lags of the dependent variable

in (60):

yit = cyi + λiyi,t−1 + β0ixit + β1ixi,t−1 + uit, (67)

and generate λi as IIDU (0, 0.8). As discussed in Chudik and Pesaran (2013b) the lagged dependent

variable coeffi cients, λi, and the feedback coeffi cients, αxi, in (53) need to be chosen such as to ensure

the variances of yit remain bounded. We generate αxi as IIDU (0, 0.35), which ensures that this

condition is met and E (αxi) = 0.35/2. For comparison purposes, we also consider the case of

strictly exogenous regressors where we set λi = αxi = 0 for all i. The second exception is the

generation of the reduced form errors. In order to consider different options for cross-sectional

dependence, we use the following residual factor model to generate the errors uit.

uit = γigt + εit, (68)

where εit ∼ IIDN
(
0, 12σ

2
i

)
with σ2i ∼ χ2 (2), gt ∼ IIDN (0, 1) and the factor loadings are generated

as

γi = vγi, for i = 1, 2, ...,Mα,

γi = 0, for i = Mα + 1,Mα + 2, ..., N ,

where Mα = [Nα], vγi ∼ IIDU [µv − 0.5, µv + 0.5]. We set µv = 1, and consider four values of the

exponent of the cross-sectional dependence for the errors, namely α = 0, 0.25, 0.5 and 0.75. We also

consider the following combinations of N ∈ {40, 50, 100, 150, 200}, and T ∈ {20, 50, 100, 150, 200},

and use 2000 replications for all experiments.

Table 2 presents the findings for the CDp, LMAdj and LMS tests. The rejection rates for JBFK

in all cases, including the cross-sectionally independent case of α = 0, were all close to 100%, in

part due to the error variance heteroskedasticity, and are not included in Table 2. The top panel of

Table 2 reports the test results for the case of strictly exogenous regressors, and the bottom part

gives the results for the panel data models with weakly exogenous regressors. We see that the CDP

test continues to perform well even when the panel data model contains a lagged dependent variable
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and other weakly exogenous regressors, for the combination of N and T samples considered. The

results also confirm the theoretical finding discussed above that shows the implicit null of the CDP

test is 0 ≤ α ≤ 0.25. In contrast, the LMAdj test tends to over-reject when the panel includes

dynamics and T is small compared to N . The reported rejection rate when N = 200 and T = 20

is 14.25 percent.17 Furthermore, the findings also suggest that the LMAdj test has power when the

cross-sectional dependence is very weak, namely in the case when the exponent of cross-sectional

dependence is α = 0.25. LMS also over-rejects when T is small relative to N , but the over-rejection

is much more severe as compared to LMadj test since in the weakly exogenous regressor case it is

not centered at zero for a fixed T .

The over-rejection of the JBFK test in these experiments is caused by a combination of several

factors, including heteroskedastic errors and heterogeneous coeffi cients. In order to distinguish

between these effects, we also conducted experiments with homoskedastic errors where we set

V ar (εit) = σ2i = 1, for all i, and strictly exogenous regressors (by setting αxi = 0 for all i), and

consider two cases for the coeffi cients: heterogeneous and homogeneous (we set βi0 = E (βi0) = 0.75,

for all i). The results under homoskedastic errors and homogeneous slopes are summarized in the

upper part of Table 3. As to be expected, the JBFK test has good size and power when T > 20

and α = 0. But the test tends to over-reject when T = 20 and N relatively large even under

these restrictions. The bottom part of Table 3 presents findings for the experiments with slope

heterogeneity, whilst maintaining the assumptions of homoskedastic errors and strictly exogenous

regressors. We see that even a small degree of slope heterogeneity can cause the JBFK test to

over-reject badly .

