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Abstract 

 
We apply dynamic regression to Texas energy-related hedge funds to track changes in 
portfolio structure and manager performance in response to changing oil prices. We 
apply hidden Markov models to compute shifts in portfolio performance from boom to 
bust states. Using these dynamic methods, we find that, in the recent oil-price decline, 
these funds raised their exposure to high-grade energy-related bonds in a bet that the 
spread to low-grade energy bonds would widen. When the high-grade bonds eventually 
fell, the hedge funds entered into a bust state. 
 
Keywords: dynamic regression, Kalman filter, hidden Markov models. 

 
Hedge-fund performance is typically measured statically over a specified period using various 

measures, such as efficiency and the Sharpe ratio, that purport to summarize performance in a single 
number for an entire period. However, a much more interesting picture emerges where dynamic methods 
of performance measurement are used. Dynamic methods provide a narrative rather than a single 
number. They make it possible to observe hedge-fund performance over time and manager skill level and 
to analyze underlying causes of changes. In this paper, we study the effects on energy-related hedge funds 
of the precipitous decline in energy prices in 2014–15. Whereas conventional performance measures 
would simply inform us with a single number that these funds performed poorly, a much richer picture 
emerges where we use dynamic analysis. With dynamic methods, we find that hedge funds investing in 
the energy sector responded to declines in oil prices by switching between key energy-related asset 
classes. We find that these hedge funds achieved only partial success and that manager skill levels fell 
over the period. We apply hidden Markov models to track and analyze the movement of energy-related 
asset classes and hedge funds from boom to bust states in the period. 
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DATA 
 

We exclusively use monthly data in our analysis. Our analysis is based on four key total-return 
indexes: 
 

1. A low-grade corporate energy bond index. 
2. A high-grade corporate energy bond index. 
3. An index of stock prices of companies involved in energy exploration and production. 
4. An index of Texas-based hedge funds specializing in energy markets. 

 
For the low-grade energy bond index, we use the Bloomberg US-dollar “high yield” corporate 

energy bond index, Bloomberg symbol BUHYEN. For the high-grade energy bond index, we use the 
Bloomberg US-dollar corporate energy bond index, Bloomberg symbol BUSCEN. BUHYEN is a market 
value-weighted index of non-investment-grade fixed-rate taxable corporate bonds. BUSCEN is a market 
value-weighted index of investment-grade fixed-rate taxable corporate bonds. To be included in either 
index, a security must have a minimum par amount of $250 million. For the energy equity market, we use 
the S&P Energy Select Sector Total Return Index, Bloomberg symbol IXETR. This is a capitalization-
weighted index intended to track the movement of companies involved in petroleum development and/or 
production. 

We construct an index of hedge funds located in Texas that invest primarily in the energy sector. 
Our index includes Texas-based hedge funds listed under the “Sector-Energy/Basic Materials,” “Yield 
Alternatives-Energy Infrastructure,” and “Commodity-Energy” categories of the Hedge Fund Research, 
Inc. database. There are 34 hedge funds in these three categories. To this, we add four more Texas-based 
hedge funds whose detailed descriptions in the database indicate that they invest primarily in the energy 
sector. The average assets under management of these funds are $80 million. The funds are combined 
using equal weights to create our Texas energy fund index, denoted as TXENG. 
 
INDEX PERFORMANCE 
 

Exhibit 1 shows the performance of the four indexes from January 2012 to December 2015. The 
West Texas Intermediate crude oil spot price, WTI, is included as a reference to show the general behavior 
of energy prices. The exhibit shows that energy-related markets experienced substantial declines 
beginning at about mid-2014. 
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Using July 2014 as the separating point, the basic performance statistics for the four indexes are presented 
in Exhibit 2. The Texas energy fund index, TXENG, experienced the greatest deterioration in risk-adjusted 
performance of the four indexes. In the January 2012-July 2014 period, its Sharpe ratio was 2.56, which 
fell to -1.48 in the August 2014-December 2015 period. The energy-related equity index, IXETR, 
experienced the sharpest decline in annual return, falling 45.12 percentage points from the first period to 
the second period. 
 

