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1 Introduction

The solution of linear or linearized rational expectations (LRE) models is an important part of modern

macroeconomics. They are widely used to study the propagation mechanism of economic shocks, for iden-

tification, and to provide economic evaluation of policy changes. Many rational expectations macro models

can be cast as a linear system of expectational difference equations. The linearity of the system may be

a feature of the model itself but often is simply achieved from the first-order approximation of a Dynamic

Stochastic General Equilibrium (DSGE) model.

Blanchard and Kahn (1980) established the conditions for existence and uniqueness of a solution to the

LRE model (see, among others, the related contributions of Broze et al. (1985, 1990), King and Watson

(1998), Uhlig (1999), and Klein (2000)). Maximum likelihood and Bayesian estimation methods can be used

on LRE models with a unique solution to achieve a constrained fit of the data. However, the theory may fail

in fitting the data satisfactorily because of misspecification– the cross-equation restrictions imposed may

be at odds with the true data-generating process (DGP). Even under the null hypothesis that the LRE

model is correctly specified, it may still be the case that the theory suffers from weak identification problems

(Martínez-García et al. (2012), Martínez-García and Wynne (2014)).

Structural VAR models in the spirit of Sims (1980) provide a framework with which to investigate and

organize the evidence from the observable variables that, in principle, is largely devoid of the restrictions

implied by theory (the LRE model) and more flexible to fit the data. The work, among others, of Fernández-

Villaverde et al. (2007), Ravenna (2007), and more recently Franchi and Paruolo (2015) has shed new light

on the mapping between the unique LRE model solution and a corresponding VAR form. To be more precise,

this strand of the literature explores conditions under which the unique solution of the LRE model– when

it exists– can be properly represented in VAR form, as this facilitates the recovery of structural shocks as

well as empirical inference and validation of LRE models that are brought to the data.

The structural shocks of the LRE model cannot always be recovered even when a VAR representation of

the unique LRE solution can be obtained due to lack of fundamentalness. Non-fundamentalness means that

the observed variables do not contain enough information to recover the unobserved structural shocks (Hansen

and Sargent (1980)). An LRE model solution is said to be fundamental if the structural moving average (MA)

representation of the observed variables can be inverted. If the LRE model solution is fundamental (assuming

the LRE model itself is also correctly specified), then the observed variables have a VAR representation in

the structural shocks– implying that the structural shocks can be recovered by estimating a VAR with the

observed variables and that their corresponding impulse response functions can be correctly inferred.1

When the number of structural shocks is equal to the number of observables, the fundamentalness prop-

erty of the unique solution to the LRE model can be checked with the ‘poor man’s invertibility condition’

of Fernández-Villaverde et al. (2007). Ravenna (2007) proposes a ‘unimodularity condition’to determine

when the VAR representation of the unique LRE solution is of finite order– since an inverted structural

MA representation of the unique LRE model solution can also take a VAR(∞) form and this introduces a

truncation error when cast as a finite-order structural VAR (Inoue and Kilian (2002)).

1Even if the unique model solution has a VAR representation that is fundamental– in that it permits the exact recovery of
the structural shocks and the characterization of their corresponding impulse response functions– it is worth noting that this
does not ensure that the matrices of composite coeffi cients that describe the dynamics for the VAR form will uniquely identify
all the structural parameters of a well-specified LRE model. Therefore, policy evaluation and even model comparison are still
subject to the perils of identification failure noted by Martínez-García et al. (2012) and Martínez-García and Wynne (2014).
In any event, the treatment of weak/partial identification and even misspecification falls outside the scope of this paper.
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Franchi and Paruolo (2015) show that if the state-space representation of the LRE solution is minimal,

then both the ‘poor man’s invertibility condition’of Fernández-Villaverde et al. (2007) and the ‘unimodular-

ity condition’of Ravenna (2007) are necessary and suffi cient to ensure fundamentalness and the existence of

an exact finite-order VAR form for the solution of the LRE model. In their paper, Franchi and Paruolo (2015)

argue that when the state-space representation is non-minimal, the ‘poor man’s invertibility condition’and

the ‘unimodularity condition’are not necessary.2

In this paper, I complement the existing literature by proposing an alternative approach for determining

existence and uniqueness and characterizing the unique solution in finite-order VAR form for a large class of

LRE models via a pair of companion matrix equations– a quadratic matrix equation and a Sylvester matrix

equation. First, LRE models that include backward-looking and forward-looking features with one or more

lags and leads can be reduced to the canonical form of an expectational first-order difference equation without

backward-looking terms. System reduction from the general form of the LRE model to the canonical form

is achieved by solving a companion quadratic matrix equation– if at least one solution exists.

Second, the well-known method of undetermined coeffi cients can then be used to solve the canonical

forward-looking part of the LRE model. Conditions under which a finite-order VAR representation of

the canonical LRE model solution can be obtained and a simple (yet effi cient) algorithm to compute it

can be derived from a companion Sylvester matrix equation. The final step simply requires reversing the

transformation of the system utilized in the first step in order to recover the solution representation for the

general form of the LRE model.

The initial step of system reduction involves the solution of a quadratic matrix equation, and permits

generalizing the approach (and the implementation) proposed in this paper to cover a wide range of LRE

models (Binder and Pesaran (1995, 1997)). However, the key contribution of the paper is that the charac-

terization of the finite-order VAR solution of the canonical LRE model arises naturally from the solution of

a Sylvester matrix equation. I propose a simple approach based on this companion Sylvester equation to

check for and identify unique LRE solutions in finite-order VAR form and a simple algorithm to compute

such solutions. The conditions that verify existence and uniqueness of a finite-order VAR for the canonical

LRE model solution also ensure its fundamentalness.

These tools are meant to be used by macroeconomists who deal with LRE models in their theoretical or

applied work and who need to determine if the observable (endogenous) variables admit an exact finite-order

VAR representation that is also fundamental. I illustrate the practical use of this novel approach with the

workhorse three-equation New Keynesian model– showing how the procedure can be used to derive the

finite-order VAR representation of the unique LRE model solution, to establish its existence and uniqueness,

and to make economically-relevant inferences about the New Keynesian transmission mechanism to recover

structural shocks and explore their propagation patterns. Moreover, I also contribute to the ongoing debate

on the assumptions needed to correctly recover theoretically-consistent monetary policy shocks through

structural VARs (Carlstrom et al. (2009)).

The rest of the paper proceeds as follows: Section 2 describes the system reduction method to decouple

2The state-space form is called minimal if the dimension of the vector of forcing variables is as small as possible (Kailath
(1980)). Fundamentalness and the existence of a finite-order VAR representation of the LRE model solution that is non-
minimal can still be asserted by first transforming the state-space form to a minimal representation and then applying the
existing conditions. Franchi and Paruolo (2015) explore necessary and suffi cient conditions that are valid when the state-space
form is non-minimal based on the possibility of exploiting cancellations (as in related problems from systems theory), bypassing
the step of transforming the LRE model to its minimal state-space form first.
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the backward-looking and forward-looking parts of the general form LRE model and shows how to use the

method of undetermined coeffi cients to characterize the linear state-space form solution of the (canonical)

forward-looking part of the LRE model. Section 3 describes the mapping of the LRE model solution into

finite-order VAR form via a companion Sylvester equation. This section also discusses the conditions under

which a unique finite-order VAR solution can be attained from the companion Sylvester equation as well

as the algorithms available to compute it. Section 4 applies the method to a policy-relevant illustration

on the effects of monetary policy on inflation determination based on the workhorse three-equation New

Keynesian model with which I also illustrate the computational effi cacy of the approach. Furthermore, I

discuss the fundamentalness of the finite-order VAR solution and what it means for the ongoing debate on

the assumptions required to recover structural monetary shocks from VARs. Section 5 then concludes.

The Appendix provides additional technical details on the system reduction approach used in this paper

to isolate the forward-looking part of the LRE model in general form– including a generalized eigenvalue

problem algorithm to implement it. The Appendix discusses in detail the derivation of the MA representation

of the LRE model solution when cast in linear state-space form. It also discusses other technical aspects

related to the state-space form of the solution and describes the large class of LRE models for which the

procedure can be utilized. The procedure itself is easily cast in an algorithmic form, and a collection of

Matlab implementation codes is provided with the paper.3

2 The LRE Model

Going from the structural relationships implied by the LRE model to a reduced-form solution requires explicit

assumptions about the formation of expectations and the stochastic process attached to the exogenous

forcing variables. The structural relationships that characterize the LRE model are always true according

to theory, but the reduced-form solution will depend on those other assumptions as well. Here, I consider

LRE models where expectations are fully rational and the exogenous forcing variables are assumed to follow

a VAR process. Under rational expectations, agents understand the structure of the economy and formulate

expectations optimally incorporating all available information.4

Under all these assumptions, a mapping can arise between the reduced-form solution of the LRE model

and a structural VAR representation for the (observable) endogenous variables that explains why VARs

appear to fit the data well. The VAR representation of the reduced-form solution also provides researchers

with more bite to investigate the propagation of shocks than an unrestricted VAR does. In this paper, I

explore the connection between the reduced-form solution of LRE models and structural VARs to bridge the

gap between theoretical and applied work towards a more unified approach.

A large class of LRE models can be cast into a first-order expectational difference system of equations,

featuring forward- and backward-looking dynamics. The first-order expectational difference equations cap-

3All codes for this paper are available in my website: https://sites.google.com/site/emg07uw/ and can be downloaded
directly using the following link: https://sites.google.com/site/emg07uw/econfiles/LRE_model_solution.zip?attredirects=0.
Straightforward manipulations of those codes can be made to adapt them to other LRE models that can be cast in the

first-order form investigated in this paper– users of the codes are asked to include a citation of this paper in their work. The
Matlab programs and functions appear free of errors, however I do appreciate all feedback, suggestions or corrections that you
may have. While users are free to copy, modify and use the code for their work, I do not assume any responsibility for any
remaining errors or for how the codes may be used or misused by users other than myself.

4The idea of rational expectations can be traced to the seminal work by Muth (1961). Lucas (1976) and Sargent (1980) were
among the leading economists that rejected ad hoc assumptions on the formation of expectations and advocated the adoption
of rational expectations that became prevalent in modern macroeconomics since the 80s.
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ture the structural relationships between a subset of k endogenous variables Wt = (w1t, w2t, ..., wkt)
T and k

exogenous forcing variables Xt = (x1t, x2t, ..., xkt)
T as follows:

Wt = Φ1Wt−1 + Φ2Et [Wt+1] + Φ3Xt, (1)

Xt = AXt−1 +Bεt, (2)

where Φ1, Φ2, and Φ3 are conforming k × k square matrices. The structural relationships of the first-order
LRE model given by (1) are completed with the standard VAR(1) specification for the vector of k forcing

variables Xt in (2), where A is a k × k matrix that has all its eigenvalues inside the unit circle ensuring
the stationarity of the stochastic process for the forcing variables, B is a k × k positive definite matrix of
variances and covariances, and εt is the corresponding column-vector of dimension k of independent and

identically distributed (i.i.d.) zero-mean innovations.

The LRE model involves k+p endogenous variables
(
WT
t , W̃

T
t

)T
where the remaining p ≥ 0 endogenous

variables given by W̃t = (w̃1t, w̃2t, ..., w̃pt)
T can simply be expressed as functions of Wt and Xt, possibly

including lags and expectations of their leads too.5 Therefore, the solution for the subset of endogenous

variables Wt derived from the system in (1)− (2) suffi ces to map out the relationship between the remaining

endogenous variables W̃t and the forcing variables Xt.6

The system in (1)− (2) can be further generalized to capture LRE models including more than one lead

and lag of the endogenous and forcing variables in the specification, as explained in the Appendix. Hence,

the compact form of the LRE model given by (1)− (2) can be generalized to investigate a large class of LRE

models.

2.1 Decoupling Backward-Looking and Forward-Looking Terms

Building on Broze et al. (1985, 1990) and Binder and Pesaran (1995, 1997), I adopt a simple transformation

of the compact form of the LRE model in (1)− (2) that achieves a system reduction excluding all backward-

looking terms from the expectational difference system and then I work out the full LRE model solution by

parts. For a given k × k matrix Θ, the transformation of the subset of endogenous variables Wt given by

Wt ≡ Zt + ΘWt−1 implies that the expectational difference system in (1) can be rewritten as:

Zt + ΘWt−1 = Φ1Wt−1 + Φ2Et [Zt+1 + ΘWt] + Φ3Xt

= Φ1Wt−1 + Φ2 [Et (Zt+1) + Θ (Zt + ΘWt−1)] + Φ3Xt, (3)

which becomes,

(Ik − Φ2Θ)Zt = Φ2Et (Zt+1) +
(
Φ2Θ

2 −Θ + Φ1
)
Wt−1 + Φ3Xt. (4)

From here, this condition follows:

5Here, the number of endogenous variables is at least the same or higher than the number of exogenous forcing variables.
Hence, if the solution to (1)− (2) can be represented in finite-order VAR form, it can be exploited to exactly recover every one
of the structural shocks forcing the LRE model. I do not consider explicitly the case of partial recovery that arises when the
number of endogenous variables is smaller than the number of exogenous forcing variables, though. In that case, in general,
only linear combinations of the structural shocks can be recovered but not the shocks themselves (or even a subset of them).

