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Abstract

This paper argues that global perspective can help us with the identification of structural shocks by
utilizing the information on the signs of the responses of individual countries (cross section units). We
demonstrate the main idea by means of Monte Carlo experiments and present an empirical application
where we look at the effects of oil supply shocks on output and on global exchange rate constellation. Using
a large-scale GVAR model of oil prices and the global economy, we find supply shocks tend to have a stronger
impact on emerging economies’real output as compared with mature economies, have a negative impact
on real growth in oil-exporting economies as well, and tend to cause an appreciation (depreciation) of oil
exporters’ (oil importers’) real exchange rates but also lead to an appreciation of the U.S. dollar. This
paper also illustrates some pitfalls with the existing measures to summarize the available information on
structural shocks identified using sign restrictions when the dimension of the model is large (as it is in the
case of global models).
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Vector autoregressive models (VARs) have become an indispensable tool in macroeconometric modelling
given their ability to describe econometric reduced-form relationships without the need to a priori

impose any economic theory. When it comes to unveiling the underlying structural economic relationships,
however, some method of identification is needed.

In practice, identification has often been based on economic theory rather than purely statistical con-
siderations. Common identification approaches typically include a recursive ordering of variables (Cholesky
decomposition), structural identification by imposing zero-restrictions in the system of linear equations
(Blanchard and Watson 1986; Bernanke 1986) or a decomposition in temporary and permanent components
(Blanchard and Quah 1989). An alternative way to identify shocks that has over the recent past become
increasingly popular is to impose restrictions on the signs of structural impulse responses for a given num-
ber of periods after the shock. This identification approach has been developed inter alia by Faust (1998),
Canova and Pina (1999), Canova and de Nicoló (2002), Uhlig (2005) and Mountford and Uhlig (2009). The
basic intuition is that structural shocks can be identified by checking whether the signs of the corresponding
impulse responses (IR) are in line with economic theory.

Sign restrictions do not pin down a unique structural model, and it is therefore not surprising that any
sign restriction identification procedure is bound to be imperfect. Nevertheless, one would expect that, with
an increasing number of sign restrictions imposed, one should obtain a better understanding of the structural
shock in question. We argue that global or cross-section dimension offers an intuitive and straightforward
way of imposing a large number of sign restrictions to identify shocks that are global in nature– i.e., shocks
that affect many cross-section units at the same time. However, no matter how large the dimension of the
model is and how many restrictions are imposed, there will typically be an infinite number of structural
models that satisfy the sign restrictions, and therefore it is necessary to find a way to summarize the available
information.

How to deal with the multiplicity of models turns out to be crucial in the models with a large number
of variables. The mainstream literature reports the median of the impulse responses, which is sometimes
interpreted as a “consensus” view of the magnitudes of the responses, and quantiles are used to give an
impression of the distribution of IR. Fry and Pagan (2007) propose a different way of summarizing available
models by selecting the IR that is closest to the median IR in some measure. Both approaches have been
criticized by Inoue and Kilian (2012), who instead suggest deriving posterior distribution of the structural
impulse response functions and looking at the posterior mode (as the most likely response) and the highest
posterior density credible sets.

We argue that the global dimension offers a new way of looking at this problem. To focus on the
underlying identification problem in a transparent and easy way, we initially abstract completely from the
estimation uncertainty of the reduced-form parameters and look at the summary measure as an estimation
problem. We expect that with an increasing cross-section dimension and an increasing number of restrictions
imposed, the summary measure gets arbitrarily close to the true structural impulse response. We call this
feature consistency. Surprising enough, neither the median IR nor the solution proposed by Fry and Pagan
(2007) satisfy this intuitive consistency feature, and we show by means of Monte Carlo experiments that
the distance between the structural shock and these two measures increases with the increasing number of
restrictions imposed, contrary to what one would expect. The suggestion by Inoue and Kilian (2012) to
pick a posterior mode does not necessarily solve our problem either in cases when the mode is not unique.
We suggest an alternative way of summarizing the available models, based on a “scaled median”estimate
of the structural impulse response, which performs well in our Monte Carlo experiments and gets closer to
the true structural shocks with an increase in the number of restrictions imposed.

