Trade, Technology, and the Skill Premium: The Case of Mexico

Andrea Waddle

University of Richmond

March 2018

MOTIVATION

 In the 1980's the manufacturing skill premium began to rise in the US and Mexico

US MANUFACTURING SKILL PREMIUM

Education Premium

MEXICO MANUFACTURING SKILL PREMIUM

INCREASE IN SKILL PREMIA

MOTIVATION

- In the 1980's the manufacturing skill premium began to rise in the US and Mexico
- Rise coincided with a large-scale unilateral Mexican trade liberalization whereby US-Mexican trade increased dramatically

MEXICAN MANUFACTURING TRADE

Manufacturing Trade/GDP

MEXICAN MERCHANDISE TRADE

Merchandise Trade/GDP US Imports from Mexico

MOTIVATION

- In the 1980's the manufacturing skill premium began to rise in the US and Mexico
- Rise coincided with a large-scale unilateral Mexican trade liberalization whereby US-Mexican trade increased dramatically
- Literature has had difficulty in establishing a large role of increase in trade flows on skill premium

MOTIVATION

- In the 1980's the manufacturing skill premium began to rise in the US and Mexico
- Rise coincided with a large-scale unilateral Mexican trade liberalization whereby US-Mexican trade increased dramatically
- Literature has had difficulty in establishing a large role of increase in trade flows on skill premium
 - Skill premium moves counter to theoretical predictions in Mexico (increases)

QUESTION

Why did the skill premium go up by so much in Mexico?

 Trade in technology or "ideas" through integration of supply chains between US and Mexico responsible for rising skill premia in both countries

- Trade in technology or "ideas" through integration of supply chains between US and Mexico responsible for rising skill premia in both countries
 - Accumulation and transfer of technology works as in models of FDI, but companies do not have to locate in foreign country in order to transfer technology

- Trade in technology or "ideas" through integration of supply chains between US and Mexico responsible for rising skill premia in both countries
 - Accumulation and transfer of technology works as in models of FDI, but companies do not have to locate in foreign country in order to transfer technology
 - ► Instead, transfer occurs through supply chains

- Trade in technology or "ideas" through integration of supply chains between US and Mexico responsible for rising skill premia in both countries
 - Accumulation and transfer of technology works as in models of FDI, but companies do not have to locate in foreign country in order to transfer technology
 - ► Instead, transfer occurs through supply chains
- ► Will consider non-rivalrous technology, like blueprints

- Trade in technology or "ideas" through integration of supply chains between US and Mexico responsible for rising skill premia in both countries
 - Accumulation and transfer of technology works as in models of FDI, but companies do not have to locate in foreign country in order to transfer technology
 - ► Instead, transfer occurs through supply chains
- ► Will consider non-rivalrous technology, like blueprints
- Causes increase in skill premium in

- Trade in technology or "ideas" through integration of supply chains between US and Mexico responsible for rising skill premia in both countries
 - Accumulation and transfer of technology works as in models of FDI, but companies do not have to locate in foreign country in order to transfer technology
 - ► Instead, transfer occurs through supply chains
- ► Will consider non-rivalrous technology, like blueprints
- Causes increase in skill premium in
 - Mexico through an "adoption channel"

- Trade in technology or "ideas" through integration of supply chains between US and Mexico responsible for rising skill premia in both countries
 - Accumulation and transfer of technology works as in models of FDI, but companies do not have to locate in foreign country in order to transfer technology
 - ► Instead, transfer occurs through supply chains
- ► Will consider non-rivalrous technology, like blueprints
- Causes increase in skill premium in
 - Mexico through an "adoption channel"
 - ► U.S. through an "investment channel"

For Today

Evidence from Mexico

 Industries that trade more in intermediates with U.S. have greater increases in their skill premia

- Industries that trade more in intermediates with U.S. have greater increases in their skill premia
- A calibrated exercise that captures

- Industries that trade more in intermediates with U.S. have greater increases in their skill premia
- A calibrated exercise that captures
 - ► Rising skill premia in both countries, larger in Mexico

- Industries that trade more in intermediates with U.S. have greater increases in their skill premia
- A calibrated exercise that captures
 - Rising skill premia in both countries, larger in Mexico
 - ► 12% of the rise in the skill premium in Mexico and 10% of the rise in the U.S.

