What Drives Housing Dynamics in China? A Sign Restrictions VAR Approach*

Timothy Yang Bian
University of International Business and Economics

Pedro Gete
Georgetown University and IE Business School

September 2014
Revised: December 2014

Abstract
We study housing dynamics in China using vector autoregressions identified with theory-consistent sign restrictions. We study five potential drivers: 1) Population increases; 2) A relaxation of credit standards, for example, due to the shadow banking system; 3) Increasing preferences towards housing, for example, due to a housing bubble, or to housing being a status asset in the marriage market; 4) An increase in the savings rate; and 5) Expected productivity progress. Our results show that fundamental shocks (population, credit and productivity) played a major role in the dynamics of house prices and residential investment before 2009. Preference shocks seem especially relevant in the last several years.

JEL codes: C3, E3, R2

* Timothy Yang Bian, School of Banking and Finance, University of International Business and Economics No.10, Huixin Dongjie, Beijing 100029, China. biantim@gmail.com. Pedro Gete, Department of Economics, Georgetown University, ICC 580, 37th and O Sts., NW, Washington, DC 20057. 202-687-5582. pg252@georgetown.edu. We thank Wayne Archer, Matt Canzoneri, Behzad Diba, Rahul Kaul, Yongping Liang, Clark DuMontier, Guangyu Nie, Michael Reher, Natalie Tiernan, Jun Tu, Rossen Valkanov, Fan Dora Xia, Tony Yezer, anonymous referees and seminar participants at the 2014 ARES Annual Meeting, 2014 AREUEA National Conference, 2014 China International Conference in Finance and 2014 Chinese Economist Society North America for comments. We thank Peijin Qin for providing data. The views in this paper are those of the authors and do not necessarily reflect the views of the Federal Reserve Bank of Dallas or the Federal Reserve System.
1 Introduction

Given the importance of China for the world economy, and the rapid rise in its house prices, with increases larger than those seen in the U.S. before the recent financial crisis, there is a lot of interest in academia and in policy circles about what drives housing dynamics in China. Especially important for policy design is to disentangle the role played by fundamentals, like population or technology growth, from other potential drivers, like bubbles or financial repression.

We analyze five potential drivers of housing dynamics in China using structural vector autoregressions (SVARs) identified with theory-consistent sign restrictions. We analyze: 1) Population increases; 2) a relaxation of collateral constraints or lending standards; 3) increasing preferences over housing, for example, due to a housing bubble, or because housing has a special status in the Chinese marriage market; 4) an increase in the savings rate when a house is one of few assets in which to store value; 5) productivity increases in the tradable sectors. We discuss each of these shocks in greater length in Section 2. We use house prices from multiple sources because the accuracy of the official Chinese house price indices (like the 70 cities index published by the National Bureau of Statistics) is controversial. Wu et al. (2013) survey several criticisms.\footnote{An appendix discusses the different house price indices available in China. This may be useful for future scholars interested in Chinese housing markets.}

Our results show that fundamental shocks (population, credit and productivity) play a major role in the dynamics of house prices and residential investment before 2009. Preference shocks become increasingly important after 2009. This result suggests either a possible housing bubble in China since then, or an increase in the value of a house for status reasons. The results are the same no matter if the price indices used come from official sources or from the private sector.

Our identification procedure exploits sign restrictions on impulse responses that are consistent with the macroeconomic literature on the drivers of housing markets.\footnote{See for example Davis and Heathcote (2005), or Iacoviello and Neri (2010), among others.} To derive them we analyze a dynamic general equilibrium model that integrates the multiple ways in which housing markets interact with the economy (residential investment, wealth and collateral effects, imports of construction-related goods). We look for variables that react differently to each of the five shocks. For example, we can disentangle population from loosening of credit conditions because population shocks cause a negative correlation between per capita consumption and house prices, while the loosening of credit conditions induces a positive correlation. In Section
3.1 we discuss what restrictions allow us to identify each shock. An online Appendix contains the model that formally derives the restrictions.

This paper contributes to two sets of literature. First, methodologically we contribute to the small, but growing literature that analyzes housing markets using structural vector autoregressions. We believe this is the first paper that derives theory-consistent sign restrictions to jointly identify each of the five shocks discussed above. Second, by the topic of our study, we add a complementary methodology to the study of the drivers of housing markets in China. So far the literature has analyzed the topic either using quantitative macro models, or with panel data regressions. Interestingly, several of our results confirm results obtained with the other methodologies. In the following paragraphs we first briefly motivate why the sign-restriction SVAR methodology is useful, then we survey related papers.

SVARs are appealing for two main reasons. First, relative to a quantitative model, SVARs allow more flexible specifications, and integrating a larger number of shocks. Second, relative to a panel regression the SVARs explicitly assume that all variables are endogenous and interact between them. SVARs are immune to arguments of reverse causality, and to incorrectly assuming that a variable is exogenous when it is not. Moreover, contrary to a panel regression, SVARs identified with sign restrictions do not need a variable to proxy for each shock. There is no direct link between variables and identified shocks. The sign restrictions methodology (Faust 1998, Canova and De Nicoló 2002, and Uhlig 2005) identifies economic shocks by exploiting differences in the correlations among variables conditional to a given shock. That is, if there are correlations between economic variables that can only be generated by one type of shock, then that shock can be identified with sign restrictions in the impulse responses of a VAR. Sign-restrictions SVARs, although not yet popular in studying real estate markets, have been applied to study other shocks as for example fiscal, monetary, news or technology shocks. See for example, among others, Charnavoki and Dolado (2014), or Fratzscher and Straub (2013).

Our contribution to SVAR literature is to derive robust restrictions to jointly identify the five shocks we study. Vargas-Silva (2008) used sign restrictions to identify monetary policy shocks in housing markets. Gete (2014) decomposes a housing demand shock into a house price expectation shock, a population shock and a credit expansion shock. Then, he estimates housing dynamics in the OECD. Sa and Wiedalek (2013) compare savings glut shocks and monetary policy in the U.S. None of these papers jointly identify the five shocks as we do.

Concerning the literature on housing dynamics in China, Chen and Wen (2014) and Garriga et al. (2014) are quantitative studies of housing dynamics in China. Chen and Wen (2014) provide a model of a self-fulfilling growing housing bubble that can account for the growth dynamics
of Chinese house prices. Garriga et al. (2014) analyze a model of structural transformation and their quantitative results suggest that the development process accounts for two-thirds of house and land price movements.

Several papers using panel data methods find that the main drivers are urbanization, technological progress, low mortgage rates, property taxes and the land granting system (for example, Bai et al. 2013, Glindro et al. 2011, Ren et al. 2012, Wang et al. 2011 or Wang and Zhang 2014). Wei et al. (2012) explore regional variation to show that imbalances in the sex ratio drive China’s house prices due to the status associated with owning a house. Our complementary methodology allows us to study five different factors simultaneously. In a panel regression that could only be done if each factor is proxied by a variable. It is difficult to find such proxies for all shocks, moreover there is the problem of endogeneity of the regressors.

This paper proceeds as follows. Section 2 describes housing dynamics in China and motivates the five shocks that we study. Section 3 derives the restrictions that identify each shock, estimates vector autoregressions and imposes the sign restrictions. Section 4 discusses the results and robustness tests. Section 5 concludes. Appendix I contains the data sources. Appendix II discusses the house price indices. An online Appendix contains the model and the formal derivation of the sign restrictions.