The paper then implements this approach in a large-scale global VAR (GVAR) model that allows us
to explore the global dimension by adding a large number of sign restrictions.1 Our application of the sign
restrictions approach in the context of a GVAR model of oil prices and the global economy shows that
oil supply shocks have a stronger impact on emerging economies’ real output as compared with mature
economies, have a negative impact on real growth in oil-exporting economies as well, and tend to cause
an appreciation (depreciation) of oil exporters’ (oil importers’) real exchange rates but also lead to an
appreciation of the U.S. dollar. One possible explanation would be the recycling of oil exporters’increased
revenues in U.S. financial markets.

The remainder of the paper is as follows. Section 1 illustrates the main issues by means of Monte
Carlo experiments in a very simple setup. Section 2 implements the sign restriction approach applying our
alternative summary measure of impulse responses in the context of a GVAR model of the world economy,
which given its global dimension allows for imposing a large number of sign restrictions for identifying the

1The GVAR approach has been proposed by Pesaran, Schuermann, and Weiner (2004).
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effect of oil shocks on the global economy. The final section offers some concluding remarks. The Technical
Appendix outlines the identification problem, briefly reviews the sign restriction approach, and discusses
the problems of summarizing multiple models when the dimension (i.e., the number of variables) is large.

1. MONTE CARLO EXPERIMENTS
Monte Carlo Design

In this section, we illustrate the main idea by means of Monte Carlo experiments. In particular, we show
that introducing a global dimension can turn weak information strong: As the number of variables– and
hence the leeway to introduce sign restrictions– increases, our estimate, which we denote as r̂scaled1 , does
converge to the “true”structural impulse response (SIR), while the traditionally used measures do not.

Let the data-generating process be xt = ut, where errors in the n× 1 vector of the reduced-form errors
ut are generated by the following spatial model,

ut = Det,

and the vector of structural innovations is et ∼ IIDN (0, In). We abstract from any dynamics, since the
number of lagged terms is not pertinent to the identification problem. The matrix of structural shocks D is
generated as follows. The “global”shock, which is to be estimated, is the first structural shock and the first
column of D given by n × 1 vector of ones d1 = (1, 1, ..., 1)

′, and all signs of vector d1 are assumed to be
known in the identification procedure. The lower right (n− 1) × (n− 1)-dimensional submatrix of matrix
D, denoted as D22, is generated as

D22 = (In−1 − ρS)−1 ,

where the spatial matrix S is given by

S =



0 1 0 0
1
2 0 1

2

0 1
2 0

. . . 0
. . .

. . . 1
2

0 0 1 0


,

that is, the process D22 (e2t, ..., ent)
′ is a bilateral spatial autoregressive process. Dependence of the first

reduced error u1t on the remaining structural shocks is generated as d1j ∼ U (−ρ/N, ρ/N), where d1j
denotes the j-th element of the first row of D. Note that for ρ = 0, matrix D becomes (A-6) discussed in
the Appendix, whereas as ρ → 1, the degree of cross-section dependence increases. Two experiments are
considered: ρ = 0 (benchmark case) and ρ = 0.4 (stronger cross-section dependence). Matrix D is generated
at the beginning of the experiment and R = 2000 replications are carried out. The structural IR vector at
the time of impact is estimated in the following three different ways:

1. As a traditional median IR, denoted as r̂med1 = med {Bα,α ∈ S}, where BB′ is the Cholesky decompo-
sition of the known covariance matrix Σ and S is the set of successful draws from the unit circle that
satisfy the sign restrictions.2

2. As an IR that is closest to the median IR (as proposed by Fry and Pagan 2007), denoted as r̂FP1 = Bαm,

where αm = argminα∈S
∥∥∥Bα− r̂med1

∥∥∥.
3. As a scaled estimate r̂scaled1 = Bα̂, where α̂ = med(S)

‖med(S)‖ .

The covariance matrix Σ is taken to be known (i.e., we abstract from the estimation uncertainty).
Matrix D is treated as unknown, except for the signs of d1. The vector α is generated randomly as
α = η/ ‖η‖,where η ∼ N (0, In). The number of draws that satisfy the sign restrictions are chosen to be
s ∈ {100, 500, 1000, 5000}.

