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1 Introduction

Numerous studies have found that lottery-like stocks tend to significantly underperform non-

lottery-like stocks, using various measures of lottery features. A popular explanation is that

investors have a strong preference for lottery-like assets, leading to the overpricing of these

assets. In the data, lottery-like assets usually have a small chance of earning extremely high

returns. The overweighting of the probability of these extremely high returns could in theory

induce a strong preference for lottery-like assets (e.g., Barberis and Huang (2008)). Indeed,

the overweighting of small-probability events is a key feature of prospect theory (PT) utility.

The explanation based on the probability weighting implies an unconditional preference for

lottery-like assets: investors prefer lottery-like assets regardless of their prior performance.

However, we document in this paper that the evidence for the lottery-related anomalies

depends on whether investors are in a gain or loss region relative to a reference point.

Following prior studies, we use five proxies to measure the extent to which a stock

exhibits lottery-like payoffs (i.e., large skewness): maximum daily returns, predicted jackpot

probability, expected idiosyncratic skewness, failure probability, and bankruptcy probability.

All of these measures are related to each other in that lottery-like assets under these measures

exhibit large skewness in returns, though they are motivated under different concepts.

Therefore, we use skewness, lottery, and lottery-like features of a stock interchangeably

hereafter. We document that the relationship between the skewness and future returns is

state-dependent. Specifically, we first separate stocks with capital gains from those with

capital losses by employing Grinblatt and Han’s (2005) method to calculate the capital

gains overhang (CGO) for individual stocks. CGO is essentially stock returns relative to a

reference price with positive CGO indicating capital gains relative to the reference price and

vice versa. As a robustness check, we also compute an alternative measure of CGO based

on the actual holdings of mutual fund managers following Frazzini (2006).

Next we sort all individual stocks into portfolios based on lagged CGO and the five

measures of lottery features in the literature. It is shown that the evidence for lottery-related

anomalies is very strong and robust among stocks with capital losses (negative CGO). In

contrast, the evidence for lottery-related anomalies among stocks with large capital gains

(i.e. large and positive CGO) is either very weak or even reversed. For instance, we find

that, among stocks with large prior capital losses (bottom quintile of CGO), the returns

of lottery-like stocks (those with top quintile of maximum daily returns in the previous

month) are 138 basis points (bps) lower per month than non-lottery-like firms (those with
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bottom quintile of maximum daily returns in the previous month). In sharp contrast, among

firms with large prior capital gains (top quintile of CGO), the returns of lottery-like stocks

measured by maximum daily returns are 54 bps higher per month than those of non-lottery-

like stocks. Similar results hold when the lottery feature is measured by predicted jackpot

probability, expected idiosyncratic skewness, failure probability, and bankruptcy probability.

In addition, our results still hold when we control for a battery of additional variables such as

firm size, the book-to-market ratio, share turnover, and return volatility in Fama-MacBeth

regressions.

These findings suggest that the lottery-related anomalies depend on whether investors

are in the gain or loss territory relative to a reference point. Moreover, our results are robust

across all of the five lottery measures though these measures were initially motivated by

different concepts. Our empirical findings suggest that a common underlying force may have

played a crucial role in all of these anomalies and it calls for a unified framework to understand

these anomalies. Therefore, we go on to examine several possible explanations for our

empirical findings. First, we investigate the role of reference-dependent preferences (RDP)

and mental accounting (MA) in these lottery-related anomalies. The key idea underlying

MA is that decision makers tend to mentally frame different assets as belonging to separate

accounts, and then apply RDP to each account by ignoring possible interaction among these

assets. The MA of Thaler (1980, 1985) provides a theoretical foundation for studies in which

decision makers set a reference point for each asset they own.

With RDP, investors’ risk-taking behavior in the loss region can be different from that in

the gain region. For example, PT posits that individuals tend to be risk seeking in the loss

region. In addition, individuals could also have a strong desire to break even following prior

losses relative to a reference point (the break-even effect). Lottery-like assets are particularly

attractive in these cases since they provide a better chance to recover prior losses. On the

other hand, when investors face prior gains, their demand for lottery-like assets is not as

strong since they are not risk seeking or in need of breaking even. Instead, due to the high

volatility of lottery-like stocks, investors with MA tend to dislike these stocks if they are risk

averse in their gain region.

As a result, if arbitrage forces are limited, lottery-like stocks could be overvalued

compared to non-lottery-like stocks among the stocks where investors face prior losses,

leading to lower future returns than non-lottery-like stocks. By contrast, among the stocks

where investors face capital gains, lottery features may not be associated with lower future

returns. The correlation can even turn positive since investors with capital gains usually
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dislike the high volatility of lottery-like stocks. Thus, RDP together with MA can potentially

account for the empirical findings documented in this paper. However, we acknowledge that

the static argument here might not be valid in a dynamic setting as shown in Barberis and

Xiong (2009). It would be helpful to develop a formal model in a dynamic setting to account

for our empirical findings, which is beyond the scope of this paper and we leave it for future

research.

The second possible explanation for our empirical findings is from a potential

underreaction to news channel as documented in Zhang (2006). To see why, we take the

failure probability as an example. Stocks with capital losses (low CGO) are likely to have

experienced a series of bad news. If information travels slowly across investors, stocks with

low CGO tend to be overvalued on average. Moreover, information is very likely to travel

more slowly among firms with higher failure probability since information uncertainty is

usually higher and arbitrage forces are more limited for these firms. Consequently, among the

stocks with low CGO, those with higher failure probabilities are likely to be more overvalued,

leading to lower future returns (a negative relationship between the failure probability and

future returns). On the other hand, firms with capital gains (high CGO) have probably

experienced good news and therefore have been underpriced due to the underreaction to

news. Similarly, this underpricing effect should be stronger for firms with higher failure

probabilities, leading to higher future returns. Thus, there is a positive relationship between

the failure probability and future returns among firms with high CGO.

The third possible explanation is from the disposition-effect-induced mispricing effect.

One might argue that CGO itself is a proxy for mispricing as in Grinblatt and Han (2005).

Due to the disposition effect (i.e., investors’ tendency to sell securities whose prices have

increased since purchase rather than those whose prices have dropped), firms with higher

CGO experience greater selling pressure and thus are underpriced. Since stocks with greater

skewness, especially for firms close to default, tend to have higher arbitrage costs, the final

mispricing effect should be stronger among these firms. Similar to the underreaction-to-

news story, this disposition-effect-induced mispricing effect can potentially induce a negative

skewness-return relation among low-CGO firms and a positive skewness-return relation

among high-CGO firms as in our empirical findings. Notice that the mechanism based

on RDP is different from this mispricing story, since RDP does not require CGO to be a

proxy for mispricing. It only needs investors’ demand for skewness depending on a reference

point. In addition, the lottery measures reflect return skewness in the explanation based on

RDP, while they are proxies for arbitrage risks for the story based on the mispricing effect.
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To investigate the roles of these possible mechanisms in driving our empirical findings,

we perform a series of Fama-MacBeth regressions to control for: 1) the interaction terms of

our lottery proxies and a proxy for past news; 2) the interaction terms of the lottery proxies

and a proxy for mispricing. The effect of CGO on the lottery-related anomalies remains

statistically significant and quantitatively similar to that in our benchmark results. These

findings suggest that our empirical results are not likely driven by CGO being a proxy for

investors’ underreaction to news or the mispricing (e.g., from the disposition effect). Rather,

investors’ high demand for lottery-like assets following prior losses may have played a critical

role in our key results.

Furthermore, our main empirical findings hold up well in a variety of robustness

checks. For instance, we find similar results when employing different subsamples, such

as excluding NASDAQ stocks or illiquid stocks. Results from the value-weighted Fama-

MacBeth regressions also show that our findings are not mainly driven by small firms.

In addition, the effect of CGO on the lottery-related anomalies is stronger among firms

with lower institutional ownership or lower nominal stock prices since more individuals are

investing in these stocks. A similarly stronger effect is observed following high investor

sentiment periods when the market participants tend to be more irrational and may be more

likely to display RDP.

In the rest of this section, we relate our paper to previous studies. A large strand

of literature documents that lottery-like assets have low subsequent returns. Campbell,

Hilscher, and Szilagyi (2008) show that firms with a high probability of default have

abnormally low average future returns. Conrad, Kapaida, and Xing (2014) further document

that firms with a high probability of default also tend to have a relatively high probability of

extremely large returns (i.e., jackpot) and these firms usually earn abnormally low average

future returns. Boyer, Mitton, and Vorkink (2010) find that expected idiosyncratic skewness

and future returns are negatively correlated. Bali, Cakici, and Whitelaw (2011) show that

maximum daily returns in the past month are negatively associated with future returns.1 All

of these empirical studies suggest that positively skewed stocks can be overpriced and earn

lower future returns. In addition, several studies have employed option data to study the

relation between various skewness measures and future returns of options. For instance, see

Xing, Zhang, and Zhao (2010), Bali and Murray (2013), and Conrad, Dittmar, and Ghysels

(2013).

1Bali, Cakici, and Whitelaw (2011) and Bali, Brown, Murray and Tang (2014) also argue that the
preference for lottery can account for the puzzle that firms with low volatility and low beta tend to earn
higher returns.
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We differ from the above studies by showing that the negative skewness-return relation

are much more pronounced among firms with prior capital losses. Among firms with large

prior capital gains, the empirical evidence for this negative relation is weak, insignificant

or even reversed. Our findings suggest that in addition to an unconditional preference for

skewness, such as the overweighting of small-probability extreme returns, other forces also

play a significant role in the lottery-related anomalies.2 In particular, we find supportive

evidence for RDP being an important source for lottery-related anomalies besides other

potential explanations.

Our paper is also related to existing theoretical and empirical studies that explore the

role of reference points in asset prices. Barberis and Huang (2001) find that loss aversion

and MA improve a model’s performance to match stock returns in the data. Barberis,

Huang, and Santos (2001) theoretically explore the role of RDP (in particular, prospect

theory) in asset prices in equilibrium settings. These studies suggest that RDP can play an

important role in explaining asset pricing dynamics and cross-sectional stock returns.3 More

recently, Barberis and Xiong (2012) and Ingersoll and Jin (2013) provide theoretical models

of realization utility with RDP. Our paper offers empirical support for RDP and MA that

are studied in these theoretical papers.4

Empirically, Grinblatt and Han (2005) find that past stock returns can predict future

returns because past returns can proxy for unrealized capital gains. Frazzini (2006) shows

that PT/MA induces underreaction to news, leading to return predictability. In a related

study, Wang, Yan, and Yu (2014) show that RDP may have also played an important role

in the lack of positive risk-return trade-off in the data. We show that the effect of CGO on

lottery-related anomalies is distinct from the effect of CGO on the risk return trade-off and

is not primarily driven by investor’s RDP for volatility risk although lottery-like assets tend

to have higher volatility. In particular, we employ residual skewness measures which are

orthogonal to volatility, and we find a similar effect of CGO on the residual skewness-return

2To clarify, our results do not exclude the existence of overweighting small-probability events. In fact,
we find that the negative skewness-return relation is generally significant among stocks around zero-CGO
region, which supports an independent role for probability weighting in the lottery-related anomalies.

3In a two-period setting with a cumulative prospect theory preference but without mental accounting,
Barberis and Huang (2008) show that the CAPM still holds under assumptions such as multivariate normal
distribution for security payoffs. When there is a violation of these assumptions (e.g., mental accounting or
the multivariate normality assumption for security payoffs), the CAPM typically fails.