Finally, it is important to bear in mind that even the CDP test is likely to over-reject in the

case of models with weakly exogenous regressors if N is much larger than T . Only in the case

of models with strictly exogenous regressors, and pure autoregressive models with symmetrically

distributed disturbances, we would expect the CDP test to perform well even if N is much larger

than T . To illustrate this property we provide empirical size and power results when N = 1, 000

and T = 10 in Table 4. As can be seen the CDP test has the correct size when we consider panel

data models with strictly exogenous regressors or in the case of pure AR(1) models, which is in

contrast to the case of panels with weakly exogenous regressors where the size of the CDP test is

close to 70 percent. It is clear that the small sample properties of the CDp test for very large N
17The rejection rates based on the LMAdj test were above 90 percent for the sample size N = 500, 1000 and T = 10.
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and small T panels very much depends on whether the panel includes weakly exogenous regressors.

7 Application of CCE estimators and CD tests to unbalanced pan-

els

CCE estimators can be readily extended to unbalanced panels, a situation which frequently arises

in practice. Denote the set of cross section units with the available data on yit and xit in period

t as Nt and the number of elements in the set by #Nt. Initially, we suppose that data coverage

for the dependent variables and regressors is the same and later we relax this assumption. The

main complication of applying CCE estimator to the case of unbalanced panels is the inclusion

of cross-sectional averages in the individual regressions. There are two possibilities regarding the

units to include in the computation of cross-sectional averages, either based on the same number

of units or based on a varying number of units. In both cases, cross-sectional averages should be

constructed using at least a minimum number of units, say Nmin, which based on the current Monte

Carlo evidence suggests the value of Nmin = 20. If the same units are used, we have

ȳt =
1

#N
∑
i∈N

yit, and similarly x̄t =
1

#N
∑
i∈N

xit,

for t = t, t+1, ..., t where N =
⋂t
t=tNt and the starting and ending points of the sample t and t are

chosen to maximize the use of data subject to the constraint #N ≥ Nmin. The second possibility

utilizes data in a more effi cient way,

ȳt =
1

#Nt

∑
i∈Nt

yit, and x̄t =
1

#Nt

∑
i∈Nt

xit,

for t = t, t + 1, ..., t, where t and t are chosen such that #Nt ≥ Nmin for all t = t, t + 1, ..., t.

Both procedures are likely to perform similarly when #N is reasonably large, and the occurrence

of missing observations is random. In cases where new cross section units are added to the panel

over time and such additions can have systematic influences on the estimation outcomes, it might

be advisable to de-mean or de-trend the observations for individual cross section units before

computing the cross section averages to be used in the CCE regressions.

Now suppose that the cross section coverage differs for each variable. For example, the de-
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pendent variable can be available only for OECD countries, whereas some of the regressors could

be available for a larger set of countries. Then, it is preferable to utilize also data on non-OECD

countries to maximize the number of units for the computation of CS averages for each of the

individual variables.

The CD and LM tests can also be readily extended to unbalanced panels. Denote by Ti, the

set of dates over which time series observations on yit and xit are available for the ith individual,

and the number of the elements in the set by #Ti. For each i compute the OLS residuals based on

full set of time series observations for that individual. As before, denote these residuals by ûit, for

t ∈ Ti, and compute the pair-wise correlations of ûit and ûjt using the common set of data points

in Ti ∩ Tj . Since, the estimated residuals need not sum to zero over the common sample period ρij

could be estimated by

ρ̂ij =

∑
t∈Ti∩Tj

(
ûit − ûi

) (
ûjt − ûj

)
[∑

t∈Ti∩Tj
(
ûit − ûi

)2]1/2 [∑
t∈Ti∩Tj

(
ûjt − ûj

)2]1/2 ,
where

ûi =

∑
t∈Ti∩Tj ûit

# (Ti ∩ Tj)
.

The CD (similarly the LM type) statistics for the unbalanced panel can then be computed as usual

by

CDP =

√
2

N(N − 1)

N−1∑
i=1

N∑
j=i+1

√
Tij ρ̂ij

 , (69)

where Tij = # (Ti ∩ Tj) Under the null hypothesis CDP ∼ N(0, 1) for Ti > k + 1, Tij > 3, and

suffi ciently large N .

