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Abstract 
 

We examine the effects of smoothed hedge fund returns on standard deviation, 
skewness, and kurtosis of return and on correlation of returns using an MA(2)-
GARCH(1,1)-skewed-t representation instead of the traditional MA(2) model em-
ployed in the literature. We present evidence that our proposed representation is 
more consistent with the behavior of hedge fund returns than the traditional MA(2) 
representation and that that traditional method tends to overstate the degree of 
smoothing observed in hedge fund returns. We examine methods for correcting the 
distortive effects of smoothing using our representation. 
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Hedge-fund returns are characterized by certain stylized facts. Among them, return distri-

butions are often skewed and leptokurtic, individual hedge fund returns may exhibit volatility clus-
tering where periods of high, or low, volatility persist, and monthly returns of individual hedge 
funds are often positively serially correlated, a phenomenon known as smoothed returns. 
 Several writers have examined this phenomenon. Among these are Asness, Krail, and Liew 
(2002); Aragon (2007); Kosowski, Naik, and Teo (2007); Jagannathan, Malakov, and Novikov 
(2010); and Titman and Tiu (2010), and Lietchty, Huang, and Rossi (2012). In their paper on return 
smoothing, Getmansky, Lo, and Makarov (2004), GLM hereafter, argue that hedge fund monthly 
returns are smoothed because of the effects of various forms of illiquidity. For example, for its 
month-end books, a hedge fund may average broker estimates of an illiquid asset’s value. Brokers 
may estimate the month-end value as a markup at an assumed rate from the prior month’s value. 
This and the practice of averaging the estimates produces smoothed returns.  

GLM propose an MA(2) model of smoothed returns, which we refer to henceforth as the 
traditional MA(2) model because it is widely cited in the literature. This paper takes GLM as a 
point of departure. We replace their traditional MA(2) model of smoothed returns with an MA(2)-
GARCH(1,1)-skewed-ݐ model and present evidence that it provides a better representation of 
smoothed returns. We find that the traditional MA(2) model exaggerates the distortive effects of 
return smoothing on statistical measures. 
 It is established in the literature that with smoothed returns, standard deviation using re-
ported returns is understated so that the Sharpe ratio and information ratio are overstated. It is also 
established that measures of skewness and kurtosis are also distorted by smoothing as is correlation 
of returns between funds. Using our proposed method, we present an empirical comparison of 
these risk measurement distortions. 

The next section discusses the different styles of investment management used by hedge 
funds and how those styles affect illiquidity. The section after that describes the data used in our 
analysis. The section following that examines our computational methods. The section after that 
examines the impact of smoothed hedge fund returns on measured standard deviation, skewness, 
and kurtosis of individual hedge fund return streams, and on correlation of returns between hedge 
funds. The final section presents conclusions. 
 
2. Hedge Fund Styles and Return Smoothing 
 

The effects of illiquidity may vary with the style of investment management employed by 
a hedge fund. Hedge Fund Research, Inc. (HFR hereafter) separates hedge fund management styles 
into four categories: equity, event driven, macro, and relative value strategies. 

Equity hedge funds maintain long and short positions in equity and equity derivative secu-
rities. They employ both quantitative and fundamental techniques and may be diversified or fo-
cused on specific sectors of the equity market. They often employ leverage and may invest in 
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companies with a range of market capitalizations. Equity hedge funds often invest in listed equi-
ties. However, equity funds investing in small unlisted companies could be subject to illiquidity 
effects and exhibit return smoothing. 

Event driven funds invest in companies involved in capital restructuring. These include 
mergers, tender offers, and buybacks. They may invest in corporate equities and bonds as well as 
in related derivatives. As in the case with equity funds, illiquidity effects may be absent in cases 
where event driven funds invest in listed assets, but some event driven funds may invest in idio-
syncratic instruments that are illiquid. 

Macro hedge funds employ investment strategies which seek to exploit the effects of vari-
ations in macroeconomic variables. They employ a variety of methods and operate in equity, fixed 
income, currency, and commodity markets. Many macro funds implement their strategies in fu-
tures markets, these markets are generally liquid, and thus these funds do not typically exhibit 
return smoothing. However, some macro funds may implement their strategies in less liquid mar-
kets, in particular, foreign equity and fixed income markets. 