4Several studies also apply the reference-dependent feature in decision making to understand various
other empirical findings in financial data. See Baker, Pan, and Wurgler (2012) on merger/acquisitions,
George and Hwang (2004) and Li and Yu (2012) on the predictive power of 52-week high prices, and Dougal,
Engelberg, Parsons, and Van Wesep (2015) on credit spread.
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relation.

The rest of the paper is organized as follows. Section 2 defines the skewness proxies used

in our empirical studies and presents our main findings based on these skewness proxies.

Section 3 discusses several possible explanations for our empirical findings, with special

attention being paid to RDP. Additional robustness tests are also reported in this section.

Section 4 includes concluding remarks.

2 State-dependent Skewness-Return Relation

This section presents our empirical finding that the skewness-return relationship is dependent

on CGO. To proceed, we first describe our data and define the key variables used in the

empirical analysis. Next the summary statistics, double-sorting portfolio results, and the

Fama-MacBeth regressions results are reported.

Our data are obtained from several sources. Stock data are from monthly and daily

CRSP database, accounting data are from Compustat Annually and Quarterly database,

and mutual fund holdings data are obtained from the Thomson Financial CDA/Spectrum

Mutual Funds database. To construct stock-level variables, we start with the data of all US

common stocks traded in NYSE, AMEX, and NASDAQ from 1962 to 2014. Next, we filter

our dataset by requiring all observations to have nonnegative book equity, prices to be equal

to or greater than $5, and to have at least 10 non-missing daily stock returns within a month

at the time of portfolio formation.

2.1 Definitions of Key Variables

This subsection describes our measures of CGO and lottery features used in previous lottery-

related anomalies. More details on these key variables are provided in Appendix II.

2.1.1 Capital Gains Overhang

Two CGO measures are constructed by following previous studies.

CGOGH : Grinblatt and Han (2005) propose a turnover-based measure to calculate the
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reference price and CGO.5 By definition, CGO is the return of a stock relative to a reference

price. In Grinblatt and Han (2005), the reference price is simply a weighted average of past

stock prices. The weight given to each past price is based on past turnover, which reflects

the fraction of stocks that are purchased at a certain date and have not been sold since

then. Therefore, the reference price is an estimate of the average purchasing price of a stock.

Following Grinblatt and Han (2005), we truncate the estimation of the reference price at five

years and rescale the weights to sum to one. Since we use prior five-year data to construct

CGO, this CGO variable in our data ranges from January 1965 to December 2014. Moreover,

a minimum of 150 weeks of non-missing values over the past five years is required in the

CGO calculation.

CGOFR: In addition to the turnover-based measure of CGO, we adopt an alternative

measure using mutual fund holding data as in Frazzini (2006).6 Similar to Grinblatt and

Han (2005), Frazzini (2006) defines CGO as the percentage deviation of a reference price

to the current price, but this construction of reference price is arguably more accurate in

capturing the average purchase price, because it employs the actual net purchases by mutual

fund managers. The advantage of this approach is that it can exactly identify the fraction of

the shares that were purchased at a previous date and are still currently held by the original

buyers. However, due to the limitation on data availability, the sample period of CGOFR is

shorter, ranging from April 1980 to October 2014. Also this approach assumes that mutual

fund managers are representative for all shareholders.

2.1.2 Lottery Measures

We use five variables to proxy for the lottery feature of stocks following prior studies.

This section briefly describes how these measures are calculated and more details on the

construction of these measures are provided in Appendix II.

Maxret : Bali, Cakici, and Whitelaw (2011) document a significant and negative relation

between the maximum daily return over the past month and the returns in the future. They

also show that firms with larger maximum daily returns have higher return skewness. It

is conjectured that the negative relation between the maximum daily return and future

returns is due to investors’ preference for lottery-like stocks. Following their study, we use

each stock’s maximum daily return (Maxret) within the previous month as our first measure

5For details, see Equation (9) on page 319 and Equation (11) on page 320 in Grinblatt and Han (2005).
6See Equation (1) on page 2022 and Equation (2) on page 2023 of Frazzini (2006) for details.
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of lottery feature.

Jackpotp: Conrad, Kapadia, and Xing (2014) show that stocks with a high predicted

probability of extremely large payoffs earn abnormally low subsequent returns. Their finding

suggests that investors prefer lottery-like payoffs which are positively skewed. Thus, we use

the predicted probability of jackpot (log returns greater than 100% over the next year)

which is estimated from their baseline model (Panel A of Table 3 on page 461) as our second

measure. The out-of-sample predicted jackpot probabilities start from January 1972 in our

paper.

Skewexp: Boyer, Mitton, and Vorkink (2010) estimate a cross-sectional model of expected

idiosyncratic skewness and find that it negatively predicts future returns. We use the

expected idiosyncratic skewness estimated from their model (model 6 of Table 2 on page

179) as our third measure. Due to the limited availability of NASDAQ turnover data in

earlier years, this measure starts in January 1988.

Deathp: Campbell, Hilscher, and Szilagyi (2008) find that stocks with a high predicted

failure probability earn abysmally low subsequent returns. Since distressed stocks tend to

have positive skewness, they conjecture that investors have strong preference for positive

skewness which drives up the prices of distress stocks and leads to lower future returns. We

construct this proxy as our fourth measure of lottery feature, using their logit model (Table

IV, 12 month lag on page 2913). The sample period of Deathp starts in January 1972 due

to the availability of the quarterly Compustat data used in the calculation.

Oscorep: Finally, Ohlson (1980) develops a model to predict a firm’s probability of

bankruptcy from a set of accounting information. He finds that firms with higher bankruptcy

probability earn lower subsequent returns. Following his approach, we calculate firms’

predicted bankruptcy probability based on the O-score (Model 1 of Table 4 on page 121)

and use this proxy as our fifth measure of lottery feature.

All of the five variables above are associated with return skewness in the data, although

they are motivated by different concepts in the original studies. We will show that they

exhibit another common feature: the anomalies related to these measures depend on whether

CGO is positive or negative. Then we provide a unified framework to understand all of these

lottery-related anomalies.
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2.2 Summary Statistics and One-Way Sorts

This section reports summary statistics and the results for single sorted portfolios. Then

Section 2.3 studies the role of CGO in the lottery-related anomalies.

Table 1 presents summary statistics and the results when stocks are sorted on lottery

proxies. At the end of month t, we sort stocks into quintiles based on CGO (Panel A) or one

of the five lottery proxies (Panel B). In each quintile, the portfolio return (Rete) is calculated

as value-weighted returns of individual stocks in month t + 1. αFF3 is the value-weighted

average of the intercepts of the Fama-French three-factor regression. We also calculate other

firm characteristics such as the book to market value for each quintile. In these calculations,

stocks are equally weighted. All firm characteristics are measured at the end of month t,

with the only exception that the ex-post skewness is measured by the return skewness over

the next 12 months. All t-statistics (in parentheses) are based on the heteroskedasticity-

consistent standard errors of White (1980) for portfolio returns, and Newey-West (1987)

standard errors with a lag of 36 for firm characteristics.

Panel A of Table 1 reports summary statistics for portfolios sorted on CGO, using both

Grinblatt and Han’s (2005) measure and Frazzini’s (2006) measure. Consistent with the

previous literature, high-CGO firms tend to have larger firm size, higher book-to-market

ratios, higher past returns, and lower return volatility than low-CGO firms. In particular,

stocks with capital gains (high CGO) outperform stocks with capital losses (low CGO) in the

following month. The spread between top and bottom quintiles is 18 basis points per month.

In addition, the spread between the Fama-French three-factor alphas for the high- and low-

CGO portfolios is 37 bps for Grinblatt and Han’s (2005) measure and 39 bps for Frazzini’s

(2006) measure. The spread is statistically significant for both measures. Untabulated results

show that the CGO portfolio spreads tend to be more significant when January is excluded

or portfolios are equally weighted.

Panel B of Table 1 presents monthly excess returns and the Fama-French three-factor

alphas for portfolios sorted on the lottery proxies. Consistent with previous studies on each

of these anomalies, lottery-like portfolios (row P5) underperform non-lottery-like portfolios

(row P1), and the return difference is significant, especially in terms of the Fama-French

three-factor alphas. For instance, the Fama-French three-factor alpha spread between P5

and P1 is 52 bps with a t-statistic of -3.74 if the lottery feature is measured by the maximum

daily return in the last month. Similar results hold for other lottery proxies.
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Panel B also reports ex-post skewness for each portfolio, which is measured by the time

series mean of cross-sectional average stock-level skewness calculated from daily stock returns

in the next 12 months. As expected, we usually find ex-post skewness increases monotonically

from non-lottery-like (P1) portfolios to lottery-like (P5) portfolios for all five lottery proxies.

For instance, if the lottery feature is measured by the predicted jackpot probability, the ex-

post skewness increases from 0.17 for P1 to 0.60 for P5. The difference between P5 and P1

is significant, and similar results hold for other lottery proxies. This result confirms that our

lottery proxies, calculated at the portfolio formation time, can successfully capture stocks’

lottery feature in the future.

2.3 Double Sorts

As shown in the previous subsection, our five lottery measures unconditionally predict future

returns in a way consistent with previous studies in the literature. We now examine to what

extent these predictive patterns depend on stocks’ previous capital gains/losses. At the end

of month t, we independently sort stocks into quintiles based on CGO and one of our five

lottery measures. We next track value-weighted portfolio returns in month t+ 1.

Table 2 presents the double sorting results based on Grinblatt and Han’s (2005) CGO and

the five proxies for lottery-like feature. Panel A reports excess returns for these portfolios,

while Panel B presents the Fama-French three-factor alphas.7 Because of the independent

sorting, we have a similar spread for the lottery proxy in the high-CGO group (CGO5)

and the low-CGO group (CGO1). However, the future returns exhibit distinct patterns in

these two groups. We take the maximum daily return in the last month (Maxret) as an

example. Following previous losses (CGO1), high-Maxret stocks underperform low-Maxret

stocks by 1.38% per month in excess returns, with the t-stat equal to −5.35. In contrast,

following previous gains (CGO5), the negative correlation between Maxret and future returns

is reversed: high-Maxret stocks outperform low-Maxret stocks by 0.54% per month, and the

t-stat is also significant at 2.30. As a comparison, the unconditional return spread between

high- and low-Maxret portfolios is about −0.24% per month (in Table 1) with the t-stat

equal to −1.07. Columns C5-C1 report the differences between lottery spreads (P5-P1)

among high-CGO firms and those among low-CGO firms. For Maxret, this difference-in-

differences is 1.92% per month, with a t-stat of 7.50.

7The excess return is measured by stock returns minus one-month Treasury bill rate.
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The other four proxies display similar patterns. In particular, the difference-in-differences

are 1.86%, 0.75%, 1.16%, and 1.15% per month for Jackpotp, Skewexp, Deathp, and Oscorep,

respectively, indicating that lottery anomalies are significantly stronger among prior losers.

In addition, this skewness-return pattern also holds for the Fama-French three-factor alphas,

as shown in Panel B.8 More interestingly, Panel B shows that among low-CGO firms, a large

bulk of the return spreads between low- and high-skewness firms is due to the negative alpha

of the lottery-like assets. Taking Maxret as an example, the long-leg has an alpha of 0.52%

per month, whereas the short-leg has an alpha of -1.24% per month.9 This is consistent with

the notion that facing prior losses, the demand for lottery-like assets increases. Due to limits

to arbitrage and especially short-sale impediments, this excess demand drives up the price

of lottery-like assets and leads to low subsequent returns for these assets.

In contrast to low-CGO firms, the lottery-like assets do not underperform the non-lottery-

like assets among high-CGO firms. In fact, among high-CGO firms, the excess return spreads

between the lottery-like stocks and the non-lottery-like stocks are 0.54%, 0.69%, -0.05%,

0.24%, and 0.53% per month for the five proxies, respectively. Four out of these five return

spreads are positive and three of them are significant. The patterns are similar for the Fama-

French three-factor alphas with three out of five spreads being at least marginally significant

and the other two negative spreads being insignificant.