2 What Can Explain China’s Housing Dynamics?

House prices in China have increased quickly recently. Figure 1 compares real house prices in China (using the popular "70 Cities Index") with several OECD economies. Since it is often controversial whether the official house price indices are reliable we compare various housing indices. We focus on two popular indices computed by China’s National Bureau of Statistics (the 70 Cities and the Average Selling Price Indices), and on two indices from other sources which display larger price fluctuations (the Centaline and the NDRC Price Indices). We describe the indices carefully in Appendix II. Figure 2 plots them. Tables 1 and 2 report their average yearly growth rates, standard deviations and correlations. There is ample heterogeneity in the dynamics of the house price indices. For example, the Centaline Index displays the largest house price increases, while the Average Selling Price and the 70 Cities Index report the lowest increases. This fact is consistent with the concerns that official statistics underestimate house price growth in China.\(^3\) Next, we discuss the five shocks that we study.

\(^3\)For example, in 2009 the 70 Cities Index suggested that nominal house prices at the national level only increased by 1.5 %, whereas many analysts claimed that the growth rate was much larger, and it seems that even China’s statistics bureau admitted that their calculation "diverged significantly from the market reality"
2.1 Urbanization and Population Flows

China has had massive population flows towards urban areas. As we document in Figure 3, the share of total population living in urban areas has increased from 28% in 1994 to more than 50% in 2012. And the percentage of population in cities with more than 1 million residents has risen from merely 11% of the total population in 1994 to more than 20% in 2012. Thus, population flows are a potential major driver of housing demand, house prices, and residential investment.

2.2 Relaxation of Credit Constraints

China’s financial system is highly regulated, and Chinese banks are allocated a maximum lending quota each year that they should not exceed. However, in recent years banks in China have been using financial innovations, such as wealth management products, to circumvent their lending quota (The Economist 2013). Chinese banks have created a large "shadow banking" sector that, at the end of 2012, may have been equivalent to 40% of GDP (The Wall Street Journal 2013). Some observers claim that much of this surge in credit has been channeled towards weaker borrowers who are usually rejected by traditional banks, and are using the new credit to buy real estate (2013 Forbes). In this regard, this expansion of credit seems similar to the credit expansions that several authors have proposed to explain the recent U.S. housing boom (see for example Favilukis et al. 2010 among others).

2.3 Productivity

China has undergone a spectacular economic transformation involving fast productivity progress. For example, Xu and Yu (2012) estimate that Total Factor Productivity (TFP) increased at an average annual growth rate of 2.2% from 1996 to 2007. Higher productivity translates into higher households’ income and higher demand for housing. For example, Kahn (2008) argues that the resurgence in productivity in the U.S. that began in the mid-1990s largely contributed to the U.S. housing boom. Moreover, if productivity growth in the construction sector is slower than in other sectors, this would create upward pressure in the relative price of new houses. Several authors have documented that this is usually the case for most countries (see Sharpe 2001 for Canada, Moro and Nuno 2012 for Germany, Spain, the U.K. and the U.S.).

(Financial Times 2010).
2.4 Preferences towards Savings

China’s gross national savings as a percentage of GDP was around 35% in the 1980s, then the rate climbed to 41% in the 1990s, and accelerated in the 2000s to reach 53% in 2007. Households’ savings accounted for 6–7% of GDP in the late 1970s, but grew to about 22% in 2007 (Yang et al. 2011). These increases in the savings rate motivated Bernanke (2005) to talk about a "savings glut".

High savings rates create demand for assets that serve as a store of value (Chen and Wen 2014 propose a model to capture this mechanism). Real estate is among the few assets available to Chinese households given the capital controls that limit the ability to invest overseas and the non-competitive caps on banks’ deposit rates. Households hold housing, gold, or bank accounts because they wish to save (Fawley and Wen 2013). Thus, the forces pushing for high savings also push for higher housing demand. These forces are the subject of an active literature (see Yang et al. 2011 for a survey). Possible causes are cultural norms, an ageing population, income inequality, or precautionary savings from employment uncertainty and an incomplete social security system.

2.5 Preferences towards Housing

A housing bubble, or a change in the status value of housing in marriage markets, are two factors driving housing demand that can be captured in a model as an increase in preferences towards housing. Both factors have been proposed for different authors. For example, Barth et al. (2012), among many others, claim that there is a housing bubble in China. Wei et al. (2012) claim that a rise in the sex ratio accounts for 30-48% of the rise in real urban housing prices in China during 2003-2009, because households with a son try to buy houses in hopes of improving their son’s odds of finding a wife. Our restrictions to identify an increase in the preferences for housing are consistent with both a bubble, and with an increase in the value of housing as a status good.
3 Sign Restriction SVARs

3.1 Identification

We use a sign restriction methodology to identify the five shocks that we discussed in Section 2. First, we use a standard dynamic general equilibrium model to derive correlations between variables that allow to disentangle the shocks. That is, for each one of the five shocks, we derive a set of sign conditions for the correlations between the variables such that only that shock can generate the correlations. Then, after estimating the VAR, we impose those restrictions as explained in Section 3.2 and we identify the VAR. Table 3 summarizes the sign restrictions and we discuss them below.

We can separate the five shocks into two groups by examining the correlation between the change in consumption of tradable goods and house prices. Group 1: Housing preferences and savings glut shocks imply a negative correlation between households’ consumption of tradable goods and house prices. Facing a housing preference shock, households prefer housing services more than non-housing goods. For example, this could be because of a bubble or an increase in the status benefits of owning houses. Thus, non-housing consumption decreases while house prices increase. It happens similarly for savings glut shocks because when Chinese households want to save more a house is one of the few assets available to them. Group 2: Population, credit shock and TFP increases lead to a positive correlation between house prices and non-housing consumption because these shocks increase aggregate demand for all normal goods.

It is possible to separate the two shocks in Group 1 by looking at the correlation between house prices and the current account to GDP ratio. A savings glut shock leads to savings, thus an increase in the current account to GDP ratio. On the other hand, a housing preferences shock leads to a current account deficit because of three channels: 1) Increases in house prices soften collateral constraints and allow an increase in consumption and imports that generate a current account deficit; 2) Building houses generates imports of tradable goods for construction, appliances, furniture, utilities and related sectors; 3) Residential investment generates reallocation of labor and capital from industries producing tradable goods towards construction and related industries. Countries import tradable goods to replace the goods that used to be produced by the capital and labor reallocated to build houses. Gete (2014) is a quantitative

4The model integrates the multiple ways in which housing markets interact with the economy (residential investment, imports of construction-related goods, and wealth and collateral effects). The Online Appendix contains the model and its impulse responses.

5We do not impose restrictions on residential investment because we do not need to use that variable to disentangle the shocks. Imposing restrictions on it does not alter the results since residential investment and house prices are strongly correlation and share the same sign in the restrictions.
study of the impact of housing demand shocks in the current account and confirms these sign restrictions.

Among the shocks in Group 2, we can identify the TFP shock because it is the only one that increases TFP while house prices go up. In order to differentiate the population shock from the credit shock, we look at per capita consumption of tradable goods. Facing a positive credit shock, per capita consumption increases as the constrained agents can borrow and consume more. However, facing a population increase, per capita consumption goes down because, keeping everything else constant, higher population means lower marginal product of labor and thus a negative per capita wealth effect. This is a robust result from the neoclassical growth model.