Evidence from Mexico

- Industries that trade more in intermediates with U.S. have greater increases in their skill premia
- A calibrated exercise that captures
 - ► Rising skill premia in both countries, larger in Mexico
 - ► 12% of the rise in the skill premium in Mexico and 10% of the rise in the U.S.

Adding trade in technology reverses standard H-O predictions

Evidence of the Mechanism

CASE STUDY: THE AUTO INDUSTRY

In the 1980's US auto makers partnered with Mexican parts manufacturers to produce

- Crankshafts
- Intake Manifold
- Cylinder Head
- Cylinder Block

using the "latest state-of-the art." Interviewed managers said there was "no difference in the technology used in Detroit and Mexico."

PRODUCTION LINE: STANDARD SET UP

PRODUCTION LINE: STANDARD SET UP

PRODUCTION LINE: AN EXAMPLE OF SKILL-AUGMENTING TECHNOLOGY

PRODUCTION LINE: AN EXAMPLE OF SKILL-AUGMENTING TECHNOLOGY

ON THE JOB TRAINING

Skilled Workers

- Extensive pre-job training
- Apprenticeship program for both technicians and supervisors
- Supervisors brought to US to observe plant management

Unskilled Workers

- Taught basic characteristics of the machine that they would operate
- Taught how to assess which technician to contact if machine breaks down

TRANSFER OF TECHNOLOGY

Supply chains served as ways to transfer

- Technology for making parts for final production
 - Blueprints for production of parts
 - Technology embedded in intermediate goods and parts
- Best practices for efficient production
- Organizational capital such as worker training programs

MEXICO'S TRADE LIBERALIZATION

- Begins in 1986
- Liberalization during NAFTA is relatively modest in comparison
- ▶ Between 1986 and 1990:
 - Average tariff rates fall from 30% to 5%
 - ► Average license coverage falls from 80% to 3%
- Following NAFTA
 - Average tariff rates fall from 5% to 3%
 - Average license coverage falls from 3% to 1%

TARIFFS

MEXICO: MANUFACTURING DATA

- ► Manufacturing only about 80% of manufacturing sector
- ▶ Plant-level available from 1984 1990
 - Information on production/non-production workers and wages, royalties paid, ownership, and investment
 - ► Also includes trade and tariffs paid from 1986-1990
- ► Industry-level available from 1984 1994
 - Information on production/non-production workers and wages, royalties paid, ownership, and investment
 - ► Matched to U.S.-Mexico Trade data from Schott (2008)

Use these data to relate trade liberalization to skill premium

TARIFF REDUCTION AND ROYALTIES

<u>Question</u>: Do plants (industries) that face lower tariffs rent more technology?

Using plant-level data, we can relate royalties paid to tariffs faced by plants, as well as connection to U.S.:

$$\left(\frac{R}{Y}\right)_{jt} = \alpha + \beta_1 \tau_{jt} + \beta_2 US_j + \beta_3 \left(\tau * US\right)_{jt} + SI_{j0} + \gamma_j + T_t + \epsilon_{jt}$$
TARIFF REDUCTION AND ROYALTIES

<u>Question</u>: Do plants that face lower tariffs rent more technology?