6The selection of the subset of k endogenous variables Wt can be significant, for instance, for the identification of estimated
structural parameters, as noted in Martínez-García et al. (2012) and Martínez-García and Wynne (2014)). These questions,
however, go beyond the scope of the current paper.
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Condition 1 A system reduction that excludes the backward-looking terms in (1) can be attained by choosing

a k × k matrix Θ to satisfy that

P (Θ) = Φ2Θ
2 −Θ + Φ1 = 0k, (5)

where 0k is a k × k matrix of zeroes.

This transformation uncouples the solution of Wt implied by (1) into a backward-looking part, Wtb ≡
ΘWt−1, and a forward-looking part, Wtf ≡ Zt, such that Wt ≡ Wtb + Wtf . Hence, to solve the compact

form of the LRE model, one first needs to determine a matrix Θ solving the quadratic matrix equation in

(5) to characterize the backward-looking part of the solution and then reduce the expectational difference

system in (1) to its canonical (purely forward-looking) expectational difference part.

Binder and Pesaran (1995, 1997) establish the necessary and suffi cient conditions under which real-valued

solutions for Θ satisfying the quadratic matrix equation in (5) exist. They also provide a straightforward

iterative algorithm to compute its stable solution. A discussion of an alternative algorithm to characterize

the stable solution Θ based on the generalized eigenvalue problem can be found in the Appendix.

After decoupling, the vector of k transformed endogenous variables, Zt ≡Wt−ΘWt−1, follows a canonical

first-order forward-looking expectational difference system of the following form:

Γ0Zt = Γ1Et [Zt+1] + Γ2Xt, (6)

where Γ0 ≡ (Ik − Φ2Θ), Γ1 ≡ Φ2, and Γ2 ≡ Φ3 are conforming k× k matrices. Whenever Γ0 is nonsingular,

the canonical system of structural relationships implied by (6) can be rewritten as:

Zt = FEt [Zt+1] +GXt, (7)

where F ≡ (Γ0)
−1

Γ1 and G ≡ (Γ0)
−1

Γ2.

The invertibility of Γ0 required to go from (6) to (7) depends on the choice of the matrix Θ. Propo-

sition 2 in Binder and Pesaran (1997) discusses conditions under which the solution can be characterized

analytically and then, more specifically, provides suffi cient conditions under which (Ik − Φ2Θ) would be non-

singular. Whenever the Binder and Pesaran (1997) conditions are satisfied, the matrix Γ0 can be shown to

be nonsingular and invertible. The Binder and Pesaran (1997) conditions are only suffi cient (not necessary),

but I find that most well-specified economic LRE models produce a matrix Γ0 that is indeed nonsingular.

Hence, in the remainder of this paper, I take the specification in (7) to constitute the relevant benchmark

to describe the canonical forward-looking part of the LRE model solution.

2.2 The ‘Method of Undetermined Coeffi cients’Solution

The conventional approach to characterize a solution for the LRE model is laid out in Blanchard and Kahn

(1980), which also provide conditions to check the existence and uniqueness of the solution. Blanchard and

Kahn’s (1980) method was further refined and extended by Broze et al. (1985, 1990), King and Watson

(1998), Uhlig (1999), and Klein (2000), among others, to obtain the solution in more general settings. Other

popular solution methods applied to LRE models include the method of rational expectational errors of Sims

(2002) (see also Lubik and Schorfheide (2003)) and the method of undetermined coeffi cients of Christiano

(2002).
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Assuming that a solution exists and is unique, then the solution to the canonical forward-looking part of

the LRE model in (7) can be written in linear state-space form as follows:

Xt = AXt−1 +Bεt, (8)

Zt = CXt−1 +Dεt, (9)

where A, B, C, and D are conforming k× k matrices. Equation (8) simply re-states (2) on the dynamics of

the exogenous forcing variables Xt, while (9) indicates that current innovations and lagged exogenous forcing

variables are mapped into the transformed endogenous variables Zt in the solution of the LRE model.

In order to pin down the solution, I need to relate the unknown matrices of composite coeffi cients C and

D to the known composite matrices that describe the structural relationships of the LRE model (F , G) in

(7) and those that describe the stochastic process of the forcing variables (A, B) re-stated in (8). Using the

method of undetermined coeffi cients, such a solution can be characterized via the solution of a companion

Sylvester matrix equation and, under some conditions, it can be shown to have an exact finite-order VAR

representation.

Step 1. Using (9) shifted one period ahead to replace Zt+1 in the purely forward-looking system given

in (7) implies that:

Zt = [FC +G]Xt (10)

= [FC +G]AXt−1 + [FC +G]Bεt, (11)

where the second equality arises from replacing Xt out using (8). The forward-looking LRE model solution

conjectured in (9) can be matched with (11) to link the unknown solution matrices C and D to the known

matrices– composites of structural parameters– that describe the structural relationships of the LRE model

(F , G, A, B).

By the method of undetermined coeffi cients, it follows that the conforming square matrices C and D

that characterize (9) in the solution must satisfy the following pair of conditions:

C = [FC +G]A, (12)

D = CA−1B. (13)

The eigenvalues of matrix A must be inside the unit circle by construction for the VAR(1) process associated

with the forcing variables to be stationary. I also assume that zero is not an eigenvalue of matrix A as that

ensures the inverse matrix A−1 in (13) exists and is well-defined according to the invertible matrix theorem

(Strang (2016)).

As a result, the existence and uniqueness of a solution to C that satisfies (12) also pins down D through

(13) ensuring the existence and uniqueness of the full solution to the forward-looking part of the LRE model

given by the linear state-space form in (8)− (9). Hence, assuming Γ0 is invertible as suggested before, I find

that solving the companion Sylvester matrix equation given by (12) to obtain C is enough to characterize

the solution to the forward-looking part of the LRE model in (8)− (9).

Step 2. Using (8) and the invertibility of A, I can write Xt−1 as Xt−1 = A−1 (Xt −Bεt). Replacing
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this expression in (9), I infer that:

Zt = CA−1Xt +
[
D − CA−1B

]
εt. (14)

Then, it follows from condition (13) that characterizes the matrix D using the method of undetermined

coeffi cients that the term related to the vector of innovations εt must drop out from (14). As a result, the

solution of the forward-looking part of the LRE model implies a straightforward linear mapping from the

vector of exogenous forcing variables Xt to the vector of transformed endogenous variables Zt where,

Zt = CA−1Xt, (15)

if a matrix C exists and condition (13) holds.

Whenever a unique C exists which is also shown to be invertible, equation (15) implies that Xt = AC−1Zt

given that A is already invertible by construction. Shifting this expression one period back and replacing it

in (9), I obtain the following VAR(1) specification to characterize the solution of the forward-looking part

of the LRE model:

Zt = CAC−1Zt−1 + CA−1Bεt, (16)

where I replaced D using condition (13).

The existence and uniqueness of the matrix D follows naturally under condition (13) from the existence

and uniqueness of a matrix C that solves the Sylvester matrix equation given by condition (12). However, I

also find that the solution of the forward-looking part of the LRE model has the finite-order VAR represen-

tation given by (16) whenever a unique matrix C solving the Sylvester matrix equation exists which can also

be shown to be invertible. Therefore, the characterization of the finite-order VAR solution in (16) depends

on the invertibility of Γ0 as indicated before, but also on the existence, uniqueness, and invertibility of the

matrix solution C arising from condition (12).

Rewriting condition (12), the characterization, existence, and uniqueness of a finite-order VAR solution

can be summarized as follows:

Lemma 1 If Γ0 is invertible, a VAR(1) representation of the solution to the first-order (purely forward-

looking) expectational difference system of equations in (7) can be obtained by solving a companion Sylvester

matrix equation in C:

FCA− C = H, (17)

where

F ≡ (Γ0)
−1

Γ1, H ≡ −GA = − (Γ0)
−1

Γ2A. (18)

If a unique matrix C exists and is invertible, the VAR(1) representation of the solution is given by (16).

The proof of this lemma follows directly from the derivation of conditions (12)− (13) by the method of

undetermined coeffi cients, as discussed above.

Step 3. Then, the solution of the compact (first-order) form of the LRE model can be obtained by

combining its backward- and forward-looking parts– i.e., Wt ≡Wtb+Wtf where the backward-looking part,

Wtb ≡ ΘWt−1, follows from the solution to the quadratic matrix equation in (5) and the forward-looking

part, Wtf ≡ Zt ≡Wt−ΘWt−1, is defined by the state-space solution in (8)−(9) given conditions (12)−(13).

7



Under the assumptions that a solution Θ for the companion quadratic matrix equation exists and that a

unique solution C for the companion Sylvester matrix equation exists and is invertible (as stated in Lemma

1), the implication is that the solution of the compact form of the LRE model is given by a VAR(2) process

of the following form:

Corollary 1 If a unique matrix C exists that solves the companion Sylvester matrix equation of Lemma 1

and this matrix C is also invertible, the VAR(2) representation of the first-order LRE model solution for the

vector of endogenous variables Wt is given by:

Wt = Ψ1Wt−1 + Ψ2Wt−2 + Ψ3εt, (19)

where the corresponding coeffi cient matrices are Ψ1 ≡
(
Θ + CAC−1

)
, Ψ2 ≡ −CAC−1Θ, and Ψ3 ≡ CA−1B.

The derivation of this corollary follows naturally from the definition of the transformation of the endoge-

nous variables as Zt = Wt −ΘWt−1 and the derivation of a VAR(1) representation for Zt implied under the

terms of Lemma 1. The matrix Ψ3 is not necessarily going to be positive semi-definite and symmetric, so

it does not have the standard interpretation of a variance-covariance matrix unlike the matrix B.7 In turn,

Corollary 1 implies that Ψ3 is a linear transformation of the variance-covariance matrix of the stochastic

process, B, where the mapping is determined by CA−1 (which depends on the solution C of the companion

Sylvester matrix equation).

Furthermore, the structural shock innovations of the LRE model can be exactly recovered– making the

finite-order VAR form in (19) consistent with fundamentalness (Hansen and Sargent (1980)). Assuming a

unique matrix C exists and is invertible, the canonical LRE model solution in (16) can be re-written in

terms of the innovations as εt = B−1A
(
C−1Zt −AC−1Zt−1

)
, given that the variance-covariance matrix B

is invertible by construction.8 Hence, undoing the transformation of the endogenous variables, I obtain the

following expression in terms of the observable endogenous variables Wt:

εt = B−1A
[
C−1Wt −

(
C−1Θ +AC−1

)
Wt−1 +AC−1ΘWt−2

]
. (20)

Hence, the fundamentalness of the unique finite-order VAR solution can be summarized as follows:

Corollary 2 If a unique matrix C exists that solves the companion Sylvester matrix equation of Lemma 1

and this matrix C is also invertible, the VAR(2) representation of the first-order LRE model solution for the

vector of endogenous variables Wt is fundamental and the realization of the shocks can be recovered exactly

using equation (20).

The proof of this corollary follows directly from simple algebraic manipulations of the finite-order VAR(2)

representation of the solution, as described above.

7To test whether Ψ3 has the properties of a variance-covariance matrix, I can use the chol function in Matlab. If chol returns
a second argument that is zero from [R, p] = chol (Ψ3), then the matrix is confirmed to be symmetric and– in this case– also
positive definite.

8A positive definite variance-covariance matrix is invertible. However, a variance-covariance matrix that is positive semidef-
inite but not positive definite would not be invertible.

8



3 The Finite-Order VAR Representation

If a solution C exists for the companion Sylvester matrix equation given by (17), then a solution exists for

the canonical forward-looking part of the LRE model given in state-space form by (8) − (9). According to

Lemma 1, such a solution can be represented with a finite-order VAR whenever C is unique and also shown to

be invertible. Hence, the main methodological contribution of this paper is that is shows how to solve a large

class of LRE models that can be cast into the compact first-order form given by (1)− (2) via a companion

Sylvester matrix equation. The corollary of the approach I propose is that under some conditions applied

to the solution of the companion Sylvester matrix equation, one can check whether the LRE model solution

admits a finite-order VAR representation. In this section I discuss the characterization of the solution to the

Sylvester matrix equation in (17) and provide an overview of effi cient algorithms to compute it numerically.