It is also worth noting that the lottery-like assets also underperform the non-lottery-like

assets in the mid-CGO group (CGO3). These stocks are generally neither winners nor losers

with CGO close to zero. This finding suggests that besides the effect of investors’ stronger

demand for lottery-like assets following capital losses, which is emphasized in this paper,

other forces such as probability weighting, which are proposed by previous studies, should

have also played an important role in the lottery-related anomalies.

To address the concern that Grinblatt and Han’s (2005) CGO is based on price-volume

approximation and could be affected by high-frequency trading volume, we employ Frazzini’s

(2006) CGO, which is based on actual holdings of mutual funds. We repeat the double sorting

exercise after replacing Grinblatt and Han’s (2005) CGO with Frazzini’s (2006) CGO. The

results are reported in Table 3, and are very similar to those in Table 2. For example,

Panel A shows that the differences between excess return spreads among high-CGO firms

8Untabulated results show that CAPM alphas and Carhart four-factor alphas have similar patterns.
9Related to this finding, Stambaugh, Yu, and Yuan (2012) find that many anomalies are driven by

the abnormally low returns from their short-legs, especially following high sentiment periods. They argue
that this evidence is consistent with the notion that overpricing is more prevalent than underpricing due to
short-sale impediments.
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and those among low-CGO firms (C5-C1) are respectively 1.88%, 1.26%, 0.56%, 1.10%, and

0.69% per month with corresponding t-statistics of 5.99, 4.09, 1.55, 3.10, and 2.38 for the

five lottery-feature proxies. The sample period in Table 3 is shorter due to the unavailability

of the mutual fund holdings data for earlier dates. As a result, the t-statistics are slightly

lower than those in Table 2. However, the economic magnitude of the spread differences

remains largely the same.

In Panel B of Table 3, the lottery-like and non-lottery-like spreads of alphas among

high-CGO firms (row P5-P1 and column CGO5) are very close to zero and only one of

them (Deathp) is statistically significant. In fact, among high-CGO firms, the average alpha

spread between low- and high-skewness firms is only -26 bps (v.s. an average spread of -161

bps among low-CGO firms). Thus, the evidence based on Frazzini’s CGO confirms that

there is virtually no return spreads between lottery-like assets and non-lottery-like assets

among firms with large capital gains (high CGO).

There is one caveat of using the raw CGO measure: since CGO may correlate with

other stock characteristics, in particular, past returns and shares turnover, the results in

Tables 2 and 3 could be driven by other effects rather than the capital gains/losses that

investors face. To address this concern, we sort stocks based on the residual CGO (RCGO)

after controlling for other stock characteristics. To construct RCGO, we follow Frazzini

(2006) by cross-sectionally regressing the raw CGO on previous 12- and 36-month returns,

the previous one-year average turnover, the log of market equity at the end of the previous

month, a NASDAQ dummy, an interaction term between the turnover and previous 12-month

returns, and an interaction term between the turnover and the NASDAQ dummy.

Table 4 reports the Fama-French three-factor alpha spreads between lottery and non-

lottery portfolios (P5-P1) for low- and high-RCGO groups in the two right panels. To

facilitate comparison, we also include lottery spreads based on raw CGO in the two left

panels, which serve as a summary of the results presented in Tables 2 and 3. For each of the

five lottery proxies, Panle CGOGH reports the lottery spreads (P5-P1 based on the lottery

proxy) among firms with low CGO (CGO1), the lottery spread among firms with high CGO

(CGO5), and the difference between these two spreads (C5-C1). In this panel, CGO is

based on Grinblatt and Han’s (2005) measure. Panel CGOFR presents similar results for

CGO calculated from Frazzini’s (2006) procedure. The two right panels report the results

for RCGO under these two measures of CGO. Using the residual rather than the raw CGO

delivers similar results that support our hypothesis as well. Taking RCGO under Grinblatt

and Han’s (2005) procedure for instance, the difference between the lottery spread among
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high-RCGO firms and that among low-RCGO firms is 1.13% for Maxret (t=4.55), 1.10%

for Jackpotp (t=3.64), 0.74% for Skewexp (t=2.30), 0.83% for Deathp (t=2.98), and 0.53%

for Oscorep (t=2.24). The difference of the lottery spread between high- and low-RCGO is

usually smaller than that for raw CGO. However, the difference remains significant after we

use RCGO.

Our double-sorting results are robust to equal-weighted returns. In our benchmark

analysis, We focus on value-weighted portfolio returns and exclude penny firms from our

sample. It helps to avoid our results being dominated by the behavior of very small firms,

which as warned by Fama and French (2008). But on the other hand, the properties

of value-weighted returns could be dominated by the behavior of a few very large firms

because of the well-known heavy-tail distribution of firm sizes in the U.S. stock market

(Zipf, 1949). To address this concern, Table 5 reports the results for two alternative

weighting methods: equal- and lagged-gross-return-weighted portfolio alphas.10 The lagged-

gross-return-weighted portfolio returns are also considered, because this weighting scheme

is designed to mitigate the liquidity bias in asset pricing tests (Asparouhova, Bessembinder,

and Kalcheva, 2013).

The results in Table 5 confirm a significant role of CGO in the lottery-related anomalies.

That is, among low-CGO firms, the lottery spreads are negative and highly significant,

whereas among high-CGO firms all of the lottery spreads are either positive or insignificantly

negative except for the predicted failure probability (Deathp). The sizes of the differences

in the lottery spread (C5-C1) are very close for equal-weighted and lagged-gross-return-

weighted portfolio returns. They are also very similar to the value-weighted portfolio return

in our benchmark results, suggesting that our findings are not mainly driven by extremely

large or small firms.

In the last panel (Panel III) of Table 5, we show that our results are also robust to

conditional sorting. We double sort portfolios independently in our benchmark analysis. In

contrast, conditional sorting first ranks stocks based on lagged CGO. Next, we sort stocks

within each CGO group according to one of the five lottery proxies. Then the value-weighted

return of each portfolio is calculated in the same way as in our benchmark analysis. Panel

III shows that our benchmark findings hold both qualitatively and quantitatively under

conditional sorting. The differences in lottery spreads between high- and low-CGO groups

(C5-C1) are statistically significant and quantitatively similar to those in Table 2. In all

10Recently, Belo, Lin and Bazdresch (2014) also emphasize the importance of reporting both equal- and
value-weighted portfolio returns.
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panels of Table 5, the results are based on Grinblatt and Han’s (2005) CGO measure. The

results based on Frazzini’s (2006) measure are quantitatively similar and are not reported to

save space.

2.4 Fama-MacBeth Regressions

The double-sorting approach in the previous section is simple and intuitive, but it cannot

explicitly control for other variables that may influence returns. However, sorting on three

or more variables is impractical. Thus, to examine other possible mechanisms, we perform a

series of Fama and MacBeth (1973) cross-sectional regressions, which allow us to conveniently

control for additional variables.

In all of the Fama-MacBeth regressions below, we control for a list of traditional return

predictors, such as firm size, book-to-market, past returns, stock return volatility, and share

turnover. Following Conard, Kapadia, and Xing (2014), independent variables are winsorized

at their 5th and 95th percentiles. The benchmark regression in column (0) of Table 6 shows

that the coefficient of CGO is significant and positive, suggesting that stocks with more

unrealized capital gains have higher future returns, which confirms Grinblatt and Han’s

(2005) finding. Grinblatt and Han (2005) attribute this finding to investors’ tendency

of selling stocks with capital gains (high CGO). The overselling makes high-CGO stocks

undervalued and predicts high future returns for these stocks.

Next, we investigate the role of CGO in the lottery anomalies. In Table 6, regressions

in column (1) under the five lottery proxies are our main results in this section. We will

discuss the results in columns (2) to (4) in the next section. Under each lottery proxy, the

regression in column (1) have two more independent variables than the benchmark regression

in column (0): the lottery proxy and an interaction term between the proxy and CGO. For

all five lottery proxies, the coefficient estimate of the interaction term is always positive and

significant. It suggests that lottery-like stocks with negative CGO have lower returns than

lottery-like stocks with positive CGO, confirming that our results based on double sorts still

hold even after we control for size, book-to-market, past returns, stock return volatility, and

shares turnover. It is noteworthy that the coefficient of lottery proxy itself typically appears

to be negative and significant, suggesting that lottery-like assets have lower future returns

than non-lottery-like assets, especially when CGO is negative.

In sum, our results generally confirm the previous findings of a negative return-skewness
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relation in the lottery-related anomalies. However, both our portfolio and regression results

highlight the role of CGO in understanding these lottery-related anomalies.

3 Possible Explanations

In this section, we compare three possible explanations for our documented dependence

of the lottery-related anomalies on CGO. If the lottery proxies appropriately capture the

lottery features of stocks and CGO reflects investors’ status of capital gains/losses, RDP is

naturally a potential explanation for our empirical findings: investors’ demand for lottery-

like stocks is stronger when they are in capital loss. However, if the lottery proxies mainly

capture investors’ speed to incorporate past news, rather than stocks’ lottery features, the

underreaction to news documented in Zhang (2006) can also potentially account for our

empirical findings. In addition, if CGO is mainly an indicator of mispricing due to the

disposition effect, rather than investors’ status of gains/losses, our empirical results can be

potentially caused by the mispricing effect too. In this section, we discuss and compare these

three potential explanations in detail.

3.1 The Role of RDP

Investors are uniformly risk averse in most standard asset pricing models because theses

models employ the expected utility function that is globally concave. This assumption has

been a basic premise in numerous studies that help understand observed consumption and

investment behaviors in finance and economics.

However, RDP has recently attracted massive attentions in several research fields

following the seminal work by Kahneman and Tversky (1979). The idea of reference points is

a critical element in the prospect theory developed by Kahneman and Tversky. Their theory

predicts that most individuals have an S-shaped value function, which is concave in the gain

domain, but convex in the loss domain. Both gains and losses are measured relative to a

reference point. In addition, investors are loss averse in the sense that the disutility from

losses is much higher than the utility from the same amount of gains.11 Finally, the mental

11Another feature of prospect theory is that investors tend to overweight small probability events. The
asset pricing implications of probability weighting have been studied recently by Barberis and Huang (2008),
Bali, Cakici, and Whitelaw (2011), and Barberis, Mukherjee, and Wang (2014), among others.
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accounting of Thaler (1980, 1985) provides a theoretical foundation for decision makers

setting a separate reference point for each asset they own by ignoring possible interactions

among these assets.

Building on the RDP model by Kahneman and Tversky (1979) and mental accounting,

a large number of recent studies have demonstrated that RDP can better capture human

behaviors in many decision making processes and it can account for many asset pricing

phenomena that contradict the prediction of standard models12. Moreover, psychological

and evolutionary foundations for RDP are also documented in Frederick and Loewenstein

(1999) and Rayo and Becker (2007).

Among studies suggesting investors’ preferences are reference-dependent, a strand of

literature (e.g., Odean, 1998, Grinblatt and Keloharju, 2001, Dhar and Zhou, 2006) finds

that individual investors are averse to loss realization. Similar evidence is also found for

professional investors. For instance, see Locke and Mann (2000) for a study on futures

traders, Shapira and Venezia (2001) on professional traders in Israel, Wermers (2003) and

Frazzini (2006) on mutual fund managers, and Coval and Shumway (2005) on professional

market makers at the Chicago Board of Trade.