8 Concluding Remarks

This paper provides a review of the literature on large panel data models with cross-sectional

error dependence. The survey focusses on large N and T panel data models where a natural

ordering across cross section dimension is not available. This excludes the literature on spatial

panel econometrics, which is recently reviewed by Lee and Yu (2010 and 2013). We provide a brief

account of the concepts of weak and strong cross-sectional dependence, and discuss the exponent

of cross-sectional dependence that characterizes the different degrees of cross-sectional dependence.
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We then attempt a synthesis of the literature on estimation and inference in large N and T panel

data models with a common factor error structure. We distinguish between strictly and weakly

exogenous regressors and panels with homogeneous and heterogeneous slope coeffi cients. We also

provide an overview of tests of error cross-sectional dependence in static and dynamic panel data

models.
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Table 4: Size and power of the CDP test for large N and short T panels with strictly

and weakly exogenous regressors (nominal size is set to 5%)

α = 0 α = 0.25 α = 0.5 α = 0.75

(N,T) 10 10 10 10

Panel with strictly exogenous regressors

1000 5.10 6.30 20.50 99.90

Pure AR(1) panel

1000 5.50 6.05 22.10 100.00

Dynamic panel with weakly exogenous regressors

1000 69.45 70.70 73.95 100.00

Notes: See the notes to Tables 1 and 2, and Section 6 for further details. In particular, note that null of weak

cross-sectional dependence is characterized by α = 0 and α = 0.25, with alternatives of semi-strong and strong

cross-sectional dependence given by values of α ≥ 1/2.

47



References

Ahn, S. C. and A. R. Horenstein (2013). Eigenvalue ratio test for the number of factors. Econo-

metrica 81 (3), 1203—1207.

Amengual, D. and M. W. Watson (2007). Consistent estimation of the number of dynamic factors

in a large N and T panel. Journal of Business and Economic Statistics 25 (1), 91—96.

Andrews, D. (2005). Cross section regression with common shocks. Econometrica 73, 1551—1585.

Anselin, L. (1988). Spatial Econometrics: Methods and Models. Dordrecht, The Netherlands:

Kluwer Academic Publishers.

Anselin, L. (2001). Spatial econometrics. In B. H. Baltagi (Ed.), A Companion to Theoretical

Econometrics. Blackwell, Oxford.

Anselin, L. and A. K. Bera (1998). Spatial dependence in linear regression models with an

introduction to spatial econometrics. In A. Ullah and D. E. A. Giles (Eds.), Handbook of

Applied Economic Statistics. Marcel Dekker, New York.

Bai, J. (2009). Panel data models with interactive fixed effects. Econometrica 77, 1229—1279.

Bai, J. and S. Ng (2002). Determining the number of factors in approximate factor models.

Econometrica 70, 191—221.

Bai, J. and S. Ng (2007). Determining the number of primitive shocks in factor models. Journal

of Business and Economic Statistics 25 (1), 52—60.

Bai, J. and S. Ng (2008). Large dimensional factor analysis. Foundations and Trends in Econo-

metrics 3 (2), 89—168.

Bai, Z. D. and J. W. Silverstein (1998). No eigenvalues outside the support of the limiting spectral

distribution of large dimensional sample covariance matrices. Annals of Probability 26 (1),

316—345.

Bailey, N., G. Kapetanios, and M. H. Pesaran (2012). Exponents of cross-sectional dependence:

Estimation and inference. CESifo Working Paper No. 3722, revised July 2013.

Baltagi, B. H., Q. Feng, and C. Kao (2011). Testing for sphericity in a fixed effects panel data

model. The Econometrics Journal 14, 25—47.

48



Baltagi, B. H., S. Song, and W. Koh (2003). Testing panel data regression models with spatial

error correlation. Journal of Econometrics 117, 123—150.

Berk, K. N. (1974). Consistent autoregressive spectral estimates. The Annals of Statistics 2,

489—502.

Breitung, J. and I. Choi (2013). Factor models. In N. Hashimzade and M. A. Thornton (Eds.),

Handbook Of Research Methods And Applications In Empirical Macroeconomics, Chapter 11.