Monte Carlo Findings
To provide a first impression of the performance of the summary measures under inspection, Figures

1 and 2 plot the histograms of the errors of the estimated structural contemporaneous impulse response

2The decomposition of Σ is arbitrary and other decompositions should yield similar results since no other information
besides the signs of responses is imposed; see, for instance, Uhlig (2005).
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vector r1 = d1 for 2000 repetitions of the benchmark experiment (ρ = 0) and two choices for the dimension
of the model, (n, s) ∈ {(5, 100) ; (20, 1000)}, where recall n is the number of variables and s is the number
of successful draws in the set S.3 Two different metrics for computing the error as the distance between
estimated structural impulse responses (SIRs) and true SIRs are considered: the maximum absolute row
sum norm, denoted as ‖r̂1 − r1‖r, and the euclidean norm, denoted as ‖r̂1 − r1‖.

As can be inferred from Figure 1, which plots the absolute frequency of the errors computed using
Euclidian norm, both the median impulse response as well as the measure suggested by Fry and Pagan
(2007) perform less well than the scaled response as proposed here.

Figure 1: Error Histograms of Estimated Impulse Responses for Small Benchmark Model

(ρ = 0, n = 5 variables, s = 100 draws)

NOTE: The estimator whose distribution is centered closer to zero is preferable.

Furthermore, comparing the errors obtained in the relatively smaller system, as shown in Figure 1, with
the errors obtained in a relatively larger system embedding more information on the true signs of the IRs, as
shown in Figure 2, shows that the error in estimating the SIRs actually increases in n and hence the number
of restrictions imposed when using the conventional summary measures. The scaled response estimator
r̂scaled1 , however, improves with rising n, and hence fulfills the intuitive consistency property outlined in the
Technical Appendix. The latter result is robust to the degree of cross-section dependence.4 The reason
behind the increase in the error of estimation when using median response or FP response is described in
the Appendix. Intuition is that medians in our setting behave similarly to averaging and averaging across
the set of admissible impulse responses does not yield a proper impulse response. As the dimension of the
model increases, this problem becomes more serious (as evidenced in Figure 2).

3For the sake of clarity of exposition and to be compatible with the notations in the Technical Appendix, we refer to the
contemporaneous impulse response vector as r1, whereas we refer to the structural shocks as d1.

4This is evidenced by Figure 3 reported in the working paper version of this paper; see Chudik and Fidora (2011).
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Figure 2: Error Histograms of Estimated Impulse Responses for Large Benchmark Model

(ρ = 0, n = 20 variables, s = 1000 draws)

NOTE: The estimator whose distribution is centered closer to zero is preferable.

The preliminary findings from inspection of the error histograms are confirmed when considering a wide
range of alternative values for the model dimension. Tables 1 and 2 report the average error of the individual
estimates of the structural impulse response vector for (n, s) ∈ {(5, 10, 20, 50, 100) ; (100, 500, 1000, 5000)} for
both the benchmark experiment (ρ = 0) as well as the case of higher cross-section dependence (ρ = 0.4). It
can be inferred from Table 1 that the median response (r̂med1 ) as well as the response which is closest to the
median response (r̂FP1 ) do not provide a good estimate of the structural impulse response when n is large.
First, performance does not improve in the number of models that satisfy sign restrictions. Second, the
estimated responses become even worse as the number of variables and hence the number of sign restrictions
increases. These results confirm that even if a large amount of sign restrictions is imposed, the conventional
summary measures r̂med1 and r̂FP1 can be highly misleading when interpreted as a “consensus” view. In

particular, both errors
∥∥r̂FP1 − r1

∥∥ and ∥∥∥r̂med1 − r1

∥∥∥ seem to diverge to infinity with n, and therefore the

estimation error is arbitrarily large for n large enough. On the other hand, the scaled response r̂scaled1 ,
clearly gets closer to the true response as n and the number of draws increase. Finally, the results also show
that introducing a “global dimension”helps gain accuracy: for a system of some tens of variables, r̂scaled1
quickly approaches the “true”impulse response keeping the number of successful draws large enough.