Under the assumption of the reference point being the lagged status quo, the aversion to

loss realization predicts investors’ willingness to take unfavorable risks to regain the status

quo. A related concept, the break-even effect coined by Thaler and Johnson (1990), also

suggests that following losses, investors often have strong urge to make up their losses since

by breaking even, investors can avoid proving that their first judgment was wrong. The

break-even effect can induce investors in losses to take gambles that they otherwise would

not have taken. In this case, assets with high skewness appear especially attractive since

they provide a better chance to break even.

In contrast, among stocks with prior capital gains, there are two countervailing forces. On

one hand, investors might still prefer lottery-like stocks, probably due to the overweighting

of small-probability event in the standard probability weighting scheme of the prospect

theory, though the demand for lottery-like assets becomes weaker as the effects from break-

even and aversion to loss realization disappear. Thus, the lottery-like stocks can still be

moderately overvalued. On the other hand, the lottery-like stocks typically have higher

(idiosyncratic) volatility. When facing prior gains, investors are risk-averse and dislike even

12 See, e.g., Shefrin and Statman (1985), Benartzi and Thaler (1995), Odean (1998), Barberis, Huang, and
Santos (2001), Grinblatt and Han (2005), Frazzini (2006), and Barberis and Xiong (2012), among others.
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stock-level idiosyncratic volatility due to mental accounting. Thus, the lottery-like stock can

be undervalued and exhibit high future returns. Overall, it is not clear which force dominates

in the data. But we can at least conclude from the above discussions that investors’ demand

for lottery-like stocks should be stronger in the loss region than that in the gain region.

In sum, a natural implication from RDP and mental accounting is that the lottery-related

anomalies should be weaker or even reversed among stocks where investors have experienced

gains, especially large gains. In contrast, the negative relationship between skewness and

expected returns should be much more pronounced among stocks where investors have

experienced losses and been seeking break-even opportunities.13

Since CGO measures the unrealized gains and losses from investment, the lottery-

related anomalies should crucially depend on individual stock’ CGO: a strong negative

correlation between expected (abnormal) returns and skewness should exist among firms

with a low (negative) CGO, while a weak (insignificant or even reversed) correlation between

expected abnormal returns and skewness may exist among firms with a high (positive)

CGO. Furthermore, the return spreads (between high- and low-skewness stocks) should be

significantly more negative among firms with capital losses than those among firms with

capital gains.

This is exactly the pattern presented in Section 2. In fact, using the five skewness

proxies and the same brokerage data set as in Barber and Odean (2000), we show that

individual investors’ demand for lottery-like assets over non-lottery-assets is significantly

stronger in the loss region than in the gain region.14 Using probit regressions, we estimate

the propensity to sell lottery-like stocks for individual investors. The results are only reported

in the appendix to save space. The coefficients for the interaction terms between unrealized

returns and skewness proxies are significant in Tables A1 of the appendix, implying that

individual investors exhibit a stronger demand for lottery-like assets after losses than after

gains. Additionally, using mutual fund holding data, we find that mutual fund managers

exhibit the same trading behavior and the results are reported in Table A2 in the appendix.

These results confirm our conjecture about the role of RDP in the lottery anomalies.

Lastly, we discuss the relation between RDP and some other popular explanations in

the literature for the documented lottery-related anomalies. The overweighting of small-

13Once again, we acknowledge that our static argument above may not be valid in a dynamic setting as
shown by Barberis and Xiong (2009). Thus, before fully embracing our argument, one should develop a fully
dynamic model which is beyond the scope of our current study.

14 We thank Terry Odean for the brokerage data.
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probability events in the prospect theory can lead to the overpricing of positively skewed

assets, which can potentially account for the anomalies related to maximum daily returns,

predicted jackpot probability and the expected idiosyncratic skewness. In fact, our double-

sorts exercises show that the lottery-related anomalies are generally significant in the middle-

CGO groups, indicating a significant role of this kind of probability weighting in the lottery-

related anomalies. Also, the larger default option values of distressed firms, combined with

shareholder expropriation, could lead to the low returns of the distressed firms since the

default option is a hedge (e.g., Garlappi, Shu, and Yan, 2008 and Garlappi and Yan, 2011).15

However, the key difference between RDP and the above previous mechanisms is the

heterogeneity of the lottery effect across stocks. RDP implies that the lottery-related

anomalies should be much more pronounced among firms with low CGO, whereas the

previous mechanisms typically predict that the anomalies should be homogenous across

different CGO levels. For example, if investors overweight small-probability events, the

overweighting effect should be similar across different levels of CGO, and thus the lottery

effect should not depend on CGO.

Again, we would like to emphasize that the mechanism of RDP does not depend on

the probability weighting: even without the overweighting of small-probability events, the

break-even effect and the investor’s desire to avoid losses could still lead to excess demand

for positive skewness when investors face prior losses. Thus, RDP is distinct from the

mechanisms based on probability weighting, which is the prevalent explanation for the

lottery-related anomalies in the existing literature (e.g, Barberis and Huang, 2008, Bali,

Cakici, and Whitelaw, 2011, and Conrad, Kapadia, and Xing, 2014). Our empirical findings

suggest that RDP may have played a crucial role in account for the lottery-related anomalies,

although other mechanisms are likely to work simultaneously in investors’ decision-making

process and the probability weighting would be significantly amplified by the excess demand

for lottery-type assets among prior losers.

3.2 Underreaction to News

Our empirical findings may also reflect that lottery-like assets react to news more slowly

than non-lottery-like assets. Zhang (2006), argues that information travels slowly, which can

lead to significant underreaction of asset prices to past news. This underreaction effect might

15However, by exploring cross-country variation in creditor protection, Gao, Parsons and Shen (2014)
argue that shareholder expropriation is unlikely to account for the distress anomaly.
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be stronger among firms with higher information uncertainty. Thus, among the firms with

recent bad news, higher information uncertainty is likely to forecast lower future returns due

to the current underreaction to the past bad news.

Our proxies for the lottery-like feature could be related to information uncertainty,

especially for Campbell, Hilscher, and Szilagyi’s (2008) failure probability and Ohlson’s

(1980) bankruptcy probability since these firms might indeed be hard to evaluate. Since

high-CGO firms are likely to have experienced good news in the past, if lottery-like firms

have high information uncertainty, a positive relation between the lottery proxies and future

returns will exist in the data among high-CGO firms. Conversely, firms with low CGO are

likely to have experienced negative news and have been overpriced due to news underreaction.

This overpricing effect is more pronounced for lottery-like stocks due to higher information

uncertainty, implying a negative relation between the lottery proxies and future returns

among firms with low CGO. The above argument is consistent to the return-skewness-CGO

pattern observed in Table 2 and Table 3, and also implies a positive coefficient for the

interaction term between CGO and skewness proxies in Fama-MacBeth regressions.

To examine the importance of this underreaction-to-news effect in driving our empirical

results, we include in the Fama-MacBeth regressions an interaction term between a proxy

for the past news and our lottery proxies. Following Zhang (2006), past realized returns (the

cumulative return over the past year with a one-month lag) are employed as a proxy for news.

Regression (2) in Table 6 shows that the interaction terms of past returns and our proxies for

the lottery feature (Proxy×Ret−12,−1) are insignificant for all of the skewness proxies except

for the maximum daily return of the last month and the expected idiosyncratic skewness.

However, the sign of the interaction term is negative for the maximum daily return of the

last month, which is against the underreaction-to-news effect being an explanation to our

findings. In addition, after controlling for the underreaction-to-news effect, the interaction

terms of CGO and the lottery proxies remain significant with similar t-statistics. The t-

statistic for the interaction term is 13.19 for maximum daily return, 8.22 for predicted

jackpot probability, 5.39 for expected idiosyncratic skewness, 2.26 for failure probability,

and 6.05 for bankruptcy probability.

3.3 CGO as a Proxy for Disposition-Effect-Induced Mispricing

Besides being a proxy for aggregate capital gains/losses, CGO may be also directly related

to disposition-effect-induced mispricing, which could drive our empirical findings. As
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documented by Grinblatt and Han (2005), firms with higher CGO tend to experience higher

selling pressures due to the disposition effect (investors being more likely to sell a security

upon a gain rather than a loss), which in turn leads to lower current prices and higher

future returns. In general, the final mispricing effect survived after arbitrage tends to be

stronger for firms with higher limits to arbitrage. If our proxies for the lottery-like feature

are related to limits to arbitrage, the positive relation between CGO and future returns

can be amplified when firms have high skewness, leading to a positive coefficient for the

interaction term between CGO and skewness proxies in Fama-MacBeth regressions as we

have documented. Indeed, one may expect that firms close to default should impose higher

arbitrage risk for arbitrageurs.16 Note that this explanation does not rely on investors having

an especially strong preference for lottery-like assets when facing prior losses. It just requires

that the skewness proxies are related to limits to arbitrage and CGO itself is associated with

mispricng.

To address this concern, we control for a more precise disposition-effect-induced

mispricing measure (relative to CGO) that is derived from the V-shaped disposition effect

following An (forthcoming). The V-shaped disposition effect is a refined version of the

disposition effect: Ben-David and Hirshleifer (2012) find that investors are more likely to

sell a security when the magnitude of their gains or losses on this security increases, and

their selling schedule, characterized by a V shape, has a steeper slope in the gain region

than in the loss region. Motivated by this more precise description of investor behavior, An

(forthcoming) shows that stocks with large unrealized gains and losses tend to outperform

stocks with moderate unrealized gains and losses. More importantly, the V-shaped Net

Selling Propensity (VNSP), a more precise measure of mispricing, subsumes the return

predictive power of CGO.

In regression (3) of Table 6, VNSP and its interaction term with our skewness proxies

are added to the Fama-MacBeth regression. The coefficient estimate of Proxy × V NSP is

significant only for 3 out of the 5 lottery proxies. It suggests that the mispricing effect may

have played a role in some of the lottery anomalies, but not all of them. More importantly,

our empirical findings are not driven by the mispricing effect. After controlling this effect,

the coefficients of Proxy×CGO remain similar in magnitude to those in regression (1), and

the t-statistics are positive and significant in all cases. In regression (4), we include all of

the control variables in previous regressions and the estimated coefficients of Proxy×CGO
16For example, Avramov, Chordia, Jostova, and Philipov (2013) show that many anomalies are only

significant among distressed firms, suggesting that distressed firms are more difficult to arbitrage.
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only change marginally in magnitude and they remain statistically significant for all lottery

proxies.

In sum, both the underreaction-to-news effect and the mispricing story cannot account

for the return-skewness pattern that we have documented in Table 2. Coupled with the

investors’ trading behaviors documented in Tables A1 and A2, we believe that the stronger

demand for lottery-like assets after prior losses plays a critical role in the lottery-related

anomalies.

3.4 Additional Robustness Checks

We now conduct a series of additional tests to assess the robustness of our results. In the

first set of results reported in Table 7, we address the following two concerns. First, one

potential concern about our Fama-MacBeth regression results is that all stocks are treated

equally. The standard cross-sectional regression places the same weight on a very large

firm as on a small firm. Thus, the results based on equally-weighted regressions could be

disproportionately affected by small firms, which account for a relatively small portion of

the total market capitalization. Although the results based on equal-weighted regressions

reflect the effect of a typical firm, it might not appropriately measure the effect of an average

dollar. To alleviate this size effect, we perform the value-weighted Fama-MacBeth regressions

in which returns are weighted by firms’ market capitalizations at the end of the previous

month, using the same model in column (4) in Table 6.

The second concern is that our empirical findings could be driven by NASDAQ or illiquid

stocks. Previous studies (e.g., Bali, Cakici, Yan, and Zhang, 2005) show that some asset

pricing phenomena disappear once the most illiquid stocks are excluded from the sample.