Using plant-level data, we can relate royalties paid to tariffs faced by plants, as well as connection to U.S.:

$$\begin{pmatrix} R \\ \overline{Y} \end{pmatrix}_{jt} = \alpha - \beta_1 \tau_{jt} + \beta_2 \left(\frac{USExp}{Y} \right)_{jt} + \beta_3 \left(-\tau * \frac{USExp}{Y} \right)_{jt}$$

+ $SI_{j0} + \gamma_j + T_t + \epsilon_{jt}$

TARIFF REDUCTION AND ROYALTIES

	U.S. Co	U.S. Exports
Constant	0.094	0.030
	(0.133)	(0.133)
$ au_{jt}$	-0.002^{*}	0.002
	(0.001)	(0.004)
US _i	0.709***	-
	(0.097)	
$(US * \tau)_{it}$	-0.011***	-
,	(0.004)	
$\frac{USExp}{Y}_{jt}$		0.608*
·		(0.342)
$\left(-\tau * \frac{USExp}{Y}\right)_{it}$		0.023*
,		(0.011)
SI _{j0}	0.789***	0.806***
	(0.083)	(0.104)
Industry Fixed Effects?	Yes	Yes
Time Fixed Effects?	Yes	Yes
R ²	0.108	0.111

CHANGES IN TRADE AND THE SKILL PREMIUM

<u>Question</u>: Do plants that trade more (with the U.S.) and rent more technology have higher skill premia?

$$SP_{jt} = \alpha + \beta_1 \left(\frac{Exp}{Y}\right)_{jt} + \beta_2 \left(\frac{Imp}{Y}\right)_{jt} + \beta_3 \left(\frac{R}{Y}\right)_{jt} + \beta_4 US_j + \beta_5 \left(\frac{Exp}{Y} * US\right)_{jt} + \beta_6 \left(\frac{Imp}{Y} * US\right)_{jt} + \beta_7 \left(\frac{R}{Y} * US\right)_{jt} + SI_{j0} + \gamma_j + T_t + \epsilon_{jt}$$

CHANGES IN TRADE AND THE SKILL PREMIUM

Sample	U.S. Only	No U.S.	All
Constant	3.113***	3.197***	3.124***
	(0.116)	(0.114)	(0.116)
$\frac{Exp}{Y}_{jt}$	0.562***	0.391**	0.452***
	(0.130)	(0.183)	(0.100)
$\frac{Imp}{Y}_{jt}$	0.027	0.041	0.027
	(0.079)	(0.123)	(0.065)
$\frac{Royalties}{Y}$ jt	0.039***	0.040***	0.039***
	(0.008)	(0.008)	(0.008)
US _{jt}	0.356***	0.420***	0.343***
,	(0.067)	(0.065)	(0.069)
$\left(\frac{Royalties}{Y} * US\right)_{it}$	-0.031	-0.049	-0.037
,	(0.032)	(0.032)	(0.032)
$\left(\frac{Exp}{Y} * US\right)_{jt}$	0.804***	-0.042	0.757***
,	(0.360)	(0.751)	(0.323)
$\left(\frac{Imp}{Y} * US\right)_{jt}$	-1.204	0.341	-0.423
	(0.765)	(1.027)	(0.503)
SI _{j0}	-1.172^{***}	-1.187^{***}	-1.175^{***}
·	(0.078)	(0.078)	(0.078)
R ²	0.155	0.153	0.155

INDUSTRY-LEVEL EVIDENCE

Use industry-level evidence to test:

- Impact of tariffs on
 - ► Royalties

$$\left(\frac{R}{Y}\right)_{it} = \alpha + \beta_1 \tau_{it} + \gamma_i + T_t + \epsilon_{it}$$

Skill Premium

$$SP_{it} = \alpha + \beta_1 \tau_{it} + \gamma_i + T_t + \epsilon_{it},$$

► Trade with U.S. on the skill premium:

$$SP_{it} = \beta_1 \left(\frac{Royalties}{Y}\right)_{it} + \beta_2 \left(\frac{Exports}{Y}\right)_{it} + \beta_3 \left(\frac{Imports}{Y}\right)_{it} + \beta_4 SI_{i0} + \gamma_i + T_t + \epsilon_{it}$$

IMPACT OF TARIFFS

Variable	$\frac{R}{Y}_{it}$	SP _{it}
Constant	0.289	2.560***
	(0349)	(2.333)
$ au_{it}$	-0.011^{***}	-0.003**
	(0.004)	(0.001)
Industry Fixed Effects?	Yes	Yes
Time Fixed Effects?	Yes	Yes
R^2	0.388	0.784

IMPACT OF TRADE WITH U.S.

