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1 Introduction

An important task in empirical economics is to track the effects of a shock on the variable(s)

of interest (e.g., Kilian and Lütkepohl, 2017). Since shocks are rarely observed, much of the

literature has been devoted to the issue of estimation and identification of shocks, usually within a

vector autoregression (VAR) framework. If a shock can be measured, or is observed without error,

however, then estimating IRFs is straightforward as noted by Kilian and Lütkepohl (2017, Chapter

7) and Stock and Watson (2017, p.63). In that case, many approaches are available to estimating

IRFs, such as univariate distributed lag (DL) or iterated autoregressive distributed lag (ARDL)

approaches, the local projection (LP) approach of Jordà (2005), and the asymptotically effi cient

full-system VARX. This paper focuses on the following three questions within the standard linear

setup: (1) Do we need to care about which approach to use in practice?; (2) Is it desirable to include

all the relevant variables1 in estimating IRFs?; and (3) Is there any approach that always dominates

the others? Our answers, respectively, are: yes, not really, and no. We arrive at these answers

by investigating the root mean-squared error (RMSE) of estimating individual IRF coeficients in a

series of Monte Carlo (MC) experiments.2 We adopt a design with randomly generated coeffi cients

as well as two additional designs calibrated to a quarterly international real output growth dataset

and a U.S. macro dataset (relegated to the online Appendix).

We find a significant difference in the performance among various approaches under study, in-

dicating that the choice of approach in empirical application can be consequential. Although there

exists no uniformly superior approach, the iterated ARDL and vector ARDL (VARDL) approaches

turn out to perform better in the simulation environments considered in our study. Moreover, par-

simonious specifications outperform asymptotically effi cient approaches when the time dimension

is relatively small. These findings imply that one may not wish to include all ‘relevant’variables

for short samples even when the variables entering the true underlying model are identified.

1The term ‘relevant’is used to denote being part of the true data generating process (DGP).
2While this paper focuses only on the RMSE of estimating individual IRF coeffi cients, other metrics are also

of interest although they are not studied here. One important example is estimation of variance decompositions,
which is considered in Gorodnichenko and Lee (2017). Besides the precision of estimates, another important aspect
is inference. Small sample evidence on accuracy of inference of the (full-system) VAR and LP approaches is provided
by Kilian and Kim (2011) in a setup where shock is identified by recursive ordering.
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2 Approaches for Estimating IRFs When the Shock is Observed

Suppose that zt is an n× 1 vector of variables generated from a stationary VAR model.3 A shock

series of interest, denoted as εt, is observed, and the impact variable of interest (one element of zt)

is also observed and denoted by xt. The remaining variables in zt are not necessarily observed. We

refer the reader to the online Appendix for our linear VAR setup, its (standard) assumptions and

further discussions. Our objective is to estimate the IRF coeffi cients, bh = E (xt+h| εt = 1, It−1)−

E (xt+h| It−1), where It−1 = {zt−1, zt−2, ...}.

We group individual approaches into ‘direct’ and ‘iterated,’ depending on whether the IRF

coeffi cients are directly estimated from auxiliary regressions, or computed from estimated parame-

ters in an iterative way. We abstract from deterministic terms, but they must be included in the

regressions below when they are present.

2.1 Direct approaches

The most parsimonious approach. The simplest and most parsimonious approach is to regress

xt on εt−h (for given h ≥ 0) to obtain a consistent estimate of bh.

DL approach. The DL approach is based on regressing xt on the distributed lags of εt, namely

xt =

hmax∑
h=0

bhεt−h + vt, (1)

where vt is the regression error term, and hmax is the maximum horizon considered. This approach

has been employed by Kilian (2008a, 2009), Kimball et al. (2006), Romer and Romer (2010), and

Baumeister and Kilian (2014), among others.

Augmented DL (ADL) approach. Augmenting the DL regression in (1) by any variables

that are uncorrelated with the set of regressors, εt, εt−1, ..., εt−hmax , will also lead to a consistent

estimator, possibly with improved small sample performance if the augmenting variables contribute

meaningfully to the fit of the regression. Let yt be an s× 1 vector of covariates that are assumed

to be uncorrelated with future values of εt, and also are considered to be good candidates for

contributing to the fit. yt can include xt and any of its lags, and any other variables that are not

3The most parsimonious and the DL approaches described below are not applicable to the case where the impact
variable is subject to unit roots.
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necessarily part of the true DGP. Then, the ADL regression is

xt =

hmax∑
h=0

bhεt−h + β
′yt−hmax−1 + vt, (2)

where the variance of the error term vt will in general be smaller than in regression (1) when β 6= 0.