3.2 Methodology

We follow an efficient algorithm proposed by Rubio-Ramirez et al. (2005) to implement the sign restriction methodology. First, we estimate a reduced form VAR with log of aggregate consumption of nondurables \((C) \), the current account to GDP ratio \(\left(\frac{CA}{GDP} \right) \), log of house prices \((p_h) \), log of residential investment \((Y_h) \), log of per capita consumption of nondurables \((c) \), and log of Total Factor Productivity \((TFP) \).\(^6\) Appendix I has the data sources. All variables are in real terms. We compare four house price indices. These indices start from different dates, we discuss them in Appendix II. We use the 70 Cities and the Average Selling Price Indices (quarterly data from 1999Q1 to 2012Q4), and the Centaline and the NDRC Price Indices (data available from 2007Q1 to 2012Q4). We checked different information criteria to choose lag length, and two lags were enough to adequately capture the dynamics of the data. We do not model cointegration relationships; Sims et al. (1990) have shown that the dynamics of a VAR in levels can be consistently estimated even in the presence of unit roots. We also include a constant term. We estimate the following VAR in companion form

\[
Y_t = BY_{t-1} + u_t. \tag{1}
\]

The goal of any Structural Vector Autoregression is to map the reduced-form forecast errors \((u_t) \) into structural shocks \((\varepsilon_t) \) with economic meaning, and orthogonal between them.\(^7\) If the

\(^6\)Total Factor Productivity (TFP) is computed as

\[
\log (TFP) = \log (Real \ GDP) - (1 - \alpha) \log (Employment),
\]

where \(\alpha \) is the capital share of output assumed to be 0.36.

\(^7\)Their variance-covariance matrix is the identity matrix, \(E(\varepsilon_t\varepsilon'_t) = I. \)
link between reduced-form and structural shocks is

\[u_t = A \varepsilon_t, \quad (2) \]

then the objective of a SVAR is to characterize the matrix \(A \). Once \(A \) is identified we can study the effect of the structural shocks on the economic variables of interest. Recursive or Cholesky identification assumes that \(A \) is lower triangular, but it is hard to justify that assumption in a model of housing markets. The sign restrictions methodology identifies a set of \(A \) matrices consistent the theoretical signs of the impulse responses to the structural economic shocks, that is, Table 3 in this paper. These impulse responses are

\[\frac{\partial Y_{t+j}}{\partial \varepsilon_t} = B^j A, \quad (3) \]

where \(j \) is the number of period of the impulse response. In the results that we present in Section 4 we imposed the restrictions for two periods.\(^9\) We checked restrictions imposed for one, three and four periods and the results are similar. In Section 4 we follow the common procedure in the literature and show the results for the median of our set of \(A \) matrices (see for example Charnavoki and Dolado 2014).

4 Results

Tables 4 to 9 report the percentage of the variance of the forecasting error that is attributable to the different shocks. The tables differ in the price indices and samples used. For the 70 Cities Index and the Average Selling Price Index we compute decompositions using the full sample (Tables 4 and 6), and then using the shorter sample (2007Q1 to 2012Q4) on which the Centaline and NDRC Property Indices are available. All tables report the results for real house prices and residential investment at forecast errors of 1, 3 and 5 years. We see that all shocks are relevant as all shocks explain at least 10% of the variance of house prices or residential investment. Productivity growth has been the main driver of housing prices when we study the long sample. However, when we restrict to the 2007Q1 to 2012Q4 period then housing preferences are the dominant drivers. This result is robust across all price indices.

\(^8\)The matrix \(A \) is unique up to an orthonormal transformation, that is, wherever \(QQ' = I \) then \(E (u_t u'_t) = AQQ'A' \).

\(^9\)We use the following algorithm of Rubio-Ramirez et al. (2010). 1) Compute \(E (u_t u'_t) = \Sigma \), and assume \(A = \text{chol} (\Sigma) \). 2) Draw a matrix \(X \), whose cells come from a standard normal distribution. 3) Compute the QR decomposition of \(X \). 4) Normalize the diagonal of \(R \) to be positive and check if \(AQ \) satisfies the sign restrictions. If it does, keep \(AQ \), if not discard and draw again. 5) Keep drawing until obtaining 100 successes.
Figures 4 to 7 report the historical decomposition for the different house price indices. That is, we allocate the changes in house prices among the different structural shocks. All Figures show a similar message: the shocks to fundamentals (population increases, credit relaxation and productivity growth) contribute the most up to 2009. After 2009, there is a major increase in the role of the housing preference shock, that captures either a bubble or the status value of housing.

5 Conclusions

In this paper we used vector autoregressions to study five shocks usually discussed as drivers of Chinese housing dynamics. We identified the shocks using sign restrictions consistent with a standard DSGE model of housing markets. Historical decompositions show that fundamental shocks (population increases, credit relaxation and productivity growth) were the major drivers of house prices up to 2009. Since then, housing preference shocks, which capture either a bubble or the status value of housing, have been the dominant drivers. Our results support the recent recommendation from the IMF that China must act to prevent the risks associated with speculative demand in its real estate markets (IMF 2013).
References

Barth, J., Lea, M. and Li, T.: 2012, "China’s Housing Market: Is a Bubble about to Burst?".

Chen, K. and Wen, Y.: 2014, "The Great Housing Boom in China".

11

Sá, F. and Wieladek, T.: 2013, "Capital Inflows and the U.S. Housing Boom".

The Economist: 7/1/2013, "The Credit Kulaks".

The Wall Street Journal: 10/9/2013, "Chinese Think Tank Puts Shadow Banking at 40 percent of GDP".

Appendix I. Data sources

a) Series from Datastream: Gross Domestic Product (CHGDP...A); Consumer Price Index (CHQCP009F); Current Account Balance (CHBPQCURA); Urban Population (CHURBPOP); Urban Employed Persons (CHEMPALLP); Real Estate Development - Residential Building (CHINVHRCA).

b) Series from CEIC: Residential Building Sales Volume: 3959901(CECBG); Residential Building Floor Space Sold: 3973401(CECJ); 70 Cities Property Price Index for Newly Constructed Residential Buildings: 78733801(CEACBL); NDRC 36 Cities Average Property Price: 146217501(CRKAHKA).

c) Series from Wind Info: 70 Cities Property Price Index for Newly Constructed Residential Buildings (S2707404); Centaline Index_Beijing (S0109786); Centaline Index_Shanghai (S0070073); Centaline Index_Shenzhen (S0109845); Centaline Index_Guangzhou (S0109895); Centaline Index_Tianjin (S0109940); Centaline Index_Chengdu (S0179681).