	Level	Change (1984-1994)
Royalties Y it	0.024**	0.082***
	(0.010)	(0.018)
$\frac{Exports}{Y}$ it	0.128*	0.358***
	(0.077)	(0.054)
$\frac{Imports}{Y}_{i,t}$	-0.053	-0.079
	(0.040)	(0.050)
SI _{i0}	8.432***	2.742***
	(0.392)	(0.065)
Fixed Effects?	Yes	No
R^2	0.981	0.650

SUMMARY OF DATA

- Case study points to technology capital transference via supply chains
- Plants/industries facing higher tariffs rent less technology and have lower skill premia
- Plants/industries with increased trade with U.S. and more technology rental have higher skill premia

SUMMARY OF DATA

- Case study points to technology capital transference via supply chains
- Plants/industries facing higher tariffs rent less technology and have lower skill premia
- Plants/industries with increased trade with U.S. and more technology rental have higher skill premia

Suggests technology transfer may occur through supply chains

Royalties Data

Model

Environment

- Time is infinite and discrete, t = 0, 1, 2, ...
- ► Two countries: US (*U*) and Mexico (*M*)
- ► Two types of workers: High-skill (*H*) and Low-skill (*L*)
- Households supply labor inelastically
- ► *I* final goods
- Producers of non-traded final goods own and invests in technology and rent it to intermediate goods producers
- Technology is skill-augmenting

$$I_{ki} = Z'_{ki} - (1 - \delta)Z_{ki}$$

Looks like standard saving decision

$$I_{ki} = Z'_{ki} - (1 - \delta)Z_{ki} + r_{kki}Z_{ki}$$

- Looks like standard saving decision
- Except returns come from renting technology out to
 - Domestic intermediate goods producers

$$I_{ki} = Z'_{ki} - (1 - \delta)Z_{ki} + r_{kki}Z_{ki} + r_{kji}Z_{ki}$$

- Looks like standard saving decision
- Except returns come from renting technology out to
 - Domestic intermediate goods producers
 - ► Foreign intermediate goods producers when open to trade

$$I_{ki} = Z'_{ki} - (1 - \delta)Z_{ki} + r_{kki}Z_{ki} + r_{kji}Z_{ki}$$

- Looks like standard saving decision
- Except returns come from renting technology out to
 - Domestic intermediate goods producers
 - ► Foreign intermediate goods producers when open to trade

$$I_{ki} = Z'_{ki} - (1 - \delta)Z_{ki} + r_{kki}Z_{ki} + r_{kji}Z_{ki}$$

- Looks like standard saving decision
- Except returns come from renting technology out to
 - Domestic intermediate goods producers
 - ► Foreign intermediate goods producers when open to trade
- Transfer occurs through technology rental

INTERMEDIATE GOODS PRODUCERS: $y_{jki}(\omega)$

Intermediate goods producers in country k produce for domestic (k) and foreign (j) final goods producers using the technology of the producer they are supplying. They solve:

$$\max \sum_{j} \left(y_{jki}(\omega) \frac{p_{jki}(\omega)}{\tau_{jki}} - w_k^H h_{jki}(\omega) - w_k^L l_{jki}(\omega) - \tau_{zj} r_{ji} Z_{ji} \right)$$

s.t.

$$y_{jki}(\omega) = A_k \left[\theta_i \left(Z_{ji}^{\alpha} h_{jki}(\omega)^{1-\alpha} \right)^{\frac{\sigma-1}{\sigma}} + (1-\theta_i) l_{jki}(\omega)^{\frac{\sigma-1}{\sigma}} \right]^{\frac{\sigma}{\sigma-1}}$$
$$y_{jki}(\omega) = Y_{ji} \left[\frac{p_{jki}(\omega)}{\mathbf{P}_{ji}} \right]^{1/(\rho-1)}$$

