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ABSTRACT

This paper develops a new method to quantify the effects of uncertainty using estimates

from a nonlinear New Keynesian model. The model includes an occasionally binding zero

lower bound constraint on the nominal interest rate, which creates time-varying endogenous

uncertainty, and two exogenous types of time-varying uncertainty—a volatility shock to tech-

nology growth and a volatility shock to the risk premium. A filtered third-order approximation

of the Euler equation shows consumption uncertainty on average reduced consumption by

about 0.06% and the peak effect was 0.15% during the Great Recession. Other higher-order

moments such as inflation uncertainty, technology growth uncertainty, consumption skewness,

and inflation skewness had smaller effects. Technology growth volatility explained most of the

changes in uncertainty, but risk premium volatility had a major role in the last two recessions.
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1 INTRODUCTION

Intuition tells us that economic uncertainty can amplify the business cycle through a precautionary

savings motive.1 The question is whether that channel is quantitatively significant. Unfortunately,

it is difficult to answer for two main reasons. One, uncertainty is unobserved so there is disagree-

ment on what constitutes a good measure. Until recently, researchers have primarily relied on

various proxies for economic uncertainty, such as realized or implied volatility, indexes based on

keywords in print or online media, and survey-based forecast dispersion, which are often weakly

correlated and only loosely connected with the theoretical definition of uncertainty.2 Two, uncer-

tainty is endogenous. Not only can uncertainty affect economic activity, as intuition suggests, what

is happening in the economy can also affect uncertainty. A recent example is when the Great Re-

cession forced the Fed to cut its policy rate to its zero lower bound (ZLB) in December 2008. Plante

et al. (2016) find the constraint made real GDP more responsive to shocks that hit the economy

and therefore increased the uncertainty surrounding future real GDP growth because it restricted

the Fed’s ability to stabilize the economy. As a consequence, it is very difficult to determine the

causal effect of uncertainty using reduced-form empirical methods. To deal with the identification

problem, many researchers have turned to dynamic stochastic general equilibrium (DSGE) models.

A large segment of the literature that uses DSGE models introduces stochastic volatility, which

makes it easier to determine the effects of uncertainty by computing impulse responses to tempo-

rary increases in volatility.3 While that exercise addresses the identification problem, it is unable to

determine the effect of the uncertainty that arises endogenously in the model. This paper develops

a new approach to quantifying uncertainty that addresses both problems. First, we estimate a non-

linear New Keynesian model with an occasionally binding ZLB constraint on the nominal interest

rate and two stochastic volatility shocks—one to the rate of return on a 1-period nominal bond and

the other to the growth rate of technology. A key aspect of our model is that it contains endogenous

and exogenous sources of time-varying uncertainty. The ZLB constraint endogenously generates

uncertainty that depends on how severely the Fed is constrained, the volatility shock on the nominal

return introduces an exogenous source of financial or demand uncertainty, and the growth volatility

shock adds an exogenous form of supply uncertainty. Second, we derive a third-order approxima-

tion of the Euler equation to decompose consumption into eight key terms—expected consumption

next period, the ex-ante real interest rate, and the variance and skewness of consumption, technol-

ogy growth, and inflation next period. We then iterate on the Euler equation to remove the effect

of expected consumption. Finally, we filter the data to create a time series for each term in our

decomposition and then quantify the effects of uncertainty and skewness over different horizons.

Another key aspect of our estimation procedure is that we include the macro uncertainty index

developed by Jurado et al. (2015) and the financial uncertainty index from Ludvigson et al. (2017)

as observables so our model produces the same fluctuations in uncertainty found in the data. We

chose those indexes because they are constructed with over 100 macro and financial variables and

are based on the same statistic we use to measure uncertainty—expected forecast error volatility—

1Other potentially important uncertainty channels include the real options effect and the financial frictions effect.
2See, for example, Alexopoulos and Cohen (2009), Bachmann et al. (2013), Baker et al. (2013), and Bloom (2009).
3Researchers have used stochastic volatility shocks to examine the effects of uncertainty surrounding a wide range

of topics including fiscal policy [Born and Pfeifer (2014); Fernández-Villaverde et al. (2015)], monetary policy [Mum-

taz and Zanetti (2013)], investment and firm dynamics [Bloom (2009); Bloom et al. (2014); Christiano et al. (2014);

Justiniano and Primiceri (2008)], commodity prices [Plante and Traum (2012)], disaster risk [Gourio (2013)], and the

real interest rate in advanced and emerging economies [Basu and Bundick (2016); Fernández-Villaverde et al. (2011)].
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which removes the predictable component of a variable in each period, instead of a constant trend.

Over a 24-quarter horizon, consumption uncertainty on average reduced consumption by about

0.06% and the peak effect was 0.15% in 2009Q1, which accounted for 16.3% of the overall decline

in consumption in that quarter. We chose that horizon because it is long enough to nearly eliminate

the effect of expected future consumption. Inflation uncertainty and both consumption and inflation

skewness had a much smaller impact on consumption, even in the Great Recession. Those results

are based on a model without capital accumulation. When we extend the model so households can

invest in capital, we find uncertainty had a slightly larger effect on consumption. We also conduct

counterfactual simulations to decompose uncertainty into its endogenous and exogenous sources.

Changes in uncertainty were typically driven by growth volatility shocks. However, risk premium

volatility shocks explained about half of the increases in uncertainty in the past two recessions and

the ZLB constraint was a major contributor to the uncertainty since the end of the Great Recession.

It is helpful to provide some context for our results. When we estimate a VAR with the uncer-

tainty series ordered first using data from 1986Q1 to 2016Q2, a Cholesky decomposition implies

a one standard deviation increase in financial uncertainty causes consumption to decline by about

0.25%, while macro uncertainty decreases consumption by 0.3%. It appears the reduced-form ef-

fects of uncertainty are larger than we find using our Euler equation decomposition, but there are

a few important caveats. One, the responses from the VAR are based on a specific second moment

shock, whereas our Euler equation decomposition determines the combined effect of the shocks

that best explain the data each period. Two, the VAR is linear, but the relationship between uncer-

tainty and the economy is most likely nonlinear like it is in our DSGE model. Three, the economic

relationships in the VAR are backward-looking, whereas the DSGE model is forward-looking.

Four, the reduced-form estimates depend on the ordering of the uncertainty series in the VAR.

If the uncertainty series are ordered first, then the state of the economy has no contemporaneous

effect on the impulse responses. If they are ordered last, then uncertainty has no impact effect on

consumption and the responses to a financial and macro uncertainty shock are significantly smaller.

We show the impulse responses from our DSGE model invalidate both identification assumptions.

Several papers use the same recursive identification scheme to determine the effects of uncer-

tainty [Bachmann et al. (2013); Basu and Bundick (2016); Bekaert et al. (2013); Bloom (2009);

Jurado et al. (2015)]. A notable exception is Ludvigson et al. (2017) who use event and correlation

constraints to restrict the set of identified impulse responses and determine if uncertainty causes or

is caused by real activity. They find financial uncertainty shocks cause a sharp decline in real activ-

ity while macro uncertainty does not. Furthermore, negative shocks to real activity increase macro

uncertainty but have no clear effect on financial uncertainty. Those results invalidate the timing as-

sumptions used in recursive identification and the more general identification method represents a

substantial improvement over previous approaches, but it is unable to determine how the effects of

uncertainty change over time or the underlying sources of the shocks. We account for the potential

endogeneity of uncertainty through the lens of an estimated nonlinear DSGE model that allows for

various shocks whose effects on uncertainty and real activity depend on the state of the economy.

Structural models used to examine the effects of uncertainty usually include stochastic volatility

or a feature that endogenously generates uncertainty, but rarely both. The stochastic volatility

literature typically finds an exogenous increase in volatility decreases economic activity, but the

quantitative effects are often small unless the shock is large or the volatilities of multiple shocks

increase. One exception is Christiano et al. (2014) whose estimates indicate that uncertainty is a

major contributor to the business cycle. The risk shock in their model, however, is linked to the
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credit spread, which is observable and can fluctuate for reasons besides time-varying risk. We find

uncertainty can have a meaningful effect on economic activity, even if exogenous volatility shocks

have a small impact. Specifically, the effect of consumption uncertainty from our Euler equation

decomposition is an order of magnitude larger than the responses to either volatility shock. Those

results stress the importance of accounting for how real activity endogenously affects uncertainty.

Since uncertainty can also stem from what is going on in the economy, a small but growing

literature has developed models where uncertainty arises endogenously. Researchers have focused

on two mechanisms—incomplete information [Bachmann and Moscarini (2012); Fajgelbaum et al.

(2014); Straub and Ulbricht (2015); Van Nieuwerburgh and Veldkamp (2006)] and firm default

[Gourio (2014); Navarro (2014)]. The drawback with those models is that they focus on one

type of uncertainty and, due to their complexity, there is no tractable way to take them to the

data using likelihood based methods. One exception is Plante et al. (2016) who estimate a DSGE

model with a ZLB constraint, but they focus on the correlation between uncertainty and economic

activity rather than causation. This paper bridges the gap between the stochastic volatility and

endogenous uncertainty literatures by estimating a nonlinear DSGE model with both exogenous

and endogenous sources of time-varying uncertainty to determine the causal effect of uncertainty.

The paper proceeds as follows. Section 2 estimates two VARs to show the reduced-form effects

of uncertainty. Section 3 describes our structural model and uncertainty sources. Section 4 outlines

our solution and estimation procedures. Section 5 provides our estimation results, including the

parameter estimates and the effects of uncertainty and skewness on consumption. Section 6 adds

capital accumulation to our model to show how it affects our decomposition. Section 7 concludes.

2 REDUCED-FORM EVIDENCE

To provide a reference for the empirical results from our DSGE model, we first show the effects of

macro and financial uncertainty on consumption in a VAR model. The structural model is given by

A0yt = a0 + A1yt−1 + · · ·+ Apyt−p + ut, t = 1, . . . , T,

where ut ∼ N(0, I). The reduced-form VAR model is obtained by inverting A0 and is given by

yt = b0 +B1yt−1 + · · ·+Bpyt−p + εt, t = 1, . . . , T,

where b0 = A−1
0 a0 is a K×1 vector of intercepts, Bj = A−1

0 Aj are K×K coefficient matrices for

j = 1, . . . , p, εt = A−1
0 ut is a K × 1 vector of shocks that has a multivariate normal distribution

with zero mean and variance-covariance matrix Σ, and y is a K×1 vector of endogenous variables.