Edward Elgar.

Breitung, J. and U. Pigorsch (2013). A canonical correlation approach for selecting the number

of dynamic factors. Oxford Bulletin of Economics and Statistics 75 (1), 23—36.

Breusch, T. S. and A. R. Pagan (1980). The Lagrange Multiplier test and its application to

model specifications in econometrics. Review of Economic Studies 47, 239—253.

Chamberlain, G. (1983). Funds, factors and diversification in arbitrage pricing models. Econo-

metrica 51, 1305—1324.

Chamberlain, G. (1984). Panel data. In Z. Griliches and M. Intrilligator (Eds.), Handbook of

Econometrics, Volume 2, Chapter 22, pp. 1247—1318. North-Holland, Amsterdam.

Choi, I. and H. Jeong (2013). Model selection for factor analysis: Some new criteria and perfor-

mance comparisons. Research Institute for Market Economy (RIME) Working Paper No.1209,

Sogang University.

Chudik, A. and M. H. Pesaran (2013a). Aggregation in large dynamic panels. forthcoming in

Journal of Econometrics.

Chudik, A. and M. H. Pesaran (2013b). Common correlated effects estimation of heterogeneous

dynamic panel data models with weakly exogenous regressors. CESifo Working Paper No.

4232.

Chudik, A. and M. H. Pesaran (2013c). Econometric analysis of high dimensional VARs featuring

a dominant unit. Econometric Reviews 32, 592—649.

Chudik, A., M. H. Pesaran, and E. Tosetti (2011). Weak and strong cross section dependence

and estimation of large panels. The Econometrics Jounal 14, C45—C90.

Cliff, A. and J. K. Ord (1973). Spatial Autocorrelation. Pion, London.

49



Cliff, A. and J. K. Ord (1981). Spatial Processes: Models and Applications. Pion, London.

Coakley, J., A. M. Fuertes, and R. Smith (2002). A principal components approach to cross-

section dependence in panels. Birkbeck College Discussion Paper 01/2002.

Coakley, J., A. M. Fuertes, and R. Smith (2006). Unobserved heterogeneity in panel time series.

Computational Statistics and Data Analysis 50, 2361—2380.

Dhaene, G. and K. Jochmans (2012). Split-panel jackknife estimation of fixed-effect models.

Mimeo, 21 July 2012.

Dufour, J. M. and L. Khalaf (2002). Exact tests for contemporaneous correlation of disturbances

in seemingly unrelated regressions. Journal of Econometrics 106, 143—170.

Everaert, G. and T. D. Groote (2012). Common correlated effects estimation of dynamic panels

with cross-sectional dependence. Mimeo, 9 November 2012.

Forni, M., M. Hallin, M. Lippi, and L. Reichlin (2000). The generalized dynamic factor model:

Identification and estimation. Review of Economics and Statistic 82, 540—554.

Forni, M., M. Hallin, M. Lippi, and L. Reichlin (2004). The generalized dynamic factor model:

Consistency and rates. Journal of Econometrics 119, 231—235.

Forni, M. and M. Lippi (2001). The generalized factor model: Representation theory. Econometric

Theory 17, 1113—1141.

Frees, E. W. (1995). Assessing cross sectional correlation in panel data. Journal of Economet-

rics 69, 393—414.

Geweke, J. (1977). The dynamic factor analysis of economic time series. In D. Aigner and A. Gold-

berger (Eds.), Latent variables in socio-economic models. Amsterdam: North-Holland.

Gourieroux, C., A. Monfort, E. Renault, and A. Trognon (1987). Generalised residuals. Journal

of Econometrics 34, 5—32.

Granger, C. W. J. (1980). Long memory relationships and the aggregation of dynamic models.

Journal of Econometrics 14, 227—238.

Hachem, W., P. Loubaton, and J. Najim (2005). The empirical eigenvalue distribution of a gram

matrix: From independence to stationarity. Markov Processes and Related Fields 11 (4), 629—

648.