 σ

INTERMEDIATE GOODS PRODUCERS: $y_{jki}(\omega)$

The firm's choice is distorted along two dimmensions: a tariff (τ_{iki}) and a distortion to the technology rental rate (τ_{ki})

$$\max \sum_{j} \left(y_{jki}(\omega) \frac{p_{jki}(\omega)}{\tau_{\mathbf{jki}}} - w_k^H h_{jki}(\omega) - w_k^L l_{jki}(\omega) - \tau_{\mathbf{zj}} r_{ji} Z_{ji} \right)$$

s.t.

$$y_{jki}(\omega) = A_k \left[\theta_i \left(Z_{ji}^{\alpha} h_{jki}(\omega)^{1-\alpha} \right)^{\frac{\sigma-1}{\sigma}} + (1-\theta_i) l_{jki}(\omega)^{\frac{\sigma-1}{\sigma}} \right]^{\frac{\sigma}{\sigma-1}}$$
$$y_{jki}(\omega) = Y_{ji} \left[\frac{p_{jki}(\omega)}{\mathbf{P_{ji}}} \right]^{1/(\rho-1)}$$

TRADE LIBERALIZATION

There are two different forms of liberalization in the model:

- 1. Reduction in tariffs leads to more trade in intermediates
- 2. Reduction of τ_z allows for greater inflow of technology

WHAT IS τ_z ?

- τ_z represents the ease of using foreign technology capital
 - ► Ease of transferring/using U.S. blue-prints in Mexico
 - Can be though of as standing in for intellectual property rights protection
 - As part of liberalization with the U.S., Mexico began to adopt the intellectual property protection laws that were in place in the U.S.
 - Began as part of negotiations in the late 1980's

WHAT HAPPENS WHEN MEXICO LIBERALIZES?

- Cost of using Z_U in Mexico falls
 - Mexican firms adopt more U.S. skill-augmenting technology capital, Z_U → Adoption channel
 - ► All else equal, this drives demand for skilled labor up
 - Offsets standard H-O effect
- Return to investing in Z_U increases for the final goods producer in US
 - ► U.S. firms increase investment in $Z_U \rightarrow$ Investment channel

WHAT HAPPENS WHEN MEXICO LIBERALIZES?

- Cost of using Z_U in Mexico falls
 - Mexican firms adopt more U.S. skill-augmenting technology capital, Z_U → Adoption channel
 - All else equal, this drives demand for skilled labor up
 - Offsets standard H-O effect
- Return to investing in Z_U increases for the final goods producer in US
 - ► U.S. firms increase investment in $Z_U \rightarrow$ Investment channel

How does this affect the skill premium?

SKILL PREMIUM: H-O VS. SUPPLY CHAIN MODEL

Basic H-O model:

$$SP_k = \frac{\theta_i}{1-\theta_i} \left(\frac{h_{jki}}{l_{jki}}\right)^{\frac{-1}{\sigma}}$$

Supply Chain model:

$$SP_k = (1-\alpha) \frac{\theta_i}{1-\theta_i} \left(\frac{Z_{ji}}{h_{jki}}\right)^{\alpha \frac{(\sigma-1)}{\sigma}} \left(\frac{h_{jki}}{l_{jki}}\right)^{\frac{-1}{\sigma}}$$

Technology endogenously changes skill-intensity of a sector

SKILL PREMIUM: H-O VS. SUPPLY CHAIN MODEL

Basic H-O model:

$$SP_M = \frac{\theta_i}{1-\theta_i} \left(\frac{h_{UMi}}{l_{UMi}}\right)^{\frac{-1}{\sigma}}$$

Supply Chain model:

$$SP_M = (1-\alpha)\frac{\theta_i}{1-\theta_i} \left(\frac{Z_{Ui}}{h_{UMi}}\right)^{\alpha \frac{(\sigma-1)}{\sigma}} \left(\frac{h_{UMi}}{l_{UMi}}\right)^{\frac{-1}{\sigma}}$$

Big rise comes from *adopting* the technology from the U.S.