Local projection (LP) approaches. The term local projection, introduced by Jordà (2005), has

been used in the literature to denote any regressions of the following form

xt+h =

p∑
`=0

bh,`εt−` +

q∑
`=1

β′h,`yt−` + vh,t+h, (3)

where yt denotes an s × 1 vector of regressors, which are uncorrelated with the future values of

εt. Regressions in (3) are estimated separately for h = 0, 1, ..., hmax. This approach is used by

Guajardo et al. (2014), Ramey and Zubairy (2018), Sekine and Tsuruga (2018), and Zeev (2019)

among others. Let b̂h,` be the least squares (LS) estimate of bh,` in (3) for a given h. The IRF

coeffi cients bh are then estimated by b̂h,0. Specification in (3) is very similar to the ADL specification

in (2), with a couple of differences. First, for h > 0 innovations εt+1, ..., εt+h−1 do not feature in

(3), while they are included in (2). It can be argued that unless the first (h − 1) IRF coeffi cients

are zero, the inclusion of εt+1, ..., εt+h−1 is asymptotically beneficial (although not necessarily in

small samples). Teulings and Zubanov (2014) advocate such inclusion to reduce a bias in a panel

data context. The second difference is that separate regressions are estimated for each h in (3).

Note that regressions of the form in (3) are more flexibly specified than those in Jordà (2005) who

assumed that zt and the vector of contemporaneous responses re = E (zt| εt = 1, It−1)−E (zt| It−1)

(as opposed to εt) are both observed. In particular, Jordà, (2005, equation (2)) considered the

following regression, where we set the lag length of the DGP to one for the simplicity of exposition,

zt+h = Bhzt + vh,t+h. (4)

Regressions in (4) are estimated separately for h = 1, 2, ...hmax. The estimates of the IRF coeffi cients

bh are then given by equation (3) in Jordà (2005):

b̂h = s′n,1B̂hr1, for h = 0, 1, 2, ...hmax, (5)
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where B0 = In. When εt is observed, a consistent estimate of r1, obtained from regressing εt onto

the residuals of the standard VAR model for zt, can be used in (5) to obtain a consistent estimate

of the IRF. We refer to this estimator as JLP to distinguish it from the set of LP regressions in (3).

2.2 Iterated approaches

ARDL approach. The ARDL approach is based on the following regression

xt =

p∑
`=1

ψ`xt−` +

q∑
`=0

β`εt−` + vt. (6)

Let ψ (L) = 1−
∑p

`=1 ψ`L
` and β (L) =

∑∞
`=0 β`L

`, and denote their LS estimates from (6) as ψ̂ (L)

and β̂ (L), respectively. Then the IRF coeffi cients in b (L) =
∑∞

`=0 b`L
` can, under some regularity

conditions discussed in the online Appendix, be consistently estimated by b̂ (L) = ψ̂
−1
(L) β̂ (L) if

the truncation lags p and q are chosen as an appropriately increasing function of the sample size.

In general, choosing p and q to be of order T 1/3 is suffi cient for consistency. The ARDL approach

was adopted by Anzuini et al. (2013), Bachmeier and Cha (2011), Coibion (2012), Kimball et al.

(2006), Romer and Romer (2004, 2010) or Kilian (2008a, 2008b), among others.

Vector ARDL (VARDL) approach. Replacing xt with a vector zst = (xt, q1t, q2t..., qs−1,t)
′ that

is a subset of zt in (6), we obtain the VARDL approach:

Ψs (L) zst = βs (L) εt + vt, (7)

where Ψs (L) = Is −
∑p

`=1Ψs`L
` and βs (L) =

∑q
`=0 βs`L

` are defined similarly to ψ (L) and

β (L) in (6). Then, under some regularity conditions discussed in the online Appendix, a consistent

estimator of the IRF coeffi cients is given by b̂ (L) = s′1Ψ̂s (L)
−1 β̂s (L) for appropriate truncation

lags p and q, where s1 represents the selection vector that selects the first element, and Ψ̂s (L) and

β̂s (L) are the LS estimates of the polynomials in (7).

Full-system VARX approach. If the full set of variables in zt is known, then estimation of bh

is straightforward. Assuming that the lag order is one (without any loss of generality), we estimate

the following full-system VAR augmented by εt (which we refer to as a full-system VARX),

zt = Φzt−1 + rεεt + vt. (8)
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The full-system VARX estimates of bh are given by b̂h = s′1Φ̂
hr̂ε, for h = 0, 1, ..., where Φ̂ and r̂ε

denote the estimates of Φ and rε in (8).4

3 Monte Carlo experiments

We conduct three sets of MC experiments. The first set is presented below and it features sto-

chastically generated parameters. The remaining two sets are designed to match an international

real output dataset and a U.S. macro dataset, which are relegated to the online Appendix. These

experiments provide qualitatively similar results.