We include 9 variables similar to those in our DSGE model and the S&P 500 index to control

for the level effects of equity prices, as in Bloom (2009) and Jurado et al. (2015). The quar-

terly data consists of the financial uncertainty series in Ludvigson et al. (2017), FinU , the macro

uncertainty series in Jurado et al. (2015), MacroU , per capita real GDP, per capita real consump-

tion (nondurables + services), the GDP implicit price deflator, real wages (production and non-

supervisory employees), the risk premium (BAA corporate bond yield − 10 year treasury yield),

utilization-adjusted productivity (Fernald (2012)), the federal funds rate, and the S&P 500 index.

A detailed description of our data sources is provided in Appendix A. All variables except produc-

tivity enter the VAR in logs and, aside from the uncertainty series, the ordering follows Christiano

et al. (2005). We estimate the model with up to four lags and calculate the Bayesian information

3



RICHTER & THROCKMORTON: A NEW WAY TO QUANTIFY THE EFFECT OF UNCERTAINTY

criterion (BIC) to determine the appropriate lag. For example, when p = 4 the parameters are

β = vec(b0, B1, B2, B3, B4) and the regressors are Xt−1 = I10 ⊗ [1, y′t−1, y
′

t−2, y
′

t−3, y
′

t−4]. We

write the model as yt = Xt−1β + εt and calculate the least squares estimates, β̂ and Σ̂. The struc-

tural shocks are identified by a Cholesky decomposition, Σ̂ = (Â−1
0 )′Â−1

0 . According to the BIC,

the data prefers a model with one lag, so we use that specification for all of the impulse responses.
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(a) VAR model where the uncertainty series are ordered first.

0 4 8 12 16 20

-1

0

1

2

3

Uncertainty

MacroU (1986Q1-2016Q2)

FinU (1986Q1-2016Q2)

MacroU (1986Q1-2007Q4)

FinU (1986Q1-2007Q4)

0 4 8 12 16 20

-0.15

-0.1

-0.05

0
Consumption

(b) VAR model where the uncertainty series are ordered last.

Figure 1: Impulse responses to a one standard deviation increase in macro and financial uncertainty.

Figure 1 shows the responses of uncertainty and consumption to a one standard deviation shock

to the macro (no circles) and financial (circles) uncertainty indexes. Since there is no consensus on

where to place the uncertainty series in a VAR, we estimate two models—one with the uncertainty

series ordered first (figure 1a) and one with them ordered last (figure 1b). We estimate those

models using two samples: 1986Q1-2016Q2 (solid lines) and 1986Q1-2007Q4 (dashed lines).

The first sample is the one we use to estimate our DSGE model and the second sample removes the

influence of the ZLB, which is an endogenous source of uncertainty according to our DSGE model.

The estimates show both shocks have a smaller effect when the uncertainty series are ordered last,
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since changes in the state of the economy explain some of the movements in uncertainty. In the full

sample, an increase in macro (financial) uncertainty reduces consumption by about 0.3% (0.25%)

when uncertainty is ordered first, whereas it declines by only 0.12% (0.17%) when it is ordered last.

When we remove the ZLB period from our sample the peak effect on consumption also declines,

even though the uncertainty response is similar. Those results indicate that the ZLB amplifies

the effect of uncertainty shocks, as our DSGE model predicts. Since the responses are not state

dependent, the VAR model overstates the effect of uncertainty in the pre-ZLB period when using

estimates based on the entire sample. Interestingly, we will show when uncertainty is ordered last,

the responses in the pre-ZLB sample are similar to the average effect of consumption uncertainty

in our DSGE model when the ZLB does not bind, despite significant differences in methodology.4

3 STRUCTURAL MODEL AND MEASURES OF UNCERTAINTY

Our reduced-form estimates demonstrate that the effects of uncertainty are heavily dependent on

the specification of the VAR (sample, variables, and order) and the specific shocks. This section de-

velops a nonlinear DSGE model that can identify the marginal effects of uncertainty and skewness

over time. We use a New Keynesian similar to An and Schorfheide (2007), except it is augmented

to include a ZLB constraint, which introduces an endogenous source of time-varying uncertainty,

and two exogenous sources of time-varying uncertainty: a volatility shock to technology growth

(supply uncertainty) and a volatility shock to the return on a nominal bond (demand uncertainty).

3.1 FIRMS The production sector consists of a continuum of monopolistically competitive inter-

mediate goods firms and a final goods firm. Intermediate firm f ∈ [0, 1] produces a differentiated

good, yt(f), according to yt(f) = ztnt(f), where n(f) is the labor hired by firm f and zt = gtzt−1

is technology, which is common across firms. Deviations from the balanced growth rate, ḡ, follow

gt = (1− ρg)ḡ + ρggt−1 + σε,tεt, 0 ≤ ρg < 1, ε ∼ N(0, 1), (1)

σε,t = σ̄ε(σε,t−1/σ̄ε)
ρσε exp(σξξt), 0 ≤ ρσε

< 1, ξ ∼ N(0, 1), (2)

where the standard deviation of the technology shock, σε, follows an independent log-normal pro-

cess (σε and ε are uncorrelated) to add a source of time-varying supply uncertainty to the model.

The final goods firm purchases yt(f) units from each intermediate firm to produce the final

good, yt ≡ [
∫ 1

0
yt(f)

(θ−1)/θdf ]θ/(θ−1), according to a Dixit and Stiglitz (1977) aggregator, where

θ > 1 controls the elasticity of substitution between any two goods. It then maximizes dividends

to determine its demand function for intermediate good f , yt(f) = (pt(f)/pt)
−θyt, where pt =

[
∫ 1

0
pt(f)

1−θdf ]1/(1−θ) is the price level. Following Rotemberg (1982), each intermediate firm pays

a cost to adjust its price level, adjt(f) ≡ ϕf [pt(f)/(π̄pt−1(f))− 1]2yt/2, where ϕf > 0 scales the

size of the cost and π̄ is the gross inflation rate along the balanced growth path.5 Therefore, firm

f chooses nt(f) and pt(f) to maximize the expected discounted present value of future dividends,

Et

∑

∞

k=t qt,kdk(f), subject to its production function and the demand for its product, where qt,t ≡

1, qt,t+1 ≡ β(c̃t/c̃t+1)
γ is the pricing kernel between periods t and t + 1, qt,k ≡

∏k>t
j=t+1 qj−1,j ,

dt(f) = pt(f)yt(f)/pt − wtnt(f)− adjt(f), and a tilde denotes a variable relative to the level of

technology (x̃ = x/z). In symmetric equilibrium, all firms make identical decisions (i.e., pt(f) =

4Appendix B shows our qualitative results are robust to using a longer data sample similar to Jurado et al. (2015).
5Richter and Throckmorton (2016) show the parameter estimates with Calvo and Rotember pricing are very similar.
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pt, nt(f) = nt, and yt(f) = yt), so the production function and the optimality conditions reduce to

ỹt = nt, (3)

mct = w̃t (4)

ϕf(π
gap
t − 1)πgap

t = 1− θ + θmct + βϕfEt[(c̃t/c̃t+1)
γ(πgap

t+1 − 1)πgap
t+1(ỹt+1/ỹt)], (5)

where πgap
t ≡ πt/π̄ is the inflation gap. In the special case where prices are perfectly flexible (i.e.,

ϕf = 0), w̃t = (θ−1)/θ, which equals the inverse of the gross markup of price over marginal cost.

3.2 HOUSEHOLDS The representative household chooses {ct, nt, bt}
∞

t=0 to maximize expected

lifetime utility, E0

∑

∞

t=0 β
t[(ct/zt)

1−γ/(1 − γ) − χn1+η
t /(1 + η)], where γ is the coefficient of

relative risk aversion, χ > 0 is a preference parameter that determines the steady state labor supply,

1/η is the Frisch elasticity of labor supply, c is consumption, n is labor hours, b is the real value

of a privately-issued 1-period nominal bond that is in zero net supply, and E0 is the mathematical

expectation operator conditional on information in period 0. Following An and Schorfheide (2007),

households receive utility from consumption relative to the level of technology, which is a proxy for

the habit stock. That assumption allows us to use additively separable preferences and parameterize

the degree of risk aversion while maintaining a balanced growth path. The household’s choices are

constrained by ct + bt/(itst) = wtnt + bt−1/πt + dt, where π is the gross inflation rate, w is the

real wage rate, i is the gross nominal interest rate set by the central bank, and d is a real dividend

received from owning the intermediate goods firms. Following Smets and Wouters (2007) and

Gust et al. (2016), s is a shock to the rate of return on the nominal bond and it evolves according to

st = (1− ρs) + ρsst−1 + συ,tυt, 0 ≤ ρs < 1, υ ∼ N(0, 1), (6)

συ,t = σ̄υ(συ,t−1/σ̄υ)
ρσ exp(σζζt), 0 ≤ ρσυ

< 1, ζ ∼ N(0, 1), (7)

where the standard deviation of the risk premium shock, συ, follows an independent log-normal

process (συ and υ are uncorrelated) to introduce time-varying demand uncertainty into the model.

The first order conditions to the household’s optimization problem imply

w̃t = χnη
t c̃

γ
t , (8)

1 = βEt[(c̃t/c̃t+1)
γ(stit/(π̄π

gap
t+1gt+1))]. (9)

Equation (9) is the consumption Euler equation, which we use to identify the effect of uncertainty.

3.3 MONETARY POLICY The central bank sets the gross nominal interest rate according to

it = max{1, int }, (10)

int = (int−1)
ρi (̄ı(πgap

t )φπ(gtỹ
gdp
t /(ḡỹgdpt−1))

φy)1−ρi exp(σννt), 0 ≤ ρi < 1, ν ∼ N(0, 1), (11)

where ygdp is real GDP (i.e., the level of output minus the resources lost due to price adjustment

costs), in is the gross notional interest rate, ı̄ and π̄ are the inflation and interest rate targets, which

equal their values along the balanced growth path, and φπ and φy are the responses to deviations

of inflation from the target rate and deviations of real GDP growth from the balanced growth rate.6

6We also estimated the model with the potential output gap, ygdpt /ypt , instead of the growth rate gap in the Taylor

rule. We decided to use the specification in (11) because that model had a significantly higher marginal data density.
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3.4 COMPETITIVE EQUILIBRIUM The aggregate resource constraint is given by

c̃t = ỹgdpt , (12)

ỹgdpt = [1− ϕf(π
gap
t − 1)2/2]ỹt. (13)

In order to make the model stationary, we redefined all of the variables that grow along the balanced

growth path in terms of technology (i.e., x̃t ≡ xt/zt). A competitive equilibrium consists of infinite

sequences of quantities, {c̃t, ỹt, ỹ
gdp
t , nt}

∞

t=0, prices, {w̃t, mct, it, i
n
t , π

gap
t }∞t=0, and exogenous vari-

ables, {st, gt, σε,t, συ,t}
∞

t=0, that satisfy the detrended equilibrium system, (1)-(13), given the initial

conditions, {c−1, i
n
−1, s0, a0, ν0, σε,0, συ,0}, and the five sequences of shocks, {εt, υt, νt, ξt, ζt}

∞

t=1.