Relative value funds seek to take advantage of pricing discrepancies between related secu-
rities. They employ a variety of techniques, and may invest in various types of assets including 
stocks, bonds, currencies, and related derivatives of these asset types. Because they focus on ex-
ploiting mispricing of related assets, relative value funds often invest in liquid markets where bid-
ask spreads are small and assets can be traded in sufficient volume to open and close positions 
quickly, but relative value funds may at times take positions in illiquid markets to take advantage 
of large price discrepancies. 
 
3. Data 
 

Hedge fund monthly return data come from the Hedge Fund Research, Inc. database. The 
period for evaluating portfolio performance is from January 1994 to December 2016. We combine 
both live and dead, or graveyard, funds to give us a more comprehensive understanding of the 
issue of return smoothing. To facilitate the MA(2)-GARCH(1,1)-skewed-ݐ estimation, we restrict 
our selection of hedge funds to those with assets under management of at least $10 million at their 
peak and continuous reporting of returns of at least 5 years. This gives us 7,389 funds in our study. 
 
4. Computational Methods 
 

GLM employ an underlying MA(2) model of monthly hedge fund returns as follows: 
 
(1) R୲

୭ = θR୲ + θଵR୲ିଵ + θଶR୲ିଶ 
 θ + θଵ + θଶ =  1 
 0 ≤ θ୧ ≤ 1 
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where ܴ௧
 is the observed, i.e., the reported, monthly return in period ݐ, ܴ௧ is the underlying actual, 

or true, return in ݐ which is not observed, and the θ୧ are parameters. Return smoothing is present 
in data where 0 ≤ θ୧ < 1.  GLM propose to estimate the MA(2) model using maximum likelihood 
estimation (MLE) while relaxing the constraint 0 ≤ θ୧ ≤ 1. They define the de-meaned observed 
return X୲ = R୲

୭ − μ. Then: 
 
(2) X୲ = θa୲ + θଵa୲ିଵ + θଶa୲ିଶ 
 θ + θଵ + θଶ = 1 
 a୲ = ܴ௧ −  ߤ
 a୲~iid N(0, σଶ)  
 
Equation (2) is what we refer to as the traditional MA(2) model 

Our paper is rooted in a simple observation that a key assumption in the traditional MA(2) 
model, that the a୲ have an iid normal distribution, is not always the case in reality. It is not uncom-
mon for returns to exhibit skewness, kurtosis, and volatility clustering. For example, Figure 1 be-
low shows the residuals, i.e., the a୲ in equation (2), for one of the funds in our dataset obtained 
through the traditional MA(2) method. The fund is classified as an event driven fund specializing 
in merger arbitrage. The distribution of the residuals, which should be iid normal, exhibits kurtosis, 
and it is highly skewed. Figure 2 shows the autocorrelation function plot of the absolute residuals 
in the traditional MA(2) model for the same fund. The autocorrelations at lags of 1 and 2 fall 
outside the 95% confidence interval for zero autocorrelation as computed from Bartlett’s formula 
(see Box, Jenkins, and Reinsel, 1994). We observe properties like these frequently in hedge fund 
return streams in our database. 
 

Figure 1. Histogram of the residuals for fund #4 in the traditional MA(2) model 
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Figure 2. Autocorrelation function plot of the absolute residuals for Fund #4 in the traditional 

MA(2) model and the bands for the 95% confidence interval for zero autocorrelation 

 
 

Our goal is to deal simultaneously with the effects of skewness, kurtosis, and volatility 
clustering in monthly hedge fund returns.  To that end, we propose an MA(2)-GARCH(1,1)-
skewed-ݐ model where the skewed-ݐ part of the model deals with kurtosis and skewness effects 
and the GARCH part of the model simultaneously deals with volatility clustering. The model is as 
follows: 
 
(3) X୲ = θa୲ + θଵa୲ିଵ + θଶa୲ିଶ 
 θ + θଵ + θଶ = 1 
 a୲ = ܴ௧ − ߤ = σ୲ϵ୲ 
 σ୲

ଶ = α + αଵa୲ିଵ
ଶ + βଵσ୲ିଵ

ଶ   
 
where the term ϵ୲ has a skewed-ݐ distribution defined in Lambert and Laurent (2001) as follows. 
Suppose that ݔ has a Student-ݐ distribution with probability density function (PDF) g and degrees 
of freedom ߭. Kurtosis is controlled by ߭. Skewness is introduced by constructing the function g∗ 
such that: 
 