3.1 Simulation design

We generate zt = (xt, q1t, q2t..., qn−1,t)
′ from

zt = Φzt−1 +Rξt, (9)

for t = −M + 1,−M + 2, ..., 0, 1, 2, ..., T , with starting values z−M = 0. The first M = 100

generated observations are discarded to minimize the effects of initial values, which leaves us with

the available sample size of T . Structural shocks are generated as ξt =
(
εt, ζ1t, ζ2t, ..., ζn−1,t

)′ ∼
IIDN (0, In). Individual coeffi cients in the reduced-form matrix Φ, denoted as φij for i, j =

1, 2, ..., n, are generated randomly from

φij ∼

 IIDU [a, d] , for i = j

IIDU
[
φii−0.98
n−1 , 0.98−φiin−1

]
, for i 6= j

, (10)

where we set a = 0.2 and d = 0.98. This ensures that the support of |λ1 (Φ)| is bounded by 0.98,

regardless of n. The matrix R is then generated as R =(In −Φ)Θ, where we set the first element

of the long-run elasticity matrix Θ to one, and the remaining elements of Θ are generated from

IIDU (0.2, 1).5This ensures
∑∞

h=0 bh = 1, where bh = E (xt+h| εt = 1, It−1)− E (xt+h| It−1) is the

IRF function defined in the previous section. We consider n ∈ {6, 12}, T ∈ {30, 150, 500}, and

conduct 10, 000 replications for each simulation experiment.

4Unlike the VARDL specifications in (7), the specification in (8) does not require any lag terms of εt because it
utilizes the information on all the variables entering DGP as well as the true lag length of the DGP VAR (set to one
here for simplicity).

5Φ and Θ are generated randomly for each n at the beginning of experiments and kept fixed across replications.
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We implement all of the approaches outlined in Section 2 as summarized in Table 1. We include

a constant term in each regression, and set hmax = 8. The number of lags (p,q) in the ADL, LP,

JLP, and the full-system VARX regressions are set to one.6 Lag lengths in the iterated ARDL and

VARDL approaches are selected from the BIC criterion.7 For the vectors of additional covariates

in the ADL, LP, and VARDL approaches, we consider selecting one and two additional variables

from zt.8 In addition, we also consider using all (n− 1) covariates, q1t, q2t..., qn−1,t.

3.2 Simulation results

Table 2 presents the results of our simulation exercise, with the RMSE of the IRF coeffi cients (bh)

for h = 1, 2, ..., hmax estimated from each competing approach relative to the full-system VARX

approach used as a benchmark.9 That is, the table displays a horse race of the relative performance

of each approach and the benchmark model in estimating IRFs in a linear setup. We report average

relative RMSE by averaging across horizons, h = 0, 1, 2 (columns labeled ‘short’horizon), h = 3, 4, 5

(‘medium’horizon), and h = 6, 7, 8 (‘long’horizon). Entries lower than one indicate a superior

performance of the corresponding approach over the benchmark, whereas values higher than one

indicates the dominance of the benchmark. Beware that our benchmark is infeasible in the sense

that it utilizes the knowledge of the true lag length and the identity of all relevant variables entering

the DGP. Table 2 consists of six blocks, with different combinations of n and T .

The results in Table 2 illustrate several points. First, the difference in RMSE across various

approaches under study is substantial, suggesting that the selection of an appropriate approach can

be consequential. In all sample sizes considered, the RMSE difference between the worst and the

best approach is at least two-fold.

Second, no single approach uniformly dominates. We find that the iterated approaches like

ARDL and VARDL generally work well, but their performance hinges on the sample size. While

univariate ARDL or bivariate VARDL (using s = 2 variables consisting of the target variable

xt and one additional covariate selected by the BIC rule) are the best performers for relatively

6This is assymptotically optimal when yt = zt. But it is unclear how to select an optimal lag length for ADL and
LP specifications when yt 6= zt.

7The maximum lag lengths are set as pmax = qmax = min
{[
T 1/3

]
, p80

}
, where

[
T 1/3

]
is the integer part of T 1/3,

and p80 is the largest lag length that ensures the degrees of freedom span at least 80% of the sample size.
8 In the case of VARDL, the selection of variables and lag length is done jointly by the BIC. In the case of direct

approaches, variables are selected based on the best fit.
9The chosen benchmark is asymptotically effi cient.
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small samples (T = 30), they are outperformed by higher-dimensional VARDL in larger samples.

This is intuitive because including all variables that are part of the true DGP is more effi cient

asymptotically (as T →∞), but including all relevant variables in relatively small sample sizes can

be counterproductive due to larger number of unknown parameters to estimate and thus possibly

larger sampling uncertainty. When we compare the best performing direct approach with the best

performing iterated approach, the latter outperforms by about 20-12,000 percent across sample

sizes. The dominance of iterated approaches is stronger for longer horizons.10 We also find that

the ARDL approach dominates the most parsimonious LP approach (s = 1) by about 22 to 6,600

percent depending on the sample size.

Next, when it comes to the direct approach, augmentation of the LP regressions in (3) by

εt+1, ..., εt+h−1 can be beneficial, but only if the time dimension is suffi ciently large and the re-

gression is not augmented with too many unknown parameters (relative to T ). Improvement is

noted in the range of 14-42 percent for T = 500, 11-41 percent for T = 150, but the results are

mixed for T = 30. Compared to the ADL approach, LP and ALP approaches tend to achieve lower

RMSE, implying that running separate regressions for different horizons is beneficial, in line with

the asymptotic arguments.