Appendix II. House Price Indices in China

There are different house price indices available in China. The first three are official house price indices. Given the suspicion that these indices underestimate house price growth, some other organizations have started to build house price indices:

1) Price Indices of Newly Constructed Residential Buildings in 70 Cities ("the 70 Cities Index") published by the National Bureau of Statistics (NBS).\(^\text{10}\) This index has been published since 1998. Until 2005 it covered 35 major cities. Since 2005 it covers 70 medium and large-sized cities and is disaggregated into newly built residential and non-residential buildings. Until July 2005, it was published quarterly and since then it is published monthly. It uses a matching approach to control for quality changes (see Wu et al. 2013 for a discussion of the methodology).\(^\text{11}\)

2) Average Selling Price of Newly Constructed Residential Buildings ("the Average Selling

\(^{10}\)The link to the historical data is http://www.stats.gov.cn/english/statisticaldata/ although it is not always easy to download long time series. The NBS is building a new database website at http://data.stats.gov.cn/workspace/index?m=hgyd

\(^{11}\)For each housing complex in the sample, the average transaction price is calculated in each month and compared with that of the same complex in the previous month. The monthly house price growth rate at city level is then calculated as the average (weighted by transaction volume) of all complexes’ growth rates in the corresponding month.
Price Index"). This index has also been published by the NBS since 1998. It covers all cities. The real estate developers are required by law to report every month the transaction volume (in floor space) and the price of the units of newly-built residences. These figures are aggregated and the average selling price (in Renminbi per square meter) is generated by dividing the total transaction value by the total floor space without any adjustment for quality changes. These average prices are published at the city, provincial, and national level. Before 2011, the NBS collected their data from real estate developers, who may not necessarily report accurately as discussed in Ahuja et al. (2010). Since 2011, the NBS collects data directly from local housing authorities (who have all housing transaction records). Since July 2005, the NBS also publishes a price index for secondary transactions in residential buildings.

3) Average Property Prices in 36 Major Cities published by the National Development and Reform Commission ("the NDRC Property Price Index"). These indices start from 2007 and their units are in Renminbi per square meter. Since January 2012 it was split into residential and non-residential indices.

4) Since 2005 the real estate developer Centaline Group publishes its own house price indices ("the Centaline Indices") for Shanghai, Beijing, Guangzhou, Shenzhen and Tianjin based on secondary transaction data.12

5) Since the early 1990s, DTZ, a global real estate adviser, started to publish quarterly residential price and rental indices ("the DTZ Index") for six cities in China (Beijing, Shanghai, Guangzhou, Shenzhen, Tianjin and Dalian). The indices are calculated from secondary transaction data, based on a tracked basket of high-end residential buildings.

6) Since 2010, the China Index Academy (one of the largest Chinese property research institutions, which integrated in 2004 with several research resources, such as China Real Estate Index System (CREIS) or Soufun Research Institute) publishes monthly House Price Indices for 100 cities ("the SouFun CREIS 100 Cities House Price Index").13

7) Moreover, in the spirit of the U.S. Case-Shiller indices, some Chinese scholars have built their own house price indices. For example, Guo et al. (2014), using data of newly-constructed homes in Chengdu, develop a “pseudo repeat sale” quality-controlled price index. Deng et al. (2012) collect data on land sales to create land price indices for 35 cities. Wu et al. (2013) built a hedonic price indices for 35 cities from 2006 to 2010, and by aggregation a multi-city constant-quality house price index.

12And for Chengdu since 2012. We constructed a national index by averaging house price growth rates across different cities.
Figures and Tables

Figure 1: Real House Prices in OECD Countries and China.

Figure 2: Real House Price Indices in China.
Figure 3: Population Dynamics in China.

Figure 4: Historical Decomposition Using 70 Cities Index.
Figure 5: Historical Decomposition Using Average Selling Price Index.

Figure 6: Historical Decomposition Using Centaline Index.
Figure 7: Historical Decomposition Using NDRC Property Price Index.
Table 1: Growth Rates of Real House Price Indices

<table>
<thead>
<tr>
<th></th>
<th>70 Cities Index</th>
<th>Average Selling Price</th>
<th>NDRC Property Price</th>
<th>Centraline Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average (YoY)</td>
<td>3.12%</td>
<td>6.63%</td>
<td>10.02%</td>
<td>11.35%</td>
</tr>
<tr>
<td>Standard Deviation</td>
<td>3.65%</td>
<td>7.74%</td>
<td>9.03%</td>
<td>13.54%</td>
</tr>
</tbody>
</table>

Note: Appendix II discusses these price indices.

Table 2: Correlation among Real House Price Indices

<table>
<thead>
<tr>
<th></th>
<th>70 Cities Index</th>
<th>Average Selling Price</th>
<th>NDRC Property Price</th>
<th>Centraline Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>70 Cities Index</td>
<td>1</td>
<td>0.967</td>
<td>0.809</td>
<td>0.874</td>
</tr>
<tr>
<td>Average Selling Price</td>
<td>1</td>
<td>0.967</td>
<td>0.892</td>
<td>0.887</td>
</tr>
<tr>
<td>NDRC Property Price</td>
<td>1</td>
<td>0.809</td>
<td>1</td>
<td>0.956</td>
</tr>
<tr>
<td>Centraline Index</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

Note: Appendix II discusses these price indices.

Table 3: Sign Restrictions for Positive Shocks

<table>
<thead>
<tr>
<th>Variable/Shocks</th>
<th>Population</th>
<th>Credit Shock</th>
<th>Housing Preference</th>
<th>Savings Glut</th>
<th>Permanent TFP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consumption</td>
<td>> 0</td>
<td>> 0</td>
<td>< 0</td>
<td>< 0</td>
<td>> 0</td>
</tr>
<tr>
<td>CA/GDP</td>
<td></td>
<td>< 0</td>
<td>> 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>House prices</td>
<td>> 0</td>
<td>> 0</td>
<td>> 0</td>
<td>> 0</td>
<td>> 0</td>
</tr>
<tr>
<td>Consumption per capita</td>
<td>< 0</td>
<td>> 0</td>
<td></td>
<td>> 0</td>
<td></td>
</tr>
<tr>
<td>TFP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>> 0</td>
</tr>
</tbody>
</table>

Note: Section 3.1 discusses the sign restrictions.
Table 4: Variance Decompositions Using 70 Cities Index (1999Q1 to 2012Q4)

<table>
<thead>
<tr>
<th>Forecast Horizon :</th>
<th>1 Year</th>
<th>3 Years</th>
<th>5 Years</th>
<th>1 Year</th>
<th>3 Years</th>
<th>5 Years</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population</td>
<td>7.8%</td>
<td>6.6%</td>
<td>6.4%</td>
<td>18.6%</td>
<td>18.4%</td>
<td>19.0%</td>
</tr>
<tr>
<td>Credit shock</td>
<td>11.4%</td>
<td>9.6%</td>
<td>9.2%</td>
<td>12.3%</td>
<td>11.2%</td>
<td>11.5%</td>
</tr>
<tr>
<td>Housing preference</td>
<td>11.0%</td>
<td>10.0%</td>
<td>9.6%</td>
<td>13.2%</td>
<td>13.2%</td>
<td>11.3%</td>
</tr>
<tr>
<td>Savings glut</td>
<td>10.4%</td>
<td>16.9%</td>
<td>20.9%</td>
<td>9.4%</td>
<td>8.8%</td>
<td>8.7%</td>
</tr>
<tr>
<td>TFP</td>
<td>24.2%</td>
<td>19.5%</td>
<td>17.8%</td>
<td>16.0%</td>
<td>17.1%</td>
<td>17.9%</td>
</tr>
</tbody>
</table>

Note: Quarterly data from 1999Q1 to 2012Q4.