3.5 MEASURES OF UNCERTAINTY The stochastic volatility processes, (2) and (7), introduce

exogenous sources of time-varying supply and demand uncertainty. The uncertainty is measured

by the standard deviations of future technology growth and the future risk premium, which equal

Ug,t =
√

Et[(gt+1 − Etgt+1)2] =
√

Etσ
2
ε,t+1,

Us,t =
√

Et[(st+1 − Etst+1)2] =
√

Etσ2
υ,t+1.

We classify these types of uncertainty as exogenous because they fluctuate due to temporary

changes in the standard deviation of each shock. For example, if the volatility of technology

growth temporarily increases, then supply uncertainty also increases and lowers economic activity.

Uncertainty also arises endogenously in models. Following Plante et al. (2016), the endogenous

time-varying uncertainty surrounding trended consumption growth, cgt ≡ gtc̃t/c̃t−1, is given by

Ucg,t ≡
√

Et[(c
g
t+1 − Et[c

g
t+1])

2], (14)

which is the same statistic we use to measure exogenous uncertainty, except it is calculated with an

endogenous variable. In contrast with the exogenous types of uncertainty, this form of uncertainty

also fluctuates due to events that happen in the economy. For example, when the nominal interest

rate is stuck at its ZLB, the economy is more sensitive to first moment shocks that adversely affect

the economy, which increases the endogenous uncertainty about consumption growth. The ZLB

also generates uncertainty by amplifying the effect of the exogenous volatility shocks. When the

ZLB does not bind, first and second moment shocks still affect Ucg,t but the magnitudes are smaller.

4 NUMERICAL METHODS AND EULER EQUATION DECOMPOSITION

4.1 SOLUTION METHOD We solve the nonlinear model with the policy function iteration algo-

rithm described in Richter et al. (2014), which is based on the theoretical work on monotone op-

erators in Coleman (1991). The presence of stochastic volatility complicates the solution method

because the realizations of shocks depend on the realizations of the stochastic volatility processes.

We discretize the state space and then approximate the stochastic volatility processes, (2) and

(7), and first moment shocks, ε, υ, and ν, using the N-state Markov chain described in Rouwen-

horst (1995). The Rouwenhorst method is attractive because it only requires us to interpolate

along the dimensions of the endogenous state variables, which makes the solution more accurate

and faster than quadrature methods. For each combination of the first and second moment shocks,

7
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we calculate the future realizations of technology and the risk premium according to (1) and (6).

To obtain initial conjectures for the nonlinear policy functions, we solve the log-linear analogue of

our nonlinear model with Sims’s (2002) gensys algorithm. Then we minimize the Euler equation

errors on every node in the discretized state space and compute the maximum distance between the

updated policy functions and the initial conjectures. Finally, we replace the initial conjectures with

the updated policy functions and iterate until the maximum distance is below the tolerance level.

The algorithm produces nonlinear policy functions for consumption and inflation. To estimate

the model, we also create a policy function for consumption growth uncertainty, (14), by interpo-

lating the policy function for consumption given the updated state and then numerically integrating

using the Rouwenhorst weights. See Appendix C for a detailed description of the solution method.

4.2 ESTIMATION PROCEDURE We estimate the nonlinear model with quarterly data on per

capita real GDP, RGDP/CNP , the GDP deflator, DEF , the average federal funds rate, FFR,

the macro uncertainty series in Jurado et al. (2015), MacroU , and the financial uncertainty series

in Ludvigson et al. (2017), FinU , from 1986Q1 to 2016Q2. The vector of observables is given by

x̂
data ≡













log(RGDPt/CNPt)− log(RGDPt−1/CNPt−1)
log(DEFt/DEFt−1)
log(1 + FFRt/100)/4

(MacroU − µMacroU)/σMacroU

(FinU − µF inU)/σF inU













,

where µ and σ denote mean and standard deviation across time. We use the MacroU and FinU
uncertainty series as observables to help inform the stochastic volatility parameters in our model

and ensure that our model produces the same fluctuations in uncertainty that are found in the data.

The benefit of these particular uncertainty series is that they are calculated the exact same way as

the uncertainty measures in our model, so they distinguish between uncertainty and conditional

volatility, and they reflect the common variation in more than 100 macro and financial time series.

Balanced Growth Discount Factor β̄ 0.9987 Real GDP Growth Rate ME SD σme,yg 0.00268
Frisch Elasticity of Labor Supply 1/η 3 Inflation Rate ME SD σme,π 0.00109
Elasticity of Substitution θ 6 Federal Funds Rate ME SD σme,i 0.00094
Balanced Growth Labor Supply n̄ 0.33 Macro Uncertainty ME SD σme,macrou 0.44721
Number of Particles Np 40,000 Financial Uncertainty ME SD σme,finu 0.44721

Table 1: Calibrated parameters for the DSGE model and estimation procedure.

We calibrate four parameters that are not well-informed by our data (table 1). The discount fac-

tor along the balanced growth path, β̄, is calibrated to 0.9987 to match (1/T )
∑T

t=1(1+Gt/400)(1+
Πt)/(1 + FFRt/100)

1/4, where T is the sample size, Gk is the annual utilization-adjusted growth

rate of technology from Fernald (2012) and Πk = log(DEFk/DEFk−1). The preference param-

eter, χ, is set so the labor supply along the balanced growth path equals 1/3 of the available time.

The elasticity of substitution between intermediate goods, θ, is set to 6, which matches the estimate

in Christiano et al. (2005) and corresponds to a 20% average markup of price over marginal cost.

The Frisch labor supply elasticity, 1/η, is set to 3, to match the macro estimate in Peterman (2016).

We use Bayesian methods to estimate the remaining parameters. For each draw from the pa-

rameter distribution, we solve the nonlinear model and approximate the likelihood using a particle

8
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filter. We determine whether to accept a draw with a random walk Metropolis-Hastings algorithm.

The filter uses 40,000 particles and systematic resampling with replacement following Kitagawa

(1996). To help the model better match outliers during the Great Recession, we adapt the parti-

cle filter described in Fernández-Villaverde and Rubio-Ramı́rez (2007) to include the information

contained in the current observation according to Algorithm 12 in Herbst and Schorfheide (2016).

A major difference from other filters is that the particle filter requires measurement error (ME)

to avoid degeneracy—a situation when all but a few particle weights are near zero, so the equation

linking the observables to equivalent variables in the model is given by x̂
data
t = x̂

model
t + ξt, where

x̂
model
t =

[

log(gtỹ
gdp
t /ỹgdpt−1) log(πt) log(it) (Ucg,t − µUcg

)/σUcg
(Us,t − µUs

)/σUs

]

,

ξ ∼ N(0,Σ) is a vector of MEs, and Σ = diag([σ2
me,yg , σ

2
me,π, σ

2
me,i, σ

2
me,macrou, σ

2
me,finu]). Fol-

lowing Herbst and Schorfheide (2016), the ME variance of real GDP growth, the inflation rate,

and both uncertainty series is set to 20% of their variance in the data. However, we set the ME

variance for the policy rate to 2% of its variance in the data because the federal funds rate it is less

noisy and it affects the level of uncertainty predicted by the model. We chose to link consumption

growth uncertainty to the macro uncertainty index and risk premium uncertainty to the financial

uncertainty index because Ludvigson et al. (2017) show financial uncertainty is an exogenous im-

pulse that causes recessions, whereas macro uncertainty endogenously responds to other shocks

that affect the business cycle. In our model, consumption growth uncertainty is equal to real GDP

uncertainty and it is determined endogenously, whereas risk premium uncertainty is exogenous.

The entire algorithm is programmed in Fortran using Open MPI and executed on a cluster with

512 cores. We parallelize the nonlinear solution by distributing the nodes in the state space across

the available cores. To increase the accuracy of the filter, we calculate the model likelihood on

each core and then evaluate whether to accept a candidate draw based on the median likelihood.

Our estimation procedure has three stages. First, we conduct a mode search to create an initial

variance-covariance matrix for the parameters. The covariance matrix is based on the parameters

corresponding to the 90th percentile of the likelihoods from 5,000 draws. Second, we perform an

initial run of the Metropolis Hastings algorithm with 25,000 draws from the posterior distribution.

We burn off the first 5,000 draws and use the remaining draws to update the variance-covariance

matrix from the mode search. Third, we conduct a final run of the Metropolis Hastings algorithm.

We obtain 100,000 draws from the posterior distribution and then thin by 100 to limit the effects of

serial correction in the parameter draws, so our final analysis is based on a sample of 1,000 draws.

4.3 EULER EQUATION DECOMPOSITION Our goal is to determine how changes in uncertainty

affect consumption, taking into account all first and and second moment shocks as well as endoge-

nous dynamics. One way to quantify the effect of uncertainty is by decomposing the consumption

Euler equation, (9). A third-order Taylor approximation around the balanced growth path implies

ĉt ≈ Etĉt+1 −
1
γ
r̂t − covt(π̂t+1, ĉt+1)− covt(ĝt+1, ĉt+1)−

1
γ
covt(π̂t+1, ĝt+1)

− 1
2γ
(vart ĝt+1 + vart π̂t+1 + γ2 vart ĉt+1) +

1
6γ
(skewt ĝt+1 + skewt π̂t+1 + γ3 skewt ĉt+1),

where vart, skewt, and covt denote the variance, third moment, and covariance of a future vari-

able conditional on information at time t, r̂t ≡ ı̂t + ŝt − Etπ̂t+1 − Etĝt+1 is the ex-ante real

interest rate, and a hat denotes log deviations from the balanced growth path. The decomposition

shows consumption depends on its expected value next period, the ex-ante real interest rate, the

9
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variance and skewness of consumption, technology growth, and inflation next period, and the co-

variances between those variables next period. We omitted higher-order covariance terms, such as

covt(π̂
2
t+1, ĉt+1), as well as fourth-order and higher terms because we found they had almost no

effect on consumption in our sample. The variance terms quantify the effect of the three types of

uncertainty and the skewness terms determine the effects of upside and downside risk. The first

two covariance terms capture the risk premia associated with unexpected inflation or technology

growth, which are partially offset by the covariance between those variables. Higher risk aversion

means households are less willing to intertemporally substitute consumption goods, which makes

them more sensitive to changes in risk premia or the variance and skewness of future consumption.