Exhibit 2 
Performance Statistics for the Energy-related Indexes 
 January 2012 - July 2014 August 2014 – December 2015 
Symbol Annual 

Return 
Volatility Sharpe 

Ratio 
Annual 
Return 

Volatility Sharpe 
Ratio 

BUHYEN 8.02% 4.72% 1.70 -22.08% 14.78% -1.49 
BUSCEN 5.24% 5.18% 1.01 -6.62% 5.36% -1.23 
IXETR 18.40% 13.58% 1.35 -26.72% 19.87% -1.34 
TXENG 13.58% 5.30% 2.56 -11.87% 8.03% -1.48 

 
The downturns in the energy-related bond indexes beginning at mid-2014 were not generally 

driven by a decline in bond prices. Rather, they reflected the energy price decline. Exhibit 3 shows the 
performance of Barclays US Aggregate Total Return Bond Index and the two energy-related bond indexes. 
The exhibit shows that the Barclays aggregate bond index was stable during the energy-price slide, while 
the two energy-related bond indexes turned lower. 
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RISK EXPOSURE OF THE TEXAS ENERGY HEDGE-FUND INDEX 
 

To analyze the performance of our Texas energy fund index, we model its return as a function of 
the returns of the two energy-related bond indexes and the energy stock index in a multi-factor model:  
 

𝑅𝑅𝑡𝑡𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = 𝛼𝛼 + 𝛽𝛽𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑇𝑇𝑇𝑇𝑅𝑅𝑡𝑡𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑇𝑇𝑇𝑇 + 𝛽𝛽𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑇𝑇𝑇𝑇𝑅𝑅𝑡𝑡𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑇𝑇𝑇𝑇 + 𝛽𝛽𝐼𝐼𝑇𝑇𝑇𝑇𝑇𝑇𝐼𝐼𝑅𝑅𝑡𝑡𝐼𝐼𝑇𝑇𝑇𝑇𝑇𝑇𝐼𝐼 + 𝜀𝜀𝑡𝑡 
 
where 𝑅𝑅𝑡𝑡𝑖𝑖  is the return of index 𝑖𝑖 in month 𝑡𝑡 and 𝛽𝛽𝑖𝑖 is the factor exposure for index 𝑖𝑖. We use dynamic 
analysis as described in Appendix A to allow the 𝛼𝛼 and 𝛽𝛽𝑖𝑖 to vary over time. This allows us to capture the 
dynamic nature of hedge-fund investing. Exhibit 4 shows the results where we apply dynamic analysis to 
construct a replication of the Texas energy fund index. In the exhibit, we see that, despite the simplicity 
of our dynamic multi-factor model—it employs just three factors—the replication tracks the original 
TXENG index very well. This suggests that, although the funds are actively trading various instruments, we 
can replicate their performance with a dynamic combination of the three assets in our model, excluding 
oil prices explicitly as a factor.  
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Exhibit 5 shows the behaviors of the 𝛼𝛼 and 𝛽𝛽𝑖𝑖 over the period. The overall decline in 𝛼𝛼 over the 
sample period implies that hedge-fund manager skill was decreasing in the time frame. The factor 
exposures, i.e., the 𝛽𝛽𝑖𝑖 of the low-grade energy bond index and the energy equity index remained stable 
over the sample period, while the exposure of the high-grade energy bond index increased noticeably. 
With the negative factor exposure of the low-grade energy bond and the increasingly positive exposure 
of the high-grade energy bond, Texas energy hedge funds were essentially betting on both the widening 
of the spread between the two bonds and the recovery of the high-grade bonds. As it turned out, the bet 
on the spread worked, i.e., the spread widened, but the anticipated recovery in high-grade bonds failed 
to materialize, and that damaged hedge fund performance. 
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MONITORING ENERGY MARKET CYCLES 
 

Boom-bust states in market cycles can be computed using a hidden Markov model (HMM). The 
mathematics of HMMs are discussed in Appendix B. In our application, the premise is that index returns 
have distinctive distributions in each of the two states and that the probability of being in either state can 
be estimated using observed returns. We applied HMM for each individual index separately for the 
January 2012-December 2015 period. Exhibit 6 shows the mean returns and standard deviations of 
returns in each state and the transition probability, which is the probability that the index switches states 
in a given month. As expected, for each index, mean returns are positive (negative) in the boom (bust) 
state, and variance of return is higher in the bust period.  
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Exhibit 6 
Hidden Markov Model Monthly Return Statistics 
 Boom State Bust State 
BUHYEN: 
  Mean 0.80% -2.03% 
  Standard Deviation 1.01% 4.92% 
  Transition Probability 7.35% 6.14% 
BUSCEN: 
  Mean 0.62% -0.70% 
  Standard Deviation 1.03% 1.73% 
  Transition Probability 8.80% 11.52% 
IXETR: 
  Mean 1.96% -2.22% 
  Standard Deviation 3.16% 5.66% 
  Transition Probability 10.84% 8.47% 
TXENG: 
  Mean 1.18% -1.77% 
  Standard Deviation 1.08% 2.24% 
  Transition Probability 11.17% 18.70% 