These main conclusions also hold in the additional two sets of calibrated MC experiments

presented in the online Appendix.

4 Conclusion

We find a substantial heterogeneity in the RMSE performance of various approaches to estimating

IRFs in a linear setting when shocks are observed. Our simulation results suggest that iterated

(ARDL/VARDL) approaches tend to outperform other competing approaches. In addition, the

common practice of including all variables that are deemed to be part of the DGP can perform

poorly in small samples. This paper does not address an equally important issue of inference about

the impulse responses, which is left for future research.

10The same pattern is noticed in our second set of MC experiments (calibrated to international output growth
dataset), but not in the third set of experiments (calibrated to a U.S. macro dataset). The DGP in the third
experiment is very persistent, and in one case (T = 500, and longer horizon) the best performing direct approach
(ALP with s = n) outperforms the VARDL approach.
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Table 1: Overview of approaches

Approach Regression

A. Direct approaches

The most parsimonious approach xt = bhεt−h + v, for h = 0, 1, ..., hmax

Distributed lag (DL) xt =
∑hmax

h=0 bhεt−h + vt

Augmented distributed lag (ADL) xt =
∑hmax

h=0 bhεt−h + β
′yt−hmax−1 + vt

Local projections (LP) xt+h =
∑p

`=0 bh,`εt−` +
∑q

`=1 β
′
h,`yt−` + vh,t+h,

or (JLP) zt+h = Bhzt + vh,t+h, for h = 0, 1, ..., hmax

B. Iterated approaches

Autoregressive distributed lag (ARDL) xt =
∑p

`=1 ψ`xt−` +
∑q

`=0 β`εt−` + vt

Vector autoregressive distributed lag (VARDL) Ψs (L) zst = βs (L) εt + vt

Full-system augmented vector autoregression (VARX) zt = Φzt−1 + rεεt + vt.

Notes: xt is the target variable, and εt is the shock of interest (not necessarily structural). We assume zt is an n× 1
vector of variables generated from a stationary VAR model, see the online Appendix for assumptions. xt is included

in zt. zst is a subset of zt and it includes xt. yt is an s× 1 vector of covariates that are assumed to be uncorrelated
with future values of εt.
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Table 2: Monte Carlo findings for the relative RMSE of individual approaches

n = 6, T = 30 n = 6, T = 150 n = 6, T = 500
Approach \ horizon short medium long short medium long short medium long

The most parsimonious 1.55 2.09 3.44 2.76 3.70 7.29 3.20 4.25 9.21
DL 2.33 3.05 4.04 1.85 2.34 4.65 1.90 2.43 5.34
ADL, s = 1 2.87 4.13 5.60 1.90 2.43 4.83 1.91 2.44 5.38
ADL, s = 2 3.35 5.40 6.54 1.94 2.53 5.02 1.93 2.47 5.45
ADL, s = n 6.37 12.65 18.77 2.03 2.73 5.54 1.95 2.52 5.59
LP, s = 1 1.24 2.29 3.74 1.77 3.51 7.30 1.97 3.95 9.17
ALP, s = 1 0.92 1.91 4.38 1.22 2.18 4.71 1.33 2.35 5.34
LP, s = 2 1.42 2.44 3.85 1.84 3.67 7.52 1.98 4.01 9.26
ALP, s = 2 0.97 1.97 4.65 1.21 2.23 4.84 1.31 2.36 5.39
LP, s = n 2.31 3.45 4.88 2.05 4.16 8.22 2.06 4.19 9.56
ALP, s = n 1.43 3.63 12.92 1.29 2.45 5.40 1.33 2.42 5.54
ARDL 0.87 0.69 0.31 1.10 1.12 0.69 1.21 1.23 0.81
VARDL, s = 2 0.58 0.37 0.33 1.15 1.25 0.65 1.39 1.60 0.78
VARDL, s = 3 0.73 0.66 0.45 1.08 1.20 1.19 1.20 1.29 1.23
VARDL, s = n 1.01 1.01 1.01 1.00 1.00 1.00 1.00 1.00 1.00
JLP 2.11 1.90 2.22 1.94 4.13 8.27 1.68 4.30 10.34

n = 12, T = 30 n = 12, T = 150 n = 12, T = 500
short medium long short medium long short medium long