3.1 Characterization of the Solution

Equation (17) proposes a companion Sylvester matrix equation– i.e., FCA − C = H with F,A,H ∈ Rk×k

given and C ∈ Rk×k to be determined– as an alternative to characterize the solution of the forward-looking
part of the LRE model. The Sylvester matrix equation is well-known in stability and control theory and

its applications.9 Using the Kronecker (tensor) product notation and the properties of the vectorization

operator, vec, I can re-write Sylvester’s matrix equation in its standard form as a linear system of equations:

Avec (C) = vec (H) , (21)

A :=
[(
AT ⊗ F

)
− Ik2

]
, (22)

where ⊗ denotes the Kronecker product.10 In this way, the Sylvester matrix equation is represented by a
linear system of dimension k2×k2 conformed by k2 equations in k2 unknown variables (where the unknowns
correspond to the elements of the matrix C).

Having transformed the Sylvester equation into the linear system given by (21)−(22), well-known matrix

algebra results suffi ce to determine the following criteria for the existence and uniqueness of a solution C to

9The Sylvester matrix equation is extensively discussed in Lancaster and Tismenetsky (1985, Chapter 12). Additional useful
references on the characterization of the solution to the Sylvester matrix equation include Horn and Johnson (1991) and Jiang
and Wei (2003).
10For a given matrix X ∈ Rk×k, express X = [X∗1 X∗2 ... X∗k] where X∗j ∈ Rk, j = 1, 2, ..., k. Then, the vectorization

associated to matrix X defines the following vector-valued function:
X∗1
X∗2
...
X∗k

 ∈ Rk2 ,
which is denoted vec (X). The vectorization operation is linear, i.e. vec (αX + βY ) = αvec (X)+βvec (Y ) for any X,Y ∈ Rk×k
and α, β ∈ Rk. If X = [xij ]

k
i,j=1 ∈ R

k×k and Y ∈ Rk×k, then the Kronecker (tensor) product of X and Y , written X ⊗ Y , is
defined to be the partitioned matrix:

X ⊗ Y = [xijY ] =


x11Y x12Y ... x1kY
x21Y x22Y ... x2kY
...

...
...

xk1Y xk2Y xkkY

 ∈ Rk2×k2 .
Proposition 4 in Chapter 12.2 of Lancaster and Tismenetsky (1985) shows that the vectorization operation is closely related to
the Kronecker product as follows: If X,Y, Z ∈ Rk×k, then vec (XY Z) =

(
ZT ⊗X

)
vec (Y ).
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the companion Sylvester matrix equation:

Proposition 1 Let F,A,H ∈ Rk×k. Then, it follows that:
(a) (Existence) The Sylvester equation in (17) has at least one solution C ∈ Rk×k if and only if

rank [A vec (H)] = rank [A].

(b) (Uniqueness) The Sylvester equation in (17) has a unique solution C ∈ Rk×k if and only if rank [A] =

k2. That is, the solution is unique if and only if A has full rank. Then, A is nonsingular and invertible

implying that the unique solution to the Sylvester matrix equation can be recovered as vec (C) = A−1vec (H).

Proof. (a) Trivially it follows that rank [A vec (H)] ≥ rank [A]. If there is a solution vec (C) =

[c1 c2 ... ck2 ]
T for the linear system given by (21)−(22), then

∑k2

i=1
A∗ici = vec (H) where A∗1,A∗2, ...,A∗k2

denote the corresponding columns of the matrix A. Hence, vec (H) is a linear combination of the columns

of A and, as a result, the rank of the augmented matrix [A vec (H)] cannot be different than the rank of

A– because for rank [A vec (H)] > rank [A] to be true, vec (H) needs to be linearly independent from the

columns of A and that contradicts vec (C) being a solution.

(b) If the square matrix A has full rank– and, therefore, is nonsigular and invertible– the linear system in
(21)−(22) has a unique solution given by vec (C) = A−1vec (H). The converse statement follows naturally as

well. If the linear system has a unique solution, then A must have full rank and be nonsingular. Otherwise,
at least one column in A is not linearly independent from the rest of the columns and can be written as

a linear combination of them. Hence, for any given solution vec (C) defined over the linearly independent

columns, another different solution exists including non-trivially the linearly dependent columns of A as well.
The existence of more than one solution then contradicts the uniqueness assumption.

Proposition 1 characterizes the solution C to the Sylvester equation in (17) and, by extension, determines

conditions for the existence and uniqueness of the solution to the forward-looking part of the LRE model. The

two rank conditions stated in this proposition depend solely on the properties of the matrices F,A,H ∈ Rk×k

that describe the structural relationships of the first-order LRE model. The uniqueness rank condition implies

a solution of the form vec (C) = A−1vec (H) for the Sylvester matrix equation and, naturally, that proves

existence as well. If the uniqueness rank condition is violated, the existence rank condition determines

whether there is no solution to the companion Sylvester matrix equation– if rank [A vec (H)] 6= rank [A]–

or whether multiple solutions exist– if rank [A vec (H)] = rank [A] < k2. In the latter case, it can be shown

that the number of linearly independent solutions is determined by the dimension of the kernel of A.
The characterization of the linearly independent solutions of the companion Sylvester matrix equation

whenever a solution exists but is not unique can be found in Theorem 12.5.1, Theorem 12.5.2 and Corollary

12.5.1 of Lancaster and Tismenetsky (1985). Focusing on the case of interest for this paper where a solution

to the Sylvester matrix equation in (17) exists and is unique, the full rank condition on A can be expressed
in terms of the eigenvalues of F and A as follows:

Proposition 2 Let F,A ∈ Rk×k be given. Let λ1, ..., λk be the eigenvalues of F and µ1, ..., µk the eigenvalues
of A. Then, for any matrix H ∈ Rk×k, it follows that the companion Sylvester matrix equation in (17) has

a unique solution if and only if λiµj 6= 1 for all i, j = 1, ..., k. In other words, the Sylvester matrix equation

has a unique solution C ∈ Rk×k if and only if the matrices F and A−1 have no eigenvalues in common.

Proof. The eigenvalues of A are the same as those of its transpose AT . Given that and the properties

of the Kronecker product, the eigenvalues of
(
AT ⊗ F

)
are the k2 numbers defined by the product between

10



the eigenvalues of F and A, i.e., λiµj for all i, j = 1, ..., k . Then, the eigenvalues of A :=
[(
AT ⊗ F

)
− Ik2

]
are simply the k2 numbers λiµj − 1 for all i, j = 1, ..., k. By Proposition 1, the existence and uniqueness of a

solution to the Sylvester matrix equation requires A to be nonsingular (and have full rank). The matrix A is
nonsingular if and only if all its eigenvalues are nonzero, i.e. if and only if λiµj − 1 6= 0 for all i, j = 1, ..., k.

Re-arranging the nonzero conditions on the eigenvalues, it follows that λi 6= 1
µj
for all i, j = 1, ..., k. Given

that the eigenvalues of A−1 are 1
µ1
, ..., 1

µk
while those of F are λ1, ..., λk, a unique solution is said to exist if

and only if the matrices F and A−1 have no eigenvalues in common.

According to Proposition 2, the companion Sylvester matrix equation for the canonical forward-looking

part of the LRE model has a unique solution C for each matrix H if and only if F and A−1 have no

eigenvalues in common. The Sylvester matrix operator S : Rk×k → Rk×k can be defined as follows:

S (C) = FCA− C, (23)

where F,A ∈ Rk×k are given and C ∈ Rk×k is the solution to be identified. Then, the Sylvester matrix
equation can simply be written as S (C) = H for any given matrix H ∈ Rk×k.
The k2 eigenvalues of the Sylvester operator S (C) are λiµj − 1, for all i, j = 1, ..., k, where λ1, ..., λk are

the eigenvalues of F , and µ1, ..., µk are the eigenvalues of A. Let vi be the right eigenvector of F associated

with the eigenvalue λi such that Fvi = λivi for all i = 1, ..., k. Let wj be the left eigenvector of A associated

with the eigenvalue µj such that wTj A = µjw
T
j for all j = 1, ..., k. Then, for any i, j = 1, ..., k, C = viw

T
j

is an eigenvector matrix of the Sylvester matrix operator S (C) associated with its eigenvalue λiµj − 1. It

follows from here that the Sylvester matrix operator can be expressed as:

S (C) = FCA− C = F
(
viw

T
j

)
A− viwTj

= (Fvi)
(
wTj A

)
− viwTj

= (λivi)
(
µjw

T
j

)
− viwTj

= (λiµj − 1) viw
T
j

= (λiµj − 1)C. (24)

Hence, it can be shown that the Sylvester matrix operator S (C) must be nonsingular whenever λiµj 6= 1 for

all i, j = 1, ..., k. In other words, S (C) is nonsingular if and only if the solution to the Sylvester equation

exists and is unique.

The eigenvalues of A, i.e. µ1, ..., µk, are all inside the unit circle by construction to ensure the stochastic

process for the forcing variables is stationary and none of those eigenvalues is 0 so A is invertible according to

the invertible matrix theorem (Strang (2016)). However, the conditions for existence and uniqueness of the

Sylvester matrix equation solution stated in Proposition 2 do not require the eigenvalues of F , i.e. λ1, ..., λk,

to be inside the unit circle. Imposing additional restrictions on the eigenvalues of F , an explicit form of the

solution C of the Sylvester matrix equation in (17) can be obtained as follows:

Proposition 3 Let F,A ∈ Rk×k where λ1, ..., λk are the eigenvalues of F and µ1, ..., µk are the eigenvalues

of A. Then, for any matrix H ∈ Rk×k, it follows that the companion Sylvester matrix equation in (17) has

11



a unique solution whenever λiµj < 1 for all i, j = 1, ..., k and this solution is given by:

C = −
∑∞

s=0
F sHAs. (25)

Proof. Let me define the following recursion: FCr−1A − Cr = H for iterations r = 1, 2, 3, ... with

the initial condition C0 = 0k where 0k is a k × k matrix of zeros. If this recursion converges as r goes to
infinity, then by construction the limit characterizes the solution of the Sylvester matrix equation, i.e. lim

r→∞

Cr = −
∑∞

s=0
F sHAs = C. The convergence condition is equivalent to lim

s→∞
F sHAs = 0. It naturally follows

that any eigenvalue of F sHAs must be proportional to the s−power of the product between the eigenvalues
of F and A, i.e. (λiµi)

s for any i = 1, ..., k. Hence, if all cross products between the eigenvalues of F and A

are strictly less than one, the corresponding eigenvalues for F sHAs must go to zero in the limit as s → ∞
and this suffi ces to show that the recursion must converge as stated (Lancaster and Tismenetsky (1985,

Chapter 12.3)).

Proposition 3 implies that whenever the product of the spectral radii of matrices A and F is strictly less

than one, a unique solution C exists that takes the special form of an infinite sum. Furthermore, this special

case permits the straightforward computation of the solution to the companion Sylvester matrix equation

via a recursion on a convergent sequence as suggested by the proof of the proposition. I explore later on a

related numerical algorithm and other alternative effi cient algorithms to compute the unique solution of the

Sylvester matrix equation in (17). Often a numerical solution rather than one in closed-form form is all that

is needed to recover the solution to the canonical forward-looking part of the LRE model.

Even when a solution C to the companion Sylvester matrix equation in (17) exists and is unique, charac-

terizing the solution of the canonical forward-looking part of the LRE model with a finite-order VAR form

requires C also to be nonsingular. If C can be shown to be nonsingular, its inverse C−1 can be computed

in order to obtain the finite-order VAR representation given by Lemma 1 and Corollary 1. Proving the

existence of C and its uniqueness does not suffi ce to ensure C is also invertible. For some H ∈ Rk×k, the
unique solution C that exists can be singular. For example, it follows– since vec (C) = A−1vec (H) and

A :=
[(
AT ⊗ F

)
− Ik2

]
is nonsingular and invertible (Proposition 1)– that the unique solution is C = 0k

whenever H = 0k and this solution is clearly singular.

The following condition must hold in order to ensure that C is invertible:

Condition 2 Assume the conditions stated in Proposition 1 and Proposition 2 on F,A ∈ Rk×k are satisfied
and a unique solution C exists for the companion Sylvester matrix equation in (17). Then, for a given matrix

H ∈ Rk×k, the solution C is said to be nonsingular and invertible if and only if C has full rank. In other

words, if and only if rank (C) = k.