 
Exhibit 7 shows the results for each index where we use HMMs to compute the probability of 

being in a boom or bust state during the January 2014-December 2015 period. According to the exhibit, 
low-grade energy bonds and energy equities entered a bust state in September 2014. High-grade energy 
bonds did not enter a bust state until the later part of 2015. That is, the initial drop in energy prices in 
2014 put pressure on less well-funded energy companies in the second half of 2014. Then, as oil prices 
slumped further in 2015, well-funded energy companies came under pressure, and high-grade energy 
bonds started to fall. Interestingly, Texas energy-related hedge funds entered a bust state in September 
2014, came out in late 2014, and then re-entered a bust state in mid-2015. This is understandable from 
our risk-factor exposure analysis in the dynamic multi-factor model. That is, in the latter part of the cycle, 
as low-grade energy bond prices fell more rapidly than high-grade energy bond prices, hedge funds 
benefitted because they were essentially betting on the widening of the spread, shorting low-grade 
bonds. Finally, however, even high-grade bonds fell, and the performance of energy-related hedge funds 
deteriorated. 
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CONCLUSION 
 

In this paper, we apply dynamic methods to analyze the performance of energy-related hedge 
funds. Compared with conventional techniques, these methods enable us to provide a rich narrative about 
hedge-fund performance, letting us observe fund performance over time and analyze the underlying 
causes of those changes. We examine how the energy-price slide affected energy-related low-grade 
bonds, high-grade bonds, equities, and hedge funds. We decompose the performance of the Texas energy 
hedge-fund index and find that manager skill at those funds decreased during the price slide and that 
energy-related hedge funds were essentially betting on 1) the widening of the yield spread between the 
high-grade and low-grade bonds and 2) a recovery of high-grade bonds. The first bet worked, but the 
second bet failed, leading to the hedge funds’ poor performance.  

Using hidden Markov models, we examine the transitions between boom and bust in energy-
related asset classes and funds. We find that high-grade bonds held up relatively well during the energy-
price slide. These bonds did not enter a bust state until mid-2015, almost a year after low-grade bonds 
and energy equities entered bust states. Like low-grade bonds and energy equities, the hedge funds we 
examined entered a bust state quickly, but the funds adjusted their portfolios, adding to their holdings of 
high-grade energy bonds, and rallied out of a bust state while low-grade bonds and equities did not. 
Eventually, as high-grade bonds entered a bust state, hedge funds had no way out and moved again into 
a bust state.  

Unlike hedge funds, which can quickly adjust their portfolios, energy-related companies could not 
rapidly restructure their businesses in response to the sliding energy prices, and their shares fared poorly. 
Low-grade energy bonds performed even worse. According to our analysis, at the December 2015 end of 
our sample period, energy-related low-grade bonds, investment-grade bonds, equities, and hedge funds 
were all in or near bust states. 
 
 
  

0.00

0.20

0.40

0.60

0.80

1.00

Jan-14 Apr-14 Jul-14 Oct-14 Jan-15 Apr-15 Jul-15 Oct-15

Boom = 1.00
Bust = 0.00

Exhibit 7
Boom-Bust Indexes, January 2014 - December 2015

BUHYEN BUSCEN IXETR TXENG



9 
 

 
 

APPENDIX A 
 
Kalman Filter Estimation 
 

A dynamic linear model, or Kalman filter, provides an alternative way to estimate dynamic 𝛼𝛼 and 
𝛽𝛽 compared to static regression or rolling regression. Our setup follows Chen and Tindall [2013] where 
the state equation follows a random walk: 
 
𝛽𝛽𝑡𝑡 = 𝛽𝛽𝑡𝑡−1 + 𝒘𝒘𝑡𝑡.          (A-1) 
 
The 𝑝𝑝 ∗ 1 state vector 𝛽𝛽𝑡𝑡 is generated from the previous state vector 𝛽𝛽𝒕𝒕−𝟏𝟏 for 𝑡𝑡 = 1,2,3, … ,𝑛𝑛. The vector 
𝒘𝒘𝑡𝑡 is a 𝑝𝑝 ∗ 1 independent and identically distributed zero-mean normal vector having a covariance matrix 
of 𝑄𝑄. The starting state vector 𝛽𝛽0 is assumed to have mean 𝝁𝝁0 and a covariance matrix of 𝛱𝛱0. The state 
process is a Markov chain, but we do not have direct observation of it. We can only observe a linear 
transformation of 𝛽𝛽𝑡𝑡 with added noise which is the monthly return of the TXENG index. Thus, we have the 
following observation equation: 
 