Thus, to address this concern, we consider a subset of stocks that can be classified as the top

90% liquid stock. Following Amihud’s (2002), we measure illiquidity by the average ratio of

the daily absolute return to the daily dollar trading volume over the past year.

Specifically, we repeat the Fama-Macbeth regressions as in column (4) in Table 6, but

now with the following alternative specifications: 1) We employ the weighted least square

(WLS) regressions where the weight equals each firm’s market capitalization at the end of

the previous month; 2) We exclude all NASDAQ stocks and only include stocks listed on

NYSE and AMEX; 3) We exclude the most illiquid stocks - those that fall into the top

illiquid decile in each month (using Amihud’s (2002) illiquidity measure). Table 7 presents
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the results for these three groups of regressions. Both the coefficients and t-statistics of the

interaction term between CGO and the lottery-feature proxies are similar to those obtained

in the Fama-MacBeth regressions of Table 6 with all of the t-statistics remain statistically

significant at the 5% level. In addition, Table A3 in the Appendix reports the lottery spreads

of the double-sorting portfolios after excluding NASDAQ firms or illiquid firms. The results

remain largely the same as in the benchmark portfolio results.

In sum, the evidence in Table 7 shows that the role of RDP in the skewness-return

relationship is not driven by highly illiquid stocks, NASDAQ stocks, or disproportionately

affected by small firms, since both the statistical significance and the economic magnitude

remain largely the same after controlling for these factors.

Next, we confirm that our results are not mainly driven by investors’ reference-dependent

preference for return volatility. Since high-skewness stocks are typically also more volatile,

it is possible that the underperformance of lottery-like assets among firms with negative

CGO is due to investors’ preference for volatility (rather than skewness) after losses. For

example, the prospect theory posits that investors are risk-seeking after losses, and thus

they might prefer stocks with high volatility after losses. Indeed, Wang, Yan, and Yu (2015)

find a significant and negative risk-return relation among low-CGO stocks where investors

face losses. To ensure that our results are not primarily driven by investors’ preference for

volatility after losses, we reexamine the patterns on lottery portfolios by purging out the

confounding effect from volatility. In particular, at each month, we first run cross-sectional

regressions of each of our five lottery proxies on monthly return volatility over the past five

years, and then use the residual lottery proxies to repeat our double sorting exercises. The

results reported in Table 8 indicate that the pattern of the lottery spread holds reasonably

well when the residual lottery measures are used. In particular, the differences of residual

lottery spreads among high- and low-CGO firms are at least marginally significant for all of

the lottery proxies except for Oscorep.

Moreover, we also perform Fama-MacBeth regressions to control for the interaction effect

between CGO and volatility and other variables and the results are presented in Table 9.

After adding the interaction term between CGO and the return volatility into the regressions,

the coefficients of Proxy × CGO are still strongly significant for 4 out of the 5 proxies,

confirming that investors’ reference-dependent preferences for volatility does not appear to

be a main driver for our results. In other words, the evidence based on both the portfolio

approach and the Fama-MacBeth regressions is consistent with the notion that stocks with

higher skewness are more appealing to investors facing losses because the stocks give a better
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chance to break even.

In another robustness check, we separate the whole sample into several subsamples

based on the quartiles of institutional holdings or nominal stock prices. We find that

the effect of CGO on the lottery-related anomalies is generally stronger among firms with

lower institutional holdings or among firms with low nominal prices. To save space, these

results are only reported in the appendix (Table A4). The stronger effect among firms

with lower institutional holdings is consistent with the limits-to-arbitrage effect (e.g., Nagel,

2005). Moreover, previous studies find a positive relationship between stock prices and the

institutional ownership, suggesting that individual investors prefer low-price stocks (e.g.,

Falkenstein, 1996, Gompers and Metrick, 2001, and Kumar, 2009). Thus, our evidence

based on both institutional ownership and nominal prices is also consistent with the notion

that the effect of the reference point on the lottery-related anomalies should be stronger

among firms with more individual investors since the reference-dependent preference might

be a better description of individuals’ risk attitudes rather than institutional investors’ risk

attitudes.

Lastly, Stambaugh, Yu, and Yuan (2012) show that many anomalies are stronger following

high sentiment periods when more noise traders participate in the market. Indeed, Table A5

confirms that the negative lottery spread among low-CGO firms are much more significant

following a high sentiment than following a low sentiment. In addition, the role of RDP in the

lottery-related anomalies is more significant following a high sentiment than a low sentiment.

Indeed, during high sentiment periods, the differences of the lottery spread among high-CGO

firms and low-CGO firms are 2.50%, 2.64%, 0.02%, 2.30%, and 1.95% for the five skewness

proxies, respectively. By contrast, during low sentiment periods, the differences of the lottery

spread among high-CGO firms and low-CGO firms are only 0.56%, 0.64%, -0.63%, -0.47%,

and 0.97% for the five skewness proxies, respectively. The differences between these numbers

are also economically significant.

4 Conclusion

In this paper, we document that the return spreads between lottery-like assets and non-

lottery-like assets varies substantially across portfolios with different levels of capital

gains/losses. More specifically, the previously documented underperformance of lottery-

like assets are significantly stronger among firms with prior capital losses. Among firms
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where investors face large prior capital gains in these investments, the underperformance of

lottery-like assets is either weak or even reversed.

We consider several alternative explanations for this empirical pattern, and we find

that reference-dependent demand for lottery-like asset is likely the most plausible one. In

particular, the break-even effect and the aversion to loss realization suggest that following

losses, investors often take up the chances that can recover their prior losses, and the

urge to break even can induce investors with prior losses to take risky gambles that they

otherwise would not have taken. Under this preference, assets with high skewness appear

especially attractive since they provide a better chance to break even. Combined with mental

accounting, investors’ demand for lottery-like assets is much stronger among stocks where

average investors are in losses than among stocks where average investors are in gains, leading

to stronger underperformance of lottery-like assets among firms with prior capital losses.

Our empirical findings are robust across five different proxies that are studied in the

literature of lottery-related anomalies. It suggests that a common factor may have played

a critical role in all of these anomalies and calls for a unified framework to understand

these anomalies. Although our empirical findings are consistent with RDP based on a

static argument, Barberis and Xiong (2009) show that a dynamic setting is important in

understanding this issue. It is desirable to develop a formal dynamic model to account for

our empirical findings in the future.
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Table 1: Summary Statistics

Panel A reports the time-series averages of the monthly value-weighted excess returns (Rete), the intercepts

of the Fama-French three-factor regression (αFF3), and equal-weighted firm characteristics for five portfolios

sorted by capital gains overhang (CGO). At the beginning of every month, we sort NYSE/AMEX/NASDAQ

common stocks into five groups based on the quintile of the ranked values of CGO of the previous

month. The portfolio is rebalanced every month. We consider two versions of CGO: Grinblatt and

Han’s (2005) CGO at week t is computed as one less the ratio of the beginning of the week t reference

price to the end of week t − 1 price. The week t reference price is the average cost basis calculated as

RPt = k−1
∑T
n=1

(
Vt−n

∏n−1
τ=1 (1− Vt−n−τ )

)
Pt−n, where Vt is week t′s turnover in the stock, T is the

number of weeks in the previous five years, and k is a constant that makes the weights on past prices sum

to one. Turnover is calculated as trading volume divided by number of shares outstanding. Monthly CGO

is weekly CGO of the last week in each month. Frazzini’s (2006) CGO at month t is defined as one less the

ratio of month t reference price to the end of month t stock price. Month t reference price is an estimate

of the cost basis to the representative investor as RPt = φ−1
∑t
n=0 Vt,t−nPt−n, where Vt,t−n is the number

of shares at month t that are still held by the original month t − n purchasers, Pt is the stock price at the

end of month t, and φ is a normalizing constant. LOGME is the logarithm of a firm’s market cap, BM is

the book value of equity divided by market value at the end of the last fiscal year, Ret−1 is the return in

the last month, Ret−12,−1 is the cumulative return over the past year with one month gap, Ret−36,−12 is

the cumulative return over the past three years with one year gap, RetVol is return volatility of the monthly

returns over the past five years, Turnover is calculated as monthly trading volume divided by number of

shares outstanding, where the volume is the reported value from CRSP for NYSE/AMEX stocks, and 62% of

CRSP reported value after 1997 and 50% of that before 1997 for NASDAQ stocks (Anderson and Dyl (2005)),

and ExpSkew is the ex-post skewness calculated from daily returns over the next year. Panel B reports the

time-series averages of the monthly value-weighted excess returns, the intercepts of the Fama-French three-

factor regression, and equal-weighted firm ex-post skewness for five portfolios sorted by each of the five

lottery proxies: Maxret is the maximum daily return in the last month, Jackpotp is the predicted jackpot

probability in the last month from Conrad et al.(2014), Skewexp is the expected idiosyncratic skewness

in the last month from Boyer et al.(2009), Deathp is the predicted failure probability in the last month

from Campbell et al.(2008), Oscorep is the predicted bankruptcy probability in the last month from Ohlson

(1980). At the beginning of every month, we sort stocks into five groups based on the quintile of the ranked

values of each lottery proxy of the previous month. The portfolio is rebalanced every month. The sample

period is from January 1965 to December 2014 for Grinblatt and Han’s CGO, Maxret, and Oscorep, from

January 1972 to December 2014 for Jackpotp and Deathp, from January 1980 to October 2014 for Frazzini’s

CGO, and from January 1988 to December 2014 for Skewexp. Monthly excess returns and Fama French

three-factor alphas are reported in percentages. The t-statistics are in parentheses calculated based on the

heteroskedasticity-consistent standard errors of White (1980) for returns and Newey-West (1987) adjusted

standard errors with lag=36 for firm characteristics. We always require our stocks to have nonnegative book

equity, stock price equal to or greater than $5, and at least 10 nonmissing daily stock returns in the previous

month.
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Table 2: Double-Sorted Portfolio Returns by Grinblatt and Han’s CGO and
Lottery Proxies

At the beginning of every month, we independently sort stocks into five groups based on lagged Grinblatt

and Han’s (2005) CGO and five groups based on lagged lottery proxies. The portfolio is then held for

one month. The monthly value-weighted excess returns (Panel A), and the intercepts of the Fama-French

three-factor regression (Panel B), are calculated. Grinblatt and Han’s CGO at week t is computed the

same way as in Table 1. Monthly CGO is weekly CGO of the last week in each month. Maxret is the

maximum daily return in the last month, Jackpotp is the predicted jackpot probability in the last month

from Conrad et al.(2014), Skewexp is the expected idiosyncratic skewness in the last month from Boyer et

al.(2009), Deathp is the predicted failure probability in the last month from Campbell et al.(2008), Oscorep

is the predicted bankruptcy probability of default in the last month from Ohlson (1980). We only report

the bottom, middle, and top quintile CGO portfolios, and their difference, to save space. Excess returns

and FF3 alphas are reported in percentages. The sample period is from January 1965 to December 2014 for

Maxret and Oscorep, from January 1972 to December 2014 for Jackpotp and Deathp, and from January 1988

to December 2014 for Skewexp. The t-statistics are calculated based on the heteroskedasticity-consistent

standard errors of White (1980).