Condition 2 is straightforward and follows directly from the terms of the invertible matrix theorem

(Strang (2016)). Related to this rank condition, there are additional results that tie the properties of the

matrices F,A,H ∈ Rk×k that underpin the Sylvester matrix equation to a rank minimization condition. By
Roth’s removal theorem (Lancaster and Tismenetsky (1985, Chapter 12.5)), the Sylvester matrix equation

in (17) has a solution C ∈ Rk×k if and only if there exists a nonsingular matrix P ∈ Rk×k such that:

P

(
F HA−1

0 A−1

)
=

(
F 0

0 A−1

)
P. (26)
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Then, the following rank identity has been noted elsewhere (Lin and Wimmer (2011)):

min
{
rank

(
FC − CA−1 −HA−1

)
| C ∈ Rk×k

}
= min

{
rank

[
P

(
F HA−1

0 A−1

)
−
(
F 0

0 A−1

)
P

]
| ∀P ∈ Rk×k s.t. rank (P ) = k

}
. (27)

These and related results in stability and control theory provide ways to connect the properties of the

matrices F,A,H ∈ Rk×k to the rank condition on the invertibility of the unique solution C to the Sylvester

matrix equation (Condition 2).

I leave for future research the full exploration of those connections. The reason for this is purely practical.

If a solution exists and is unique according to the conditions stated in Proposition 1 and Proposition 2, then

computing the matrix C is all that is needed to describe the solution to the canonical forward-looking part

of the LRE model in state-space form as given by equations (8)− (9) under conditions (12)− (13). Then, it

is straightforward to check the rank condition for the invertibility of the computed matrix C (Condition 2).

If that rank condition is violated, then one can conclude that the solution to the canonical forward-looking

part of the LRE model does not admit a finite-order VAR representation. If that rank condition is satisfied,

it follows that a finite-order VAR representation exists given by equation (16) as indicated in Lemma 1 (and

(19) from Corollary 1). In that case, the VAR specification also permits the recovery of the true economic

shocks underlying the model from the observed data– fundamentalness holds (Corollary 2).

3.2 Numerical Methods and Algorithms

It follows from Proposition 1 that a unique solution C of the companion Sylvester matrix equation in (17)

exists if and only if the k2 × k2 square matrix A is invertible. If so, the unique solution takes the form

of a linear system with k2 equations and k2 unknown variables given by vec (C) = A−1vec (H) which

can be solved in O
(
k6
)
operations. Although obtaining the solution in this way is straightforward, there

are algorithms and methods that can improve effi ciency in the numerical computation of C. I base my

approach on three steps: First, a linear transformation of the companion Sylvester matrix equation based on

Schur’s triangulation. Second, the transformed equation is solved (given that Schur’s triangulation permits

a recursive implementation). And, finally, the inverse transformation of Schur’s triangulation is applied to

recover the solution to the original form of the companion Sylvester matrix equation.

Step 1. The first step of the approach is to implement the generalized Schur triangulation to re-write
the companion Sylvester matrix equation in (17). I find the real Schur decompositions F = UKUT and

A = V QV T where U, V ∈ Rk×k are unitary matrices of dimension k such that UUT = UTU = Ik and

V V T = V TV = Ik. The matrices K,Q ∈ Rk×k, referred to as the Schur forms corresponding to F,A ∈ Rk×k

respectively, are both upper triangular.11 The eigenvalues of F and A are then the diagonal entries of the

(upper) triangular matrices K and Q, respectively. Hence, I can re-write the companion Sylvester matrix

equation– i.e. FCA− C = H with F,A,H ∈ Rk×k given and C ∈ Rk×k to be determined– as follows:

KYQ− Y = R, (28)

11Since K is similar to F , they both have the same eigenvalues. The same way, since Q is similar to A, their eigenvalues are
the same.
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where Y = UTCV and R = UTHV .

Step 2. The second step of the approach is to solve the transformed Sylvester matrix equation in (17).

The transformed equation can be vectorized to obtain:

A :=
[(
QT ⊗K

)
− Ik2

]
, (29)

Avec (Y ) = vec (R) . (30)

Then, this can be solved directly by calculating the inverse of A and using standard matrix algebra to solve
the linear system vec (Y ) = A−1vec (R) for Y .

Step 3. The last step of the approach is to recover the solution C to the Sylvester matrix equation. For
that, I simply undo Schur’s triangulation as follows C = UY V T .

Recursive Implementation of the Proposed Solution Method. Although the three-step approach

laid out before works in general, the solution to the transformed system in (29)−(30) can be further optimized

under additional assumptions on the matrix F and, particularly, on the matrix A.

(a) The solution to the transformed Sylvester matrix equation given by (29) − (30) permits a more

effi cient recursive implementation, if A is diagonalizable. The diagonalization theorem indicates that the

k× k matrix A is diagonalizable if and only if A has k linearly independent eigenvectors (Strang (2016)). If
A is diagonalizable, then the matrix S of its eigenvectors is invertible and S−1AS = M = diag (µ1, ..., µk) is

the diagonal matrix of its eigenvalues. A suffi cient (but not necessary) condition for A to be diagonalizable

is that all its k eigenvalues be distinct.12 By the principal axis theorem, it follows that if A is a real matrix

(i.e. all entries of A are real numbers) and symmetric (i.e., AT = A), then A is diagonalizable as well

(Strang (2016)). Hence, the additional assumption that A be a diagonalizable matrix does not appear to be

too restrictive for most practical applications– given that the stochastic process for the forcing variables is

often assumed symmetric– i.e. A is often posited as a real symmetric square matrix– and, even when the

symmetry assumption is relaxed, generally the eigenvalues appear as distinct.

Assuming from now on that the matrix A is diagonalizable, I can re-write the companion Sylvester matrix

equation– i.e. FCA− C = H with F,A,H ∈ Rk×k given and C ∈ Rk×k to be determined– with the Schur
triangulation of F as before but using the diagonalization of A to obtain:

KŶM − Ŷ = R̂, (31)

where Ŷ = UTCS and R̂ = UTHS. Then, the transformed Sylvester matrix equation can be vectorized as:

Â :=
[(
MT ⊗K

)
− Ik2

]
, (32)

Âvec
(
Ŷ
)

= vec
(
R̂
)
. (33)

The matrices MT and Ik2 are diagonal, while K is an upper triangular matrix. As a result, it follows

that Â itself must be an upper triangular matrix. The resulting linear system can be solved directly by

calculating the inverse of Â and using standard matrix algebra to solve vec
(
Ŷ
)

= A−1vec
(
R̂
)
for the

12A matrix A can be diagonalizable, yet have repeated eigenvalues. For example, the identity matrix Ik is diagonal (hence
diagonalizable), but has one eigenvalue repeated k times (i.e., µi = 1 for all i = 1, ..., k).
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vector of unknowns Ŷ . The inverse of an upper triangular matrix is also upper triangular.

Hence, the diagonalization of A can help reduce the number of calculations needed to compute the

solution to the transformed Sylvester matrix equation. Moreover, the resulting linear system lends itself

to a recursive implementation that does not require the computation of the inverse of Â explicitly. Let

me define Â = [âi,j ]
k2

i,j=1 ∈ Rk
2×k2 as well as the column-vectors vec

(
Ŷ
)

= [ŷi]
k2

i=1 and vec
(
R̂
)

= [r̂i]
k2

i=1.

Then, for any given j = 1, ..., k2, it holds true that âi,j = 0 for all i = 1, ..., k2 and i < j. It follows from

here that âk2,k2 ŷk2 = r̂k2 pins down ŷk2 . Given ŷk2 , the expression for ŷk2−1 can be immediately obtained

from âk2−1,k2−1ŷk2−1 + âk2−1,k2 ŷk2 = r̂k2−1. Given ŷk2 and ŷk2−1, the expression for ŷk2−2 is derived from

âk2−2,k2−2ŷk2−2 + âk2−2,k2−1ŷk2−1 + âk2−2,k2 ŷk2 = r̂k2−2. And so on and so forth. Then, once the matrix Ŷ

is completed in this recursive way, the last step of the procedure is to recover the solution C to the Sylvester

matrix equation. For that, I simply undo the transformation as follows C = UŶ S−1.

(b) The computation of matrix C can be further improved whenever F and A are both diagonalizable

matrices. The diagonalization theorem implies that the k× k square matrices F and A are diagonalizable if
and only if each of these matrices has k linearly independent eigenvectors, i.e. if and only if the rank of the

matrix formed by the eigenvectors is k. I also know that if both matrices are real symmetric, they would

be diagonalizable. Furthermore, if the eigenvalues of each matrix are distinct, this is suffi cient (albeit not

necessary) for each matrix to be diagonalizable as well. Assuming matrices F and A can be diagonalized–

i.e., using F = TΛT−1 and A = SMS−1 where Λ = diag (λ1, ..., λk) and M = diag (µ1, ..., µk)– I obtain the

following transformation of the companion Sylvester matrix equation:

(
TΛT−1

)
C
(
SMS−1

)
− C = H. (34)

Multiplying the left-hand side of this matrix equation by T−1 and the right-hand side by S, it follows that:

ΛT−1CSM − T−1CS = T−1HS. (35)

Let Ỹ = T−1CS and R̃ = T−1HS. Then, it find that:

ΛỸ M − Ỹ = R̃. (36)

Denoting the (i, j)-th entry of Ỹ as ỹij and the (i, j)-th entry of R̃ as r̃ij , the diagonalized Sylvester matrix

equation can be rewritten simple as:

λiµj ỹij − ỹij = r̃ij , ∀i, j = 1, ..., k, (37)

which means that:

ỹij =
r̃ij

λiµj − 1
. (38)

Since the eigenvectors and eigenvalues of a diagonalizable matrix can be found with only O
(
k3
)
operations,

the transformed Sylvester matrix equation can be solved more effi ciently in this way. Then, the matrix C

can be immediately recovered undoing the transformation as C = T Ỹ S−1.
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Other Numerical Algorithms to Solve the Sylvester Equation. (a) Bartels-Stewart Approach.
A classical numerical algorithm for solving the Sylvester matrix equation is the Bartels-Stewart algorithm

which makes use of the Schur decompositions of F and G to obtain a more effi cient algorithm to compute the

solution C (Bartels and Stewart (1972)). Using a Schur decomposition as before, the companion Sylvester

matrix equation– i.e. FCA − C = H with F,A,H ∈ Rk×k given and C ∈ Rk×k to be determined– can be
re-written as in equation (28). Let Qij denote a block of the upper triangular matrix Q, and let Y and R be

partitioned according to a column partitioning of Q. The key step is to exploit these facts to decompose the

transformed Sylvester matrix equation in (28) into smaller Sylvester matrix equations by blocks as follows:

KY1Q11 − Y1 = R1, (39)

KYjQjj − Yj = Rj −K
∑j−1

i=1
YjQij , ∀j = 2, ..., k. (40)

Each of the block equations in (39)−(40) takes the form of the transformed Sylvester matrix equation in (28)

given that the sum that appears on the right-hand side of (40) is recursively known, as indicated above.13

An improved modification of the Bartels-Stewart algorithm, known as the Hessenberg-Schur algorithm,

was proposed in Golub et al. (1979). This algorithm uses the Hessenberg decomposition instead of the Schur

decomposition to transform the companion Sylvester matrix equation (Golub and van Loan (1996), Anderson

et al. (1996)). The Hessenberg decomposition implies F = UKUH and A = V QV H where U, V ∈ Rk×k are
unitary matrices of dimension k, UH , V H denote the corresponding conjugate transpose of those matrices

and K,Q ∈ Rk×k are the corresponding Hessenberg matrices.
The Sylvester matrix equation is a special case of the Lyapunov equation. Hence, the dlyap function

in the Control Systems Toolbox in Matlab which solves the discrete-time Lyapunov equation can be used

to solve the companion Sylvester matrix equation in (17) as follows: C = dlyap (F,A,−H). This function

uses the SLICOT (Subroutine Library In COntrol Theory) library– with a routine that implements the

Hessenberg-Schur algorithm. Starting with R2014a, the matrix C can also be computed in Matlab via the

sylvester function as C = sylvester (F,−inv(A), H ∗ inv(A)).14

(b) Doubling Algorithm. The doubling algorithm exploits the convergence result posited in Propo-

sition 3 which establishes that, for any matrix H ∈ Rk×k, the companion Sylvester matrix equation in
(17) has a unique exact solution given by (25) whenever λiµj < 1 for all i, j = 1, ..., k where λ1, ..., λk are

the eigenvalues of F and µ1, ..., µk are the eigenvalues of A. The doubling algorithm defines the following

sequence:
Λs+1 = ΛsΛs,

Ψs+1 = ΨsΨs,

Cs+1 = Cs + ΛsCsΨs,

(41)

where Λ0 = F , Ψ0 = A, and C0 = −H. This sequence converges to the solution of the companion Sylvester
equation C as s→∞. By repeated substitution, it can be shown that each iteration doubles the number of
13 If Q is a real matrix from the Schur decomposition, then Qjj for all j = 1, 2, ..., k must be either a scalar or a 2× 2 matrix.
14Further details on standard implementation methods using Matlab can be found in Sima and Benner (2015).