Results

EXPERIMENT

- Calibrate a the model to match key pre-liberalization features of data
- ► Two Counter-Factual Experiments:
 - Baseline: Set trade costs using tariff data and set τ_z to match industry-level trade flows between U.S. and Mexico both pre- and post-liberalization
 - Extreme: Completely erode barriers to use of foreign technology to see how important they are

WHAT THEORY PREDICTS

Reduction in tariffs and barriers to use of foreign technology will cause

- ► In Mexico
 - Less specialization
 - Workers flow to producing intermediates for export
 - Adoption of U.S. technology
 - Skill premium ↑↑
- ► In U.S.
 - Returns to investing in Sector $Y \uparrow$
 - ► Skill premium ↑

RESULTS: SKILL PREMIUM

INTUITION: BASELINE EXPERIMENT

- Trade increased from 5% to 16% of Mexican manufactured output from 1986 to 1994
- In the absence of frictions, Mexican firms would like to almost evenly split their production between producing for U.S. supply chain and the Mexican one (50% of output for export)
- To see only 16% of output exported, frictions need to remain relatively high even after liberalization
- We see Mexican firms moving from producing for Mexico to producing for U.S. supply chain but not enough to import much technology

INTUITION: EXTREME EXPERIMENT

Reduce all frictions to use of foreign technology, reduce tariffs as observed in data

- Mexican manufacturers within a given industry shift towards producing more for export, less for domestic production
- This shift varies across industries
- Industries that increase trade with U.S. by more end up renting more technology capital from the U.S.
- ► This technology is more skill-intensive

CONCLUSION

 Argue that trade is a channel by which technology is diffused across countries

CONCLUSION

- Argue that trade is a channel by which technology is diffused across countries
- This means that it's not trade *or* technology that is driving increasing inequality, but rather, both in tandem
- Show that integration with the U.S. supply chainis an important determinant of increasing skill premium in Mexican industries
- Build a model in which integration of supply chains leads to increasing skill premia
- ► Show that mechanism can account for about 12% of increase in SP in Mexico

Appendix

US EDUCATION & MANUFACTURING PREMIUM

Back to Manufacturing Premium

MEXICAN MANUFACUTRING TRADE/GDP

Back to Manufacturing Trade

MEXICAN MANUFACUTRING TRADE

Back to Manufacturing Trade
MEXICAN MERCHANDISE TRADE/GDP

Back to Manufacturing Trade

MEXICAN MERCHANDISE TRADE

Back to Merchandise Trade

US IMPORTS FROM MEXICO

Merchandise Trade

EVIDENCE OF TECHNOLOGY TRANSFER

- Royalties payments in Mexican data are payments for technological transfer
- Will use evidence on royalties to pin down key parameter of the model
- If technology transfer is occurring, should see increase in royalties over output

EVIDENCE OF TECHNOLOGY TRANSFER

- Royalties payments in Mexican data are payments for technological transfer
- Will use evidence on royalties to pin down key parameter of the model
- If technology transfer is occurring, should see increase in royalties over output
 - Does this happen in the data?

TIME PATH FOR ROYALTIES

Summary of Evidence

Z_{ki} and Distortions

The return to renting Z_{ki} to the intermediate good producer in country *j* can be expressed as:

$$r_{jki} = \frac{p_{jki}(\omega)(1-\rho)A_k}{\tau_{zj}\tau_{jki}} \left[\theta_i \left(Z_{ki}^{\alpha} h_{jki}(\omega)^{1-\alpha} \right)^{\frac{\sigma-1}{\sigma}} + (1-\theta_i) l_{jki}(\omega)^{\frac{\sigma-1}{\sigma}} \right]^{\frac{\sigma}{\sigma-1}-1} \\ \alpha \theta_i Z_{ki}^{\frac{\alpha(\sigma-1)}{\sigma}-1} h_{jki}(\omega)^{\frac{(1-\alpha)(\sigma-1)}{\sigma}}$$