Table 1: Monte Carlo Results for Benchmark Case (ρ = 0): Error in Estimating Structural Vector r1

Metric: Row norm,‖r̂1 − r1‖r Euclidean norm, ‖r̂1 − r1‖

Median response r̂med1

n/s 100 500 1000 5000 100 500 1000 5000
5 0.42 0.41 0.41 0.41 0.70 0.69 0.69 0.69
10 0.52 0.51 0.51 0.51 1.43 1.43 1.43 1.43
20 0.61 0.59 0.59 0.59 2.51 2.50 2.50 2.50
50 0.72 0.69 0.69 0.69 4.78 4.78 4.78 4.78
100 0.78 0.76 0.76 0.75 7.47 7.47 7.47 7.47

Response closest to median response r̂FP1
5 0.57 0.49 0.45 0.38 0.74 0.68 0.66 0.62
10 0.77 0.76 0.75 0.73 1.52 1.50 1.49 1.47
20 0.87 0.85 0.84 0.83 2.59 2.58 2.58 2.57
50 0.94 0.94 0.94 0.93 4.84 4.84 4.84 4.84
100 0.97 0.96 0.96 0.96 7.52 7.52 7.52 7.52

Response corresponding to the scaled med (S), r̂scaled1

5 0.17 0.14 0.13 0.13 0.26 0.24 0.24 0.23
10 0.13 0.10 0.10 0.10 0.24 0.18 0.17 0.17
20 0.10 0.06 0.06 0.05 0.28 0.15 0.13 0.11
50 0.12 0.05 0.04 0.02 0.56 0.18 0.12 0.08
100 0.15 0.05 0.03 0.02 1.11 0.30 0.18 0.07

NOTES: n is the number of variables (equal to the number of sign restrictions imposed) and s is the chosen number of
successful draws. Estimator with smaller average error is preferable. See Section 1 for detailed description of Monte Carlo
design.
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Table 2: Monte Carlo Results for High Cross-Section Dependence (ρ = 0.4): Error in Estimating
Structural Vector r1

Metric: Row norm,‖r̂1 − r1‖r Euclidean norm, ‖r̂1 − r1‖

Median response r̂med1

n/s 100 500 1000 5000 100 500 1000 5000
5 0.49 0.49 0.49 0.49 0.62 0.62 0.61 0.61
10 0.56 0.56 0.56 0.56 1.34 1.34 1.34 1.34
20 0.61 0.60 0.60 0.60 2.41 2.40 2.40 2.40
50 0.70 0.68 0.68 0.68 4.64 4.64 4.64 4.64
100 0.76 0.74 0.74 0.74 7.29 7.29 7.29 7.29

Response closest to median response r̂FP1
5 0.48 0.40 0.38 0.35 0.64 0.55 0.52 0.49
10 0.76 0.74 0.73 0.69 1.43 1.39 1.38 1.35
20 0.86 0.85 0.84 0.84 2.50 2.48 2.48 2.47
50 0.93 0.93 0.92 0.92 4.72 4.71 4.70 4.70
100 0.96 0.96 0.96 0.95 7.35 7.35 7.35 7.34

Response corresponding to the scaled med (S), r̂scaled1

5 0.33 0.31 0.31 0.30 0.56 0.57 0.57 0.57
10 0.22 0.19 0.18 0.17 0.44 0.44 0.44 0.44
20 0.15 0.12 0.11 0.11 0.34 0.31 0.31 0.31
50 0.11 0.06 0.06 0.04 0.47 0.21 0.19 0.19
100 0.14 0.05 0.04 0.03 0.94 0.25 0.17 0.13

NOTES: n is the number of variables (equal to the number of sign restrictions imposed) and s is the chosen number of
successful draws. Estimator with smaller average error is preferable. See Section 1 for detailed description of Monte Carlo
design.