For further references on the Matlab function dlyap, see: http://www.mathworks.com/help/control/ref/dlyap.html and
http://slicot.org/matlab-toolboxes/basic-control/basic-control-fortran-subroutines. For reference on the Matlab function
sylvester, see: http://www.mathworks.com/help/matlab/ref/sylvester.html

16



terms in the sum– hence the name of the algorithm– such that:

Cr = −
∑2r−1

s=0
F sHAs, (42)

becomes arbitrarily close to the solution C = −
∑∞

s=0
F sHAs as r gets arbitrarily large. Further discussion

on this popular algorithm and Matlab codes to implement it can be found, among others, in Anderson et al.

(1996).

4 An Application to the Workhorse New Keynesian Model

A Univariate Model of Inflation: The Hybrid Phillips Curve. The hybrid Phillips curve with

backward- and forward-looking components, arising from the well-known Calvo (1983)-type model of price-

setting behavior with indexation developed by Yun (1996), features prominently in the New Keynesian

literature. The hybrid Phillips curve can be specified generically as:

πt = γfEt (πt+1) + γbπt−1 + et, (43)

where πt is the inflation rate, and Et (πt+1) is the expected inflation rate next period. The parameters

γf , γb > 0 determine the sensitivity of current inflation to inflation expectations (the forward-looking part)

and lagged inflation (the backward-looking part) and satisfy that γf + γb ≤ 1. The variable et refers to

the exogenous real marginal cost which is assumed to evolve according to a given first-order autoregressive

process, i.e.,

et = ηet−1 + σδδt, (44)

where δt is i.i.d. white noise with mean zero and variance of one. The persistence parameter −1 < η < 1 is

expected to be less than one in absolute value to ensure the stationarity of the process, while the parameter

σδ > 0 pins down the volatility of the real marginal cost shock.

The simple inflation model given by the system in (43) − (44) consists of just one endogenous variable,

πt, and one forcing variable, et. Hence, it is not diffi cult to obtain a closed-form solution for inflation in

this case and to characterize it in autoregressive form analytically. Using the notation introduced in Section

2, the model-implied relationship between the vector of endogenous variables Wt = (πt) and the vector of

forcing variables Xt = (et) can be cast in the first-order form of the LRE model given by (1)− (2) with 1×1

composite matrices of the form Φ1 = (γb), Φ2 = (γf ), Φ3 = (1), A = (η) and B = (σδ).

To start, I consider a system reduction to split the solution of the model given in (43) − (44) into a

backward-looking part and a forward-looking part. From the quadratic matrix equation (5) in Condition

1 applied to this example, I find that the decoupling depends on the roots of the following characteristic

equation:

θ2 − 1

γf
θ +

γb
γf

= 0, (45)

i.e., θ1 =
1− 2
√
1−4γfγb
2γf

and θ2 =
1+ 2
√
1−4γfγb
2γf

. The solution Θ that permits splitting the backward- and

forward-looking parts of the model requires a stable eigenvalue that lies within the unit circle to exist,

i.e. Θ = (θ1) if and only if |θ1| < 1. As can be easily seen, the existence of the solution Θ depends
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solely on the parameters γf and γb. If such a solution exists, then the transformed endogenous variable

Zt ≡ Wt − ΘWt−1 = (π′t) takes the following form: π
′
t = πt − θ1πt−1 where θ1 is the corresponding stable

(real-valued) root of the quadratic equation.

As indicated by equation (6) before, the forward-looking part of the hybrid Phillips curve-based model

for Zt = (π′t) becomes:

Γ0π
′
t = Γ1Et

[
π′t+1

]
+ Γ2et, (46)

where Γ0 ≡ (1− γfθ1), Γ1 ≡ (γf ), and Γ2 ≡ (1) are conforming 1 × 1 matrices and the forcing variable et
remains untransformed. It follows from the properties of the roots of the quadratic equation that 1−γfθ1 =

γfθ2. Hence, so long as θ2 is different from zero, the 1× 1 matrix Γ0 is invertible and the canonical forward-

looking part of the LRE model can be re-expressed as in equation (7), i.e.,

π′t = FEt
[
π′t+1

]
+Get, (47)

where F ≡
(

(γfθ2)
−1
γf

)
=
(

(θ2)
−1
)
and G ≡

(
(γfθ2)

−1
)
. From the Blanchard and Kahn (1980) condi-

tions applied to the system in (44) and (47), it is straightforward to show that a solution to canonical LRE

model exists and is unique if and only if |θ2| > 1.

All of this ultimately implies that the full-fledged LRE model in (43)− (44) can be split into a backward-

and a forward-looking part and solved uniquely if and only if the roots of the quadratic equation in (45)

satisfy that |θ1| < 1 and |θ2| > 1. Then, given equation (17) of Lemma 1, the companion Sylvester matrix

equation for this model is given by FCA−C = H where F =
(
1
θ2

)
, A = (η) and H ≡ −GA =

(
−
(

η
γfθ2

))
.

The solution to this equation gives C =
(
1
γf

(
η

θ2−η

))
which is well-conditioned and invertible if and only

if η 6= 0 and θ2 6= η. Therefore, the closed-form solution of the canonical forward-looking part of the LRE

model under rational expectations maps the shocks into the transformed endogenous variables as in equation

(15) above and can be expressed as:

π′t = πt − θ1πt−1 = CA−1et, (48)

CA−1 ≡
(

1

γf

(
1

θ2 − η

))
, (49)

which, together with the autoregressive process specification give in (44), fully describes the inflation dy-

namics implied by this univariate model based on the hybrid Phillips curve.

I can infer the dynamics of the transformed inflation rate in autoregressive form as in (16) given by:

(πt − θ1πt−1) = CAC−1 (πt−1 − θ1πt−2) + CA−1Bδt, (50)

CAC−1 ≡ (η) , CA−1B ≡
(

1

γf

(
1

θ2 − η

)
σδ

)
. (51)

From an economic point of view, this solution highlights the importance of the backward-looking component

of the hybrid Phillips curve to understand the dynamics of inflation. The persistence of the inflation process

is not solely determined by the persistence of the exogenous real marginal cost shock, η, but it also depends

on the root θ1 which is a composite of the backward-looking and forward-looking coeffi cients of the hybrid
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Phillips curve (that is, a composite of γf > 0 and γb > 0).15 The closed-form solution of the univariate

hybrid Phillips curve model in (50) shows that it is possible to characterize the solution to an LRE model

in finite-order autoregressive form. That, in turn, permits the identification of the fundamental economic

shock forcing inflation in the univariate model, δt.

A Bivariate Monetary Model of Inflation. The method proposed in this paper provides the tools to

generalize the logic behind the result in (50) to a more general setting with more than one endogenous and

one forcing variables. The approach suggested in the paper helps characterize a finite-order VAR solution for

a large class of LRE models by solving a companion quadratic matrix equation and a companion Sylvester

matrix equation– checking the existence, uniqueness, and invertibility of its solution.

I start augmenting the hybrid Phillips curve-based model given by (44) and (47) with the following variant

of the Taylor (1993) rule with inertia to introduce a monetary policy rule explicitly in the determination of

inflation:

it = ρiit−1 + (1− ρi) [ψππt] +mt, (52)

where the policy rate is denoted it and the policy inertia is modelled with the parameter 0 < ρi < 1. The

policy rule responds to deviations of inflation under the Taylor principle with the parameter ψπ set to ψπ > 1.

Here, the associated monetary policy shockmt follows an exogenously given first-order autoregressive process

of the following form:

mt = ρmmt−1 + σξξt, (53)

where ξt is assumed to be i.i.d. white noise with mean zero and variance of one, and also uncorrelated at all

leads and lags with δt. The persistence parameter −1 < ρm < 1 is expected to be less than one in absolute

value to ensure the stationarity of the process, while the parameter σξ > 0 pins down the monetary shock

volatility.

Let me define the vector of endogenous variables as Wt = (πt, it)
T , the vector of forcing variables as

Xt = (et,mt)
T , and the vector of innovations as εt = (δt, ξt)

T . The bivariate monetary model of inflation

given by (43) and (52) in matrix form, i.e.,(
1 0

− (1− ρi)ψπ 1

)(
πt

it

)
=

(
γb 0

0 ρi

)(
πt−1

it−1

)
+

(
γf 0

0 0

)(
Et [πt+1]

Et [it+1]

)
+

(
1 0

0 1

)(
et

mt

)
,

(54)

can be expressed in the form of (1) as follows:

Wt = Φ1Wt−1 + Φ2Et [Wt+1] + Φ3Xt, (55)

Φ1 =

(
γb 0

γb (1− ρi)ψπ ρi

)
, Φ2 =

(
γf 0

γf (1− ρi)ψπ 0

)
, Φ3 =

(
1 0

(1− ρi)ψπ 1

)
. (56)

The shock processes in (44) and (53) can be cast in the form indicated by the matrix equation (8) with

15After reversing the transformation, the dynamics of inflation implied by the model can be easily represented with a second-

order autoregressive process as in (19) given by: πt = (θ1 + η)πt−1 − ηθ1πt−2 + 1
γf

(
1

θ2−η

)
σδδt. The characteristic quadratic

equation associated with this second-order autoregressive process is φ2 − (θ1 + η)φ − (−ηθ1) = 0, with roots given by φ1 =

1
2

(θ1 + η) − 1
2
2
√

(θ1 + η)2 − 4ηθ1 and φ1 = 1
2

(θ1 + η) + 1
2
2
√

(θ1 + η)2 − 4ηθ1. The properties of the roots of the quadratic
equation imply that φ1 + φ2 = (θ1 + η) and φ1φ2 = ηθ1.
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conforming matrices A and B given by:

A =

(
η 0

0 ρm

)
, B =

(
σδ 0

0 σξ

)
. (57)

This constitutes the first-order form of the bivariate monetary model of inflation (equations (1)− (8)).

In order to solve the full-fledged model, I split the backward- and forward-looking parts of the model

as indicated in Condition 1. To solve the quadratic matrix equation in (5), I construct the following two

companion matrices:

D =


1 0 −γb 0

0 1 −γb (1− ρi)ψπ −ρi
1 0 0 0

0 1 0 0

 , E =


γf 0 0 0

γf (1− ρi)ψπ 0 0 0

0 0 1 0

0 0 0 1

 , (58)

and solve the corresponding generalized eigenvalue problem (see the Appendix for technical details). As

a result, I obtain the following ordered matrix of generalized eigenvalues Q and their associated matrix of

eigenvectors V :

Q =


θ1 0 0 0

0 ρi 0 0

0 0 θ2 0

0 0 0 ∞

 , V =


θ1−ρi

(1−ρi)ψπ 0 θ2−ρi
(1−ρi)ψπ 0

θ1 ρi θ2 1
θ1−ρi

(1−ρi)ψπθ1 0 θ2−ρi
(1−ρi)ψπθ2 0

1 1 1 0

 , (59)

where θ1 =
1− 2
√
1−4γfγb
2γf

and θ2 =
1+ 2
√
1−4γfγb
2γf

are defined exactly as in the univariate case. The matrices Q

and V are already ordered so that the two stable eigenvalues come first.

From here it follows that Q1 =

(
θ1 0

0 ρi

)
and V 21 =

(
θ1−ρi

(1−ρi)ψπθ1 0

1 1

)
, so the companion quadratic

matrix equation in (5) has the following solution:

Θ = V 21Q1
(
V 21

)−1
=

(
θ1 0

(1− ρi)ψπθ1 ρi

)
, (60)

which is lower triangular. The solution Θ found in (60) permits splitting the backward- and forward-looking

parts of the bivariate model of inflation. To do so, it requires two eigenvalues that are stable and lie within

the unit circle to exist, i.e. it requires |θ1| < 1 and |ρi| < 1. Given that by construction I already assume

that 0 < ρi < 1, the solution Θ that I seek to characterize depends solely on whether the parameters γf
and γb imply also that |θ1| < 1. If such a solution Θ exists, then the transformed endogenous variables

Zt ≡ Wt − ΘWt−1 = (π′t, i
′
t) take the following form: π

′
t = πt − θ1πt−1 where θ1 is the same stable root as

in the univariate case, and i′t = it − (1− ρi)ψπθ1πt−1 − ρiit−1. The transformed short-term interest rate i′t
needs to be adjusted with its own lag as well as with lagged inflation, while the adjustment for the inflation

variable π′t is exactly the same as in the univariate case.