Table 5: Variance Decompositions Using 70 Cities Index (2007Q1 to 2012Q4)

<table>
<thead>
<tr>
<th>Forecast Horizon :</th>
<th>1 Year</th>
<th>3 Years</th>
<th>5 Years</th>
<th>1 Year</th>
<th>3 Years</th>
<th>5 Years</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population</td>
<td>20.4%</td>
<td>16.9%</td>
<td>16.0%</td>
<td>22.4%</td>
<td>19.6%</td>
<td>18.5%</td>
</tr>
<tr>
<td>Credit shock</td>
<td>4.5%</td>
<td>13.4%</td>
<td>12.6%</td>
<td>24.9%</td>
<td>15.8%</td>
<td>14.7%</td>
</tr>
<tr>
<td>Housing preference</td>
<td>35.8%</td>
<td>28.7%</td>
<td>29.4%</td>
<td>7.3%</td>
<td>20.7%</td>
<td>23.9%</td>
</tr>
<tr>
<td>Savings glut</td>
<td>4.2%</td>
<td>13.9%</td>
<td>14.9%</td>
<td>15.1%</td>
<td>18.1%</td>
<td>17.3%</td>
</tr>
<tr>
<td>TFP</td>
<td>11.2%</td>
<td>11.1%</td>
<td>9.1%</td>
<td>15.5%</td>
<td>11.3%</td>
<td>9.3%</td>
</tr>
</tbody>
</table>

Note: Quarterly data from 2007Q1 to 2012Q4.

Table 6: Variance Decompositions Using Average Selling Price (1999Q1 to 2012Q4)

<table>
<thead>
<tr>
<th>Forecast Horizon :</th>
<th>1 Year</th>
<th>3 Years</th>
<th>5 Years</th>
<th>1 Year</th>
<th>3 Years</th>
<th>5 Years</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population</td>
<td>11.3%</td>
<td>11.4%</td>
<td>12.0%</td>
<td>17.5%</td>
<td>19.2%</td>
<td>21.3%</td>
</tr>
<tr>
<td>Credit shock</td>
<td>15.9%</td>
<td>18.0%</td>
<td>18.5%</td>
<td>11.9%</td>
<td>10.4%</td>
<td>11.3%</td>
</tr>
<tr>
<td>Housing preference</td>
<td>13.3%</td>
<td>14.6%</td>
<td>13.7%</td>
<td>24.0%</td>
<td>23.2%</td>
<td>19.7%</td>
</tr>
<tr>
<td>Savings glut</td>
<td>10.5%</td>
<td>9.9%</td>
<td>10.8%</td>
<td>7.9%</td>
<td>11.1%</td>
<td>14.0%</td>
</tr>
<tr>
<td>TFP</td>
<td>25.2%</td>
<td>24.2%</td>
<td>24.4%</td>
<td>15.5%</td>
<td>17.1%</td>
<td>17.5%</td>
</tr>
</tbody>
</table>

Note: Quarterly data from 1999Q1 to 2012Q4.
Table 7: Variance Decompositions Using Average Selling Price (2007Q1 to 2012Q4)

<table>
<thead>
<tr>
<th>Forecast Horizon</th>
<th>Real House Prices</th>
<th>Residential Investment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 Year</td>
<td>3 Years</td>
</tr>
<tr>
<td>Population</td>
<td>15.0%</td>
<td>11.5%</td>
</tr>
<tr>
<td>Credit shock</td>
<td>16.9%</td>
<td>17.7%</td>
</tr>
<tr>
<td>Housing preference</td>
<td>20.7%</td>
<td>27.1%</td>
</tr>
<tr>
<td>Savings glut</td>
<td>5.9%</td>
<td>9.2%</td>
</tr>
<tr>
<td>TFP</td>
<td>16.2%</td>
<td>13.1%</td>
</tr>
</tbody>
</table>

Note: Quarterly data from 2007Q1 to 2012Q4.

Table 8: Variance Decompositions Using Centaline Index

<table>
<thead>
<tr>
<th>Forecast Horizon</th>
<th>Real House Prices</th>
<th>Residential Investment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 Year</td>
<td>3 Years</td>
</tr>
<tr>
<td>Population</td>
<td>31.0%</td>
<td>22.8%</td>
</tr>
<tr>
<td>Credit shock</td>
<td>12.8%</td>
<td>11.9%</td>
</tr>
<tr>
<td>Housing preference</td>
<td>19.0%</td>
<td>25.8%</td>
</tr>
<tr>
<td>Savings glut</td>
<td>4.3%</td>
<td>5.8%</td>
</tr>
<tr>
<td>TFP</td>
<td>8.8%</td>
<td>9.0%</td>
</tr>
</tbody>
</table>

Note: Quarterly data from 2007Q1 to 2012Q4.

Table 9: Variance Decompositions Using NDRC Property Price Index

<table>
<thead>
<tr>
<th>Forecast Horizon</th>
<th>Real House Prices</th>
<th>Residential Investment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 Year</td>
<td>3 Years</td>
</tr>
<tr>
<td>Population</td>
<td>21.4%</td>
<td>15.7%</td>
</tr>
<tr>
<td>Credit shock</td>
<td>9.0%</td>
<td>13.1%</td>
</tr>
<tr>
<td>Housing preference</td>
<td>20.7%</td>
<td>23.1%</td>
</tr>
<tr>
<td>Savings glut</td>
<td>5.1%</td>
<td>5.6%</td>
</tr>
<tr>
<td>TFP</td>
<td>15.9%</td>
<td>15.0%</td>
</tr>
</tbody>
</table>

Note: Quarterly data from 2007Q1 to 2012Q4.
In this Appendix we present the model we use to derive the identifying restrictions for the five shocks discussed in the paper. We use sign restrictions that are robust across different parameterization. The model is based on Gete (2009) and integrates the multiple ways in which housing markets interact with the economy.

1 Model

There are two countries (domestic and foreign) in the model. We focus on China as the domestic country. In both countries there is a non-tradable housing sector and a tradable goods sector. The traded good is the same good for both countries, thus all trade between countries is intertemporal. The model is real and the traded good is the numeraire. The domestic country is composed of two types of households (patient and impatient) and only impatient households are credit-constrained. We work the perfect foresight version to incorporate unexpected and expected shocks. Figure 1 illustrates the structure of the model.

1.1 Domestic Households

At period t there is a mass $N_{d,t}$ of infinitely lived domestic households who can be patient or impatient. These two types differ in three dimensions: 1) The discount factor for the patient households is larger than for the impatient households ($\beta^p > \beta^i$). This is a standard technique to have credit relations in a model as the impatient households borrow from the patient ones. 2) The impatient households face a collateral constraint that limits their borrowings to a fraction of the discounted expected value of the houses they own. 3) Patient domestic households have access to two types of one-period bonds: an international bond (\hat{B}) with real interest rate \hat{R} to borrow or lend to the foreign households; a domestic bond (B) with real interest rate R to lend to the domestic impatient households. A non-arbitrage condition governs the relation between these two types of bonds. The domestic impatient households can only borrow from the domestic patient. This is a simplifying assumption without loss of generality. As we will discuss, the domestic impatient can borrow from the foreign households via the domestic patient households, who in that regard behave as a financial intermediary.

Both types of domestic households enjoy consumption of housing and tradable goods without any consumption home bias. Both types supply labor inelastically in the domestic country. The
parameter \(\phi \) controls the share of impatient households over the total domestic population, as well as their share in the income of the domestic country. In every period in the domestic country there are \((1 - \phi) N_{d,t}\) patient households and \(\phi N_{d,t}\) impatient households. The total population of the domestic country \((N_{d,t})\) can change over time.