(4) g∗(ߦ|ݔ, ߭) = ൝
g(ߦ ݔ) if ݔ < 0

g ቀ
௫

క
ቁ if ݔ ≥ 0

 

 
The positive parameter ߦ controls skewness. We normalize g∗ by simple scaling so that it becomes 
a PDF, i.e., so that its density sums to 1. Then, the mean of the PDF is: 
 

,ߦ|ݔ)ܧ (5) (ݒ =
[(௩ିଵ)/ଶ]√௩ିଶ

√గ(௩/ଶ)
ቄߦ −

ଵ

క
ቅ = ݉ 

 
and the variance is: 
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,ߦ|ݔ)ܸ (6) (ݒ = ଶߦ +
ଵ

కమ − 1 − ݉ଶ =   .ଶݏ

 

A variate ݕ =
௫ି

௦
 is constructed. From the preceding, its PDF ݂(ߦ|ݕ, ߭) is: 

 

,ߦ|ݕ)݂ (7) ߭) =
ଶ௦

కାଵ/క
ቄg[ݕݏ)ߦ + (ஶ,ି)ܫ[߭|(݉ ቂݕ +



௦
ቃ + g[

௦௬ା

క
(,ஶ)ܫ[߭| ቂݕ +



௦
ቃቅ 

 

where ܫ is inverse Γ. By construction, i.e., since ݕ =
௫ି

௦
, the mean of ݕ is equal to 0, and the 

variance is equal to 1. The variate ϵ୲ is distributed as ݂(ϵ௧|ߦ, ߭). This is our MA(2)-GARCH(1,1)-
skewed-t model. In the chart below, we see that alternative PDFs can be constructed with the 
skewed-t model by varying ߭ and ߦ. 
 

Figure 3. Alternative PDFs for the skewed-ݐ model. 
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 In the chart below, we see the scatter plot of the θ estimated by the traditional MA(2) 
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the model, either the traditional MA(2) model or the MA(2)-GARCH(1,1)-skewed-ݐ model, does 
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of θ equal to 1 indicates that return smoothing is absent. However, along the trend line, as values 
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traditional MA(2) method, which does not take into consideration skewness, kurtosis, and volatil-
ity clustering effects, tends to magnify the degree of smoothing—especially for low values of θ–
relative to our MA(2)-GARCH(1,1)-skewed-ݐ proposal, which incorporates those effects. 

 
Figure 4. Scatter plot of θ estimates 

 
 

For our 7,389 hedge funds, 5,398 of them have returns statistically significantly different 
from a normal distribution at the 0.05 significance level according to the Jarque and Bera (1987) 
statistic, which is asymptotically distributed as a chi-square random variable with two degrees of 
freedom. This is a strong indication that the traditional MA(2) method with its normality assump-
tion is inappropriate for modeling hedge fund returns. In Table 1 below, we list the 10 funds with 
the lowest values of θ estimated from the traditional MA(2) model and ranked in increasing order 
of θ to illustrate the difference between the two estimation processes. The table shows the esti-
mated θ୧ using both the traditional MA(2) model and the MA(2)-GARCH(1,1)-skewed-ݐ model 
and presents the Jarque and Bera statistics for the residuals ϵ୲ from the traditional MA(2) model. 
The  values of the Jarque and Bera statistics indicate that the normality assumption of the tradi-
tional MA(2) method is rejected. And, again, the low values of θ generated by the traditional 
MA(2) model indicate a substantial degree of smoothing in hedge fund returns while the higher 
respective values of θ generated by the MA(2)-GARCH(1,1)-skewed-ݐ method indicate that re-
turn smoothing is much less pronounced. 
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Table 1. Comparison of the skewed-ݐ model and the traditional MA(2) model 
 

Traditional MA(2) MA(2)-GARCH(1,1)-skewed-ݐ 
Jarque-Bera (p-value) 

θ θଵ θଶ θ θଵ θଶ 
0.117 0.365 0.518 0.840 0.000 0.160 930.41 (0.000) 
0.212 0.575 0.212 0.760 0.240 0.000 3,930.78 (0.000) 
0.213 0.575 0.213 0.802 0.198 0.000 3,915.16 (0.000) 
0.243 0.266 0.492 0.749 0.118 0.133 1,851.35 (0.000) 
0.295 0.245 0.460 0.481 0.302 0.218 4,500.70 (0.000) 
0.339 0.423 0.238 0.777 0.223 0.000 398.23 (0.000) 
0.343 0.657 0.000 0.794 0.153 0.054 11,228.91 (0.000) 
0.353 0.647 0.000 0.751 0.249 0.000 2,854.24 (0.000) 
0.353 0.248 0.399 0.493 0.318 0.188 271.74 (0.000) 
0.359 0.000 0.641 0.760 0.020 0.220 204.52 (0.000) 