The decomposition shows how the different types of uncertainty and skewness affect economic

activity over a 1-quarter horizon. If we recursively substitute for expected consumption, we obtain

ĉt ≈ Etĉt+q −
1
γ
Et

∑q
j=1 r̂t+j−1

−
∑q

j=1(covt(π̂t+j , ĉt+j) + covt(ĝt+j , ĉt+j) +
1
γ
covt(π̂t+j , ĝt+j))

− 1
2γ

∑q
j=1(vart ĝt+j + vart π̂t+j + γ2 vart ĉt+j)

+ 1
6γ

∑q
j=1(skewt ĝt+j + skewt π̂t+j + γ3 skewt ĉt+j),

(15)

where q ≥ 1 is the forecast horizon. The sum over q quarters of each variance term represents the

marginal effect of a given type of uncertainty, conditional on expected consumption in quarter q.

As q becomes sufficiently large, the conditional expectation drops out of the decomposition and

we can identify the unconditional effects of each type of uncertainty. Over a 1-quarter horizon,

expected consumption is a strong indicator of current consumption, but that result hides the effect

higher order moments in future quarters have on expectations. By decomposing expected future

consumption, we can show how uncertainty, skewness, and the risk premia affect economic ac-

tivity over longer horizons, while taking into account the distributions of all five shocks and the

endogenous dynamics that stem from those shocks. To quantify those effects, we first create a

policy function for each term in the decomposition using 100,000 q-quarter simulations initialized

at each node in the discretized state space. In total there are 10q+1 policy functions. We then filter

the data and use the median states and shocks to interpolate each term in the decomposition for the

entire sample, which produces a time series that shows how each component affects consumption.

5 ESTIMATION RESULTS

This section provides our main results. We first report the posterior parameter estimates and then

show the results of our Euler equation decomposition. To better understand the mechanisms, we

conclude by showing the impulse responses and the results of a nonlinear variance decomposition.

5.1 PRIOR AND POSTERIOR DISTRIBUTIONS The first four columns of table 2 display the

estimated parameters and information about the prior distributions. The means and standard devi-

ations are in line with Gust et al. (2016), who were the first to estimate a nonlinear DSGE model

with an occasionally binding ZLB constraint. The prior for the coefficient of relative risk aversion

is taken from An and Schorfheide (2007). The priors for the balanced growth rates of technology

and inflation are based on the average per capita GDP growth rate and the GDP deflator inflation

rate over our sample period. The priors for the monetary policy parameters, which follow Guerrón-

Quintana and Nason (2013), are chosen so the distributions cover the values in Taylor (1993) as

10
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Prior Posterior

Parameter Dist. Mean SD Mean SD 5% 95%

Risk Aversion (γ) Gamm 2.0000 0.5000 3.00551 0.44806 2.35252 3.81243

Price Adjustment Cost (ϕ) Norm 100.0000 20.0000 141.00914 19.95554 110.36190 175.77686

Inflation Response (φπ) Norm 2.0000 0.2500 2.54332 0.19854 2.21212 2.85598

Output Response (φy) Norm 0.5000 0.2000 1.04678 0.15152 0.79593 1.29649

Average Growth (ḡ) Norm 1.0040 0.0010 1.00439 0.00058 1.00337 1.00534

Average Inflation (π̄) Norm 1.0055 0.0010 1.00649 0.00041 1.00579 1.00718

Int. Rate Persistence (ρi) Beta 0.6000 0.2000 0.84086 0.01902 0.80740 0.87024

Growth Persistence (ρg) Beta 0.4000 0.2000 0.51433 0.12352 0.29503 0.70706

Risk Persistence (ρs) Beta 0.6000 0.2000 0.91050 0.01084 0.89163 0.92723

Growth SV Persistence (ρσε
) Beta 0.6000 0.2000 0.95721 0.01890 0.92614 0.98109

Risk SV Persistence (ρσυ
) Beta 0.6000 0.2000 0.93308 0.01617 0.90404 0.95725

Int. Rate Shock SD (σν) IGam 0.0025 0.0025 0.00127 0.00017 0.00102 0.00157

Tech Shock SD (σε) IGam 0.0075 0.0075 0.00371 0.00054 0.00288 0.00463

Risk Shock SD (συ) IGam 0.0025 0.0025 0.00139 0.00022 0.00107 0.00177

Tech SV Shock SD (σξ) IGam 0.1000 0.0250 0.11216 0.02350 0.07647 0.15372

Risk SV Shock SD (σζ) IGam 0.1000 0.0250 0.11855 0.02218 0.08428 0.15666

Table 2: Prior and posterior distributions of the estimated parameters. The last two columns show the 5th and 95th per-

centiles of each marginal posterior distribution. The model is estimated with quarterly data from 1986Q1 to 2016Q2.

well as stronger responses that could explain data during the ZLB period. The persistence parame-

ters are diffuse, but most of the means are set to 0.6 since we expect a modest degree of persistence

is needed to explain the data, especially in the ZLB period. The standard deviations are also dif-

fuse but less diffuse than in An and Schorfheide (2007) and Smets and Wouters (2007), since our

nonlinear model generates more volatility than analogous linear models without a ZLB constraint.

The last four columns display the posterior means, standard deviations, and 90% credible sets

for the estimated parameters. Many of the parameter estimates differ from Gust et al. (2016) and

Plante et al. (2016), who estimate similar nonlinear models but without stochastic volatility. The

low frequency movements in the MacroU and FinU uncertainty series coupled with the sharp

increases in both series during the Great Recession produce large stochastic volatility shocks that

are highly persistent. For example, a two standard deviation supply uncertainty shock causes a

25.1% increase in the volatility of technology growth with a half-life of about 15.9 quarters. The

monetary policy parameters imply a high degree of interest rate smoothing and a strong response

to the real GDP growth and inflation gaps, which are necessary to explain the long ZLB period

because real GDP growth and inflation were only slightly below their targets throughout most of

that period. The mean estimates of the annualized technology growth and inflation rates are 1.77%
and 2.62%, which are slightly higher than the values in the data since they are unconditional and

under-represent the effects of the ZLB period. The mean coefficient of relative risk aversion is

within the range of estimates typically found in the literature (e.g., An and Schorfheide (2007)),

but the price adjustment cost parameter is larger than Gust et al. (2016) and Plante et al. (2016)

estimate. Appendix E provides further information about the estimation procedure including the

trace plots, the prior and posterior kernel densities of the parameters, the median filtered shocks and

observables, the unconditional moments, and the conditional and unconditional ZLB durations.
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5.2 EULER EQUATION DECOMPOSITION Figure 2 shows the filtered time series of the terms

in the Euler equation decomposition in (15) over different forecast horizons. The values on the

vertical axis of each subplot denote the marginal effects on current consumption in percentage

point deviations from the balanced growth path. The top panel shows the decomposition over a

1-quarter horizon. We separate the first order terms (left panel) and the higher order terms (right

panel) so the marginal effects of expected consumption and the real interest rate do not drown out

the effects of the uncertainty and skewness terms. We also plot current consumption in the top left

panel so it is easier to see the contribution of each term. Over a 1-quarter horizon, the changes in

consumption are almost entirely driven by expectations about consumption next quarter. The real

interest rate had a smaller role, typically reducing consumption by less than 0.14%. The peak effect

was about −0.37% during the Great Recession, but that effect declined as the economy rebounded.

The higher-order terms show uncertainty about consumption in the next quarter had time-

varying adverse effects on current consumption and it never had a positive effect, in contrast with

the empirical results in Ludvigson et al. (2017). The effect of consumption uncertainty peaked

during each of the last two recessions, but it was much larger during the Great Recession because

the ZLB constraint made the economy more sensitive to adverse shocks and increased the expected

volatility of future consumption. Even during the Great Recession, however, the quantitative effect

of consumption uncertainty was small. The peak increase in uncertainty reduced consumption by

less than 0.01%. Furthermore, consumption skewness and both inflation uncertainty and inflation

skewness had very little effect on current consumption. However, these magnitude are misleading

because they hide the effects that uncertainty and skewness have on expected future consumption.

The middle left panel shows how expected future consumption affected current consumption

over horizons up to 24 quarters. Once again, we plot the filtered time series for current consump-

tion as a percent deviation from the balanced growth path. In most periods, the differences between

current and expected consumption were much larger over horizons beyond 1-quarter, which indi-

cates that other factors, such as the real interest rate and uncertainty, explain a larger fraction of the

fluctuations in consumption. We decided to focus on a 24-quarter horizon because it is long enough

that expected consumption barely matters for current consumption. For example, in 2009Q2—the

last quarter of the Great Recession—expected consumption in 2009Q3 explained 74.3% of the

decline in current consumption, whereas expected consumption in 2015Q3 explained only 1.6%
of the decline. Over those same horizons, the contribution of consumption uncertainty increased

from 2.9% to 11.9%, which shows that it is crucial to decompose the expected value of future con-

sumption in order to uncover the underlying sources of the fluctuations in current consumption.7

The middle right panel shows the effect of consumption uncertainty over the same forecast

horizons shown in the left panel, except the values on the vertical axis are cumulative effects (i.e.,

the sum of the impact in each quarter over a given horizon). Although the effect of consumption

uncertainty is small when it is conditional on expected consumption over a 1-quarter horizon, it is

more significant over longer horizons that reduce the contribution of expected future consumption.

Over a 24-quarter horizon, consumption uncertainty on average decreases current consumption

by 0.06% and the peak effect was about 0.15% in 2009Q1, which accounted for 16.6% of the

overall decline in consumption in that quarter. Those results suggest that uncertainty had a similar

average effect on consumption as the VAR indicates when uncertainty is ordered last. However, it

7We would like to show the effect of each term as a percentage of the total change of consumption every period, but

the value is uninformative when consumption near its steady state or when some of the terms have competing effects.
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Figure 2: Filtered decomposition of the effects on current consumption. The shaded regions denote NBER recessions.

The vertical axis is the contribution to the percentage point deviation of detrended consumption from its steady state.
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is important to emphasize that the estimates from the VAR are based on past data (i.e., backward-

looking), they only show the effect of one second moment shock with the other shocks turned off,

and they are independent of the state of the economy. In contrast, the estimates from our Euler

equation decomposition account for all possible realizations future shocks (i.e., forward-looking)

and they are based on the combined effect of the shocks that best explain the data in each period.