1.1.1 Domestic Patient Households

There is a representative domestic patient household who maximizes the expected utility of her members

\[
E_0 \sum_{t=0}^{\infty} (\beta_{dt}^p)^t (1 - \phi) N_{d,t} u(c_{d,t}^p, h_{d,t}^p)
\]

where \(c_{d,t}^p\) and \(h_{d,t}^p\) are the per capita consumption of tradable goods and housing. \(\beta_{dt}^p\) is a time-varying discount factor to capture changes in the desire for savings. These changes affect both patient and impatient households.

The flow of housing consumption is equal to the per capita stock of housing. Preferences are constant relative risk aversion over a constant elasticity of substitution aggregator of housing services and tradable goods consumption

\[
u(c_{d,t}^p, h_{d,t}^p) = \left[\left(1 - \theta_{d,t} \right) \left(c_{d,t}^p \frac{\epsilon_i}{\sigma} + \theta_{d,t} \left(h_{d,t}^p \frac{\epsilon_h}{\sigma} \right) \right) \right]^{\frac{1}{\frac{1}{\sigma}}} \]

where \(\sigma\) is the elasticity of intertemporal substitution (IES) as well as the inverse of the coefficient of relative risk aversion, \(\epsilon\) is the static or intratemporal elasticity of substitution (SES) between housing and tradable goods consumption, and \(\theta_{d,t} \in (0, 1)\) is a country-specific parameter that affects the share of consumption of housing services. A bubble, or an increase in the value of owning a house in marriage markets, can be captured with changes in this parameter. In both cases households value housing more relative to goods consumption.

Multiplying per capita values by the number of patient households we obtain the aggregates for the domestic patient households:

\[
C_{d,t}^p = (1 - \phi) N_{d,t} c_{d,t}^p
\]

\[
H_{d,t}^p = (1 - \phi) N_{d,t} h_{d,t}^p
\]

\[
B_{d,t}^p = (1 - \phi) N_{d,t} b_{d,t}^p
\]

\[
\hat{B}_{d,t}^p = (1 - \phi) N_{d,t} \hat{b}_{d,t}^p
\]
where \(\hat{b}_{dt} \) are the patient households’ per capita holdings of the international bond, and \(b_{dt}^p \) the per capita holdings of the domestic bond.

The budget constraint for the representative domestic patient household is:

\[
C_{dt}^p + B_{dt}^p + \hat{B}_{dt}^p + q_{dt} \left(H_{dt}^p - (1 - \delta) H_{dt-1}^p \right) + (1 - \phi) N_{dt} \frac{\psi_B}{2} (\hat{b}_{dt}^p - \bar{b}_d)^2 = \\
= R_{t-1} B_{dt-1}^p + \hat{R}_{t-1} \hat{B}_{dt-1}^p + (1 - \phi) I_{dt}
\]

where \(q_{dt} \) is the price of a domestic house in terms of tradable goods, \(\delta \) is the house depreciation rate, \(R_t \) is the domestic gross interest rate, \(\hat{R}_t \) is the international gross interest rate, \(I_{dt} \) is households’ income to be defined below, \(\psi_B \) is the parameter that controls the adjustment cost in the holdings of international bonds and \(\bar{b}_d \) is the per capita steady state holdings. We use the adjustment cost to insure that there is a unique steady state; this is a standard technique to close international models with incomplete markets (Schmitt-Grohe and Uribe 2003, Boileau and Normadin 2008).

From the first order conditions of the domestic patient households, we can derive the non-arbitrage restriction between the return of the two bonds:

\[
R_t \left[1 + \psi_B (\hat{b}_{dt}^p - \bar{b}_d^p) \right] = \hat{R}_t
\]

When the adjustment cost goes to zero both bonds offer the same return \((R_t = \hat{R}_t) \).

1.1.2 Domestic Impatient Households

The representative domestic impatient household maximizes the expected utility of her members

\[
E_0 \sum_{t=0}^{\infty} (\beta_{dt}^i)^t \phi N_{dt} u(c_{dt}^i, h_{dt}^i)
\]

\[
u(c_{dt}^i, h_{dt}^i) = \left[\left(1 - \theta_{dt} \right) \left(c_{dt}^{1+\frac{1}{\xi}} \right)^{\frac{1}{\xi}} + \theta_{dt} \left(h_{dt}^{1+\frac{1}{\xi}} \right)^{\frac{1}{\xi}} \right]^{1 - \frac{1}{\sigma}}
\]

where all variables are as defined for the patient household but now they have the superscript of the impatient household. We assume that

\[
\beta_{dt}^i = \zeta \beta_{dt}^p
\]
with $\zeta \in (0, 1)$. Thus, $\beta^d_{dt} < \beta^p_{dt}$. The aggregate variables are

\begin{align*}
C_{dt}^i &= \phi N_{dt}c_{dt}^i \\
H_{dt}^i &= \phi N_{dt}h_{dt}^i \\
B_{dt}^i &= \phi N_{dt}b_{dt}^i
\end{align*}

The behavior of domestic impatient households is summarized by a representative agent who chooses per capita housing, tradable consumption, and domestic bond holdings (b_{dt}^i) to maximize $(9 - 10)$ subject to the aggregate budget constraint:

\begin{equation}
C_{dt}^i + B_{dt}^i + q_{dt} (H_{dt}^i - (1 - \delta) H_{dt-1}^i) = R_{t-1} B_{d,t-1}^i + \phi I_{dt}^i
\end{equation}

Impatient households also face a borrowing constraint such that their borrowings have to be collateralized with housing:

\begin{equation}
b_{dt}^i \geq \frac{-m_t E_t (q_{dt+1} h_{dt}^i)}{R_t}
\end{equation}

That is, impatient households per capita borrowings cannot be larger than a fraction m_t of the discounted future value of their current houses. The variable m_t controls the loan-to-value (LTV) ratio. Shocks to m_t are referred to in the macro-housing literature as credit standards shocks.

1.2 Domestic Firms

Firms use labor to produce tradable goods ($Y_{Td,t}$). They use labor and land (L_d) to produce non-tradable housing structures ($Y_{sd,t}$). Then firms use housing structures and housing appliances ($Y_{ad,t}$) to produce new houses ($Y_{hd,t}$). Tradable goods ($Y_{Td,t}$) can be used for consumption by households in both countries or as housing appliances. That is, a share of $Y_{Td,t}$ can be used as $Y_{ad,t}$. The production functions are:

\begin{align*}
Y_{Td,t} &= A_{Td,t} (N_{Td,t})^\alpha \\
Y_{sd,t} &= [A_{sd} (N_{sd,t})^{\alpha}]^\gamma L_d^{1-\gamma} \\
Y_{hd,t} &= \min (Y_{sd,t}, \tau Y_{ad,t})
\end{align*}

where α, γ, τ and L_d are constants. $N_{Td,t}$ and $N_{sd,t}$ are the domestic labor allocated to tradable goods and housing sector respectively.
Equation (18) captures that land plays a role in the production of housing. Equation (19) captures that housing is produced using both tradable and non-tradable goods. The Leontief assumption in (19) captures the complementarities between tradable and non-tradable goods in producing houses. In equilibrium,

\[Y_{ad,t} = \tau Y_{ad,t} \]