2. IDENTIFICATION OF OIL SUPPLY SHOCKS IN A GVAR MODEL
The Basic GVAR Setup

In this section, we implement the sign restriction approach in the context of a large-scale model of the
global economy that allows us to impose a large number of sign restrictions. The application illustrates how
our scaled median approach can be implemented in a straightforward way in the context of a GVAR and
compares results obtained from both the traditional summary measure of impulse responses as well as the
proposed scaled median summary measure. Overall, the observed patterns of impulse responses tend to be
qualitatively similar, although the scaled median approach systematically yields quantitatively larger point
estimates of impulse responses, as we will explain below.

We follow Pesaran, Schuermann, and Weiner (2004) and estimate the following standard country-specific
VARX∗ (p, q) models:

Φii (L, pi)xit = ai0 + ai1t+Λi (L, qi)x
∗
it + uit, (1)

where xit denotes a ki×1 vector of macroeconomic variables belonging to country i ∈ {1, .., N} with N being
the number of countries, x∗it =

∑N
j=1 wijxjt denotes country-specific foreign variables (foreign cross-section

averages),
{
wij
}
are the foreign trade weights, Φii (L, pi) =

∑pi
`=0 Φii,`L

` and Λi (L, qi) =
∑qi
`=0Λi,`L

`

are matrix polynomials of unknown coeffi cients, L is the lag operator, and error terms, collected in a k × 1
vector ut =

(
u′1t,u

′
2t, ...,u

′
Nt

)′ with k =∑N
i=1 ki are allowed to be cross-sectionally weakly dependent.

5

Once estimated on a country-by-country basis, individual VARX∗ models for i = 1, .., N , can be stacked
together and solved as one system:

G (L, p)xt = a0 + a1t+ ut, (2)

where a` =
(
a′`1, ...,a

′
`N

)′ for ` = 0, 1, and the construction of the matrix polynomial G (L, p) is in detail
explained in Pesaran, Schuermann, and Weiner (2004). GVAR model (2) can be used for impulse response
or persistence profile analysis in the usual manner.

Data and Sign Restrictions
We set pi = p = 2 and qi = q = 1 and estimate a GVAR in first differences with quarterly data over the

period 1979:Q3—2003:Q3 for N = 26 countries.6 We include four country-specific variables – real output,

5See Chudik, Pesaran, and Tosetti (2011) for a definition of strong and weak cross-section dependence.

6The sample includes Argentina, Australia, Brazil, Canada, Chile, China, euro area, India, Indonesia, Japan, Korea,
Malaysia, Mexico, New Zealand, Norway, Peru, Philippines, Saudi Arabia, Singapore, South Africa, Sweden, Switzerland,
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inflation, a short-term interest rate, and the real exchange rate– as well as real oil prices as an observable
global factor. All variables except the real exchange rates are taken from Dées et al. (2007).7 Real effective
exchange rates and the foreign trade weights are taken from Bussière, Chudik, and Sestieri (2012).

To identify oil supply shocks we rely on a simple identification scheme that allows us to discriminate
oil supply shocks from a large set of alternative shocks. In particular, we require negative oil supply shocks
to be contemporaneously associated with (i) a decrease in real output across all oil importers and (ii) an
increase in real oil prices. In all, we impose 21 contemporaneous sign restrictions. We do not impose any
restrictions on real output in countries that have been significant oil exporters over the sample period.8 To
the extent that no other economically meaningful shocks are able to produce a negative correlation between
real output and real oil prices across all oil-importing economies, this identification scheme identifies oil
supply shocks.

Empirical Results
In the following, we analyze the effect of negative oil supply shocks on (i) real output in different regions

of the global economy, including oil-exporting economies themselves, as well as on (ii) global exchange rate
configurations.

Figure 3 gives a general overview of the reaction of output to a one-standard-deviation shock to oil
supply. On average, mature economies– including the United States and the euro area– tend to record a
decline in real output by between 0.5 percent and 0.75 percent cumulated over the four quarters following
a one-standard-deviation oil supply shock (that causes oil prices to increase by 2.4 percent). Emerging
economies– both in Latin America and Asia– record somewhat higher declines in growth of, on average,
between 1 percent and 1.5 percent. The stronger effect on emerging economies could be a reflection of higher
energy intensity of production in these countries, on the one hand, and dependence on external demand
from mature economies, on the other hand. In this respect, China stands out as a notable exception with
a relatively modest reaction of output to the oil supply shock, possibly reflecting the fact that, despite
high-energy intensity, a large part of energy demand is met domestically. Interestingly, though not largely
unexpectedly, real output also declines across all oil-exporting economies in our sample– including Saudi
Arabia and Norway, although to a lesser extent– despite the reaction of real output for these economies
being unrestricted in the identification procedure.