The other higher order moments are shown in the bottom left panel. During the Great Re-

cession, the peak effects of inflation uncertainty, technology growth uncertainty, and consumption

skewness over a 24-quarter horizon were −0.023%, −0.005%, and −0.001%, respectively, and the

average effects were an order of magnitude smaller. We do not show the effect of inflation skew-

ness because it is near zero throughout the sample. It is not surprising that inflation uncertainty and

skewness had such small effects on consumption because the Fed aggressively targeted inflation

throughout our sample. However, we expected a larger effect of consumption skewness, especially

during the Great Recession. The ZLB constraint creates downside risk because it prevents the Fed

from responding to adverse shocks through conventional channels. Evidently, those effects on eco-

nomic activity are very small when controlling for other moments. Interestingly, the inflation risk

premium had the second largest adverse effect on consumption out of all the higher order terms in

the decomposition and the growth risk premium had a small positive effect on economic activity.

The bottom right panel shows the total effect of uncertainty (i.e., the sum of consumption,

growth, and inflation uncertainty) on consumption over a 24-quarter horizon. On average, total

uncertainty reduces consumption by about 0.07% with a maximum decline of 0.17% in the Great

Recession. As a counterfactual, we also plot the effect of uncertainty after removing the influence

of the ZLB constraint using the solution to the unconstrained nonlinear model. The differences

between the two paths show how much the ZLB constraint increased the adverse effects of uncer-

tainty. In most quarters, the differences are small because there is a low probability of going to

and staying at the ZLB. Significant differences between the two paths occurred from 2008Q4 to

2009Q4, when the notional rate was well below zero and there was a strong expectation of staying

at the ZLB. During that period, uncertainty reduced consumption by about 0.048 percentage points

more (−0.174% versus −0.126%) than it would have if the Fed was not constrained by the ZLB.

The ZLB also amplified the marginal effect of total uncertainty around the time of the 2001

recession. That happened even though the annual federal funds rate exceeded 4% before the reces-

sion. Macro uncertainty increased before the recession and the filtered volatility series for technol-

ogy growth and the risk premium were elevated. Households expected volatility to remain elevated

since the uncertainty series are very persistent. Hence, first-moment shocks were amplified over

the 24-quarter forecast horizon, making it more likely that the ZLB will bind. It became even

more likely that the ZLB would bind when the federal funds rate was reduced during the recession

and remained below 2%. These results demonstrate that endogenous events, particularly during

recessions, can have a meaningful effect on how people respond to sharp increases in uncertainty.

5.3 IMPULSE RESPONSES The Euler equation decomposition shows consumption uncertainty

had the largest effect on consumption at the end of the Great Recession when the Fed was con-

strained by the ZLB. Impulse responses initialized at different states of the economy are a useful

way to highlight which states and shocks contributed to that result. Figure 3 plots the responses to

a 2 standard deviation positive risk premium (first column), risk premium volatility (second col-

umn), growth (third column), and growth volatility (fourth column) shock. The parameters are set

to their posterior means, and the simulations are initialized at two different states. As a benchmark,
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Figure 3: Impulse responses to a 2 standard deviation positive shock at and away from the ZLB. The steady-state

simulation (solid line) is initialized at the stochastic steady state. The other simulation (dashed line) is initialized at the

filtered state corresponding to 2009Q2 so the ZLB binds. The vertical axis is in percentage point deviations from the

baseline simulation, except uncertainty which is a percent change. The horizontal axis is the time period in quarters.

the steady-state simulation (solid lines) is initialized at the stochastic steady state. We compare the

benchmark responses to the responses when the notional rate is negative (dashed lines) by initial-

izing the simulation at the filtered state vector corresponding to 2009Q2. The effect of mean rever-

sion is removed from the responses by plotting the percentage point difference (percent difference

for uncertainty) from a counterfactual simulation without a shock in the first quarter. Uncertainty is

measured by the expected volatility of the 1-quarter-ahead forecast error for consumption growth.

The risk premium and growth volatilities are initialized at their stochastic steady states in both

simulations, so the level shocks are not amplified by exogenous changes in volatility over time and

the impact effects of the volatility shocks are not distorted by the log-normal volatility processes.

A higher risk premium (first column) in either initial state causes households to postpone con-
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sumption, which lowers consumption growth and inflation on impact. When the Fed is not con-

strained by the ZLB, it responds to the shock by reducing its policy rate. The impact on uncertainty

is small since the Fed is able to stabilize the economy. In 2009Q2, the higher risk premium leads to

an expected ZLB duration of 2 quarters on impact. The Fed cannot respond by lowering its policy

rate, which causes a larger decline in consumption. The result is a larger increase in uncertainty

since households expect a wider range of future realization of consumption growth. In other words,

the model endogenously generates uncertainty when the ZLB binds due to a risk premium shock.

Similar to the level shock, a positive shock to the volatility of the risk premium (second column)

lowers consumption growth and inflation. In steady state, the Fed adjusts its policy rate to stabilize

the economy, so the effect of the volatility shock is small even though uncertainty rises far more

than it does in response to the level shock. When the ZLB binds, however, the increase in uncer-

tainty nearly doubles, which magnifies the effect on consumption growth and inflation. Hence, the

model also endogenously creates uncertainty by amplifying the effects of second moment shocks.

Level and volatility shocks to technology growth have qualitatively and quantitatively different

effects than risk premium shocks. A positive shock to technology growth (third column) increases

consumption growth and decreases inflation like a typical supply shock, so the Fed faces a tradeoff

between stabilizing inflation and real GDP growth unlike with a risk premium shock. In steady

state, the policy rate immediately increases since the response to the real GDP gap dominates the

response to the inflation gap. In 2009Q2 the ZLB initially binds, but the increase in the notional

rate causes a quick exit from the ZLB after 1 quarter. The delayed increase in the policy rate causes

a slightly larger boost in consumption growth and a smaller decline in inflation. In contrast with

the risk premium shock, a positive growth shock causes uncertainty to decline because it reduces

the probability that the ZLB binds next period. However, the responses are smaller in magnitude.

Growth volatility shocks generate a larger change in uncertainty than level shocks. Similar to

a risk premium volatility shock, a positive growth volatility shock (fourth column) reduces con-

sumption growth and inflation, which leads to a lower nominal rate. However, the responses differ

from a risk premium volatility shock in a few ways. One, growth volatility directly affects con-

sumption volatility. Therefore, uncertainty increases more than it does in response to risk premium

volatility shocks. Two, since the central bank faces a tradeoff between stabilizing consumption and

inflation in response to a growth shock, the response of uncertainty is similar in both initial states.

Higher volatility directly creates more uncertainty by prolonging the expected duration at the ZLB,

but it also places a higher probability on positive growth shocks that would push the notional rate

into positive territory. Evidentally those two effects offset each other. Three, while the uncertainty

response is roughly twice as large as the response to a risk premium volatility shock when the ZLB

binds, the differences are much larger away from the ZLB. Therefore, growth volatility shocks

play a much larger role in explaining the fluctuations in uncertainty when the ZLB does not bind.

5.4 SOURCES OF UNCERTAINTY The top panel of figure 4 plots the standardized macro uncer-

tainty series (solid line) from Jurado et al. (2015) and the standardized financial uncertainty series

(circles) from Ludvigson et al. (2017) that we use as observables in our estimation. Given the

mean parameter estimates from our model, we are able to determine how much of the fluctuations

in uncertainty are due to exogenous sources and how much are caused by the state of the economy.

The middle panel shows the decomposition of the sources of uncertainty in our model. We first

plot the filtered time series of consumption growth uncertainty (solid line) to show the total amount

of uncertainty across time. The measurement error equation directly links the macro uncertainty
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Figure 4: Time series of the uncertainty measures in the data and the sources of uncertainty in DSGE model.
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series in the data to consumption uncertainty, so the filtered uncertainty series is very close to the

data, except the units are consistent with the model. We then conduct counterfactual simulations

that highlight the contribution of each exogenous source of uncertainty to total uncertainty. To

isolate the effect of growth uncertainty, we turn off the risk premium volatility shocks (circles).

Similarly, we zero out the growth volatility shocks to identify the effect of risk premium uncer-

tainty (triangles). When we turn off both volatility shocks, the model still generates time-varying

uncertainty due to the ZLB, which reflects one aspect of the endogenous uncertainty (diamonds).8

The decomposition of consumption uncertainty reveals a number of interesting findings. First,

consumption uncertainty with (solid line) and without (circles) the risk premium volatility shocks

is positively correlated. In other words, the data indicate that most of the fluctuations in uncertainty

are explained by growth volatility shocks, which are independent of the state of the economy, rather

that risk premium volatility shocks. Second, risk premium uncertainty (triangles), which is linked

to the financial uncertainty series in the data, is an important driver of consumption uncertainty

only in certain parts of our sample. For example, total consumption uncertainty begins to rise in

the late 1990s due to elevated risk premium volatility and it remains elevated for about two years

after the Great Recession partly due the higher persistence in risk premium volatility. Some of the

fluctuations in uncertainty are also explained by time-varying endogenous uncertainty (diamonds).

For most of the example, endogenous uncertainty is fairly constant, but it increases when the policy

rate is near or at its ZLB, which occurs in the mid 2000s and from 2009 to the end of the sample.

Despite some nonlinear interactions between the volatility shocks and the ZLB, we are able

to approximate the relative contribution of each volatility shock over time, similar to a variance

decomposition in a linear model. The dark bars in the bottom panel represent the growth coun-

terfactual relative to the pure endogenous uncertainty counterfactual (circles minus diamonds) and

the light bars represent the risk premium counterfactual relative to the pure endogenous uncertainty

counterfactual (triangles minus diamonds), which is approximately equal to total uncertainty rela-

tive to the pure endogenous uncertainty counterfactual (solid minus diamonds). The results indicate

that growth uncertainty is typically the biggest contributor to total uncertainty and the two sources

of exogenous uncertainty often act together. However, there are two notable exceptions. One, the

model predicts that risk premium uncertainty precedes the 2001 recession. Two, growth uncer-

tainty precedes the rise in risk premium uncertainty during the Great Recession, but the effects

of risk premium uncertainty linger while the impact of growth uncertainty is negligible for a few

years immediately after the recession. Interestingly, growth and risk premium shocks have nearly

equal roles in explaining the past two recessions. Toward the end of the sample, total uncertainty

is near its lowest point, which is primarily due to the reduced influence of growth volatility shocks.

6 THE EFFECT OF CAPITAL ACCUMULATION

In our baseline DSGE model, real GDP is equal to consumption and the only way households can

save is by investing in a 1-period nominal bond, which is in zero net supply. This section extends

the model so households can also invest in physical capital. In the data, investment is more volatile

than real GDP, especially during recessions, so it is important to add capital to the model since it

allows output, consumption, and investment to have different, potentially time-varying, volatilities.