 

To test whether the GARCH(1,1)-skewed-t model is better than the GARCH(1,1) model 
employed individually, a log-likelihood ratio test is applied where the null model, i.e. the 
GARCH(1,1) model, is a special case of the GARCH (1,1)-skewed-t model. A p-value of less than 
0.05 indicates that the GARCH(1,1)-skewed-t model fits the data significantly better than the null 
model. HFR produces a monthly index for each of its four strategies. The results for the four in-
dexes is as follows: 
  

Table 2. p-values for HFR strategy indexes 
 

Equity Event Drive Macro Relative Value 
0.1788 0.0010 0.2688 0.0000 

  
Thus, for the HFR indexes, the GARCH(1,1)-skewed-t model is significantly better than the null 
model for event driven and relative value funds. 

To get a sense of whether the outcomes above are indicative of outcomes for individual 
funds within the four strategy classifications, we randomly selected 10 individual funds from each 
of the four groups and conducted the log-likelihood ratio test for each of them. Ordered by de-
scending p-values within each strategy group, the results are as follows: 
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Table 3. p-values for selected funds within each HFR strategy group 
 

Equity Event Driven Macro Relative Value 
0.3126 0.4981 0.8439 0.0547 
0.2555 0.1678 0.7102 0.0452 
0.1516 0.1342 0.5035 0.0047 
0.1389 0.1105 0.4908 0.0045 
0.1286 0.0188 0.2122 0.0013 
0.0605 0.0046 0.1620 0.0000 
0.0597 0.0033 0.1469 0.0000 
0.0267 0.0023 0.0245 0.0000 
0.0101 0.0005 0.0134 0.0000 
0.0018 0.0000 0.0004 0.0000 

  
Thus, we see that individual outcomes vary within each of the four strategy groups. 
 
5. Smoothed Returns and Distortion of Statistical Measures 
 

Return Smoothing and Standard Deviation of Return 
 

Geltner (1991) shows that for the moving average model, i.e., equation (1), the standard 
deviation SD୭ of the reported returns ܴ௧

 and the standard deviation SD of the actual returns ܴ௧ are 
related as follows: 
 
(8) SD = ψଵ SD୭ 

 ψଵ = 1/(∑ θ୧
ଶ)ଵ/ଶ 

  
The term ψଵ is greater than 1 where 0 ≤ θ୧ < 1; i=0,1,2, i.e., where returns are smoothed, so that 
the standard deviation of reported returns is less than the standard deviation of the actual returns. 
The distortive effect of return smoothing, i.e., the value of ψଵ, is greatest where θ = θଵ = θଶ =
1/3. In that case, ψଵ = 1.732. The understatement of standard deviation computed from reported 
returns means that the Sharpe ratio and the information ratio computed from reported returns are 
higher than they would be using actual returns. GLM find that large distortions of standard devia-
tion are frequently encountered in hedge fund data. The chart below shows ψଵ plotted as functions 
of θଵ and θଶ (θ = 1 − θଵ − θଶ , of course). 
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 Figure 5. Distortion factor ψଵ for standard deviation under return smoothing 

 
 

Return Smoothing and Higher Statistical Moments 
 

Higher statistical moments are also distorted by smoothing (Cavenaile, Coën, and Hübner, 
2011). Let SK, SK୭, K, and K୭ denote, respectively, skewness of actual returns, skewness of ob-
served returns, excess kurtosis of actual returns, and excess kurtosis of observed returns. Then: 
 
(9) SK = ψଶ SK୭ 

            ψଶ = (∑ θ୧
ଶ)ଷ/ଶ/(∑ θ୧

ଷ) 
 
(10) K = ψଷ K୭ 

 ψଷ = (∑ θ୧
ଶ)ଶ/(∑ θ୧

ସ) 
 