Figure 5 reported in the working paper version of this paper, Chudik and Fidora (2011), provides
further detail and compares the impulse response based on the scaled median approach to impulse responses
computed as in Uhlig (2005). A main finding from this exercise is that– while the patterns of impulse
responses are qualitatively comparable– our scaled median impulse response tends to systematically yield
larger point estimates of the shocks under inspection. The quantitative difference is sizeable as impulse
responses based on the scaled median tend to be about three times larger than those based on the traditional
measure. This is because the traditional measure is based on a median value of α that– at least in the case
of a single shock– is bound to lie within the unit circle (and therefore does not belong to the set of impulse
responses), while our scaling approach avoids this caveat (and r̂scaled1 belongs to the set of IRs).

Finally, results for the real exchange rate are summarized in Figure 4, and the complete set of responses
is reported in Figure 7 of the working paper version, Chudik and Fidora (2011). As expected, oil importers’
real exchange rates mostly tend to depreciate in response to the negative terms of trade shock by on average
between 0.5 percent and 1.5 percent, whereas the large oil exporters’appreciate by up to 1 percent. Maybe
surprisingly, the United States appreciates by 1.3 percent. One rationalization for this unexpected result
could be recycling of oil exporters’increased revenues in U.S. financial markets. As a final note, Figure 7
reported in the working paper shows that, as in the case of real output before, our measure yields similar
but systematically larger point estimates of impulse responses, confirming our findings above.

3. CONCLUDING REMARKS
Identification of structural VARs by means of sign restrictions has become increasingly popular in applied

econometrics over the recent past. Maybe surprisingly, the performance of identification schemes using sign
restriction has only received limited attention. Sign restrictions do not pin down a unique structural model,
and it is therefore not surprising that any sign restriction identification procedure is bound to be imperfect.

Thailand, Turkey, United Kingdom, United States.

7Updated version of this database is available online on professor M.H. Pesaran’s website http://www.econ.cam.ac.uk/
faculty/pesaran/.

8We take these countries to be Saudi Arabia, Norway, Indonesia, Mexico and the United Kingdom.
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Figure 3: Output Decline in Response to One-Standard-Deviation Negative Oil Supply Shock

(Four Quarters Cumulated in Percent)

Figure 4: Appreciation of Real Exchange Rate

(Four Quarters Cumulated in Percent)
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Nevertheless, one would expect that, with an increasing number of sign restrictions imposed, one should
obtain a better understanding of the structural shock in question. The global or cross-section dimension
offers an intuitive and straightforward way of imposing a large number of sign restrictions to identify shocks
that are global in nature– i.e., shocks that affect many cross-section units at the same time.

We implement the sign restriction approach in the context of a global VAR model of the world economy,
which, given its global dimension, allows for imposing a large number of sign restrictions, and we identify
the effect of oil shocks on the global economy. Our results suggest that negative oil supply shocks (i) have
a stronger impact on emerging economies’ real output as compared with mature economies, (ii) have a
negative impact on real growth in oil-exporting economies as well, and (iii) tend to cause an appreciation
(depreciation) of oil exporters’(oil importers’) real exchange rates but also lead to an appreciation of the
U.S. dollar. One possible explanation would be recycling of oil exporters’increased revenues in U.S. financial
markets.
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APPENDIX A: Technical Appendix

Identification of Shocks in a Reduced-Form VAR Model
Suppose that n endogenous variables collected in a vector xt = (x1t, ..., xnt)