8One drawback of our approach to decomposing the sources of uncertainty is that the endogenous amplification

of first and second moment shocks is embedded in the growth and risk premium uncertainty counterfactuals, which

reduces the relative importance of endogenous uncertainty. Unfortunately, there is no easy way to address this problem.
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The final goods firm’s problem is unchanged. Intermediate firm f ∈ [0, 1] produces a differ-

entiated good, yt(f), according to yt(f) = kt−1(f)
α(ztnt(f))

1−α. It then chooses its capital and

labor inputs, nt(f) and kt−1(f), and its price, pt(f), to maximize the same profit function as in the

baseline model. In a symmetric equilibrium, the production function and optimality conditions are

ỹt = (k̃t−1/gt)
αn1−α

t , (16)

αw̃tnt = (1− α)rkt (k̃t−1/gt), (17)

mct = w̃1−α
t (rkt )

α/((1− α)1−ααα), (18)

and the Phillips curve, (5), which is identical except for the change in the marginal cost definition.

The household chooses {ct, nt, bt, xt, kt}
∞

t=0 to maximize the same utility function subject to

ct + xt + bt/(itst) = wtnt + rkt kt−1 + bt−1/πt + dt

kt = (1− δ)kt−1 + xt(1− ϕx(x
g
t − 1)2/2)

where x is level of investment in physical capital, xg
t ≡ xt/(ḡxt−1) is the growth rate of investment

from time t − 1 to t relative to the balanced growth rate, ϕx > 0 scales the size of the cost to

adjusting investment at a rate that differs from the balanced growth rate, and k is the capital stock,

which earns a real rate of return rk and depreciates at rate δ. In addition to the original optimality

conditions, (8) and (9), there is an equation for Tobin’s q and a second Euler equation, given by,

qt = βEt[(c̃t/c̃t+1)
γ(rkt+1 + qt+1(1− δ))/gt+1], (19)

1 = qt[1− ϕx(x̃
g
t − 1)2 − ϕxx̃

g
t (x̃

g
t − 1)] + βϕxḡEt[qt+1(c̃t/c̃t+1)

γ(x̃g
t+1)

2(x̃g
t+1 − 1)/gt+1]. (20)

The law of motion for capital and the aggregate resource constraint are given by

k̃t = (1− δ)(k̃t−1/gt) + x̃t(1− ϕx(x̃
g
t − 1)2/2), (21)

c̃t + x̃t = ỹgdpt . (22)

Once again, we redefined variables that grow along the balanced growth path in terms of technol-

ogy. A competitive equilibrium includes infinite sequences of quantities, {c̃t, ỹt, ỹ
gdp
t , nt, x̃t, k̃t}

∞

t=0,

prices, {w̃t, it, i
n
t , π

gap
t , mct, qt, r

k
t }

∞

t=0, and exogenous variables, {st, gt, σε,t, συ,t}
∞

t=0, that satisfy

the detrended equilibrium system, (1), (2), (5)-(11), (13), and (16)-(22), given the initial conditions,

{c−1, i
n
−1, x−1, k−1, s0, a0, ν0, σε,0, συ,0}, and the five sequences of shocks, {εt, υt, νt, ξt, ζt}

∞

t=1.

The model is numerically too costly to estimate, so we calibrate the three new parameters. The

capital depreciation rate, δ, is calibrated to 0.025. The cost share of capital, α, and the invest-

ment adjustment cost parameter, ϕx, are set to 0.19 and 4.06, respectively, which equal the mean

posterior estimates in Gust et al. (2016). Although there are some differences between our model

and the one in Gust et al. (2016) (e.g., their model includes sticky wages and variable capital uti-

lization, whereas our model has stochastic volatility), we believe these parameter values provide a

good approximation of what we would obtain if we estimated the model with Bayesian methods.9

Fortunately, introducing capital does not change the consumption Euler equation we used to

construct the decomposition in the baseline model. We generate policy functions for each term

9We decided not to add other important features, such as a marginal efficiency of investment shock or irreversible

investment, because those changes could affect our parameter estimates and the accuracy of our quantitative results.
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Figure 5: Filtered decomposition of the effects on current consumption. The shaded regions denote NBER recessions.

The vertical axis is the contribution to the percentage point deviation of detrended consumption from its steady state.

in the decomposition in the same way as our baseline model, except we filter the data with per

capita real investment growth, in addition to the five observables we previously used. Figure 5

shows the effects of the same higher-order moments shown in figure 2. The left panel compares

the effects of consumption uncertainty over a 24-quarter horizon in the models with and without

capital. Consumption uncertainty on average decreases current consumption by 0.08%, which is

only 0.02 percentage points more than in the baseline model. The differences are more pronounced

when the ZLB first binds. For example, in 2008Q4 consumption declines by 0.22% compared with

only 0.15% in the baseline model, but those differences last for only a couple quarters. The right

panel shows the effects of other higher order terms over the same 24-quarter horizon in the model

with capital. Similar to the baseline model, these terms had smaller effects on current consumption

than consumption uncertainty. When comparing with the baseline model (see the bottom left panel

of figure 2), we find technology growth uncertainty had a relatively larger effect in the model with

capital whereas the role of inflation uncertainty was smaller. Overall, our results indicate that the

addition of capital had a relatively small impact on how higher-order moments affect the economy.

7 CONCLUSION

This paper develops a new method for quantifying the effects of macro uncertainty and its under-

lying sources using estimates from a nonlinear New Keynesian model. The model includes a ZLB

constraint, which introduces time-varying endogenous uncertainty, and two exogenous sources of

time-varying uncertainty—a volatility shock to technology growth and a volatility shock to the risk

premium. The filtered time series of the terms in a third-order approximation of the Euler equation

reveal that consumption uncertainty on average reduces consumption by about 0.06% and the peak

effect was 0.15% during the Great Recession. Adding capital accumulation to the baseline model

has a fairly small impact—the average effect increases to −0.08% and the peak effect becomes

−0.22%. Other higher-order terms, such as inflation uncertainty, consumption skewness, and in-

flation skewness had smaller effects in our models with and without capital. Technology growth
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volatility usually explains the majority of the fluctuations in macro uncertainty in our sample, but

during and around the last two recessions risk premium volatility played a more significant role.

A major benefit of our methodology is its flexibility. It can be used to examine the causal effects

of any type of uncertainty in a broad class of models. Although there are major computational

challenges to adding complexity to the model, it would be interesting to examine additional or

alternative forms of endogenous and exogenous uncertainty to determine whether there is a larger

effect on consumption or whether a specific type of uncertainty plays a bigger role in explaining the

changes in uncertainty. For example, one could introduce irreversible investment to add another

source of endogenous uncertainty and examine the magnitude of the real options effect. It is also

worthwhile to examine the effects of shocks to the volatilities of various fiscal instruments or the

marginal efficiency of investment. We view these extensions as important areas for future research.
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RAMÍREZ (2015): “Fiscal Volatility Shocks and Economic Activity,” American Economic Re-

view, 105, 3352–84.
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GUST, C., E. HERBST, D. LÓPEZ-SALIDO, AND M. E. SMITH (2016): “The Empirical Implica-

tions of the Interest-Rate Lower Bound,” Finance and Economics Discussion Series 2012-083.

HERBST, E. P. AND F. SCHORFHEIDE (2016): Bayesian Estimation of DSGE Models, Princeton,

NJ: Princeton University Press.

JURADO, K., S. C. LUDVIGSON, AND S. NG (2015): “Measuring Uncertainty,” American Eco-

nomic Review, 105, 1177–1216.

JUSTINIANO, A. AND G. E. PRIMICERI (2008): “The Time-Varying Volatility of Macroeconomic

Fluctuations,” American Economic Review, 98, 604–41.

KITAGAWA, G. (1996): “Monte Carlo Filter and Smoother for Non-Gaussian Nonlinear State

Space Models,” Journal of Computational and Graphical Statistics, 5, pp. 1–25.

KOPECKY, K. AND R. SUEN (2010): “Finite State Markov-chain Approximations to Highly Per-

sistent Processes,” Review of Economic Dynamics, 13, 701–714.

LUDVIGSON, S. C., S. MA, AND S. NG (2017): “Uncertainty and Business Cycles: Exogenous

Impulse or Endogenous Response?” NBER Working Paper 21803.

MUMTAZ, H. AND F. ZANETTI (2013): “The Impact of the Volatility of Monetary Policy Shocks,”

Journal of Money, Credit and Banking, 45, 535–558.

NAVARRO, G. (2014): “Financial Crises and Endogenous Volatility,” Manuscript, New York Uni-

versity.

PETERMAN, W. B. (2016): “Reconciling Micro and Macro Estimates of the Frisch Labor Supply

Elasticity,” Economic Inquiry, 54, 100–120.

PLANTE, M., A. W. RICHTER, AND N. A. THROCKMORTON (2016): “The Zero Lower Bound

and Endogenous Uncertainty,” Economic Journal, forthcoming.

PLANTE, M. AND N. TRAUM (2012): “Time-varying Oil Price Volatility and Macroeconomic

Aggregates,” Federal Reserve Bank of Dallas Working Paper 1201.

RICHTER, A. W. AND N. A. THROCKMORTON (2016): “Is Rotemberg Pricing Justified by Macro

Data?” Economics Letters, 149, 44–48.

RICHTER, A. W., N. A. THROCKMORTON, AND T. B. WALKER (2014): “Accuracy, Speed and

Robustness of Policy Function Iteration,” Computational Economics, 44, 445–476.

22



RICHTER & THROCKMORTON: A NEW WAY TO QUANTIFY THE EFFECT OF UNCERTAINTY

ROTEMBERG, J. J. (1982): “Sticky Prices in the United States,” Journal of Political Economy, 90,

1187–1211.

ROUWENHORST, K. G. (1995): “Asset Pricing Implications of Equilibrium Business Cycle Mod-

els,” in Frontiers of Business Cycle Research, ed. by T. F. Cooley, Princeton, NJ: Princeton

University Press, 294–330.

SIMS, C. A. (2002): “Solving Linear Rational Expectations Models,” Computational Economics,

20, 1–20.

SMETS, F. AND R. WOUTERS (2007): “Shocks and Frictions in US Business Cycles: A Bayesian

DSGE Approach,” American Economic Review, 97, 586–606.

STEWART, L. AND P. MCCARTY, JR (1992): “Use of Bayesian Belief Networks to Fuse Con-

tinuous and Discrete Information for Target Recognition, Tracking, and Situation Assessment,”

Proc. SPIE, 1699, 177–185.

STRAUB, L. AND R. ULBRICHT (2015): “Endogenous Uncertainty and Credit Crunches,”

Toulouse School of Economics Working Paper 15-604.