The most parsimonious 0.75 2.04 2.39 1.55 8.01 22.23 1.67 9.31 27.07
DL 1.50 3.81 3.56 1.45 7.08 19.07 1.43 7.60 22.03
ADL, s = 1 1.82 4.77 4.43 1.48 7.23 19.40 1.44 7.63 22.15
ADL, s = 2 2.46 6.63 5.94 1.51 7.48 20.05 1.44 7.70 22.31
ADL, s = n >100 >100 >100 1.65 8.30 22.44 1.48 7.92 22.99
LP, s = 1 0.77 2.21 2.62 1.44 8.06 22.44 1.53 9.27 27.11
ALP, s = 1 0.71 2.29 3.52 1.24 6.70 19.02 1.31 7.46 22.02
LP, s = 2 0.84 2.39 2.82 1.46 8.18 22.91 1.53 9.31 27.22
ALP, s = 2 0.79 2.64 4.33 1.25 6.87 19.58 1.30 7.52 22.16
LP, s = n 1.63 4.64 6.66 1.61 8.92 24.85 1.59 9.53 27.81
ALP, s = n 1.59 9.47 >100 1.36 7.66 22.00 1.33 7.73 22.86
ARDL 0.63 0.30 0.04 0.96 0.50 0.16 1.02 0.90 0.54
VARDL, s = 2 0.37 0.10 0.04 0.63 0.39 0.45 0.80 0.67 0.92
VARDL, s = 3 0.40 0.12 0.05 0.59 0.35 0.43 0.63 0.43 0.60
VARDL, s = n 1.10 1.31 2.34 1.00 1.00 1.00 1.00 1.00 1.00
JLP 0.79 0.93 1.20 1.45 7.28 20.32 1.50 9.51 27.82

Notes: Entries represent the ratio of the average RMSE of estimating bh from each approach to that of the

benchmark full-system VARX approach. The values smaller than one indicate the cases where the RMSE of the

corresponding approach is smaller (and hence better) than that of the benchmark approach. Numbers in bold face

indicate the cases with the lowest (best) values. IRF horizon ‘short’stands for h = 0, 1, 2, ‘medium’for h = 3, 4, 5

and ‘long’for h = 6, 7, 8. The DGP is a VAR(1) model shown in (9), where the reduced form coeffi cient matrix (Φ)

is generated randomly from (10) for each n and kept fixed across replications. Descriptions of each approach are

provided in Section 2. The benchmark approach and the JLP approach assume that the identity of variables

entering the DGP and the true lag length are known. The other approaches do not necessarily utilize all variables.

Section 3 provides a full description of MC experiments.
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A Online Appendix for "Estimating Impulse Response Functions

When the Shock Series is Observed" by C-Y Choi and A.

Chudik

This online appendix is organized as follows. Section A.1 describes the modeling setup and outlines

the main assumptions. Section A.2 discusses the consistency of the most parsimonious, DL, ADL,

ARDL, and VARDL approaches. Section A.3 presents Monte Carlo experiments using a design

calibrated to a multicountry output growth VAR. Section A.4 presents Monte Carlo experiments

using a design calibrated to a US macro dataset.

A.1 Modeling Setup

Suppose an n× 1 dimensional vector of variables zt is generated by the following stationary VAR

model,

zt = Φzt−1 + ut, (A.1)

for t = ..., 0, 1, 2, ..., T , where Φ is an n×n matrix of coeffi cients and ut is an n×1 vector of reduced

form shocks, which is partitioned as

ut = rεt + ζt, (A.2)

where εt denotes the observed shock of interest which is uncorrelated with ζt. The observed shock

(εt) might or might not have a structural interpretation. We assume one lag and no deterministic

terms in (A.1) for the simplicity of the exposition. Augmenting additional lags and/or deterministic

terms in (A.1) is conceptually straightforward. Not all variables in zt are necessarily observed as

it might be the case in empirical work where the choice of variables is often a thorny issue. It is

assumed that zt can be partitioned as zt = (xt,q
′
t)
′, where xt is the observed variable of interest

and qt is an (n − 1) × 1 vector of the remaining variables (also referred to as covariates) whose

components can be partially observed.

The following assumptions are postulated to hold for the discussions below.

ASSUMPTION 1 |λ1 (Φ)| ≤ ρ < 1, where λ1 (Φ) is the largest eigenvalue of Φ.

ASSUMPTION 2 Let ut = Rξt, where the elements of R are bounded, and ξt ∼ IID (0k×k, Ik).

The first element of ξt is denoted as εt so that ξt =
(
εt, ξ

′
−1,t
)′.
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These standard assumptions ensure stationarity. Assumption 1 is the standard stationarity

condition for the coeffi cient matrix Φ. Assumption 2 is also standard in the literature which

implies the decomposition in (A.2) where r is the first element of R =
(
r,R−1

)
. ζt = R−1ξ−1,t is

by assumption uncorrelated with the observed shock εt, which is necessary for the consistency of

the estimation approaches below.

Under Assumptions 1-2, xt has the following moving average representation,

xt =

∞∑
h=0

s′n,1Φ
hut−h =

∞∑
h=0

s′n,1Φ
hrεt−h +

∞∑
h=0

s′n,1Φ
hζt−h =

∞∑
h=0

bhεt−h + et, (A.3)

where sn,1 = (1, 0, ..., 0)
′ is an n× 1 selection vector that selects the first element,

bh = s′n,1Φ
hr, for h = 0, 1, ..., (A.4)

and et =
∑∞

h=0 s′n,1Φ
hζt−h. The sequence {bh}∞h=0 is the impulse response function of a unit shock

to εt on the variable of interest, xt. Each approach for a consistent estimation of {bh} is discussed

in Section 2 of the paper, with a more detailed discussion provided below on the consistency of the

most parsimonious, DL, ADL, ARDL, and VARDL approaches.