Then, the forward-looking part of the bivariate model of inflation can be expressed in the form of (6) as
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follows:

Γ0Zt = Γ1Et [Zt+1] + Γ2Xt, (61)

Γ0 ≡ (Ik − Φ2Θ) =

(
1− γfθ1 0

− (1− ρi)ψπγfθ1 1

)
=

(
γfθ2 0

− (1− ρi)ψπγfθ1 1

)
, (62)

Γ1 ≡ Φ2 =

(
γf 0

γf (1− ρi)ψπ 0

)
, Γ2 ≡ Φ3 =

(
1 0

(1− ρi)ψπ 1

)
. (63)

Whenever Γ0 is nonsingular, the system of structural relationships for the forward-looking part of the bi-

variate monetary model of inflation implied by (6) can be expressed in the form of (7) as:16

Zt = FEt [Zt+1] +GXt, (64)

F ≡ (Γ0)
−1

Γ1 =

(
1

θ2γf
0

θ1
θ2

(1− ρi)ψπ 1

)(
γf 0

γf (1− ρi)ψπ 0

)
=

(
1
θ2

0

(1− ρi)ψπ
(
1
θ2

)
0

)
, (65)

G ≡ (Γ0)
−1

Γ2 =

(
1

θ2γf
0

θ1
θ2

(1− ρi)ψπ 1

)(
1 0

(1− ρi)ψπ 1

)
=

 1
θ2γf

0

(1− ρi)ψπ
(

1
θ2γf

)
1

 . (66)

The solution of the bivariate model in state-space form includes matrices A and B in (57) to represent

the stochastic dynamics of the forcing variables and the matrix equation in (9) to describe the mapping

between the lagged forcing variables and their innovations into the transformed endogenous variables in the

solution of the canonical LRE model. This, in turn, requires the conforming matrices C and D to satisfy

the conditions given by (12)− (13).

The matrices C and D are tied to the matrices F , H, and G that arise from the canonical form of the

forward-looking part of the LRE model in (7) where F and H are given above in (65)− (66) and17

H ≡ −GA = −

 1
θ2γf

0

(1− ρi)ψπ
(

1
θ2γf

)
1

( η 0

0 ρm

)
=

(
− η
θ2γf

0

− η
θ2

ψπ
γf

(1− ρi) −ρm

)
. (67)

From Proposition 2, I check the existence and uniqueness of a solution C via the companion Sylvester matrix

equation in (17). I compute the eigenvalues of F (that is, λ1 = 1
θ2
, λ2 = 0) and the eigenvalues of A (that is,

µ1 = η, µ2 = ρm). Then, given that λiµj 6= 1, for all i, j = 1, 2 if and only if θ2 6= η and θ2 6= ρm, I conclude

that a solution C to the companion Sylvester matrix equation exists and is unique.

A straightforward manipulation of the 22 equations implied by the Sylvester matrix equation leads me

to characterize the conforming matrices C and D as follows:18

C =

 1
γf

(
1

θ2−η

)
η 0

ψπ (1− ρi) 1
γf

(
1

θ2−η

)
η ρm

 , D ≡ CA−1B =

 1
γf

(
1

θ2−η

)
σδ 0

ψπ (1− ρi) 1
γf

(
1

θ2−η

)
σδ σξ

 . (68)

16Notice that θ1 + θ2 =
1− 2
√
1−4γfγb
2γf

+
1+ 2
√
1−4γfγb
2γf

= 1
γf
.

17Computing the eigenvalues of H (that is, −β η
θ2γf

and −ρ), I find them to be non-zero if and only if η 6= 0 and ρ 6= 0 since

θ2 > 1 and by assumption γf , γf , β > 0. Hence, the matrix H is nonsingular and invertible.
18Using the properties of vectorization and the Kronecker product, I write the companion Sylvester matrix equation in simple
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Checking Condition 2 is straightforward to see that rank (C) = 2 if and only if η 6= 0 and ρ 6= 0 since θ2 > 1

and by assumption γf , γf > 0 and ψπ > 1 (the Taylor principle) must hold. All of this, in turn, implies

that there exists a unique matrix C that solves the companion Sylvester matrix equation in (17) and is also

invertible. Hence, the inverse of C is given as:

C−1 =

(
γf (θ2 − η) 1η 0

−ψπ (1− ρi) 1
ρm

1
ρm

)
. (69)

Therefore, the forward-looking part of the bivariate inflation model has a VAR(1) representation in the

form of (16) which can be expressed as:

Zt = CAC−1Zt−1 + CA−1Bεt, (70)

where

CAC−1 =

(
η 0

(η − ρm)ψπ (1− ρi) ρm

)
, CA−1B =

 1
γf

(
1

θ2−η

)
σδ 0

ψπ (1− ρi) 1
γf

(
1

θ2−η

)
σδ σξ

 . (71)

Then, the finite-order VAR solution of the full-fledged LRE model in (19) becomes:

Wt = Ψ1Wt−1 + Ψ2Wt−2 + Ψ3εt, (72)

where

Ψ1 ≡
(
Θ + CAC−1

)
=

(
η + θ1 0

ψπ (1− ρi) (η + θ1 − ρm) ρi + ρm

)
, (73)

Ψ2 ≡ −CAC−1Θ =

(
−ηθ1 0

−ψπ (1− ρi) ηθ1 −ρiρm

)
, (74)

Ψ3 ≡ CA−1B =

 1
γf

(
1

θ2−η

)
σδ 0

ψπ (1− ρi) 1
γf

(
1

θ2−η

)
σδ σξ

 . (75)

From an economic point of view, the solution of the bivariate monetary model of inflation presented here

indicates that there are no spillovers from lagged interest rates into current inflation. Spillovers are only

linear form as Avec (C) = vec (H) where:

A :=
[(
AT ⊗ F

)
− Ik2

]
=


η
θ2
− 1 0 0 0

(1− ρi)ψπ
(
η
θ2

)
−1 0 0

0 0 ρm
θ2
− 1 0

0 0 (1− ρi)ψπ
(
ρm
θ2

)
−1

 .

From here it follows that:

vec (C) = A−1vec (H) =


θ2

η−θ2
0 0 0

η
η−θ2

(1− ρi)ψπ −1 0 0

0 0 − θ2
θ2−ρm

0

0 0 − ρm
θ2−ρm

(1− ρi)ψπ −1




− η
θ2γf

− η
θ2

ψπ
γf

(1− ρi)
0
−ρm

 =


η

γf (θ2−η)
η

γf (θ2−η)
ψπ (1− ρi)
0
ρm


Undoing the vectorization, the solution C in (68) follows.
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from lagged inflation into the policy rate itself. The policy parameter ψπ determines the magnitude of

the spillovers from lagged inflation into the current policy rate– while the difference in persistence between

non-monetary and monetary shocks implied by (η + θ1 − ρm) influences the sign of the spillover from last

period’s inflation into the current policy rate. The policy parameter ψπ plays a key role in explaining the

contribution of the monetary policy shock innovation relative to that of the real marginal shock innovation

(the non-monetary shock) in accounting for the policy rate volatility. However, current monetary policy

shocks do not contribute to inflation fluctuations.

In other words, monetary policy has no effect on inflation determination in the bivariate LRE model

given by (43), (44), (52) and (53). This is because the exogenous process for real marginal costs alone drives

the dynamics of inflation via the hybrid Phillips curve. In fact, the solution of inflation is exactly the same

as that of the univariate case and could have been derived separately since there are no linkages built into

the model between the dynamics of inflation and the policy rate.

The Three-Variable New Keynesian Model of Inflation. A further extension of the inflation model

that gives monetary policy a distinct role in the determination of real marginal costs and inflation is required.

To do so, I follow the approach underlying the workhorse three-equation New Keynesian model which partly

endogenizes the real marginal costs and connects them explicitly to monetary policy actions (similar to

Carlstrom et al. (2009)). To be more precise, I retain the exogenous real marginal cost component et in the

hybrid Phillips curve equation in (43) but augmenting the specification with an endogenous real marginal

cost component that is proportional to the output gap yt, i.e.,

πt = γfEt (πt+1) + γbπt−1 + κyt + et, (76)

where the parameter κ > 0 identifies the slope of the hybrid Phillips curve. In line with the New Keynesian

literature, I refer to the exogenous component et in this context as a cost-push shock (which implicitly

bundles up a number of distinct shocks– potentially including TFP shocks, government expenditure shocks,

etc., but not monetary policy shocks).

External habits (à la Campbell and Cochrane (1999)) lead the output gap yt to evolve according to the

following hybrid dynamic IS equation:

yt = (1− h)Et (yt+1) + hyt−1 −
(

2h− 1

σ

)
(it − Et (πt+1)− rnt ) , (77)

where σ > 0 determines the intertemporal elasticity of substitution, and the coeffi cient h ≥ 0 introduces

external habit persistence in the specification. Needless to say, whenever h = 0 equation (77) collapses to

the familiar time-separable dynamic IS equation. The natural rate rnt is assumed to follow an exogenously

given first-order autoregressive process:

rnt = ϑrnt−1 + σζζt, (78)

where ζt is assumed to be i.i.d. white noise with zero mean and variance of one, and uncorrelated at all

leads and lags with δt and ξt. The persistence parameter −1 < ϑ < 1 is expected to be less than one in

absolute value to ensure the stationarity of the process, while the parameter σζ > 0 pins down the natural

rate shock volatility. The natural rate of interest is defined within the model as the real interest rate that

would prevail absent all nominal rigidities– therefore, it is implicitly a function of all non-monetary shocks
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in the background.

Finally, I also modify the monetary policy rule in (52) as follows:

it = ρiit−1 + (1− ρi) [ψππt + ψyyt] +mt, (79)

to allow policy rule to respond to the endogenous output gap. The corresponding policy parameters satisfy

that ψπ > 1 and ψy > 0.19 Notice here that, from the perspective of the New Keynesian model, only

the monetary policy shocks have a structural economic interpretation while the cost-push shocks and the

natural rate shocks can be viewed can be viewed as combinations of deeper structural shocks that cannot be

independently recovered separately from each other using the three-variable, three-equation workhorse New

Keynesian framework.

Let me define the vector of endogenous variables as Wt = (yt, πt, it)
T , the forcing variables as Xt =

(rnt , et,mt)
T , and the vector of innovations as εt = (ζt, δt, ξt)

T . The forward-looking part of the three-

equation New Keynesian model of inflation given by (76), (77), and (79) can be expressed as:

D0Wt = D1Wt−1 +D2Et [Wt+1] +D3Xt, (80)

D0 =

 1 0
(
2h−1
σ

)
−κ 1 0

− (1− ρi)ψy − (1− ρi)ψπ 1

 ,

D1 =

 h 0 0

0 γb 0

0 0 ρi

 , D2 =

 (1− h)
(
2h−1
σ

)
0

0 γf 0

0 0 0

 , D3 =


(
2h−1
σ

)
0 0

0 1 0

0 0 1

 ,

(81)

and re-written, whenever D0 is nonsingular, in the form of (1):

Wt = Φ1Wt−1 + Φ2Et [Wt+1] + Φ3Xt, (82)

Φ1 ≡ (D0)
−1
D1, Φ2 ≡ (D0)

−1
D2, Φ3 ≡ (D0)

−1
D3. (83)

The shock processes in (44), (53), and (78) can be cast in the form indicated by the matrix equation (8)

with conforming matrices A and B given by:

A =

 ϑ 0 0

0 η 0

0 0 ρm

 , B =

 σζ 0 0

0 σδ 0

0 0 σξ

 . (84)

Then, the solution of the three-equation New Keynesian model can be derived following the steps of the

procedure proposed in this paper by solving a companion quadratic matrix equation and a companion

Sylvester matrix equation.

In this case, I illustrate the solution of the full-fledged LRE model numerically taking advantage of the

19While the output gap may not be observable, one can rewrite the New Keynesian model in terms of the observable output
and a stochastic process for output potential. The output potential is driven by the same shock process as the natural rate,
so the three-equation New Keynesian model can still be cast with three endogenous variables– all of them observable with
output in place of the output gap– and three exogenous shock processes. A related illustration extending the workhorse New
Keynesian model (based on observable output, inflation and the policy rate) to a two-country setting can be found in Duncan
and Martínez-García (2015).
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set of Matlab codes and functions that accompany the paper to implement the procedure.20 First, let me

assume the parameters of the New Keynesian model specified for this application take the conventional

parameterization presented in Table 1:

Table 1. Parameterization of the Three-Equation New Keynesian Model

Structural Parameter Notation Value

Forward-looking weight on Phillips curve γf 0.7

Backward-looking weight on Phillips curve γb 0.29

Slope of the Phillips curve κ 0.5

Intertemporal elasticity of substitution σ 1

External habit formation parameter h 0.6

Monetary Policy

Monetary policy inertia ρi 0.85

Monetary policy response to inflation deviations ψπ 1.5

Monetary policy response to output gap deviations ψy 0.5

Exogenous Shock Parameters

Persistence of the natural interest rate shock ϑ 0.95

Volatility of the natural interest rate shock σζ 1

Persistence of the cost-push shock η 0.8

Volatility of the cost-push shock σδ 2

Persistence of the monetary policy shock ρm 0.3

Volatility of the monetary policy shock σξ 0.7

The parameter values are chosen to illustrate the qualitative features of the three-equation New Keynesian

model and the performance of the algorithms for the solution of the companion quadratic matrix equation

and the companion Sylvester matrix equation. I use a laptop with Intel(R) Core(TM) i7 with 2.7GHz,

4 cores and 32GB of installed memory (RAM). The wall-clock time elapsed in computing and reporting

the numerical results given the defaults of the code is 0.150890 seconds (CPU time is: 0.1716 seconds).