TAYLOR, J. B. (1993): “Discretion Versus Policy Rules in Practice,” Carnegie-Rochester Confer-

ence Series on Public Policy, 39, 195–214.

VAN NIEUWERBURGH, S. AND L. VELDKAMP (2006): “Learning Asymmetries in Real Business

Cycles,” Journal of Monetary Economics, 53, 753–772.

A DATA SOURCES

We drew from the following data sources to estimate our VAR and DSGE models, which are

available on the Federal Reserve Economic Database (FRED) unless specified otherwise:

1. Financial Uncertainty index: Monthly. Source: Ludvigson et al. (2017), h = 3 (1-quarter

forecast horizon). Data available from http://www.sydneyludvigson.com/.

2. Macro Uncertainty Index: Monthly. Source: Jurado et al. (2015), h = 3 (1-quarter forecast

horizon). Data available from http://www.sydneyludvigson.com/.

3. Real GDP: Quarterly, chained 2009 dollars, seasonally adjusted. Source: Bureau of Eco-

nomic Analysis, National Income and Product Accounts, Table 1.1.6. (FRED ID: GDPC1).

4. Personal Consumption Expenditures, Nondurable Goods: Monthly, billions of dollars,

seasonally adjusted. Source: Bureau of Economic Analysis, National Income and Product

Accounts, Table 2.8.5. (FRED ID: PCEND).

5. Personal Consumption Expenditures, Services: Monthly, billions of dollars, seasonally

adjusted. Source: Bureau of Economic Analysis, National Income and Product Accounts,

Table 2.8.5. (FRED ID: PCES).

6. GDP Deflator: Quarterly, seasonally adjusted, index 2009=100. Source: Bureau of Eco-

nomic Analysis, National Income and Product Accounts, Table 1.1.9. (FRED ID: GDPDEF).

7. Average Hourly Earnings: Monthly, production and nonsupervisory employees, dollars per

hour, seasonally adjusted. Source: Bureau of Labor Statistics (FRED ID: AHETPI).

8. Interest Rate Spread (Risk Premium): Monthly, Moody’s seasoned Baa corporate bond

yield relative to the yield on 10-Year treasury bond. Source: Board of Governors of the

Federal Reserve System, Selected Interest Rates, H.15. (FRED ID: BAA10YM)
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9. Utilization Adjusted Total Factor Productivity: Quarterly. Source: Fernald (2012), mea-

sure dtfp util. Data available from http://www.frbsf.org/economic-research/

indicators-data/total-factor-productivity-tfp/

10. Effective Federal Funds Rate: Daily. Source: Board of Governors of the Federal Reserve

System, Selected Interest Rates, H.15. (FRED ID: FEDFUNDS).

11. S&P500 Index: Daily. Source: Yahoo Finance. Data available from https://finance.

yahoo.com/quote%5EGSPC/history?p=%5EGSPC

12. Civilian Noninstitutional Population: Monthly. Source: U.S. Bureau of Labour Statistics,

Current Population Survey. (FRED ID: CNP16OV).

13. Fixed Investment: Quarterly, billions of dollars, seasonally adjusted. Source: Bureau of

Economic Analysis, National Income and Product Accounts, Table 1.1.5. (FRED ID: FPI).

We applied the following transformations to the above series:

14. Per Capita Real GDP: 1,000,000×Real GDP/Population.

15. Real PCE, Nondurable Goods: Average PCE Nondurables in 2009×(PCE Nondurables

Quantity Index/100). Quantity Index FRED ID: DNDGRA3M086SBEA.

16. Real PCE, Services: Average PCE Nondurables in 2009×(PCE Services Quantity Index/100).

Quantity Index FRED ID: DSERRA3M086SBEA.

17. Per Capita Real PCE: 1,000,000×(Real PCE Nondurables+Real PCE Services)/Population.

18. Real Wage: 100×Average Hourly Earnings/Price Index.

19. Real Investment: Average FPI in 2009×(FPI Quantity Index/100). Quantity Index FRED

ID: A007RA3Q086SBEA.

20. Per Capita Real Investment: 1,000,000×Real Investment/Population.

We converted the monthly or daily time series to a quarterly frequency by applying time averages

over each quarter. In order, the variables used to estimate our VAR model are series 1, 2, 14, 17, 6,

18, and 8-11. The observables used to estimate our baseline DSGE model include series 14, 6, 10,

1, and 2. When we filter the data using the model with capital, we add series 20 as an observeable.

B ROBUSTNESS OF VAR RESULTS

In Section 2, our VAR results are based on the same sample period we use to estimate our DSGE

model, so we can draw comparisons between the two sets of estimates. Figure 6 plots the same

impulse responses as figure 1, except we use data from 1966Q2 to 2016Q2, so our sample period

is similar to what others have used in the literature. The BIC still prefers one lag in the VAR, but

we report the results based on two lags, since that specification is more common in the literature.

The qualitative results are robust to using the longer sample. The responses of consumption

to a one standard deviation positive shock to either macro or financial uncertainty are smaller

when the uncertainty series are ordered first or the ZLB period is excluded from the sample. The

peak responses to a financial uncertainty shock are slightly larger in the longer sample, whereas the

responses to a macro uncertainty shock are typically smaller. Notably, the response of consumption

to a macro uncertainty shock when the uncertainty series are ordered last and the ZLB period is

excluded from the sample have virtually the same peak effect regardless of when the sample begins.
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Figure 6: Impulse responses to a one standard deviation increase in macro and financial uncertainty.

C SOLUTION METHOD

C.1 BASELINE MODEL We begin by writing the equilibrium system of equations compactly as

E[f(vt+1,vt)|Ωt] = 0,

where f is a vector-valued function, v = (s, g, σε, συ, c̃, ỹ, ỹ
gdp, n, w̃, i, in, πgap), and Ω = {S, P, z}

is the information set, which contains the structural model, S, its parameters, P , and the state vec-

tor, zt = (νt, log(σε,t), log(συ,t), gt, st, mpt−1). Since int−1 and ỹgdpt−1 only appear in the policy rule,

we eliminate a state variable by defining mpt−1 = (int−1)
ρi(ỹgdpt−1)

φy(ρi−1) and rewriting the rule as

int = mpt−1(̄ı(π
gap
t )φπ(gtỹ

gdp
t /ḡ)φy)1−ρi exp(σννt).

There are many ways to discretize the normally-distributed and autoregressive exogenous state

variables, νt, log(σε,t), and log(συ,t). We follow Rouwenhorst (1995), which Kopecky and Suen
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(2010) show outperforms other methods for approximating autoregressive processes. The bounds

on gt, st, and mpt−1 are set to ±3%, ±2%, and ±2% of steady state, which are wide enough to

contain the filtered state variables given the posterior draws. We discretize the state variables into

(4, 9, 7, 7, 7, 7) points respectively, such that they are evenly spaced in each dimension. Therefore,

there are D = 86,436 nodes in the state space, and the realization of zt on node d is denoted zt(d).
The Rouwenhorst method is also used to obtainM integration nodes with weights, {φ(m)}Mm=1,

that correspond to the shocks, {νt+1(m), log(σε,t+1)(m), log(συ,t+1)(m), εt+1(m), υt+1(m)}Mm=1.

We use the same number of points, (4, 9, 7, 7, 7), as the respective state variables, so M = 12,348.

The processes for gt+1 and st+1 do not have a standard autoregressive form because the standard

deviations of the shocks are time-varying. Therefore, we chose not use the Rouwenhorst method

to discretize the processes for g and s. Instead, the first moment shocks and log volatility processes

are discretized separately with the Rouwenhorst method, so c̃t+1(m) and πgap
t+1(m) are interpolated

at realizations of gt+1(m) and st+1(m) that can occur in between the nodes in the state space.

The following steps outline our policy function iteration algorithm:

1. Obtain initial conjectures for c̃0 and π
gap
0 from the log-linear model without the ZLB im-

posed using Sims’s (2002) gensys algorithm and map it to the discretized state space.

2. For iteration j, implement the following steps with the ZLB imposed for d ∈ {1, . . . , D} :

(a) Solve for {ỹt, ỹ
gdp
t , int , it, w̃t, mpt} given c̃t = c̃j−1(d), π

gap
t = π

gap
j−1(d), and zt(d).

(b) Linearly interpolate the policy functions, c̃j−1 and π
gap
j−1, at the updated state vector,

zt+1(m), to obtain c̃t+1(m) and πgap
t+1(m) on every integration node, m ∈ {1, . . . ,M}.

(c) Given {c̃t+1(m), πgap
t+1(m)}Mm=1, solve for the rest of vt+1(m) and compute

E [f(vt+1,vt(d))|Ωt(d)] ≈
∑M

m=1 φ(m)f(vt+1(m),vt(d)),

(d) Use Chris Sims’ csolve to find c̃t and πgap
t that satisfy E[f(·)|Ωt(d)] = 0.

3. Using the argument of csolve on iteration j as an initial conjecture for iteration j + 1,

repeat step 2 until maxdistj < 10−6, where maxdistj ≡ max{|c̃j − c̃j−1|, |π
gap
j − π

gap
j−1|}.

When that occurs, the algorithm has converged to an approximate nonlinear solution.

Figure 7 shows the distribution of the absolute value of the errors in base 10 logarithms for

the consumption Euler equation and the Phillips curve. For example, an error of −3 means there

is a mistake of 1 consumption good for every 1,000 goods. The mean Euler equation error is

−3.96 and the mean Phillips curve error is −2.32. By construction, the errors on nodes used in

the solution algorithm are less than the convergence criterion, 10−6. The larger average errors

are due to linear interpolation of the policy functions with respect to the (gt, st, mpt−1) states. To

measure the errors between the nodes, we created a new grid with a total of D = 850,500 nodes

by increasing the number of points in the (gt, st, mpt−1) dimensions to (15, 15, 15). We used

the same number of points in the (νt, log(σε,t), log(συ,t)) dimensions since they are discretized

with the Rouwenhorst method, which means the corresponding integration weights and nodes are

state dependent. Therefore, the reported errors are consistent with the accuracy of the integral

calculated when solving the model. Calculating the errors between the nodes corresponding to the

exogenous state variables would require changing the numerical integration method (e.g., Gauss-

Hermite quadrature). We decided not to show those errors because then the accuracy of the integral

used to compute the errors would be inconsistent with the methods used to compute the solution.
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Figure 7: Distribution of Euler equation and Phillips curve errors in base 10 logarithms

C.2 CAPITAL MODEL We solve the model with capital in the same way we solve the base-

line model. The state vector is the same as the baseline model, except it includes two additional

endogenous state variables, xt−1 and kt−1. The bounds on gt, st, mpt−1, xt−1 and kt−1 are set

to ±3%, ±1.5%, ±2%, ±10%, and ±7% of steady state. We discretize the state variables into

(4, 7, 7, 7, 7, 7, 7, 11) points respectively, so there are D = 5,176,556 nodes in the state space. We

use the most points on the capital dimension because it has the widest grid. Once again, we set the

number of points on each shock equal to the number of points on the corresponding state variable.