A.2 Discussion of competing approaches

A.2.1 The most parsimonious approach

The simplest, most parsimonious approach is based on:

xt = bhεt−h + vt, for h = 0, 1, 2, ..., hmax, (A.5)

where hmax can be a non-decreasing function of the available sample size, T , and vt is a generic

regression error term, which clearly depends on the regression specification (suppressed in terms of

notations), and it takes different forms throughout the paper and in this Appendix. In the context

of (A.5), vt is given by (using the moving-average representation in (A.3)),

vt = et +

∞∑
j=0,j 6=h

bjεt−j . (A.6)
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Clearly, vt is serially correlated but is uncorrelated with εt−h, and hence it is not surprising that

the LS estimate of bh using the auxiliary regression (A.5), denoted as b̂h, is consistent for any given

h.

A.2.2 DL

The DL approach is based on (1) where the corresponding regression error term is given by

vt = et +
∞∑

h=hmax+1

bhεt−h. (A.7)

Clearly, vt in (A.7) is uncorrelated with regressors, εt, εt−1, ..., εt−pT , in (1), and therefore the

corresponding LS estimates of the IRF coeffi cient vector bhmax = (b0, b1, ..., bhmax)
′, denoted as

b̂DLhmax =
(
b̂DL0 , b̂DL1 , ..., b̂DLhmax

)′
, will be consistent for any fixed hmax.11

A.2.3 ADL

So long as the regressors yt−hmax−1 are uncorrelated with εt−h for h = 0, 1, ..., hmax, it is not sur-

prising that, as in the case of the DL regressions, the same conclusion on the consistency continues

to apply. When augmenting the DL regression in (1), it should be noted that it is not necessarily

advisable to use many regressors in yt to avoid overfitting.

A.2.4 ARDL

Autoregressive distributed lag approach involves univariate regressions featuring the current and

lagged values of εt as well as the lagged terms of the dependent variable, xt. Using (A.3), xt can be

decomposed into two orthogonal components, one that depends on {εt−h}∞h=0 and the other that

depends on the remaining shocks
{
ζt−h

}∞
h=0
:

xt = b (L) εt + et, (A.8)

where b (L) =
∑∞

h=0 bhL
h with bh, for h = 0, 1, ..., defined in (A.4). The error term et is co-

variance stationary, and from the Wold decomposition theorem (Wold, 1938), it has an MA(∞)
11Similarly to the LP approach, regression (1) can also be run for hmax = 0, 1, 2, ..., H, which gives us H − h + 1

different estimates of bh. Any of these estimates is consistent. These estimators are not pursued in the current paper.

A3



representation

et = α (L) νt, (A.9)

where α (L) = 1−
∑∞

h=1 αhL
h, νt = et − Ê (et| et−1, et−2, ...), and Ê denotes the linear prediction

operator. We assume that ψ (L) = α−1 (L) = 1 −
∑∞

h=0 ψhL
h exists and its coeffi cients decay at

an exponential rate. Then, multiplying both sides of (A.8) by ψ (L) yields

ψ (L)xt = ψ (L) b (L) εt + ψ (L) et = β (L) εt + νt,

or

xt =
∞∑
h=1

ψhxt−h +
∞∑
h=0

βhεt−h + νt, (A.10)

where β (L) =
∑∞

h=0 βhL
h = ψ (L) b (L) and ψ (L) et = νt. Since ψ (L) and b (L) feature expo-

nentially declining coeffi cients, their product term, β (L), has exponentially declining coeffi cients

as well. The ARDL estimation of the IRF coeffi cients is based on the truncated version of (A.10)

as shown in (6). Since all the coeffi cients decay at an exponential rate, the truncation errors are

negligible when the truncation lags increase with the sample size at an appropriate rate.

A.2.5 VARDL

Let zst = (xt, q1t, q2t..., qs−1,t)
′ denote an (s × 1) vector of observed variables. Using the moving

average representation of the data generating process in (A.1), we have the following decomposition

similar to (A.8),

zst = S′szt = S′s

∞∑
h=0

ΦhRξt−h

=
∞∑
h=0

S′sΦ
hr1εt−h +

∞∑
h=0

S′sΦ
hR−1ζt−h

=
∞∑
h=0

bshεt−h + est,

= bs (L) εt + est (A.11)
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where Ss is an (n× s) selection matrix that selects the first s elements of zt, bsh = S′sΦ
hr1, and

est =
∞∑
h=0

S′sΦ
hR−1ζt−h, (A.12)

for s = 2, 3, · · · , n − 1, and h = 0, 1, · · · . Note that est is an s-dimensional vector of covariance

stationary variables. Similarly to (A.9), est has an MA(∞) representation,

est = As (L)νst, (A.13)

where νst has a zero mean with constant variance Ωuk. It is serially uncorrelated and independent

with εt′ for all t, t′, and coeffi cients of As (L) = Is −
∑∞

h=1AshL
h decay at an exponential rate.