Using the iterative algorithm to compute the solution to the quadratic matrix equation and Matlab’s own

implementation of the Hessenberg-Schur algorithm for Lyapunov equations to speed up the computation,

the elapsed time falls to 0.088264 seconds (CPU time is: 0.1248 seconds).

The code confirms that, given the parameterization of Table 1, the solution Θ to the companion quadratic

matrix equation has its roots inside the unit circle. Furthermore, the code also reports that the solution

C to the companion Sylvester matrix equation exists and is both unique and invertible. Therefore, a

20 In terms of implementation, the solution of the full-fledged LRE model requires solving a quadratic matrix equation as in (5)
and a companion Sylvester matrix equation as in (17). In the univariate and bivariate illustrations presented before, the solution
of the model can be achieved analytically with standard matrix algebra. However, the paper includes a straightforward Matlab
code implementation to compute numerically the solution of the three-equation New Keynesian model. I use those codes in the
rest of this section and make them available in my website: https://sites.google.com/site/emg07uw/. The codes can be down-
loaded directly using this link: https://sites.google.com/site/emg07uw/econfiles/LRE_model_solution.zip?attredirects=0.
Straightforward manipulations of those codes can be made to adapt them to other LRE models that can be cast in the

first-order form investigated in this paper– users of the codes are asked to include a citation of this paper in their work. The
Matlab programs and functions appear free of errors, however I do appreciate all feedback, suggestions or corrections that you
may have. While users are free to copy, modify and use the code for their work, I do not assume any responsibility for any
remaining errors or for how the codes may be used or misused by users other than myself.
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straightforward implementation of the algorithm implies that the three-equation New Keynesian model has

a finite-order VAR(2) representation given by (19) under the parameterization reported in Table 1 which

takes the following form:

Wt = Ψ1Wt−1 + Ψ2Wt−2 + Ψ3εt, (85)

Ψ1 =

 1.7257 −0.2344 0.0140

0.9303 0.6517 0.1666

0.3162 0.0616 1.1885

 ,

Ψ2 =

 −0.7918 0.0567 0.0643

−0.8523 −0.1542 0.0417

−0.2512 −0.0305 −0.2408

 ,

Ψ3 =

 1.4816 0.0097 −0.8349

3.3205 3.8860 −1.7135

0.8582 0.8751 0.2518

 ,

(86)

where the corresponding coeffi cient matrices Ψ1 ≡
(
Θ + CAC−1

)
, Ψ2 ≡ −CAC−1Θ, and Ψ3 ≡ CA−1B

have non-zero entries everywhere– for an otherwise standard parameterization. This is in contrast with

the bivariate monetary model discussed before where there were no spillovers from lagged interest rates to

current inflation. Therefore, I find that partly endogenizing the real marginal costs with the output gap is

key for monetary policy and monetary policy shocks to play a role in the determination of inflation in the

New Keynesian model.

From an economic perspective, the solution of the three-equation New Keynesian model shows that

there could be spillovers from lagged interest rates to inflation whenever the real marginal costs are partly

endogenous and tied to short-term interest rate movements through a dynamic IS equation. Moreover,

monetary policy shocks in the full-fledged New Keynesian model contribute to drive the inflation dynamics

unlike in the bivariate version of the model presented earlier. Given that the finite-order VAR(2) solution of

the workhorse New Keynesian model exists, one may be able to identify the structural monetary policy shock

itself– as well as all other fundamental economic shocks forcing the economy– directly from the observable

data. Furthermore, I find that empirical evidence which hinges upon Cholesky (and, in general, zero)

restrictions should be interpreted carefully as it may not have a structural interpretation (as noted, among

others, by Carlstrom et al. (2009)).

The impact of monetary policy on the volatility, cyclicality and persistence of the endogenous variables

depends in nonlinear ways on the policy parameters, ψπ and ψy, that describe the systematic part of the

monetary policy rule. Here, I exploit the finite-order VAR(2) representation to compute the theoretical

moments of the workhorse New Keynesian model for the benchmark parameterization of ψπ and ψy, but

also for increasingly higher values of the anti-inflation bias ψπ. I summarize the key findings describing the
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business cycle implications in Table 2 below:

Table 2. Key Business Cycle Moments at Different Degrees of Anti-Inflationary Bias

Mean ψπ = 1.5 ψπ = 2 ψπ = 3 ψπ = 4

Output Gap 0 0 0 0

Inflation 0 0 0 0

Policy Rate 0 0 0 0

Std. Deviation

Output Gap 5.76 5.39 5.31 5.36

Inflation 8.42 6.12 4.29 3.48

Policy Rate 6.32 5.42 4.86 4.73

Contemporaneous Comovement

Output Gap 1 1 1 1

Inflation 0.46 0.30 0.17 0.11

Policy Rate 0.13 0.03 −0.08 −0.14

First-Order Autocorrelation

Output Gap 0.88 0.91 0.93 0.93

Inflation 0.69 0.64 0.57 0.52

Policy Rate 0.95 0.94 0.92 0.90

Note: This table summarizes the key theoretical business cycle moments of the three-equation workhorse New Keynesian
model keeping the parameterization invariant as in Table 1 except for the policy parameter ψπ .

As can be seen in Table 2, the monetary policy parameter ψπ can have a major impact over the business

cycle even though the shock processes remain invariant. Generally, a higher value of ψπ signals a stronger

anti-inflation commitment on the part of the monetary authority and is associated with significant declines

in inflation and policy rate volatility as measured with the theoretical standard deviations– albeit not for

the output gap. It is worth pointing out that higher values of the policy parameter lead to a weaker

contemporaneous correlation between the output gap and inflation and to a reversal of the contemporaneous

correlation between the output gap and the policy rate. I also find a significant weakening of the persistence

of inflation as measured by its first-order autocorrelation.

All of this suggests that shifts in the patterns of endogenous volatility, cyclicality, and persistence do not

necessarily reflect changes in the underlying shock process forcing the endogenous variables but can simply

be the result of changes in monetary policy altering the monetary policy transmission mechanism itself.

I illustrate those changes in the transmission mechanism by plotting in Figure 1 the corresponding one-

standard deviation (theoretical) impulse response functions (IRFs) at different degrees of the anti-inflation

bias, ψπ.

I note that a higher anti-inflation bias stance on monetary policy (↑ ψπ) tends to dampen the impact on
the endogenous variables of natural rate and monetary policy shock innovations. However, while the impact

on inflation of cost-push shock innovations also declines, a higher ψπ tends to amplify the effect (at least in

the initial quarters) of those same innovations in the output gap and the policy rate. The findings in Figure

1 show that the transmission mechanism of structural shocks– monetary policy shocks in particular– and

their spillovers ultimately depend in nonlinear ways on the features of the prevailing monetary policy regime.
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That is, they depend on the policy parameters of the Taylor (1993) rule in the workhorse New Keynesian

model as well as on other deep structural parameters related to preferences, technology, etc.

Figure 1. Theoretical IRFs at Different Degrees of Anti-Inflationary Bias
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Note: This figure displays the theoretical impulse response functions (IRFs) of the three-equation workhorse New
Keynesian model keeping the parameterization invariant as in Table 1 except for the policy parameter ψπ .

The propagation of economic structural shocks is only part of the task, while exactly recovering them when

fundamental– in particular, monetary policy shocks in the New Keynesian model– is crucial to understand

their contribution to account for the observed data over the business cycle. Through the lens of the workhorse

New Keynesian model parameterized as in Table 1, the findings in Figure 2 illustrate this point comparing the

observed data on per-capita output growth, inflation, and the short-term policy rate against model-consistent

simulations for each of the individual shocks separately (where these structural shocks are recovered from

the observed data itself).

In other words, taking the observed data on per-capita output growth, inflation, and the short-term policy

rate as given, I use equation (20) from Corollary 2 to recover the structural shocks for the three-equation

New Keynesian model. Then, I simulate the endogenous variables feeding one of the recovered structural

shocks at a time through the solution in (19) from Corollary 1 in order to assess each individual shock’s

contribution to account for the observed data. The comparison between these one-shock-only simulations

and the actual observed data is what is plotted in Figure 2.

Mapping the endogenous variables of the New Keynesian model to the observed data requires some

clarification. Most business cycle models abstract from movements in the labor force and assume output to

be in per-capita terms– like the New Keynesian model does. Hence, the empirical counterpart to per-capita

output in the New Keynesian model is calculated as the ratio of U.S. Real GDP in millions of chained 2009

Dollars (from the Bureau of Economic Analysis) over the U.S. civilian labor force 16-years and older in

millions (from the Bureau of Labor Statistics).
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The price index used is the quarterly U.S. Consumer Price Index (CPI) for all urban consumers—all items

(from the Bureau of Labor Statistics). Finally, the short-term policy rate is constructed using the effective

Federal Funds rate (% p.a.) (from the Federal Reserve Board) but replacing the observations while at the

zero-lower bound with the Wu-Xia Shadow Federal Funds rate (as reported by the Federal Reserve Bank

of Atlanta). All three series are reported at quarterly frequency. As customary, I transform the per-capita

output and the price index taking logs to make the log-transformed series scale invariant.

The endogenous New Keynesian model variables are assumed to be stationary, so the filtering of their

empirical counterparts has to take place outside of the model. A conventional way of getting the output gap

by removing the trend out of log-per-capita output is to apply a first-difference filter to the series (multiplied

by 400 to express this measure of per-capita output growth in percentage deviations and annualized). I

consistently apply the same filter (multiplied by 400) to the price index as well to calculate a measure of

inflation. Data in first differences still has non-zero mean average growth over the sample– accordingly, I

demean the first-differenced log-per-capita output and the first-differenced price level. I also demean the

short-term interest rate for the same reason.

Figure 2. Contribution of Each Individual Shock to the Observed U.S. Data
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Note: This figure displays the observed data on the output gap, inflation and the short-term interest rate vs. model-
consistent simulations of the corresponding variables based on the three-equation workhorse New Keynesian model
keeping the parameterization invariant as in Table 1. The simulations correspond to the endogenous variables generated
from the solution of the model feeding one of the structural shocks recovered at a time. The simulated series are modified
with the addition of the corresponding sample mean of the corresponding observed variables for comparability.

The time series on this data starts in 1983:Q3 and ends in 2016:Q4 covering the entire Great Moderation

period as well as the 2008 recession and its aftermath (with conventional Federal—Funds-based monetary

policy stuck at the zero-lower bound). The sample mean is added to the model simulations in Figure 2
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to make them comparable with the observed data that contains a non-zero sample mean.21 The evidence

reported shows– not surprisingly– that monetary policy shocks are key to understand inflation in the New

Keynesian model. In turn, monetary shocks play a smaller role for per-capita output growth and for the

short-term interest rate which appear largely driven by natural interest rate shocks and cost-push shocks,

respectively. It is worth pointing out here that the New Keynesian model attributes the path of the policy

rate in the aftermath of the 2008 recession (during the zero-lower bound episode) mostly to natural rate

shocks rather than to cost-push shocks. This is consistent with a significant body of the theoretical literature

that has built a narrative about the recent U.S. zero-lower bound experience partly around the perceived

evolution (and decline) of the natural rate.

Hence, the method proposed in this paper to solve LRE models makes an important contribution to

help us understand the transmission mechanism, the role of structural economic shocks and its mapping

into finite-order VAR specifications for the workhorse New Keynesian model and for a large class of macro

models that can be cast in the first-order form given by (1)− (2).

5 Concluding Remarks

I propose a novel approach to solve a large class of LRE models. I represent the LRE model in its first-

order form as a system of expectational first-order difference equations. Then, I reduce the first-order form

by splitting the backward-looking and forward-looking parts of the model via the solution of a companion

quadratic matrix equation. The forward-looking part is solved through the method of undetermined coeffi -

cients and describes the unique solution– when one exists– by means of a linear state-space form. Finally, I

check the existence and uniqueness of a solution to the canonical (purely forward-looking part of the) LRE

model and characterize its corresponding reduced-form solution in finite-order VAR form via a companion

Sylvester matrix equation. With that at hand, I undo the transformation of variables achieved through

system reduction to obtain the solution to the first-order LRE model.