Panel A: Excess Return

Proxy = Maxret Jackpotp Skewexp

CGO1 CGO3 CGO5 C5-C1 CGO1 CGO3 CGO5 C5-C1 CGO1 CGO3 CGO5 C5-C1

P1 1.04 0.64 0.51 0.80 0.59 0.60 0.77 0.77 0.94
P3 0.59 0.48 0.81 0.58 0.41 1.13 0.58 0.64 0.96
P5 -0.34 0.12 1.05 -0.37 -0.12 1.29 -0.03 -0.19 0.89
P5-P1 -1.38 -0.52 0.54 1.92 -1.16 -0.71 0.69 1.86 -0.80 -0.96 -0.05 0.75
t-stat (-5.35) (-2.31) (2.30) (7.50) (-4.15) (-2.16) (2.30) (7.36) (-2.29) (-2.74) (-0.22) (2.23)

Proxy = Deathp Oscorep

CGO1 CGO3 CGO5 C5-C1 CGO1 CGO3 CGO5 C5-C1

P1 0.89 0.53 0.78 0.66 0.48 0.63
P3 0.79 0.53 0.81 0.58 0.40 0.71
P5 -0.04 0.57 1.02 0.04 0.40 1.16
P5-P1 -0.93 0.04 0.24 1.16 -0.62 -0.08 0.53 1.15
t-stat (-3.04) (0.16) (0.85) (3.77) (-2.81) (-0.48) (2.99) (4.70)

Panel B: FF3 alpha

Proxy = Maxret Jackpotp Skewexp

CGO1 CGO3 CGO5 C5-C1 CGO1 CGO3 CGO5 C5-C1 CGO1 CGO3 CGO5 C5-C1

P1 0.52 0.16 0.10 0.22 0.08 0.19 0.02 0.13 0.40
P3 -0.10 -0.14 0.35 -0.31 -0.33 0.55 -0.35 -0.12 0.37
P5 -1.24 -0.60 0.45 -1.30 -0.84 0.65 -1.07 -1.07 0.16
P5-P1 -1.76 -0.76 0.35 2.11 -1.52 -0.92 0.46 1.98 -1.09 -1.21 -0.24 0.85
t-stat (-8.36) (-4.53) (1.92) (8.17) (-7.63) (-4.42) (2.32) (7.45) (-3.59) (-3.99) (-1.09) (2.52)

Proxy = Deathp Oscorep

CGO1 CGO3 CGO5 C5-C1 CGO1 CGO3 CGO5 C5-C1

P1 0.47 0.05 0.40 0.30 0.08 0.29
P3 0.11 -0.14 0.17 -0.16 -0.19 0.20
P5 -1.12 -0.41 0.19 -0.87 -0.27 0.53
P5-P1 -1.59 -0.46 -0.21 1.38 -1.17 -0.35 0.24 1.41
t-stat (-5.98) (-1.99) (-0.83) (4.36) (-6.25) (-2.35) (1.55) (5.90)32



Table 3: Double-Sorted Portfolio Returns by Frazzini’s CGO and Lottery Proxies

At the beginning of every month, we independently sort stocks into five groups based on lagged Frazzini’s

(2006) CGO and five groups based on lagged lottery proxies. The portfolio is then held for one month.

The monthly value-weighted excess returns (Panel A), and the intercepts of the Fama-French three-factor

regression (Panel B), are calculated. Frazzini’s CGO is defined the same way as in Table 1. Maxret is the

maximum daily return in the last month, Jackpotp is the predicted jackpot probability in the last month

from Conrad et al.(2014), Skewexp is the expected idiosyncratic skewness in the last month from Boyer et

al.(2009), Deathp is the predicted failure probability in the last month from Campbell et al.(2008), Oscorep

is the predicted bankruptcy probability in the last month from Ohlson (1980). We only report the bottom,

middle, and top quintile CGO portfolios, and their difference, to save space. Excess returns and FF3 alphas

are reported in percentages. The sample period is from January 1980 to October 2014 for Maxret, Oscorep,

Jackpotp and Deathp, and from January 1988 to October 2014 for Skewexp. The t-statistics are calculated

based on the heteroskedasticity-consistent standard errors of White (1980).

Panel A: Excess Return

Proxy = Maxret Jackpotp Skewexp

CGO1 CGO3 CGO5 C5-C1 CGO1 CGO3 CGO5 C5-C1 CGO1 CGO3 CGO5 C5-C1

P1 1.40 0.80 0.86 1.08 0.69 0.78 0.87 0.69 1.10
P3 1.14 0.62 1.00 0.53 0.64 1.05 0.89 0.64 0.89
P5 -0.24 0.18 1.10 -0.08 -0.05 0.88 0.12 0.11 0.90
P5-P1 -1.64 -0.62 0.24 1.88 -1.16 -0.74 0.10 1.26 -0.75 -0.58 -0.20 0.56
t-stat (-4.70) (-2.23) (0.83) (5.99) (-3.45) (-2.23) (0.29) (4.09) (-1.88) (-1.75) (-0.70) (1.55)

Proxy = Deathp Oscorep

CGO1 CGO3 CGO5 C5-C1 CGO1 CGO3 CGO5 C5-C1

P1 1.46 0.68 0.98 1.07 0.48 1.06
P3 1.10 0.65 0.76 0.95 0.60 0.74
P5 0.08 0.44 0.70 0.30 0.67 0.98
P5-P1 -1.39 -0.23 -0.28 1.10 -0.77 0.19 -0.08 0.69
t-stat (-4.06) (-0.90) (-0.94) (3.10) (-2.94) (0.85) (-0.40) (2.38)

Panel B: FF3 alpha

Proxy = Maxret Jackpotp Skewexp

CGO1 CGO3 CGO5 C5-C1 CGO1 CGO3 CGO5 C5-C1 CGO1 CGO3 CGO5 C5-C1

P1 0.73 0.21 0.31 0.34 0.07 0.23 0.03 0.10 0.54
P3 0.24 -0.16 0.33 -0.46 -0.18 0.36 -0.07 -0.06 0.28
P5 -1.39 -0.68 0.45 -1.19 -0.92 0.16 -1.10 -0.74 0.15
P5-P1 -2.12 -0.89 0.14 2.26 -1.54 -1.00 -0.07 1.47 -1.13 -0.84 -0.39 0.73
t-stat (-7.56) (-4.26) (0.61) (7.29) (-6.59) (-4.76) (-0.30) (4.36) (-3.12) (-3.07) (-1.63) (1.98)

Proxy = Deathp Oscorep

CGO1 CGO3 CGO5 C5-C1 CGO1 CGO3 CGO5 C5-C1

P1 0.92 0.11 0.48 0.40 -0.10 0.58
P3 0.31 -0.07 0.01 0.04 -0.08 0.12
P5 -1.16 -0.57 -0.25 -0.80 -0.15 0.33
P5-P1 -2.08 -0.68 -0.73 1.35 -1.20 -0.04 -0.25 0.95
t-stat (-7.12) (-2.92) (-2.36) (3.76) (-4.71) (-0.19) (-1.32) (3.16)
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Table 5: Equal- and Lagged-Gross-Return-Weighted Portfolios and Conditional
Sorts

This table reports the Fama French three-factor monthly alphas (in percentage) for lottery spread (difference
between top and quintile lottery portfolios) among the bottom and top quintile CGO portfolios, and their
difference, for five double sorts robustness tests. The 25 portfolios are constructed at the end of every
month from independent sorts by Grinblatt and Han’s (2005) CGO and each one of five lottery proxies
in tests (I) and (II). The equal-weighted and lag-gross-return-weighted portfolio alphas are reported in
Panels (I) and (II), respectively. In Panel (III), 25 portfolios are constructed from conditional sorts by
first dividing stocks into five groups based on lagged CGO, and further dividing stocks within each of the
CGO groups into five groups based on lagged lottery proxies. The portfolio is then held for one month.
Grinblatt and Han’s CGO at week t is computed as one less the ratio of the beginning of the week t
reference price to the end of week t− 1 price. The week t reference price is the average cost basis calculated

as RPt = k−1
∑T
n=1

(
Vt−n

∏n−1
τ=1 (1− Vt−n−τ )

)
Pt−n, where Vt is week t′s turnover in the stock, T is the

number of weeks in the previous five years, and k is a constant that makes the weights on past prices sum to
one. Turnover is calculated as trading volume divided by number of shares outstanding. Monthly CGO is
weekly CGO of the last week in each month. We consider five lottery proxies: Maxret is the maximum daily
return in the last month, Jackpotp is the predicted jackpot probability in the last month from Conrad et
al.(2014), Skewexp is the expected idiosyncratic skewness in the last month from Boyer et al.(2009), Deathp
is the predicted failure probability in the last month from Campbell et al.(2008), Oscorep is the predicted
bankruptcy probability in the last month from Ohlson (1980). The sample period is from January 1965 to
December 2014 for Maxret and Oscorep, from January 1972 to December 2014 for Jackpotp and Deathp,
and from January 1988 to December 2014 for Skewexp. The t-statistics are in parentheses calculated based
on the heteroskedasticity-consistent standard errors of White (1980).

(I) Equal-Weighted (II) Lag-Ret-Weighted (III) Conditional Sort
Proxy CGO1 CGO5 C5-C1 CGO1 CGO5 C5-C1 CGO1 CGO5 C5-C1
Maxret -1.81 0.08 1.88 -1.88 0.09 1.97 -1.74 0.25 1.99

(-13.86) (0.57) (10.78) (-14.7) (0.64) (11.20) (-8.00) (1.36) (7.76)
Jackpotp -1.12 0.63 1.74 -1.27 0.60 1.88 -1.72 0.34 2.06

(-7.37) (4.09) (9.45) (-8.63) (3.72) (10.02) (-8.10) (1.81) (7.19)
Skewexp -0.72 0.28 1.00 -0.86 0.24 1.10 -1.14 -0.28 0.86

(-3.36) (1.67) (4.70) (-4.07) (1.36) (5.21) (-4.24) (-1.13) (2.70)
Deathp -1.17 -0.45 0.73 -1.26 -0.51 0.75 -1.98 -0.44 1.54

(-7.85) (-2.78) (3.8) (-8.43) (-2.95) (3.79) (-7.10) (-2.3) (4.72)
Oscorep -0.83 0.23 1.06 -0.82 0.24 1.07 -1.24 0.30 1.54

(-7.43) (2.11) (7.37) (-7.34) (2.18) (7.34) (-6.3) (1.95) (6.32)
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Table 9: Fama-MacBeth Regressions, Controlling for the Interaction Between
Volatility and CGO

This table reports the time-series average of the regression coefficients from Fama-MacBeth regressions

controlling for the interaction effect of return volatility and CGO. Variable definitions and sample period are

the same as Table 7. The intercept of the regression is not reported. The t-statistics are in parentheses and

are calculated based on the heteroskedasticity-consistent standard errors of White (1980).