50

http://www.sciencedirect.com/science/article/B6VC0-4582BPX-15/2/b538c107a8a7ec9e973a7ad3368fa9d8


Haining, R. P. (2003). Spatial Data Analysis: Theory and Practice. Cambridge University Press,

Cambridge.

Hallin, M. and R. Liska (2007). The generalized dynamic factor model: determining the number

of factors. Journal of the American Statistical Association 102, 603—617.

Harding, M. (2013). Estimating the number of factors in large dimensional factor models. mimeo,

April 2013.

Holly, S., M. H. Pesaran, and T. Yagamata (2011). Spatial and temporal diffusion of house prices

in the UK. Journal of Urban Economics 69, 2—23.

Hsiao, C., M. H. Pesaran, and A. Pick (2012). Diagnostic tests of cross-section independence for

limited dependent variable panel data models. Oxford Bulletin of Economics and Statistics 74,

253—277.

Hurwicz, L. (1950). Least squares bias in time series. In T. C. Koopman (Ed.), Statistical Infer-

ence in Dynamic Economic Models. New York: Wiley.

Jensen, P. S. and T. D. Schmidt (2011). Testing cross-sectional dependence in regional panel

data. Spatial Economic Analysis 6 (4), 423—450.

John, S. (1971). Some optimal multivariate tests. Biometrika 58, 123—127.

Kapetanios, G. (2004). A new method for determining the number of factors in factor models

with large datasets. Queen Mary University of London, Working Paper No. 525.

Kapetanios, G. (2010). A testing procedure for determining the number of factors in approximate

factor models with large datasets. Journal of Business and Economic Statistics 28 (3), 397—

409.

Kapetanios, G. and M. H. Pesaran (2007). Alternative approaches to estimation and inference

in large multifactor panels: Small sample results with an application to modelling of asset

returns. In G. Phillips and E. Tzavalis (Eds.), The Refinement of Econometric Estimation and

Test Procedures: Finite Sample and Asymptotic Analysis. Cambridge: Cambridge University

Press.

Kapetanios, G., M. H. Pesaran, and T. Yagamata (2011). Panels with nonstationary multifactor

error structures. Journal of Econometrics 160, 326—348.

51



Lee, L.-F. and J. Yu (2010). Some recent developments in spatial panel data model. Regional

Science and Urban Economics 40, 255—271.

Lee, L.-F. and J. Yu (2013). Spatial panel data models. Mimeo, April, 2013.

Lee, N., H. R. Moon, and M. Weidner (2012). Analysis of interactive fixed effects dynamic linear

panel regression with measurement error. Economics Letters 117 (1), 239—242.

Moon, H. R. and M. Weidner (2010). Dynamic linear panel regression models with interactive

fixed effects. Mimeo, July 2010.

Moran, P. A. P. (1948). The interpretation of statistical maps. Biometrika 35, 255—60.

Moscone, F. and E. Tosetti (2009). A review and comparison of tests of cross section independence

in panels. Journal of Economic Surveys 23, 528—561.

Ng, S. (2006). Testing cross section correlation in panel data using spacings. Journal of Business

and economic statistics 24, 12—23.

O’Connell, P. G. J. (1998). The overvaluation of purchasing power parity. Journal of International

Economics 44, 1—19.

Onatski, A. (2009). Testing hypotheses about the number of factors in large factor models.

Econometrica 77, 1447—1479.

Onatski, A. (2010). Determining the number of factors from empirical distribution of eigenvalues.

Review of Economics and Statistics 92, 1004—1016.

Onatski, A. (2012). Asymptotics of the principal components estimator of large factor models

with weakly influential factors. Journal of Econometrics 168, 244—258.

Pesaran, M. H. (2004). General diagnostic tests for cross section dependence in panels. CESifo

Working Paper No. 1229.

Pesaran, M. H. (2006). Estimation and inference in large heterogeneous panels with multifactor

error structure. Econometrica 74, 967—1012.

Pesaran, M. H. (2013). Testing weak cross-sectional dependence in large panels. forthcoming in

Econometric Reviews.