An important contribution of the paper is the derivation of conditions under which the finite-order VAR

solution of the canonical forward-looking part of the LRE model via the well-known Sylvester matrix equation

is well-defined. The approach proposed in the paper not only provides a way to decouple the canonical form

of the LRE model from its first-order specification and to characterize the corresponding solution in finite-

order VAR form, but also checks its properties– existence, uniqueness and invertibility. Furthermore, the

paper also makes a contribution to the existing literature on computational economics with the development

of an integrated, unified algorithm to solve numerically for LRE models for which a unique finite-order VAR

representation exists.

Solving LRE models with a VAR representation by this method is straightforward to implement, effi cient,

and can be handled easily with standard matrix algebra and conventional computational methods. The

paper provides a number of functions for the solution of the companion quadratic matrix equation and

the companion Sylvester matrix equation with an economically-relevant application to the study of the

transmission mechanism of monetary policy in the context of the workhorse three-equation New Keynesian

model. For this purpose, the paper provides an illustration of the procedure building up the workhorse

New Keynesian model from the hybrid Phillips curve augmented to incorporate monetary policy and to

21The sample mean of first-difference output per capita is 1.65% annualized, the sample average for first-differenced headline
CPI is 2.67% annualized, and 3.76% is the period average for the nominal short-term interest rate.
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endogenize the real marginal costs to open a feedback channel for monetary policy (and its shocks) to affect

the determination of inflation.

Hence, the paper discusses the fundamental features of the New Keynesian model that permit the prop-

agation of monetary policy shocks to inflation and the output gap– with particular attention to the role

of the systematic part of the monetary policy rule (which determines the response to inflation and output

deviations from their targets) and to the recovery of fundamental shocks (particularly the monetary policy

shock). The paper also shows how under the conditions that ensure the existence of a finite-order VAR

representation of the solution, the identification of fundamental shocks for empirical research– including the

recovery of monetary shocks– can be made tractable.

31



Appendix

A A Closer Inspection of the LRE Model

A.1 The General Form of the LRE Model

The general form of a large class of multivariate LRE models can be written as

Φ00Yt =
∑m

i=1
Φi0Yt−i +

∑m

i=0

∑n

j=1
ΦijEt−i (Yt+j−i) + Ωet, (87)

where Yt and et are the r×1 vectors of the endogenous and forcing variables of the LRE model, respectively.

The vector Yt collects the relevant subset r of endogenous variables and the r forcing variables of the LRE

model, while the vector et are the innovations corresponding to the exogenous forcing variables. The matrices

Φij for all i = 0, ...,m and j = 0, ..., n and Ω are all r × r conforming matrices, and Et (·) represents the
conditional expectations operator based on all current and lagged values of Yt and et.22 I assume that Φ00

in (87) is nonsingular and, without loss of generality, set it equal to the r × r identity matrix Ir.
As in Broze et al. (1985, 1990), the more general form given by (87) can be rewritten in more compact

form as follows:

Nt = Φ∗1Nt−1 + Φ∗2Et [Nt+1] + Φ∗3ut, (88)

where

Nt =
(
UTt , U

T
t−1, ..., U

T
t−m+1

)T
, UTt =

(
Y Tt ,Et

(
Y Tt+1

)
, ...,Et

(
Y Tt+n

))T
,

ut =
(
uTt , 0

T
l×1, ..., 0

T
l×1
)T
, ut =

(
(Ωet)

T
, 0Tr×1, ..., 0

T
r×1

)T
,

Φ∗1 = −D−10 D1, Φ∗2 = −D−10 D1, Φ∗3 = D−10 .

Here, ut is a column-vector of dimension q = m (n+ 1) r and ut is a column-vector of dimension l = (n+ 1) r.

22 In case the processes have non-zero means, one should add a constant as well to the specification in (87).
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The q × q square matrices Di, i = −1, 0, 1 are defined as:

D−1 =


Ψ−1 0l ... 0l

0l 0l ... 0l
. . .

0l 0l ... 0l

 ,

D0 =


Ψ0 Ψ1 ... Ψm−1

0l Il ... 0l
. . .

0l 0l ... Il

 ,

D1 =


0l 0l ... 0l Ψm

−Il 0l ... 0l 0l
. . .

0l 0l ... −Il 0l

 ,

where Ψi, i = −1, 0, ...,m, are square matrices of dimension l given by:

Ψ−1 =


0r 0r ... 0r 0r

−Ir 0r ... 0r 0r
. . .

0r 0r ... −Ir 0r

 ,

Ψ0 =


Ir −Φ01 ... −Φ0n

0r Ir ... 0r
. . .

0r 0r ... Ir

 ,

Ψi =


−Φi0 −Φi1 ... −Φin

0r 0r ... 0r
. . .

0r 0r ... 0r

 for i = −1, 0, ...,m.

In the general form of the LRE model in (87), the endogenous variables are bundled together with the

forcing variables in the vector Yt. Naturally, the compact form derived in (88) inherits the same feature

and the column-vector Nt of dimension q = 2k combines k current and lagged forcing variables with k

current and lagged endogenous variables (where both forcing and endogenous variables have the same finite

lag order). Assume the vectors Nt and ut are re-ordered such that Nt =
(
WT
t , X

T
t

)T
, where Wt is the

vector of endogenous variables and Xt the vector of the forcing variables, and ut follows the same consistent

order. Then, the compact form in (88) can be rewritten as in the expectational difference system (1)− (2)

introduced in Section 2.

The compact system (1) − (2) used in the paper simply presents the compact solution in two block

sub-systems splitting the endogenous variables Wt which can be both forward-looking and backward-looking
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from the exogenous forcing variables Xt which are only backward-looking but stochastic. Then, the compact

system (1)− (2) can be transformed into its canonical purely-forward looking form in (6) and (2) decoupling

the forward-looking and the backward-looking terms of the endogenous variables, as explained in Section

2.1. Whenever Γ0 ≡ (Ik − Φ2Θ) is nonsingular, the canonical system of structural relationships for the

endogenous variables implied by (6) can be rewritten as in (7). The resulting system of expectational

difference equations in terms of transformed variables contains only forward-looking– and not backward-

looking– terms.

A.2 The MA Representation of the LRE Solution

The canonical state-space representation of the large class of LRE models that I investigate in this paper can

be given as in (8)−(9), as noted in Section 2.2. With the assumption that A, B, C, and D are all conforming

k×k matrices, it follows from equation (8) that [Ik −AL]Xt = Bεt where Ik is a conforming identity matrix

of dimension k, and L is the lag operator. If the eigenvalues of A are less than one in modulus, the solution of

the LRE model in state-space form has an MA representation. In that case, Xt becomes a square summable

polynomial given by Xt =
∑∞

j=0
[A]

j
Bεt−j . This expression can be shifted one period back and replaced

in (9) to then obtain Zt = C
∑∞

j=0
[A]

j
Bεt−1−j +Dεt.

The MA representation implied by the state-space solution in (8) − (9) can be inverted under a sim-

ple condition and, therefore, represented with a VAR (possibly a VAR(∞)). Whenever the matrix D is

nonsingular, replacing the vector εt in (8) using (9) gives:

[
Ik −

(
A−BD−1C

)
L
]
Xt = BD−1Zt. (89)

If the eigenvalues of A−BD−1C are strictly less than one in modulus (the ‘poor man’s invertibility condition’
of Fernández-Villaverde et al. (2007)), the inverse of the operator on the left-hand side of (89) gives Xt as

a square summable polynomial in L satisfying:

Xt =
∑∞

j=0

[
A−BD−1C

]j
BD−1Zt−j . (90)

Shifting this expression back one period and replacing it in (9), I obtain that:

Zt = C
∑∞

j=0

[
A−BD−1C

]j
BD−1Zt−1−j +Dεt. (91)

In general, the VAR(∞) representation of the solution to the canonical LRE model for the transformed

endogenous variables Zt can be reasonably well-approximated by a finite-order structural VAR model as

shown in Inoue and Kilian (2002). However, I show in this paper that the finite-order VAR representation

can be a unique and exact characterization of the canonical LRE model solution under certain conditions.

My methodological contribution is twofold: First, I propose a new approach to derive the state-space

solution in (8)−(9) from the solution of a companion Sylvester equation; Second, I derive a testable condition

under which a finite-order VAR representation will be exact rather than an approximation for the canonical

LRE model solution. The method is very effi cient at computing the solution to a large class of LRE models.

It involves checking a straightforward condition– the invertibility of the solution to the companion Sylvester

equation– while simultaneously deriving the corresponding finite-order VAR representation of the solution
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to a canonical LRE model of appropriately transformed variables (when one such solution exists).

B The Companion Quadratic Matrix Equation: A Closed-Form

Solution

The quadratic matrix equation in (5) can be solved for its (stable) real-valued solution Θ with a straight-

forward iterative algorithm (Binder and Pesaran (1995, 1997)). Alternatively, the stable solution of the

quadratic matrix equation in (5) can be found in closed-form from the solution to a related generalized

eigenvalue problem.

I construct a pair of 2k × 2k companion matrix forms (D,E) where the k × k matrices Φ1 and Φ2 that

describe (5) enter as follows:

D =

[
Ik −Φ1

Ik 0k

]
, E =

[
Φ2 0k

0k Ik

]
. (92)

The solution to the generalized eigenvalue problem for the matrix pair (D,E) is a set of 2k eigenvalues qk and

their corresponding eigenvectors vk such that Dvk = Evkqk. Assuming there are at least k stable eigenvalues

(those who are inside the unit circle), I can then order the eigenvalues and their corresponding eigenvectors

so that the k stable eigenvalues come first. I denote the diagonal matrix with the ordered eigenvalues as Q

and the matrix of corresponding eigenvectors as V .

Partitioning the ordered matrix of eigenvalues Q to collect the first k stable eigenvalues and the re-

maining ones into block matrices and partitioning the matrix of eigenvectors V accordingly, I can write

Q ≡
[
Q1 0k

0k Q2

]
and V ≡

[
V 11 V 12

V 21 V 22

]
where each block matrix is of dimension k × k. The generalized

eigenvalue problem can then be stated in matrix form as:[
Ik −Φ1

Ik 0k

][
V 11 V 12

V 21 V 22

]
=

[
Φ2 0k

0k Ik

][
V 11 V 12

V 21 V 22

][
Q1 0k

0k Q2

]
, (93)

and from here it follows that[
V 11 − Φ1V

21 V 12 − Φ1V
22

V 11 V 12

]
=

[
Φ2V

11 Φ2V
12

V 21 V 22

][
Q1 0k

0k Q2

]
=

[
Φ2V

11Q1 Φ2V
12Q2

V 21Q1 V 22Q2

]
. (94)

This block system implies that V 11 = V 21Q1 and V 11−Φ1V
21 = Φ2V

11Q1. Substituting the first expression

into the second one gives that V 21Q1−Φ1V
21 = Φ2V

21Q1Q1. Then, post-multiplying both sides by
(
V 21

)−1
and re-arranging, it follows that:

Φ2

(
V 21

(
Q1
)2 (

V 21
)−1)− (V 21Q1 (V 21)−1)+ Φ1 = 0k. (95)

Defining Θ to be Θ ≡ V 21Q1
(
V 21

)−1
gives Θ2 = V 21Q1

(
V 21

)−1
V 21Q1

(
V 21

)−1
= V 21

(
Q1
)2 (

V 21
)−1

.

Therefore, under this definition ofΘ, the matrix equation in (95) is observationally equivalent to the quadratic

matrix equation (5) introduced in Section 2.1 for the purpose of decoupling the backward-looking and

forward-looking terms of the LRE model given by (1). Hence, this suffi ces to characterize a solution of the
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quadratic matrix equation based on its k stable (real-valued) eigenvalues.

If such a real-valued solution of the quadratic matrix equation exists with all its eigenvalues inside the

unit circle, then it is straightforward to compute by constructing the matrices D and E and finding the

ordered solution to the corresponding generalized eigenvalue problem for the matrix pair (D,E). The block

matrix Q1 contains the k stable eigenvalues and the block matrix V 21 contains the corresponding eigenvectors

from the generalized eigenvalue problem after partitioning, then the solution Θ for the quadratic matrix is

simply Θ ≡ V 21Q1
(
V 21

)−1
. To check that this transformation Θ is valid one only needs to verify that all

the eigenvalues collected in Q1 are indeed inside the unit circle.23

23The accompanying codes provided with the paper include a Matlab function that implements the iterative solution of Binder
and Pesaran (1995, 1995) together with another Matlab function that obtains the solution using alternatively the generalized
eigenvalue problem algorithm described in this Appendix. For a discussion of the quadratic matrix equation and the iterative
algorithm, the interested reader is also refered to Binder and Pesaran (1995, 1997) and their accompanying Matlab codes:
https://ideas.repec.org/c/dge/qmrbcd/73.html.
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