Proxy = Maxret Jackpotp Skewexp Deathp Oscorep
CGO -0.019 -0.014 -0.014 -0.015 -0.014

(-8.89) (-6.06) (-4.81) (-6.79) (-6.55)
Proxy -0.040 -0.556 -0.003 -11.413 -0.039

(-2.81) (-6.01) (-2.02) (-6.95) (-2.01)
Proxy× CGO 0.282 0.583 0.010 2.961 0.110

(9.19) (3.01) (2.97) (1.01) (2.82)
Proxy×Ret−12,−1 -0.053 0.088 0.006 1.075 0.008

(-2.12) (0.73) (2.90) (0.41) (0.19)
Proxy× VNSP 0.225 1.226 0.001 2.312 0.267

(2.53) (2.68) (0.12) (0.26) (2.05)
RetVol× CGO 0.058 0.093 0.082 0.128 0.141

(3.00) (4.42) (3.45) (6.85) (7.06)
Ret−1 -0.060 -0.056 -0.039 -0.067 -0.064

(-14.49) (-13.29) (-8.27) (-16.58) (-16.32)
Ret−12,−1 0.009 0.004 0.001 0.003 0.005

(4.98) (2.16) (0.39) (1.63) (3.32)
Ret−36,−12 -0.002 -0.002 -0.002 -0.002 -0.002

(-2.43) (-2.61) (-2.32) (-3.43) (-3.14)
LOGME -0.001 -0.002 0.000 -0.001 -0.001

(-2.94) (-5.35) (-1.20) (-2.70) (-3.24)
LOGBM 0.001 0.001 0.000 0.002 0.001

(2.32) (1.99) (0.1) (3.96) (1.64)
VNSP 0.009 0.005 0.018 0.022 0.021

(1.81) (1.06) (2.67) (4.92) (5.99)
RetVol -0.006 -0.012 -0.012 -0.015 -0.011

(-0.41) (-0.85) (-0.73) (-1.07) (-0.72)
Turnover -0.022 -0.017 -0.009 -0.007 -0.028

(-1.58) (-1.21) (-0.85) (-0.53) (-1.89)

40



Appendix I: Additional Robustness Checks

Table A1: Propensity to Sell Lottery Stocks, Individual Investors

The table presents results from probit regressions in which the dependent variable is a dummy equal to 1

if a stock was sold, and 0 otherwise. The coefficients reflect the marginal effect on the average stock selling

behavior of individual investors. The data set contains the daily holdings of 10,000 retail investors who are

randomly selected from 78,000 households with brokerage accounts at a large discount broker from January

1991 to December 1996. Observations are at the investor-stock-day level. The same data set is used in

Barber and Odean (2000, 2001, 2002) and more recently in Ben-David and Hirshleifer (2012). Ret+ (Ret−)

is the return since purchase if the return since purchase is positive (negative), zero otherwise. Return since

purchase is defined as the difference between current price and purchase price divided by purchase price

(or weighted average price in case of multiple purchases). The current price is the selling price, price of

buying additional shares, or end-of-day price each day. IRet>0 (IRet=0) is a dummy equal to 1 if the return

since purchase is positive (zero), 0 otherwise. RetVol is the total volatility of the daily stock returns over

the past year. Log(Buy Price) is the log of purchase price in dollars. Sqrt(Time Owned) is the square

root of the number of days since purchase. We consider five lottery proxies: Maxret is the maximum daily

return in the last month, Jackpotp is the predicted jackpot probability in the last month from Conrad et

al.(2014), Skewexp is the expected idiosyncratic skewness in the last month from Boyer et al.(2009), Deathp

is the predicted failure probability in the last month from Campbell et al.(2008), Oscorep is the predicted

bankruptcy probability in the last month from Ohlson (1980). Standard errors are clustered at the investor

level, and t-statistics are in parentheses.

I(Selling)
Proxy = Maxret Jackpotp Skewexp Deathp Oscorep

Ret+ 0.0007** 0.0005** 0.0004** 0.0005** 0.0009**
(4.90) (4.60) (3.43) (5.03) (8.98)

Ret- -0.0028** -0.0012** -0.0011** -0.0013** -0.0004**
(-16.97) (-8.04) (-5.56) (-7.99) (-3.00)

Proxy 0.0088** -0.0400** -0.0010** -0.3593** -0.0020**
(14.14) (-6.51) (-11.44) (-7.12) (-6.12)

Ret+ x Proxy 0.0038* 0.0615** 0.0013** 0.9305** 0.0049**
(2.10) (5.38) (5.78) (7.62) (5.55)

Ret- x Proxy 0.0367** 0.0924** 0.0015** 0.9433** 0.0048**
(18.93) (7.59) (5.37) (7.81) (5.00)

RetVol 0.0431** 0.0689** 0.0528** 0.0583** 0.0578**
(20.75) (26.96) (24.94) (25.02) (24.26)

log(Buy Price) 0.0005** 0.0003** 0.0002** 0.0003** 0.0004**
(10.84) (7.52) (5.80) (8.48) (9.39)

Sqrt(Time Owned) -0.0001** -0.0001** -0.0001** -0.0001** -0.0001**
(-38.62) (-38.37) (-39.03) (-39.20) (-38.96)

I(Ret>0) 0.0010** 0.0010** 0.0010** 0.0010** 0.0010**
(17.47) (18.25) (17.73) (17.89) (17.36)

I(Ret=0) -0.0001 -0.0000 -0.0001 -0.0000 -0.0001
(-1.32) (-0.23) (-0.63) (-0.35) (-0.79)

Obs 25,615,232 23,827,309 25,524,756 25,439,907 22,632,746
Pseudo R2 0.0420 0.0419 0.0421 0.0420 0.0420
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Table A2: Propensity to Sell Lottery Stocks, Mutual Funds

The table presents results from probit regressions in which the dependent variable is a dummy equal to 1

if a stock was sold, and 0 otherwise. The coefficients reflect the marginal effect on the average stock selling

of mutual funds. The data set is from the Thomson Reuters S12 Master Files, and the sample period is

1980 to 2013. Observations are at fund-stock-report day level, where funds typically report their holdings at

quarterly frequency. Following this literature, we assume trading happens on the report date. Ret+ (Ret−)

is the return since purchase if the return since purchase is positive (negative), zero otherwise. Return since

purchase is defined as the difference between the current price and the purchase price divided by the purchase

price (or weighted average price in the case of multiple purchases). The current price is the selling price,

price of buying additional shares, or end-of-day price each day. IRet>0 (IRet=0) is a dummy equal to 1 if the

return since purchase is positive (zero), 0 otherwise. RetVol is the total volatility of the daily stock returns

over the past year. Log(Buy Price) is the log of purchase price in dollars. Sqrt(Time Owned) is the square

root of the number of days since purchase. We consider five lottery proxies: Maxret is the maximum daily

return in the last month, Jackpotp is the predicted jackpot probability in the last month from Conrad et

al.(2014), Skewexp is the expected idiosyncratic skewness in the last month from Boyer et al.(2009), Deathp

is the predicted failure probability in the last month from Campbell et al.(2008), Oscorep is the predicted

bankruptcy probability in the last month from Ohlson (1980). Standard errors are clustered at the fund

level, and t-statistics are in parentheses.

I(Selling)
Proxy = Maxret Jackpotp Skewexp Deathp Oscorep

Ret+ 0.2730** 0.2828** 0.2670** 0.2693** 0.2789**
(42.45) (44.30) (45.35) (52.53) (58.25)

Ret- -0.1913** -0.1872** -0.2046** -0.1443** -0.1579**
(-22.76) (-21.79) (-24.48) (-17.57) (-22.33)

Proxy -0.1407** -2.6514** -0.0286** 0.9588 -0.2970**
(-3.78) (-6.17) (-6.85) (1.71) (-9.46)

Ret+ x Proxy 0.1531 -1.4538 0.0270** 11.3785** 0.1960**
(1.79) (-1.83) (2.72) (7.38) (3.40)

Ret- x Proxy 0.6025** 1.7634** 0.1197** 5.7481** 0.4318**
(8.33) (3.49) (8.79) (5.44) (4.71)

RetVol -0.4336** -0.0770 -0.4345** -0.9459** -0.8969**
(-3.38) (-0.49) (-4.13) (-8.39) (-8.17)

log(Buy Price) 0.0436** 0.0352** 0.0395** 0.0442** 0.0371**
(12.06) (11.62) (10.89) (11.26) (10.98)

Sqrt(Time Owned) -0.0025** -0.0026** -0.0025** -0.0024** -0.0025**
(-9.20) (-9.15) (-8.80) (-8.68) (-9.08)

I(Ret>0) -0.0142** -0.0115** -0.0131** -0.0163** -0.0150**
(-13.88) (-11.33) (-12.52) (-14.80) (-14.87)

I(Ret=0) -0.0872** -0.0667** -0.0655** -0.0818** -0.0724**
(-21.80) (-14.36) (-13.64) (-18.77) (-16.72)

Obs 29,619,224 23,164,195 25,382,915 26,261,635 23,509,029
Pseudo R2 0.0132 0.0140 0.0142 0.0130 0.0140
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Table A3: Double Sorts, Robustness Checks

This table reports the Fama French three-factor monthly alphas (in percentage) for lottery spread (difference

between top and quintile lottery portfolios) among the bottom and top quintile CGO portfolios, and their

difference, for five double sorts robustness tests. The 25 portfolios are constructed at the end of every month

from independent sorts by Grinblatt and Han’s (2005) CGO and each one of five lottery proxies in tests

(I) and (II). NASDAQ stocks and the top decile illiquid stocks (using Amihud’s (2002) illiquidity measure)

are excluded in Panels (I) and (II), respectively. The portfolio is then held for one month. Grinblatt

and Han’s CGO at week t is computed as one less the ratio of the beginning of the week t reference

price to the end of week t − 1 price. The week t reference price is the average cost basis calculated as

RPt = k−1
∑T
n=1

(
Vt−n

∏n−1
τ=1 (1− Vt−n−τ )

)
Pt−n, where Vt is week t′s turnover in the stock, T is the

number of weeks in the previous five years, and k is a constant that makes the weights on past prices sum to

one. Turnover is calculated as trading volume divided by number of shares outstanding. Monthly CGO is

weekly CGO of the last week in each month. We consider five lottery proxies: Maxret is the maximum daily

return in the last month, Jackpotp is the predicted jackpot probability in the last month from Conrad et

al.(2014), Skewexp is the expected idiosyncratic skewness in the last month from Boyer et al.(2009), Deathp

is the predicted failure probability in the last month from Campbell et al.(2008), Oscorep is the predicted

bankruptcy probability in the last month from Ohlson (1980). The sample period is from January 1965 to

December 2014 for Maxret and Oscorep, from January 1972 to December 2014 for Jackpotp and Deathp,

and from January 1988 to December 2014 for Skewexp. The t-statistics are in parentheses calculated based

on the heteroskedasticity-consistent standard errors of White (1980).

(I) Excluding NASDAQ Stocks (II) Excluding Top Illiquid Decile

Proxy CGO1 CGO5 C5-C1 CGO1 CGO5 C5-C1

Maxret -1.62 0.39 2.01 -1.74 0.25 1.99

(-7.63) (2.21) (8.17) (-8.00) (1.36) (7.76)

Jackpotp -1.32 0.41 1.73 -1.72 0.34 2.06

(-6.74) (2.14) (6.55) (-8.1) (1.81) (7.19)

Skewexp -1.08 -0.28 0.81 -1.14 -0.28 0.86

(-3.51) (-1.22) (2.36) (-4.24) (-1.13) (2.70)

Deathp -1.35 -0.12 1.23 -1.98 -0.44 1.54

(-5.13) (-0.50) (3.97) (-7.10) (-2.30) (4.72)

Oscorep -0.96 0.19 1.15 -1.24 0.30 1.54

(-5.15) (1.26) (4.96) (-6.3) (1.95) (6.32)
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Table A4: Double Sorts in Subsamples of Top and Bottom Institutional

Ownership or Nominal Stock Price

This table reports the Fama French three-factor monthly alphas (in percentage) for lottery spread (difference

between top and bottom quintile lottery portfolios) among the bottom and top tercile CGO portfolios, and

their difference, within top 25% institutional ownership (or nominal stock price) and bottom 25% institutional

ownership (or nominal stock price) stocks. At the beginning of every month, we first divide stocks into 3

groups, top 25%, middle 50%, and bottom 25%, by IO (or price), and within each subgroup, stocks are further

independently sorted into three groups based on lagged Grinblatt and Han’s (2005) CGO and five groups

based on lagged lottery proxies. The portfolio is then held for one month. Institutional ownership (IO) is

the percentage of shares held by institutions each month. Grinblatt and Han’s CGO at week t is computed

as one less the ratio of the beginning of the week t reference price to the end of week t− 1 price. The week

t reference price is the average cost basis calculated as RPt = k−1
∑T
n=1

(
Vt−n

∏n−1
τ=1 (1− Vt−n−τ )

)
Pt−n,

where Vt is week t′s turnover in the stock, T is the number of weeks in the previous five years, and k is a

constant that makes the weights on past prices sum to one. Turnover is calculated as trading volume divided

by number of shares outstanding. Monthly CGO is weekly CGO of the last week in each month. We consider

five lottery proxies: Maxret is the maximum daily return in the last month, Jackpotp is the predicted jackpot

probability in the last month from Conrad et al.(2014), Skewexp is the expected idiosyncratic skewness in

the last month from Boyer et al.(2009), Deathp is the predicted failure probability in the last month from

Campbell et al.(2008), Oscorep is the predicted bankruptcy probability in the last month from Ohlson (1980).