′ are generated from the
following structural VAR(1) model,

A0xt = A1xt−1 + et, (A-1)

where one lag is assumed for simplicity of exposition, A0 and A1 are n× n matrices of unknown structural
coeffi cients, and et is a vector of orthogonal structural innovations with individual elements eit, for i =
1, .., N , having unit variance. Assuming the matrix A0 is invertible, the reduced form of the structural VAR
model (A-1) is:

xt = Φxt−1 + ut, (A-2)

where the vector of reduced form errors is given by the “spatial”model ut = Det,D = A−10 , andΦ = A−10 A1.
There is not much disagreement on how to estimate reduced-form VARs, namely the coeffi cient matrix

Φ and the covariance matrix of errors, denoted as Σ = E
(
utu
′
t

)
= DD′. The identification problem is how

to decompose reduced-form errors into economically meaningful shocks, i.e., to construct D. The decom-
position Σ = DD′ is not a unique decomposition of the covariance matrix Σ. In particular, for any n × n
orthogonal matrix Q, we have Σ =

(
DQ′

) (
QD′

)
and hence an infinite number of candidate matrices B,

where Q′Q = I (orthogonality conditions) and B = DQ′. Orthogonality of Q implies n (n+ 1) /2 restric-
tions on the elements of Q, leaving thus n (n− 1) /2 free parameters in constructing the matrix Q. Thus,
n (n− 1) /2 restrictions need to be imposed for exact identification.

Structural shocks in the structural VAR model (A-1) are given by the individual column vectors of
matrix D. Let rij` denote response of variable xjt to the structural shock i in the period ` after the shock,
that is:

rij` = s′jΦ
`di, for ` ≥ 0 and i, j ∈ {1, .., n} , (A-3)

where sj is n× 1 selection vector that selects the j-th element and di is the j-th column of matrix D. For
future reference, we denote the IR vector to shock g as

r` (g) = Φ`g, for ` ≥ 0,

and the structural IR (SIR) vector to the structural shock di, as

ri` = Φ`di, for ` ≥ 0 and i ∈ {1, .., n} .

Sign Restriction Approach in the Simplest Setting
To focus on the issue of identification in the simplest and most transparent way, let us abstract from

the estimation uncertainty of the reduced-form parameters (coeffi cients and covariance matrix of errors) of
VAR models. In addition, we assume the absence of any dynamics, since the number of lagged terms is not
pertinent to the identification problem. The focus of the exposition is thus on the simplest case where

xt = ut, (A-4)

and the covariance matrix of the reduced form errors Σ = DD′ is assumed to be known, but the matrix of
structural shocks D is unknown. Let us denote the contemporaneous IR of structural shock j on variable i
as rij , for i, j,∈ {1, .., n}. In the absence of any dynamics, it follows that rij = dij for any i, j,∈ {1, .., n} .9

Suppose we are interested in identifying only the first structural shock d1 (the first column of D) and
some or all signs of the vector of the contemporaneous IR r1 = (r11, r21, ..., rN1)

′ are known. For any
decomposition of the covariance matrix Σ into the product of matrices BB′, the potential candidates for
the structural shock d1 are fully characterized by the set of vectors gα = Bα, where ‖α‖ = 1. Typically
there are many different shocks gα that satisfy the sign restrictions. Denote S to be a set of n× 1 vectors
α of unit length such that the responses r (gα), for α ∈ S, satisfy the imposed sign restrictions. A measure
that somehow summarizes the available information is then required as one often wishes to know what is a
“consensus”view. This measure could be interpreted as a point estimate of the SIR at each point in time
following the shock. A common way to summarize the available models in the literature is to compute the
median of the IRs that satisfy the sign restrictions, that is

r̂med1 = med {r (gα) ,α ∈ S} . (A-5)

9For the sake of clarity of exposition, we continue to refer to the contemporaneous impulse responses as rij , whereas we
refer to the structural shocks as dij .
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Global Dimension to the Rescue of Weak Information
One criticism of the sign restriction approach is that it delivers only a weak (imprecise) identification

since it uses only weak information. The fact that weak information delivers weak results is a powerful
wisdom, and we do not object to this view. Instead, we argue that introducing a “global dimension”
can considerably improve the character of information embodied in the sign restrictions in a way that the
resulting identification procedure is arbitrarily good as the number of variables (and the number of sign
restrictions) tends to infinity. The following simple example suffi ces to make this point clear.