(20)

Firms’ decision is to allocate labor across two sectors. In equilibrium the value of one unit of labor must be equal across sectors. Since the households own the firms and the land, we can define households’ income as the total revenues of the firms:

\[I_{d,t} = q_{d,t} Y_{hd,t} + Y_{Td,t} - Y_{ad,t} \]

(21)

1.3 Foreign Country

To simplify, we assume there are only patient unconstrained households in the foreign country. Their representative agent maximizes the expected utility of her members

\[
E_0 \sum_{t=0}^{\infty} (\beta_f^p)^t N_{f,t} u(c_{f,t}, h_{f,t})
\]

(22)

\[
u(c_{f,t}, h_{f,t}) = \left[\left((1 - \theta_f) \frac{c_{f,t}}{c_{f,t}} + \theta_f \frac{h_{f,t}}{h_{f,t}} \right) \frac{1}{\gamma} \right]^{1 - \frac{1}{\gamma}}
\]

(23)

As before, we define the aggregate variables as

\[
C_{f,t} = N_{f,t} c_{f,t}
\]

(24)

\[
H_{f,t} = N_{f,t} h_{f,t}
\]

(25)

\[
\bar{B}_{f,t} = N_{f,t} \bar{b}_{f,t}
\]

(26)

The representative foreign household chooses per capita consumption of tradable goods, non-tradable foreign housing and international bonds \(\bar{b}_{f,t}\) to maximize (22) – (23) subject to her aggregate budget constraint:

\[
C_{f,t} + \bar{B}_{f,t} + q_{f,t} (H_{f,t} - (1 - \delta) H_{f,t-1}) + N_{f,t} \frac{\psi_B}{2} \left(\bar{b}_{f,t} - \bar{b}_f \right)^2 = \hat{R}_{t-1} \hat{B}_{f,t-1} + I_{f,t}
\]

(27)
Foreign firms have the same technology as domestic firms:

\[Y_{Tf,t} = A_{Tf,t} \left(N_{Tf,t} \right)^{\alpha} \]
\[Y_{sf,t} = \left[A_{sf} \left(N_{sf,t} \right)^{\alpha} \right] \gamma L_{f}^{1-\gamma} \]
\[Y_{hf,t} = \min \left(Y_{sf,t}, Y_{af,t} \right) \]

(28)
(29)
(30)

where \(N_{Tf,t} \) and \(N_{sf,t} \) are the labor allocated to tradable goods and housing sector in the foreign country.

The income of foreign households is the total revenue of the firms:

\[I_{f,t} = q_{f,t} Y_{hf,t} + Y_{Tf,t} - Y_{af,t} \]

(31)

1.4 Market Clearing and Shocks

Labor is mobile within the sectors of each country but not internationally:

\[N_{Td,t} + N_{sd,t} = N_{d,t} \]
\[N_{Tf,t} + N_{sf,t} = N_{f,t} \]

(32)
(33)

The increase in the housing stock of each country is the new houses produced minus the depreciation:

\[H_{f,t} - (1 - \delta) H_{f,t-1} = Y_{hf,t} \]
\[H_{i,d,t} + H_{d,t}^{i} - (1 - \delta) \left(H_{d,t-1}^{i} + H_{d,t-1}^{p} \right) = Y_{hd,t} \]

(34)
(35)

Tradable goods are consumed by households in the two countries, they also serve to pay the portfolio adjustment costs

\[C_{d,t}^{p} + C_{d,t}^{i} + C_{f,t} \]

\[= Y_{Td,t} - Y_{ad,t} - (1 - \phi) N_{dt} \psi_{B} \frac{1}{2} \left(\tilde{v}_{d,t}^{p} - \tilde{v}_{d}^{p} \right)^{2} + Y_{Tf,t} - Y_{af,t} - N_{f,t} \psi_{B} \frac{1}{2} \left(\tilde{v}_{f,t} - \tilde{v}_{f} \right)^{2} \]

(36)

The net supply of domestic bonds between the patient and impatient households equals zero:

\[B_{d,t}^{p} + B_{d,t}^{i} = 0 \]

(37)
The net supply of international bonds between the two countries equals zero.

\[\hat{B}_{d,t} + \hat{B}_{f,t} = 0 \]

(38)

We can define the trade balance and the current account in the domestic country as

\[TB_{d,t} = Y_{T_d,t} - Y_{ad,t} - C_{d,t} - C_{i,t} - (1 - \phi) N_{d,t} \frac{\psi_B}{2} \left(\hat{p}_{d,t} - \bar{p}_d \right)^2 \]

(39)

\[CA_{d,t} = \hat{B}_{d,t} - \hat{B}_{d,t-1} \]

(40)

2 Parametrization

Table 1 summarizes our benchmark parametrization. Some parameters are directly obtained from microeconomic evidence, some other parameters are selected to match certain steady state ratios. We assume that one period in the model is one year and divide the parameters in two groups:

1) Parameters in households’ problems: as in most of the real business cycle literature we assume an Intertemporal Elasticity of Substitution \(\sigma = 0.5 \), which under CRRA preferences implies a value for risk aversion of 2. Our sign restrictions are robust to different values. The value for intratemporal elasticity of substitution \(\varepsilon \) is under open debate, as discussed in Ferrero (2013). We choose \(\varepsilon = 0.4 \), implying complementarity between tradable goods and houses. We select \(\theta = 0.15 \) to match a 10.5% share of consumption of housing services over total expenditure. The parameter \(\tau = 2 \) is selected to match the fact that housing appliances take up 17% of the value for new houses (Siniavskaia 2008).

Domestic and international patient households share the same discount factor in steady state; this parameter pins down the real interest rate in steady state. We set a value \(\beta_{f} = \beta_d = 0.97 \) to target a 3% annual real return. We will give transitory shocks to \(\beta_{d,t} \) as discussed later. Given our numerical solution method, the impatient households’ discount factor \(\beta_{i} \) needs to be small enough to guarantee that the borrowing constraint (16) is always binding (for a discussion of these technicalities see Iacoviello and Neri 2010). Punzi (2013) chooses a relatively large \(\beta_{i} = 0.98 \) for her quarterly model; Iacoviello (2005) chooses a smaller \(\beta_{i} = 0.95 \) in a quarterly model. Ferrero (2013) argues that the choice of \(\beta_{i} \) depends on the change in the loan-to-value ratio and, in a quarterly model, he chooses \(\beta_{i} = 0.96 \) when \(m \) changes from 0.75 to 0.99, and a smaller \(\beta_{i} = 0.89 \), when \(m \) changes from 0.85 to 0.95. We choose the ratio of discount factors between domestic impatient and patient households to be \(\zeta = \frac{0.85}{0.97} \), which is
There is no consensus in the literature among the share of households who are borrowing constrained. As we discuss below this is an important parameter which could alter the sign of the reaction of some variables to shocks. In the standard life-cycle buffer-stock model with one risk-free asset, (Heathcote et al. 2009 provide a survey) the fraction of constrained households is very small (usually below 10%) under parameterizations where the model’s distribution of net worth is in line with the data. On the other extreme, Ferrero (2013) works with 100%. Iacoviello estimates that the wage income share of the patient households is 0.64. Kaplan and Violante (2012) look at the 2001 U.S. Survey and Consumer Finances for households who hold sizeable amounts of illiquid wealth, yet consume all of their disposable income during a pay-period. They find that between $\frac{1}{4}$ and $\frac{1}{3}$ of US households fit this profile. Lusardi et al. (2011) show that almost half of US households would be probably or certainly unable to "come up with $2,000 within a month". Justiniano et al. (2013) also identify the impatient households with liquidity constrained. They use the 1992, 1995 and 1998 Survey of Consumer Finances and estimate an average share of 61% in the population and they account for 46% of labor income. They control for the progressivity of the tax/transfer system and end up with a ratio between the total income of the borrowers and savers of 0.52. We assume that 50% of the domestic households are impatient and we do robustness analysis. The loan-to-value ratio in most of the literature ranges from 0.75 to 0.85, (e.g. Iacoviello 2005, Ferrero 2013 and Justiniano et al. 2013). We set as steady state $m = 0.9$.