In the cases of IO portfolios, the sample period is from January 1980 to October 2014 for Maxret, Oscorep,

Jackpotp and Deathp, and from January 1988 to October 2014 for Skewexp. In the cases of Price portfolios,

the sample period is from January 1965 to December 2014 for Maxret and Oscorep, from January 1972

to December 2014 for Jackpotp and Deathp, and from January 1988 to December 2014 for Skewexp. The

t-statistics are in parentheses calculated based on the heteroskedasticity-consistent standard errors of White

(1980).
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Table A5: Lottery Spreads in High-Sentiment vs. Low-Sentiment Periods

This table reports the benchmark-adjusted returns (in percentage) for lottery spread (difference between top

and bottom quintile lottery portfolios) among the bottom and top quintile CGO portfolios following high

sentiment and low sentiment periods. The 25 portfolios are constructed at the end of every month from

independent sorts by Grinblatt and Han’s (2005) CGO and each one of five lottery proxies. The portfolio is

then held for one month. The benchmark-adjusted returns in high and low sentiment periods are estimates

of aH and aL in the regression: Ri,t = aHdH,t + aMdM,t + aLdL,t + bMKTt + cSMBt + dHMLt + εi,t. dH,t,

dM,t and dL,t are dummy variables indicating high, middle, and low sentiment periods, and Ri,t is the excess

percent returns in month t. A month is considered to be a high sentiment month if the value of the BW

sentiment index at the end of the previous month is above the 30% percentile of the historical BW sentiment

index till this month, the low sentiment months are those below the historical 30% percentile, and the rest of

the months are the middle sentiment months. Grinblatt and Han’s CGO at week t is computed as one less

the ratio of the beginning of the week t reference price to the end of week t− 1 price. The week t reference

price is the average cost basis calculated as RPt = k−1
∑T
n=1

(
Vt−n

∏n−1
τ=1 (1− Vt−n−τ )

)
Pt−n, where Vt is

week t′s turnover in the stock, T is the number of weeks in the previous five years, and k is a constant that

makes the weights on past prices sum to one. Turnover is calculated as trading volume divided by number

of shares outstanding. Monthly CGO is weekly CGO of the last week in each month. We consider five

lottery proxies: Maxret is the maximum daily return in the last month, Jackpotp is the predicted jackpot

probability in the last month from Conrad et al.(2014), Skewexp is the expected idiosyncratic skewness in

the last month from Boyer et al.(2009), Deathp is the predicted failure probability in the last month from

Campbell et al.(2008), Oscorep is the predicted bankruptcy probability in the last month from Ohlson (1980).

The sample period is from July 1965 to January 2011 for Maxret and Oscorep, from January 1972 to January

2011 for Jackpotp and Deathp, and from January 1988 to January 2011 for Skewexp. The t-statistics are in

parentheses calculated based on the heteroskedasticity-consistent standard errors of White (1980).
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Appendix II: Definitions of Key Variables

In this appendix, we describe the details for constructing several CGO and lottery measures.

CGOGH : our first CGO measure is constructed following Grinblatt and Han (2005)

(Equation (9), page 319, and Equation (11), page 320). At each week t, the reference price

for each individual stock is defined as

RPGH
t = k−1

T∑
n=1

(
Vt−n

n−1∏
τ=1

(1− Vt−n+τ )

)
Pt−n,

where Vt is turnover in week ts, T is 260, the number of weeks in the previous five years, Pt

is the stock price at the end of week t, and k is a constant that makes the weights on past

prices sum to one. Weekly turnover is calculated as the weekly trading volume divided by

the number of shares outstanding. To address the issue of double counting of the volume

for NASDAQ stocks, we follow Anderson and Dyl (2005). They propose a rough rule of

thumb to scale down the volume of NASDAQ stocks by 38% after 1997 and by 50% before

1997 to make it roughly comparable with the volume on NYSE. Further, we only include

observations that have at least 200 weeks of nonmissing data in the previous five years. As

argued by Grinblatt and Han (2005), the weight on Pt−n reflects the probability that the

share purchased at week t−n has not been traded since. The capital gains overhang (CGO)

at week t is then defined as

CGOGH
t =

Pt−1 −RPGH
t

Pt−1

.

To avoid market microstructure effects, the market price is lagged by one week. Finally, to

obtain monthly CGO, we simply use the last week CGO within each month. Since we use

five-year daily data to construct CGO and require a minimum of 150-week nonmissing values

in the calculation, this CGO variable ranges from January 1965 to December 2014.

CGOFR: we also adopt an alternative CGO measure using mutual fund holding data as

in Frazzini (2006) (Equation (1), page 2022, and Equation (2), page 2023). At each month

t, the reference price for each individual stock is defined as

RP FR
t = φ−1

t∑
n=0

Vt,t−nPt−n,

where Vt,t−n is the number of shares purchased at date t−n that are still held by the original

purchasers at date t, Pt is the stock price at the end of month t, and φ is a normalizing
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constant such that φ =
∑t

n=0 Vt,t−n. The stock price at the report date is used as a proxy

for the trading price. Following Frazzini (2006), when trading, fund managers are assumed

to use the “first in, first out” method to associate a quantity of shares in their portfolio to

the corresponding reference price. Fund holdings are adjusted for stock splits and assumed

to be public information with a one-month lag from the file date. The quarterly holdings

data are merged with CRSP and filtered to eliminate potential errors in the data. The CGO

at month t is then defined as the normalized difference between current price and reference

price:

CGOFR
t =

Pt −RP FR
t

Pt
.

The resulting sample period is from April 1980 to October 2014.

Jackpotp: The predicted jackpot probability is constructed from the baseline model in

Conrad, Kapadia, and Xing (2014) (Table 3, Panel A, page 461). In particular, for each

firm, we first estimate the baseline logit model using data from the past 20 years at the end

of June every year:

Probt−1(Jackpoti,t = 1) =
exp(a+ b×Xi,t−1)

1 + exp(a+ b×Xi,t−1)
,

where Jackpoti,t is a dummy that equals to 1 if firm i’s log return in the next 12 month

period is larger than 100%. The vector Xi,t−1 is a set of firm-specific variables known at time

t− 1, including skewness of log daily returns (centered around 0) over the last 3 months, log

stock return over the past year, firm age as the number of years since appearance on CRSP,

asset tangibility as the ratio of gross PPE (property plant and equipment) to total assets, the

log of sales growth over the prior year, detrended stock turnover as the difference between

the average past 6-month turnover and the average past 18-month turnover, volatility as the

standard deviation of daily returns (centered around 0) over the past 3 months, and the log

of market equity in thousands. Next, we use these estimated parameters to construct the

out-of-sample predicted jackpot probability (Jackpotp). We reestimate this model for each

firm every year from 1951, so our first set of out-of-sample predicted jackpot probabilities is

from January 1972.

Skewexp: The expected idiosyncratic skewness is calculated in two steps following Boyer,

Mitton, and Vorkink (2010) (Table 2, Model 6, page 179). First, we estimate the following

cross-sectional regressions separately at the end of each month t:

isi,t = β0,t + β1,tisi,t−60 + β2,tivi,t−60 + λ
′

tXi,t−60 + εi,t,
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where isi,t and ivi,t denote the historical estimates of idiosyncratic volatility and skewness

relative to the Fama and French three-factor model, respectively, for firm i using daily

stock data over the past 60 months till month t. Xi,t is a set of firm-specific variables

including momentum as the cumulative returns over months t− 72 through t− 61, turnover

as the average daily turnover in month t − 60, small-size market capitalization dummy,

medium-size market capitalization dummy, industry dummy based on the Fama-French 17-

industries definition, and the NASDAQ dummy. After we have these regression parameters,

the expected idiosyncratic skewness for each firm i at the end of each month t is then

computed in the second step:

Skewexpt ≡ Et[isi,t+60] = β0,t + β1,tisi,t + β2,tivi,t + λ
′

tXi,t.

Similar to Boyer, Mitton, and Vorkink’s (2010) baseline database, our expected idiosyncratic

skewness measure dates back to January 1988, due to limited availability of the NASDAQ

turnover data for the earlier sample.

Deathp: The predicted failure probability is constructed following Campbell, Hilscher,

and Szilagyi (2008) (Table IV, 12 month lag, page 2913). In particular, for each firm, we first

use the most recently available Compustat quarterly and CRSP data to compute a distress

score:

Distresst = −9.16− 20.26NIMTAAV Gt + 1.42TLMTAt − 7.13EXRETAV Gt

+ 1.41SIGMAt − 0.045RSIZE − 2.13CASHMTAt + 0.075MBt − 0.058PRICEt,

where

NIMTAAV Gt−1,t−12 =
1− φ2

1− φ12
(NIMTAt−1,t−3 + · · ·+ φ9NIMTAt−10,t−12)

EXRETAV Gt−1,t−12 =
1− φ

1− φ12
(EXRETt−1 + · · ·+ φ11EXRETt−12),

The coefficient φ = 2−1/3 implies that the weight is halved each quarter. NIMTA is net

income (Compustat quarterly item NIQ) divided by the sum of market equity and total

liabilities (Compustat quarterly item LTQ). The moving average NIMTAAVG uses a longer

history of losses that can better predict bankruptcy than a single month. EXRET =

log(1+Rit)− log(1+RS&P500,t) is the monthly log excess return on each firm’s equity relative

to the S&P 500 index. To use its moving average, the model assumes that a sustained decline

in stock market value could better predict bankruptcy than a sudden stock price decline in
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a single month. TLMTA is total liability divided by the sum of market equity and total

liabilities. SIGMA is the volatility of daily stock returns over the past three months. RSIZE

is the log ratio of each firm’s market equity to that of the S&P 500 index. CASHMTA is

the ratio of cash and short-term investments (Compustat quarterly item CHEQ) divided by

the sum of market equity and total liabilities. MB is the market-to-book equity. PRICE

is the log of stock price, winsorized at $15. The corresponding distress probability is then

calculated as:

Deathpt =
1

1 + exp(−Distresst)
.

This measure requires to use Compustat quarterly data, so the sample period starts from

January 1972.

Oscorep: The predicted bankruptcy probability is calculated based on a set of annual

accounting information following Ohlson(1980) (Table 4, Model 1, page 121). We first

calculate an O-score every year for each firm as following :

Oscoret = −1.32− 0.407log(
total assetst

GNP price-level indext−1

) + 6.03(
total liabilitiest

total assetst
)

− 1.43(
working capitalt

total assetst
) + 0.076(

current liabilitiest
current assetst

)− 2.37(
net incomet
total assetst

)

− 1.72(1 if total liabilities>total assets at year t, 0 otherwise)

− 1.83(
funds from operationst

total liabilitiest
)− 0.521(

net incomet − net incomet−1

|net incomet|+ |net incomet−1|
)

+ 0.285(1 if net loss for the last two years, 0 otherwise),

and the corresponding bankruptcy probability is then obtained from the logistic function:

Oscorep =
1

1 + exp(−Oscore)
.
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