D ESTIMATION ALGORITHM

We use a random walk Metropolis-Hastings algorithm to estimate our model with quarterly data

from 1986Q1 to 2016Q2. To measure how well the model fits the data, we use the adapted particle

filter described in Algorithm 12 in Herbst and Schorfheide (2016), which modifies the filter in

Stewart and McCarty (1992) and Gordon et al. (1993) to better account for the outliers in the data.

D.1 METROPOLIS-HASTINGS ALGORITHM The following steps outline the algorithm:

1. Specify the prior distributions, means, variances, and bounds of each element of the vector

of Ne estimated parameters, θ ≡ {γ, ϕ, φπ, φy, ḡ, π̄, ρi, ρg, ρs, ρσε
, ρσυ

, σν , σε, συ, σξ, σζ}.

2. The vector of Nx observables consists of per capita real GDP, RGDP/CNP , the GDP

deflator, DEF , the average federal funds rate, FFR, the macro uncertainty series in Jurado

et al. (2015), MacroU , and the financial uncertainty series in Ludvigson et al. (2017), FinU ,

from 1986Q1 to 2016Q2. Therefore, Nx = 5 and the row vector of observables is given by

x̂
data
t ≡













log(RGDPt/CNPt)− log(RGDPt−1/CNPt−1)
log(DEFt/DEFt−1)
log(1 + FFRt/100)/4

(MacroUt − µMacroU)/σMacroU

(FinUt − µF inU)/σF inU













T

,
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where µ and σ denote mean and standard deviation across time and t ∈ {1, . . . , T}. When

we filter the data using the model with capital, we add per capita real investment, RI/CNP ,

to the vector of observables, so x̂
data
t also includes log(RIt/CNPt)− log(RIt−1/CNPt−1).

3. Find the posterior mode to initialize the preliminary Metropolis-Hastings step.

(a) For all i ∈ {1, . . . , Nm}, where Nm = 5,000, apply the following steps:

i. Draw θ̂i from the joint prior distribution and calculate its density value:

log ℓpriori =
∑Ne

j=1 log p(θ̂i,j|µj, σ
2
j ),

where p is the prior density function of parameter j with mean µj and variance σ2
j .

ii. Given θ̂i, solve the model according to Appendix C. If the algorithm converges,

then compute the stochastic steady state, otherwise repeat step 3(a)i and redraw θ̂i.

iii. If the stochastic steady state exists, then use the particle filter in section D.2 to ob-

tain the log-likelihood value for the model, log ℓmodel
i , otherwise repeat step 3(a)i.

iv. The posterior log-likelihood is log ℓposti = log ℓpriori + log ℓmodel
i

(b) Calculate max(log ℓpost1 , . . . , log ℓpostNm
) and find the corresponding parameter vector, θ̂0.

4. Approximate the covariance matrix for the joint posterior distribution of the parameters, Σ,

which is used to draw candidates during the preliminary Metropolis-Hastings step.

(a) Locate the draws with a likelihood in the top quintile. Stack the Nm,sub = (1 − p)Nm

draws in a Nm,sub ×Ne matrix, Θ̂, and define Θ̃ = Θ̂−
∑Nm,sub

i=1 θ̂i,j/Nm,sub.

(b) Calculate Σ = Θ̃′Θ̃/Nm,sub and verify it is positive definite, otherwise repeat step 3.

5. Perform an initial run of the random walk Metropolis-Hastings algorithm.

(a) For all i ∈ {0, . . . , Nd}, where Nd = 25,000, perform the following steps:

i. Draw a candidate vector of parameters, θ̂candi , where

θ̂i
cand ∼

{

N(θ̂0, c0Σ) for i = 0,

N(θ̂i−1, cΣ) for i > 0.

We set c0 = 0 and tune c to target an overall acceptance rate of roughly 30%.

ii. Calculate the prior density value, log ℓpriori , of the candidate draw, θ̂candi as in 3(a)i.

iii. Given θ̂candi , solve the model according to Appendix C. If the algorithm converges,

compute the stochastic steady state, otherwise repeat 5(a)i and draw a new θ̂candi .

iv. If the stochastic steady state exists, then use the particle filter in section D.2 to

obtain the log-likelihood value for the model, log ℓmodel
i , otherwise repeat 5(a)i.

v. Accept or reject the candidate draw according to

(θ̂i, log ℓi) =











(θ̂candi , log ℓcandi ) if i = 0,

(θ̂candi , log ℓcandi ) if log ℓcandi − log ℓi−1 > û,

(θ̂i−1, log ℓi−1) otherwise,

where û is a draw from a uniform distribution, U[0, 1], and the posterior log-

likelihood associated with the candidate draw is log ℓcandi = log ℓpriori + log ℓmodel
i .
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(b) Burn the first Nb = 5000 draws and use the remaining sample to calculate the mean

draw, θ̄preMH =
∑NpreMH

i=Nb+1 θ̂i, and the covariance matrix, ΣpreMH . We follow step 4 to

calculate ΣpreMH but use all Nd −Nb draws instead of just the upper pth percentile.

6. Following the procedure in step 5, perform a final run of the Metropolis-Hastings algorithm,

where θ̂0 = θ̄preMH and Σ = ΣpreMH . We set Nd = 100,000 and keep every 100th draw.

The remaining 1,000 draws form a representative sample from the joint posterior density.

D.2 ADAPTED PARTICLE FILTER The following steps outline the filter:

1. Initialize the filter by drawing et,p = {νt,p, εt,p, υt,p, ξt,p, ζt,p}
0
t=−24 for all p ∈ {0, . . . , Np}

and simulating the model, where Np is the number of particles. We initialize the filter with

the final state vector, z0,p, which is a draw from the ergodic distribution. We set Np = 40,000.

2. For all p ∈ {1, . . . , Np} apply the following steps:

(a) Draw a vector of shocks from an adapted distribution, et,p ∼ N(ēt, I), where ēt is

chosen to maximize p(µt|zt)p(zt|zt−1) and zt−1 =
∑Np

p=1 zt−1,p/Np is the state vector.

i. Given zt−1 and a guess for ēt, obtain zt, and the endogenous variables, wt.

ii. Transform the predictions for real GDP (ỹgdp), inflation (π), the policy rate (i), con-

sumption growth uncertainty, and risk premium uncertainty according to x̂
model
t =

[

log(gtỹ
gdp
t /ỹgdpt−1), log(πt), log(it), (Ucg,t − µUcg

)/σUcg
, (Us,t − µUs

)/σUs

]

. When

we add capital to the baseline model, x̂model
t also includes log(gtx̃t/x̃t−1).

iii. Calculate the difference between the model predictions and the data, µt = x̂
model
t −

x̂
data
t , which is assumed to be multivariate normally distributed with density:

p(µt|zt) = (2π)−3/2|H|−1/2 exp(−µ′

tH
−1µt/2),

where H ≡ diag(σ2
me,cg , σ

2
me,π, σ

2
me,i, σ

2
me,macrou, σ

2
me,finu) is the measurement er-

ror covariance matrix. H also includes σ2
me,x in the model with capital.

iv. The probability of observing the current state, zt, given zt−1, is given by

p(zt|zt−1) = (2π)−3/2 exp(−ē
′

tēt/2).

v. Maximize p(µt|zt)p(zt|zt−1) ∝ exp(−µ′

tH
−1µt/2) exp(−ē

′

tēt/2) by solving for

the optimal ēt. We converted MATLAB’s fminsearch routine to Fortran.

(b) Obtain zt,p, and the vector of endogenous variables, wt,p, given zt−1,p and et,p.

(c) Calculate, µt,p = x̂
model
t,p − x̂

data
t . The unnormalized weight on particle p is given by

ωt,p =
p(µt|zt,p)p(zt,p|zt−1,p)

g(zt,p|zt−1,p, x̂data
t )

∝
exp(−µ′

t,pH
−1µt,p/2) exp(−e

′

t,pet,p/2)

exp(−(et,p − ēt)′(et,p − ēt)/2)
.

If there was no adaptation, then ēt = 0 and ωt,p = p(µt|zt,p), as it is in a basic filter.

The contribution to the model’s likelihood in period t is then ℓmodel
t =

∑Np

p=1 ωt,p/Np.

(d) Normalize the weights, Wt,p = ωt,p/
∑Np

p=1 ωt,p. Then use systematic resampling with

replacement from the swarm of particles as described in Kitagawa (1996) to get a set

of particles that represents the filter distribution and reshuffle {zt,p}
Np

p=1 accordingly.

3. Apply step 2 for all t ∈ {1, . . . , T}. The log-likelihood is then log ℓmodel =
∑T

t=1 log ℓ
model
t .
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Figure 8: Trace plots. We obtained 100,000 draws from each posterior distribution and kept every 100th draw.
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Figure 9: Prior (solid lines) and posterior kernel (dashed lines) densities of the estimated parameters.
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Figure 10: Time paths of the data (dashed line) and the median filtered series from the model (solid line).
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Figure 11: Median paths of the estimated shocks normalized by their respective posterior mean standard deviation.
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Real GDP Growth (ŷgdpt ) Inflation Rate (πt) Interest Rate (it)

Mean SD Mean SD Mean SD

Data 1.41 2.40 2.18 0.99 3.68 2.77
Model 1.78 2.27 2.56 0.93 4.83 1.43

(1.10, 2.49) (1.56, 3.25) (1.99, 3.11) (0.63, 1.37) (3.59, 6.05) (0.89, 2.16)

Autocorrelations Cross-Correlations

(ŷgdpt , ŷgdpt−1) (πt, πt−1) (it, it−1) (ŷgdpt , πt) (ŷgdpt , it) (πt, it)

Data 0.31 0.63 0.99 0.03 0.18 0.50
Model 0.27 0.76 0.91 −0.11 0.16 0.32

(0.02, 0.51) (0.63, 0.86) (0.83, 0.96) (−0.46, 0.19) (−0.09, 0.44) (−0.16, 0.68)

Table 3: Unconditional moments. For each draw from the posterior distribution, we run 10,000 simulations with the

same length as the data. To compute the moments, we first calculate time averages and then the means and quantiles

across the simulations. The values in parentheses are (5%, 95%) credible sets. All values are annualized net rates.
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Figure 12: Distribution of ZLB events in each model. The vertical dashed line represents the expected ZLB duration.
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