2) Parameters in firms’ problems: We normalize the steady state productivity in tradable goods and housing sector to 1 ($A_s = A_T = 1$). In the Cobb-Douglas production functions for the goods sector, we select the standard labor intensity $\alpha_T = \frac{2}{3}$. For the choice of α_s, some literature like Punzi (2013) argues that there is higher degree of labor intensity in the housing sector. But we assume that the labor intensity in two sectors are equal: $\alpha_s = \alpha_T = \frac{2}{3}$. As argued in Iacoviello and Neri (2010), in response to shocks, larger land intensity increases the volatility of housing prices. To better match data, we pick $\gamma = 0.8$ to make land intensity in the housing sector equal 0.2. We assume that the per capita supply of land is $\frac{L_d}{N_d} = \frac{L_f}{N_f} = 0.0001$, reflecting the scarcity of land resources. For the annual house depreciation rate we set it at $\delta = 0.045$, to match the fact that around 7% of the population works in the housing sector. And our choice of house depreciation rate is within the range of values the literature: in quarterly models, Iacoviello and Neri 2010 chooses 1%, while Punzi (2013) chooses 1.5%.
3 Deriving Sign Restrictions

3.1 Exogenous Shocks

Figure 2 reports the five exogenous shocks that we feed into the model. The population, credit and TFP shocks are empirically motivated. We assume that population grows at 2% per year for 10 years. This is a middle ground between the average 1% population growth of OECD countries and the 4% at which urban population grows in China. Concerning the credit shock, we assume that the LTV ratio rises from 0.9 to 1 within 10 years. This is slightly a larger change that what Duca et al. (2011) documented for the U.S. They show that the LTV ratio for first time home-buyers rose from 85% in the late 1990s to 95% in the late 2000s. We checked that the size of the population or LTV shocks have no effect on the sign of the restrictions. Concerning TFP the shape of the shock is crucial for the response. If TFP is expected to decay the households try to save, while they try to borrow and consume if they expect future productivity to raise their incomes. We assume that the productivity progress in China is increasing and study a TFP pattern that grows at 2% for 10 years until achieving a permanently higher level.

Housing preference and savings glut shocks are more difficult to measure. Thus we resort to the standard transitory shocks. Moreover, domestic savings glut shocks have to be transitory to have a well defined steady state if we do not assume that all domestic households are impatient (an issue raised by Lucas and Stokey 1984). We increase domestic preference towards housing \(\theta_{dt} \) to match a 10% immediate increase in the house prices. Then the value of \(\theta_{dt} \) falls towards the initial level within 10 years. The savings glut shocks are captured with a temporary increase in discount factors for both domestic households (the ratio is still governed by equation 11) to match a reduction in the real interest rates of 0.6% relative to the steady state rate.

3.2 Impulse Responses

Figures 3 to 5 report the dynamics of consumption of tradable goods, current account/GDP and house prices facing the five positive shocks. They support the identification scheme we discussed in Section 3 of the paper. Group 1 shocks: Housing preference and savings glut shocks imply a negative correlation between households’ consumption of tradable goods and house prices. Group 2 shocks: Population, credit shock and TFP increases lead to a positive correlation between house prices and non-housing consumption. It is possible to separate the two shocks in group 1 by looking at the correlation between house prices and the current
account/GDP ratio. A savings glut shock leads to savings, thus an increase in the current account/GDP. On the other hand, a housing preference shock leads to a current account deficit.
References

4 Tables and Figures

Table 1: Benchmark Calibration

<table>
<thead>
<tr>
<th>Description</th>
<th>Parameters</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steady state patient households’ discount factor</td>
<td>β^p</td>
<td>0.97</td>
</tr>
<tr>
<td>Ratio of domestic impatient to patient discount factor</td>
<td>ζ</td>
<td>0.85/0.97</td>
</tr>
<tr>
<td>Share of impatient households in domestic country</td>
<td>ϕ</td>
<td>0.5</td>
</tr>
<tr>
<td>Intertemporal Elasticity of Substitution</td>
<td>σ</td>
<td>0.5</td>
</tr>
<tr>
<td>Intratemporal Elasticity of Substitution</td>
<td>ε</td>
<td>0.4</td>
</tr>
<tr>
<td>Housing depreciation rate</td>
<td>δ</td>
<td>0.045</td>
</tr>
<tr>
<td>Ratio of housing appliances over structures</td>
<td>$\frac{1}{\tau}$</td>
<td>1/2</td>
</tr>
<tr>
<td>LTV parameter</td>
<td>m</td>
<td>0.9</td>
</tr>
<tr>
<td>Share of housing in utility functions</td>
<td>θ_d, θ_f</td>
<td>0.15</td>
</tr>
<tr>
<td>Steady state TFP in housing sector</td>
<td>A_s</td>
<td>1</td>
</tr>
<tr>
<td>Steady state TFP in tradable goods sector</td>
<td>A_T</td>
<td>1</td>
</tr>
<tr>
<td>Labor intensity in housing sector</td>
<td>α_s</td>
<td>2/3</td>
</tr>
<tr>
<td>Labor intensity in tradable goods sector</td>
<td>α_T</td>
<td>2/3</td>
</tr>
<tr>
<td>Land share in housing production</td>
<td>$1 - \gamma$</td>
<td>0.2</td>
</tr>
<tr>
<td>Steady state domestic population</td>
<td>N_d</td>
<td>1</td>
</tr>
<tr>
<td>Steady state foreign population</td>
<td>N_f</td>
<td>1</td>
</tr>
<tr>
<td>Domestic land supply per capita</td>
<td>$\frac{L_d}{N_d}$</td>
<td>0.0001</td>
</tr>
<tr>
<td>Foreign land supply per capita</td>
<td>$\frac{L_f}{N_f}$</td>
<td>0.0001</td>
</tr>
<tr>
<td>Adjustment cost on international bond</td>
<td>ψ_B</td>
<td>0.008</td>
</tr>
</tbody>
</table>
Figure 1: Structure of the DSGE Model.
Figure 2: Exogenous Shocks. This figure plots the exogenous shocks that we feed into the model.
Figure 3: Aggregate Domestic Consumption of Tradable Goods. This figure plots the aggregate domestic consumption of tradable goods in the model after each of the five exogenous shocks.

Figure 4: Domestic Current Account/GDP. This figure plots the domestic current account/GDP ratio in the model after each of the five exogenous shocks.
Figure 5: Domestic Real House Price. This figure plots the domestic real house price in the model after each of the five exogenous shocks.