Pesaran, M. H. and R. Smith (1995). Estimation of long-run relationships from dynamic hetero-

geneous panels. Journal of Econometrics 68, 79—113.

52



Pesaran, M. H. and E. Tosetti (2011). Large panels with common factors and spatial correlation.

Journal of Econometrics 161 (2), 182—202.

Pesaran, M. H., A. Ullah, and T. Yamagata (2008). A bias-adjusted LM test of error cross section

independence. The Econometrics Journal 11, 105—127.

Pesaran, M. H. and T. Yamagata (2008). Testing slope homogeneity in large panels. Journal of

Econometrics 142, 50—93.

Phillips, P. C. B. and D. Sul (2003). Dynamic panel estimation and homogeneity testing under

cross section dependence. The Econometrics Journal 6, 217—259.

Phillips, P. C. B. and D. Sul (2007). Bias in dynamic panel estimation with fixed effects, incidental

trends and cross section dependence. Journal of Econometrics 137, 162—188.

Pyke (1965). Spacings. Journal of the royal statistical society, Series B 27, 395—449.

Said, E. and D. A. Dickey (1984). Testing for unit roots in autoregressive-moving average models

of unknown order. Biometrika 71, 599—607.

Sarafidis, V. and D. Robertson (2009). On the impact of error cross-sectional dependence in short

dynamic panel estimation. The Econometrics Journal 12, 62—81.

Sarafidis, V. and T. Wansbeek (2012). Cross-sectional dependence in panel data analysis. Econo-

metric Reviews 31, 483—531.

Sarafidis, V., T. Yagamata, and D. Robertson (2009). A test of cross section dependence for a

linear dynamic panel model with regressors. Journal of Econometrics 148, 149—161.

Sargan, J. (1988). Testing for misspecification after estimation using instrumental variables. In

E. Maasoumi (Ed.), Contributions to Econometrics: John Denis Sargan, Volume 1. Cam-

bridge University Press.

Sargent, T. J. and C. A. Sims (1977). Business cycle modeling without pretending to have too

much a-priori economic theory. In C. Sims (Ed.), New methods in business cycle research.

Minneapolis: Federal Reserve Bank of Minneapolis.

Schott, J. R. (2005). Testing for complete independence in high dimensions. Biometrika 92,

951—956.

53



So, B. S. and D. W. Shin (1999). Recursive mean adjustment in time series inferences. Statistics

& Probability Letters 43, 65—73.

Song, M. (2013). Asymptotic theory for dynamic heterogeneous panels with cross-sectional de-

pendence and its applications. Mimeo, 30 January 2013.

Stock, J. H. and M. W. Watson (2011). Dynamic factor models. In M. P. Clements and D. F.

Hendry (Eds.), The Oxford Handbook of Economic Forecasting. Oxford University Press.

Westerlund, J. and J. Urbain (2011). Cross-sectional averages or principal components? Re-

search Memoranda 053, Maastricht : METEOR, Maastricht Research School of Economics

of Technology and Organization.

Whittle, P. (1954). On stationary processes on the plane. Biometrika 41, 434—449.

Yin, Y. Q., Z. D. Bai, and P. R. Krishnainiah (1988). On the limit of the largest eigenvalue of

the large dimensional sample covariance matrix. Probability Theory and Related Fields 78 (4),

509—521.

Zellner, A. (1962). An effi cient method of estimating seemingly unrelated regressions and tests

for aggregation bias. Journal of the American Statistical Association 57, 348—368.

54


	Introduction
	Types of Cross-Sectional Dependence
	Common Factor Models
	Large Panels with Strictly Exogenous Regressors and a Factor Error Structure
	PC estimators
	CCE estimators

	Dynamic Panel Data Models with a Factor  Error Structure
	Quasi maximum likelihood estimator
	PC estimators for dynamic panels
	Dynamic CCE estimators

	Tests of Error Cross-Sectional Dependence
	Application of CCE estimators and CD tests to unbalanced panels
	Concluding Remarks