Of course, in the absence of return smoothing, ψଶ = ψଷ = 1, but these distortion factors are ele-
vated where returns are smoothed and may be well above 1. Again, the distortive effects of return 
smoothing are greatest for both skewness and excess kurtosis where θ = θଵ = θଶ = 1/3. In that 
case, ψଶ = 1.732 and ψଷ = 3. The charts below show ψଶ and ψଷ plotted as functions of θଵ and 
θଶ. 
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Figure 6. Distortion factor ψଶ for skewness under return smoothing 

 
 

Figure 7. Distortion factor ψଷ for excess kurtosis under return smoothing 
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Return Smoothing and Correlation of Returns 
 
 Let x୲

୭ and y୲
୭ be the observed returns of two hedge funds, let x୲ and y୲ be the respective 

actual returns, and suppose again that the two return streams are subject to MA(2) smoothing so 
that: 
 
(11) x୲

୭ = θ୶,x୲ + θ୶,ଵx୲ିଵ + θ୶,ଶx୲ିଶ 

 y୲
୭ = θ୷,y୲ + θ୷,ଵy୲ିଵ + θ୷,ଶy୲ିଶ 

 ∑ θ୶,୧ = 1 

 ∑ θ୷,୧ = 1 

 
Then, the correlation corr[x୲, y୲] of the actual returns and the correlation corr[x୲

୭, y୲
୭]  of the ob-

served returns are related as follows (Geltner, 1991): 
 
(12) corr[x୲, y୲] = ψସ corr[x୲

୭, y୲
୭] 

 ψସ = (∑ θ୶,୧
ଶ ∑ θ୷,୧

ଶ )ଵ/ଶ/(∑ θ୶,୧ θ୷,୧) 

 
Where the respective smoothing parameters are the same for both funds, i.e., where θ୶,୧ =

θ୷,୧; i = 0,1,2, we have ψସ = 1. However, where the smoothing parameters are different, we have 

ψସ > 1. The value of ψସ can be quite large. In fact, it is infinity where, say, θ୶, = θ୷,ଶ = 1, θ୶,ଵ =

θ୶,ଶ = θ୷,ଵ = θ୷,ଶ = 0. The chart below shows ψସ as a function of θ୷,ଵ and θ୷,ଶ where 

θ୶, = θ୶,ଵ = θ୶,ଶ = 1/3. 
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Figure 8. Distortion factor ψସ for correlation under return smoothing 

 
 

Distortion Comparisons of the Two Methods 
 

We saw above that the results obtained from the MA(2)-GARCH(1,1)-skewed-ݐ model and 
the traditional MA(2) model differ the most where θ is small in value. In the charts below, we 
present the histograms of the ψ୧ for the 1,000 hedge funds in our database with the lowest θ as 
calculated by the traditional MA(2) model. The comparative results in the histograms show that 
the two methods produce very different outcomes. The traditional MA(2) method ignores skew-
ness, kurtosis, and volatility clustering effects, and the result is that it magnifies the degree of 
distortion caused by return smoothing. 
 

Figure 9. Histogram of ψଵ 
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Figure 10. Histogram of ψଶ 

 
 

Figure 11. Histogram of ψଷ 

 
 

Figure 12. Histogram of ψସ 

 
6. Conclusion 
 

It is established in the literature that hedge fund return smoothing causes distortions in 
hedge fund risk measures such as standard deviation, skewness, and excess kurtosis of returns and 
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that it distorts measures of correlation of returns. We replace the traditional MA(2) model em-
ployed in the literature with an MA(2)-GARCH(1,1)-skewed-ݐ model to deal with the distortions 
encountered in return smoothing. We provide evidence that our representation is more consistent 
with the behavior of hedge fund returns than the traditional MA(2) representation and that the 
traditional MA(2) representation tends to overstate the degree of smoothing observed in hedge 
fund returns and the distortive effects of smoothing on statistical measures. The construction of 
our indicators of return distortion, i.e., the ψ, is consistent with our analytical framework, and we 
suggest that such measures may be useful to analysts and policymakers who require correct as-
sessment of risk in hedge fund space. 
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Figure 11.  Histogram of ψ4 

 
 

Figure 12.  Comparison of cross-sectional volatility 
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Figure 13.  Comparison of cross-sectional covariance 
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The construction of our indicators of hedge fund illiquidity, i.e., the ψ, is consistent with 
our analytical framework, and we suggest that such measures may be useful to policy-
makers who require correct assessment of risk in hedge fund space. 
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