So if τ_{zj} or $\tau_{jki} \downarrow$, the return to investing $\uparrow \Rightarrow Z_{ki} \uparrow$

RESULTS: SKILL PREMIUM (1985 =1)

DISCUSSION OF PARAMETERS

Key parameters governing the change in skill premium:

- α : Share of technology in production
 - Impact of trade on skill premium is rising in α
 - Use royalties to discipline
- σ: Substitutability between skilled and unskilled workers
 - Estimates in the data from 1.2 to 2+
 - Impact of trade on skill premium is rising in σ
 - Use initial skill premia to discipline

Varying α

Varying σ

Back

Varying α and σ

Sensitivity to Changes in τ_z

DATA: CANADA

Back to Levels

BROADER IMPLICATIONS OF THE MODEL

Mexico

- Does majority of trade with U.S.
- Very closed before trade liberalization
- Large differences in productivity & supply of skilled workers
- Synchronized policy changes
 - Dramatic reduction of trade barriers
 - Adoption of U.S. IP protection laws

BROADER IMPLICATIONS OF THE MODEL

Mexico

- Does majority of trade with U.S.
- Very closed before trade liberalization
- Large differences in productivity & supply of skilled workers
- Synchronized policy changes
 - Dramatic reduction of trade barriers
 - ► Adoption of U.S. IP protection laws

What about other cases, such as Chile and Canada?

CHILE

- Many trade partners
- Relatively closed before liberalization
- ► Lower productivity & supply of skilled workers than U.S.
- ► Trade liberalization (1979)
 - Reduction of trade barriers
 - No change in IP protection laws

DATA: CHILE

EXPERIMENT: CHILE

- Hold fixed parameters of production function
- Match the relative productivity of manufacturing
- Set supply of high-skilled workers to match the data
- Set initial distortions (τ_y , τ_z) to match skill premium in 1979

EXPERIMENT: CHILE

- Hold fixed parameters of production function
- Match the relative productivity of manufacturing
- Set supply of high-skilled workers to match the data
- Set initial distortions (τ_y, τ_z) to match skill premium in 1979
- Reduce tariffs in Chile to mimic trade liberalization

THEORY PREDICTIONS: CHILE

Basic H-O

- Chile specialized in unskilled-intensive good
- Skill premium in Chile \downarrow

Supply Chain:

- Less specialization since reduction in tariffs allows Chile to supply to U.S. Sector Y
- ► Skill premium in Chile ↑ if sufficient integration

RESULTS: CHILE

Back to Results Summary

CANADA

- Large portion of trade is with U.S.
- Relatively open before liberalization
- ► Similar productivity & supply of skilled workers as U.S.
- ► Free trade agreement (1988)
 - Slight reduction of trade barriers
 - Existing IP protection laws similar to those of the U.S.

DATA: CANADA

Normalized to 1 in 1970

EXPERIMENT: CANADA

- Hold fixed parameters of production function
- Match the relative productivity of manufacturing
- Set supply of high-skilled workers to match the data
- Set initial distortions (τ_y, τ_z) to match skill premium in 1985

EXPERIMENT: CANADA

- Hold fixed parameters of production function
- Match the relative productivity of manufacturing
- Set supply of high-skilled workers to match the data
- Set initial distortions (τ_y, τ_z) to match skill premium in 1985
- ► Reduce distortions in both countries to mimic FTA

THEORY PREDICTIONS: CANADA

Basic H-O

- No specialization since both countries have same relative supply of skilled labor
- ► No change in skill premium

Supply Chain:

- Both countries invest more in Sector Y since the technology can be used in more locations once countries open
- ► Skill premium ↑ in both countries

RESULTS: CANADA

Back to Results Summary