Similarly to the ARDL approach, we require that est has an invertible vector MA(∞) representation

so that est can be expressed as a VAR(∞) process with exponentially decaying coeffi cients. To this

end, we assume that Ψs (L) = A−1s (L) = Is −
∑∞

h=0ΨshL
h exists and its coeffi cients decay at an

exponential rate.

Multiplying both sides of (A.11) by Ψs (L) from the left, and making use of the representation

in (A.13), we obtain similar to (A.10)

Ψs (L) zst = βs (L) εt + νst, (A.14)

where ust = Ψs (L) est, βs (L) = As (L)bs (L), and the coeffi cients of βs (L) decay at an exponen-

tial rate. The truncated version of (A.14) is given by (7), and the truncation lag errors become

negligible when the truncation lag increases with the sample size at an appropriate rate.

A.3 Experiments using design calibrated to a global output growth VAR

Our second simulation design is based on a quarterly international GDP dataset. Let zt =

(z1,t, z2,t, ..., zn,t)
′ be the (n × 1) vector of observations for n countries in period t where zit de-

notes the first difference of the logarithm of real GDP in country i at quarter t. We consider n = 10

large economies: Canada, China, France, Germany, Italy, Japan, Korea, Mexico, the United King-

dom, and the United States, that account for a slightly more than a half of the global output in the
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Purchasing Power Parity terms (in 2015). We estimate the following reduced-form VAR model,

zt = c+Φzt−1 + ut, (A.15)

using the sample 1980:Q3 - 2015:Q2 (140 quarterly observations). Let ĉ and Φ̂ in (A.15) respectively

denote the LS estimates of c and Φ, and let Σ̂ be the estimate of the variance-covariance matrix

of ut in (A.15). We then generate simulated data z
(r)
t based on

z
(r)
t = ĉ+ Φ̂z

(r)
t−1 + u

(r)
t , (A.16)

for t = −M + 1,−M + 2, ..., 0, 1, 2, ..., T , with starting values z
(r)
−M = 0, where

u
(r)
t ∼ IIDN

(
0, Σ̂

)
.

We use superscript (r) to denote the individual MC replications, r = 1, 2, ..., R where R = 10, 000.

The first M = 100 generated observations are discarded to minimize the effects of initial values,

which leaves us with the available sample size of T . The U.S. is ordered the first in zt so as to

estimate the generalized IRF function for the shock to U.S. output growth on its neighbor Canada.

We consider the same set of approaches and sample sizes discussed in the paper. Table A1 reports

the results of this simulation exercise by comparing the RMSE of each competing approach relative

to the benchmark of the full-system VARX approach. The results appear to be qualitatively very

similar to that of Table 2.
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Table A1: MC findings for the relative RMSE of estimating IRF coeffi cients in

design calibrated to international output dataset

T = 30 T = 150 T = 500

Approach \ horizon short medium long short medium long short medium long

The most parsimonious 1.39 3.36 7.25 2.34 7.02 23.42 2.47 7.50 23.50

DL 2.24 5.33 9.31 1.81 5.09 17.21 1.75 5.00 15.92

ADL, s = 1 2.66 6.64 12.53 1.84 5.21 17.73 1.76 5.03 16.03

ADL, s = 2 3.48 8.67 15.77 1.91 5.37 18.22 1.77 5.07 16.16

ADL, s = N >100 >100 >100 1.99 5.65 19.25 1.79 5.15 16.35

LP, s = 1 1.34 3.68 7.99 2.02 6.90 23.60 2.08 7.21 23.43

ALP, s = 1 1.15 3.27 9.53 1.64 4.81 17.29 1.69 4.91 15.95

LP, s = 2 1.32 4.02 8.79 1.79 6.88 24.03 1.83 7.12 23.46

ALP, s = 2 1.14 3.85 12.09 1.44 4.81 17.76 1.46 4.82 16.05

LP, s = N 1.74 6.23 15.29 1.67 7.20 25.29 1.62 7.14 23.74

ALP, s = N 1.53 7.26 >100 1.35 4.97 18.86 1.33 4.81 16.24

ARDL 1.06 0.72 0.21 1.65 1.98 1.09 2.17 3.92 2.73

VARDL, s = 2 0.78 0.33 0.18 1.22 1.05 1.11 1.36 2.11 2.29

VARDL, s = 3 0.78 0.42 0.21 1.15 0.86 0.72 1.43 1.20 1.05

VARDL, s = N 1.03 1.05 1.07 1.00 1.00 1.00 1.00 1.00 1.00

JLP 1.35 1.97 3.95 1.54 5.46 19.12 1.48 6.10 20.77

Notes: The entries represent the RMSE of each approach relative to the full-system VARX benchmark. The DGP is given by

VAR(1) model in (A.16), which features coeffi cients in ĉ and Φ̂ estimated using real output growth data on n = 10 economies

over the sample 1980Q3 - 2015Q2. The lowest (best) entries are highlighted by bold fonts. See Section A.3 and the notes in

Table 2 for further details.