𝒚𝒚𝑡𝑡 = 𝒙𝒙𝑡𝑡𝛽𝛽𝑡𝑡 + 𝒗𝒗𝑡𝑡,           (A-2) 
 
where 𝒙𝒙𝑡𝑡 is a 1 ∗ 𝑝𝑝 matrix representing the intercept and returns from the factors in the multi-factor 
model, the observed data 𝒚𝒚𝒕𝒕, and 𝒗𝒗𝑡𝑡 is white Gaussian noise with a covariance 𝑅𝑅. We also assume 𝒗𝒗𝑡𝑡 and 
𝒘𝒘𝑡𝑡 are uncorrelated. Our primary interest is to produce the estimator for the underlying unobserved 𝛽𝛽𝑡𝑡 
given the data 𝒀𝒀𝑠𝑠 = {𝒚𝒚1, … ,𝒚𝒚𝑠𝑠}. In the literature, where 𝑠𝑠 < 𝑡𝑡, this is referred to as forecasting; where 
𝑠𝑠 = 𝑡𝑡, this is Kalman filtering; and where 𝑠𝑠 > 𝑡𝑡, this is Kalman smoothing. With the definitions 𝛽𝛽𝑡𝑡𝑠𝑠 =
𝐸𝐸(𝛽𝛽𝑡𝑡|𝒀𝒀𝑠𝑠) and 𝑷𝑷𝑡𝑡𝑠𝑠 = 𝐸𝐸[(𝛽𝛽𝑡𝑡 − 𝛽𝛽𝑡𝑡𝑠𝑠)(𝛽𝛽𝑡𝑡 − 𝛽𝛽𝑡𝑡𝑠𝑠)] and the initial conditions 𝛽𝛽00 = 𝛽𝛽0 = 𝝁𝝁0 and 𝑃𝑃00 = 𝛱𝛱0, we 
have the recursive Kalman filter equations as follows: 
 
𝛽𝛽𝑡𝑡𝑡𝑡−1 = 𝛽𝛽𝑡𝑡−1𝑡𝑡−1,            (A-3) 
 
𝑷𝑷𝑡𝑡𝑡𝑡−1 = 𝑷𝑷𝑡𝑡−1𝑡𝑡−1 + 𝑄𝑄 ,         (A-4) 
 
for 𝑡𝑡 = 1,2,3, … ,𝑛𝑛 with: 
 
𝛽𝛽𝑡𝑡𝑡𝑡 = 𝛽𝛽𝑡𝑡𝑡𝑡−1 + 𝐾𝐾𝑡𝑡(𝒚𝒚𝑡𝑡 − 𝒙𝒙𝑡𝑡𝛽𝛽𝑡𝑡𝑡𝑡−1),          (A-5) 
 
𝑷𝑷𝑡𝑡𝑡𝑡 = [𝐼𝐼 − 𝐾𝐾𝑡𝑡𝒙𝒙𝑡𝑡]𝑷𝑷𝑡𝑡𝑡𝑡−1,          (A-6) 
 
𝐾𝐾𝑡𝑡 = 𝑷𝑷𝑡𝑡𝑡𝑡−1𝒙𝒙𝑡𝑡′ [𝒙𝒙𝑡𝑡𝑷𝑷𝑡𝑡𝑡𝑡−1𝒙𝒙𝑡𝑡′ + 𝑹𝑹]−𝟏𝟏.         (A-7) 
 
The 𝑄𝑄 and 𝑅𝑅 are estimated using maximum likelihood. 
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APPENDIX B 
 
Hidden Markov Model for Bust and Boom Estimation 
 

HMMs were introduced by Baum and Petrie [1966], foreshadowed by work on the forward-
backward algorithm by Stratonovich [1960]. HMMs have found a multitude of uses spanning such fields 
as speech recognition, cryptanalysis, and various forms of probabilistic DNA sequencing. They were 
popularized in the field of econometrics by Hamilton [1989] in his seminal work on business-cycle analysis. 

In a simple Markov model, the states of a system are observable. In contrast, in HMMs the states 
are not observable, but something else is observed, and HMMs extract the hidden states from these 
observations. For example, in speech-recognition applications, the observed outcomes are waveforms of 
the audio signals, and the hidden states extracted from the waveforms appear as the text of the spoken 
words. In cryptanalysis, the observed outcomes are the encrypted message, and the hidden states 
extracted from the encryption are the text of the decoded message. 