Suppose that the structural shocks are given by the following matrix

D
n×n

=



1 0 0 0 · · · 0

1 1 0 0 0

1 0 1 0 0

1 0 0 1 0
...

. . .
1 0 0 0 · · · 1


, (A-6)

and the objective is to estimate a “global”shock d1, using the knowledge about the signs of d1. As before,
consider any decomposition of known matrix Σ = BB′. For α uniformly distributed on a unit sphere, the
distribution of random vectors Bα and Dα is the same. For fixed n, information embodied in the sign
restrictions is imperfect and rather weak if n is relatively small. In particular, the probability that a linear
combination of structural shocks {d2, ...,dn} will yield the same signs as the last n − 1 elements of the
structural shock d1 is exponentially decaying in n:

p


n∑
j=2

αjdj > 0

 =
1

2n−1
. (A-7)

Clearly, there are many models that satisfy the sign restrictions, and equation (A-7) suggests that chances
that structural shocks {d2, ...,dn} distort the estimate of d1 are good for small values of n. As n→∞, this
probability goes to zero at an exponential rate. This provides the basic intuition for the “global dimension”
to be able to help with the estimation of global structural shocks or– to be more precise– structural shocks
which have unbounded maximum absolute column-sum norm in n.

The Problem of Summarizing Available Models
As Fry and Pagan (2007) argue, the median IR (denoted as r̂med1 ) does not necessarily belong to the

space of impulse responses. To illustrate the problem of using the median IR, suppose we have two draws
of impulse responses {r (gα1) , r (gα2)} which satisfy the sign restrictions. There is no guarantee that there
exists a model where r̂med

1
= med {r (gα1) , r (gα2)} is a structural impulse response. In particular, the

solution for α in system r̂med
1

= Bα need not lie on the unit circle, and therefore r̂med
1

need not even belong
to the space of IRs.

Since the median is not a monotonic transformation, i.e., med {gα1, ...,gαs} 6= B·med {α1, ...,αs}, let
us for the moment and for the sake of ease of exposition consider arithmetic averages instead. Averaging is
a monotonic transformation and the average of the candidate IR (at the time of impact), denoted as r̂ave1 =
[r (gα1) + ...+ r (gαs)] /s, can be written as r̂ave1 = Bα = B (α1 + ...+αs) /s, where α = s−1

∑s
i=1αi.

Note that triangle inequality implies that ‖α‖ < 1 (unless α1 = α2 = ... = αs). Therefore, as long as the
set of draws S has different elements, r̂ave1 (the average of the candidate IR) never belongs to the space of
IRs. The more candidate draws for the structural shock one obtains and the higher dimensionality of the
model, the smaller ‖α‖ could get. Similar arguments also apply to the median as opposed to averaging. The
Monte Carlo experiments using the data-generating process described in Section 1 reveal that the median
behaves similarly to the averaging.

This paper looks at the same problem of multiplicity of models from a slightly different perspective
than Fry and Pagan (2007). As opposed to summarizing the available information by means of quantiles
and medians of the impulse responses, we suggest finding an IR vector, which would be as close as possible
to the true (unknown) IR. Ideally we would like to find α̂ on the unit circle that would satisfy

α̂ = arg min
α′α=1

‖r̂1 − r1‖ , (A-8)

where r̂1 = Bα. However, it is not possible to solve (A-8) without knowing the matrix D, and for this
reason, we opt for the following weaker consistency requirement,
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lim
n→∞

‖r̂1 − r1‖ = 0, (A-9)

that is, the error in estimating IRs vanishes as n → ∞. General treatment of the problem (A-9) goes
beyond the analysis presented here; instead, we propose to compute the impulse response corresponding to
the scaled median of draws α ∈ S, that is,

r̂scaled1 = Bα̂, (A-10)

where
α̂ =

αmed
‖αmed‖

, and αmed = med {S} .

In this paper, we refer to r̂scaled1 as a “scaled”estimate of the SIR.