A.4 Experiments using design calibrated to a US macro dataset

Our third set of MC experiments is calibrated to a U.S. macro dataset. We obtain the dataset

used in the MC study by Jordà (2005) from the AEA website.12 This dataset contains monthly

observations from January 1960 to February 2001 for the following six variables: (i) log of non-

agricultural payroll employment; (ii) log of personal expenditure deflator; (iii) annual growth rate

of the index of sensitive material prices by the Conference Board; (iv) federal funds rate; (v) ratio

of nonborowed reserves plus extended credit to total reserves; and (vi) annual growth rate of M2.

Collecting these variables in the vector zt (using the same ordering), we estimate a VAR(p0) model

zt = c+

p0∑
`=0

Φ`zt−` + ut, (A.17)

12http://www.aeaweb.org/aer/data/mar05_data_jorda.zip, (the unpacked file evnew.csv).
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and identify the monetary policy shock using the Christiano-Eichenbaum-Evans recursive identifi-

cation strategy as described in Section 2.2 of Evans and Marshall (1998). In particular, let ĉ, Φ̂`, ût

denote the LS reduced-form estimates, and let Σ̂ denote the estimated variance-covariance matrix

of error term. Note the federal funds rate is ordered as the fourth after the variables (i)-(iii). After

obtaining the lower triangular Cholesky factorization of Σ̂ = ĈĈ
′
, we compute ε̂t = Ĉ−1ût, of

which the fourth element is the normalized identified monetary policy shock with a unit variance.

The DGP is then given by

z
(r)
t = ĉ+

p0∑
`=0

Φ̂`z
(r)
t−` + Ĉε

(r)
t , (A.18)

for t = p+ 1, p+ 2, ..., T , with initial values z
(r)
` = z` for ` = 1, 2, ..., p0. As in Evans and Marshall

(1998), we consider the lag length of p0 = 12. Such a large lag length makes the full system VAR

and JLP infeasible for the relatively small choice of T = 30, due to a large number of unknown

parameters to estimate. These two approaches are therefore no longer considered here, and hence we

choose the parsimonious LP approach with s = 1 as a benchmark instead of the full-system VARX.

In addition to being proliferated with parameters, this design differs from the previous two designs

in that it is callibrated to data series that are not mean reverting, which violates the stationarity

assumption. This renders the most parsimonious and DL approaches not applicable, because the

regressions (1) and (A.5) are no longer well balanced. These two approaches are therefore not

considered in this design. We take the non-normalized monetary policy shock ε(r)MP,t = ĉ44ε
(r)
4,t

as observed, where ĉ44 is the element (4, 4) of the matrix Ĉ. We use the appicable competing

approaches under study to estimate the impact of the monetary policy shock on federal funds rate.

Each estimation approach is implemented as in the previous two sets of experiments. Table A2

reports the relative RMSE results. As can be seen from Table A2, the simulation results are in

line with our main conclusions drawn from the previous two MC results, with the single exception

discussed in Footnote 10.
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Table A2: MC findings for the relative RMSE of estimating IRF coeffi cients in

design calibrated to U.S. macro dataset.

T = 30 T = 150 T = 500

Approach \ horizon short medium long short medium long short medium long

ADL, s = 1 1.94 1.10 0.63 3.50 1.84 1.23 8.56 4.68 3.16

ADL, s = 2 1.93 1.31 0.83 2.66 1.49 1.01 2.95 1.61 1.07

ADL, s = N 2.37 1.89 1.07 1.99 1.23 0.88 2.19 1.19 0.78

LP, s = 1 (benchmark) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

ALP, s = 1 0.72 0.91 1.50 0.75 0.98 1.05 0.74 0.97 0.98

LP, s = 2 1.45 1.55 1.08 1.01 1.22 1.16 0.97 1.00 1.01

ALP, s = 2 0.78 0.66 0.60 0.68 0.84 0.89 0.73 0.96 0.96

LP, s = N 2.78 2.39 0.86 1.21 1.98 1.69 0.91 1.02 0.97

ALP, s = N 1.18 0.98 0.68 0.62 0.72 0.75 0.63 0.76 0.70

ARDL 0.67 0.75 1.00 0.65 1.50 3.32 0.58 0.79 0.88

VARDL, s = 2 0.65 0.58 0.99 1.05 3.70 5.29 0.49 0.73 0.88

VARDL, s = 3 0.72 0.44 0.56 0.88 2.78 3.19 0.48 0.76 1.26

VARDL, s = N 1.16 0.86 0.66 0.49 0.67 0.69 0.54 2.65 4.67

Notes: The entries represent the RMSE of each approach relative to the benchmark of the parsimonious LP approach with

s = 1. The DGP is given by VAR(12) model (A.18), which features coeffi cients ĉ, Φ̂`, for ` = 1, 2, ..., 12, and Ĉ estimated

based on U.S. macro dataset taken from Evans and Marshall (1998) and Jordà (2005). The lowest (best) entries are

highlighted by bold fonts. The benchmark method is LP with s = 1. See Section A.4 and the notes in Table 2 for further

details.
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