The diagram below illustrates the structure of a simple HMM. The random variable 𝑦𝑦𝑡𝑡 is the 
observation at time 𝑡𝑡, and the random variable 𝑠𝑠𝑡𝑡 is the hidden state at 𝑡𝑡. The arrows represent 
conditional linkages. For example, the conditional probability distribution of the hidden variable 𝑠𝑠𝑡𝑡 at time 
𝑡𝑡 depends only on the value of 𝑠𝑠𝑡𝑡−1, and the observed 𝑦𝑦𝑡𝑡 depends only on 𝑠𝑠𝑡𝑡. 
 
 
 
 
 
 
 
 
 

Typically, the hidden state variables are discrete. The observations may be discrete or continuous. 
There are two types of parameters in HMMs: 1) transition probabilities and 2) emission probabilities. For 
each of the possible hidden states at 𝑡𝑡, there is a transition probability to each of the hidden states at 𝑡𝑡 +
1. The transition probabilities from a given state sum to 1. The set of emission probabilities governs the 
distribution of the observed variable for each of the states at a particular time. The size of this set of state 
variables depends on the nature of the observed variable.  

In our analysis, there are two states: boom and bust. The observations are continuous. The 
conditional distribution is normal for each state: 𝑁𝑁(𝑢𝑢1,𝜎𝜎12) for the boom state and 𝑁𝑁(𝑢𝑢2,𝜎𝜎22) for the bust 
state. The system can be expressed as follows: 
 

𝑦𝑦𝑡𝑡|𝑠𝑠𝑡𝑡~ 𝑁𝑁�𝑢𝑢𝑠𝑠𝑡𝑡 ,𝜎𝜎𝑠𝑠𝑡𝑡
2 �;  𝑠𝑠𝑡𝑡 = 1, 2         (B-1) 

 
𝑝𝑝(𝑦𝑦𝑡𝑡|𝑧𝑧𝑡𝑡) = 1

√2𝜋𝜋𝜎𝜎𝑠𝑠𝑡𝑡
𝑒𝑒−(𝑦𝑦𝑡𝑡−𝑢𝑢𝑠𝑠𝑡𝑡)2/2𝜎𝜎𝑠𝑠𝑡𝑡

2
        (B-2) 

 
where the information set 𝑧𝑧𝑡𝑡 = (𝑠𝑠𝑡𝑡, 𝑠𝑠𝑡𝑡−1, … 𝑠𝑠1,𝑦𝑦𝑡𝑡−1,𝑦𝑦𝑡𝑡−2, … ,𝑦𝑦1). The transition probability between the 
two states is 𝑝𝑝(𝑠𝑠𝑡𝑡 = 𝑗𝑗|𝑠𝑠𝑡𝑡−1 = 𝑖𝑖) = 𝑝𝑝𝑖𝑖𝑖𝑖, and the HMM is estimated by maximizing the likelihood function: 

𝑠𝑠𝑡𝑡−1 𝑠𝑠𝑡𝑡 

 

𝑠𝑠𝑡𝑡+1 

 

𝑦𝑦𝑡𝑡−1 

 

𝑦𝑦𝑡𝑡 

 

𝑦𝑦𝑡𝑡+1 
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𝑝𝑝(𝑦𝑦1,𝑦𝑦2, … ,𝑦𝑦𝑇𝑇 , 𝑠𝑠1, 𝑠𝑠2, … , 𝑠𝑠𝑇𝑇) = 𝑝𝑝(𝑠𝑠1) ∗ 𝑝𝑝𝑠𝑠1𝑠𝑠2 ∗ … ∗ 𝑝𝑝𝑠𝑠𝑇𝑇−1𝑠𝑠𝑇𝑇 ∗ ∏ 𝑝𝑝(𝑦𝑦𝑖𝑖|𝑖𝑖)𝑇𝑇

𝑖𝑖=1   (B-3) 
 
using the Baum–Welch algorithm. What interests us is to determine the hidden state 𝑠𝑠𝑡𝑡 given the 
observations 𝑦𝑦𝑇𝑇 , …𝑦𝑦1. If 𝑇𝑇 > 𝑡𝑡, we have the smoothed probability; if 𝑇𝑇 = 𝑡𝑡, it is the filtered probability. 
The smoothed probability is non-causal as it contains future information. Meanwhile, it is very helpful to 
study the historical event.  
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