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1 Introduction

This paper is concerned with estimating impulse-response functions (IRFs) when the outcome

variable of interest is observed at a lower frequency than the shock of interest. One empirical

question that can be addressed in this framework, and that is explored in this paper, is the daily

pass-through of changes in crude oil price shocks observed at the daily frequency on U.S. retail

gasoline prices (at the pump) observed only at the weekly frequency. There are naturally other

interesting empirical questions that can be addressed with the framework proposed in this paper.

For example, many monetary policy shock measures are constructed at the monthly frequency

while real GDP measures, and in some economies even inflation, are only observed at the quarterly

frequency. The approach we propose in this paper is also useful because the commonly used method

of temporally aggregating shocks to match the frequency at which the outcome variable is observed

yields inconsistent estimates of the temporally aggregated impulse response coeffi cients.

The problem approached in this paper relates mainly to two strands of the literature. The first

strand of the literature considers estimation of IRFs when the shock of interest is observed, which

is relatively straightforward and a number of different approaches can be used to accomplished this,

such as the distributed lag or (vector) autoregressive distributed lag specifications (Kilian, 2008a

and 2008b, and Romer and Romer, 2010, among others), or the local-projection approach by Jorda

(2005).1 The approaches considered in this literature all assume that the data on the shocks and

the outcome variables are observed at the same frequency. Unfortunately, as mentioned above, it is

sometimes the case that data on shock measures are observed at a higher frequency than those on

outcome variables. Against this background, in this paper we propose a framework which allows to

estimate consistently the high-frequency effects of a shock that is observed at a higher frequency

than the outcome variable.

The second strand of the literature is concerned with the modelling of mixed-frequency data,

see surveys by Foroni and Marcellino (2013) and Foroni, Ghysels, and Marcellino (2013), and the

more recent contributions by Foroni and Marcellino (2016) and Bacchiocchi, Bastianin, Missale,

and Rossi (2018). While conceptually very closely related, the question of estimating IRFs at the

high frequency when the shock is observed at a higher frequency than the outcome variable of

1Choi and Chudik (2019) provide Monte Carlo comparisons of these approaches.
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interest has not yet been considered, to the best of our knowledge. We borrow from this strand of

the literature the idea that the true IRFs can be approximated by a flexible function that features

a small number of unknown parameters. We document that while not necessary for consistent

estimation of the IRFs, such parametrization can substantially improve small sample performance.

More specifically, we propose two mixed-frequency distributed lag (MFDL) estimators: While

the unrestricted MFDL estimator does not impose any functional form on the IRF, the restricted

MFDL estimator assumes that the true IRFs can be approximated by a flexible function that

features a small number of unknown parameters and is therefore more parsimonious. We establish

asymptotic normality for both estimators, and document their small sample performance by means

of Monte Carlo experiments. The results from the Monte Carlo experiments suggest that the

unrestricted MFDL estimator can in some cases be quite noisy for empirically relevant sample

sizes. In contrast, the restricted MFDL estimator performs reasonably well.

To illustrate the usefulness of the proposed estimators, we explore the daily pass-through of

changes in crude oil prices observed at the daily frequency to U.S. retail gasoline prices (at the

pump) observed at the weekly frequency. Using the full sample, we find that the crude oil price pass-

through is quite fast, with 28% of the crude oil price changes passed through to retail gasoline prices

within five working days. Sub-sample rolling-window estimations suggest that the pass through has

changed over time, with a faster pass-through observed in more recent periods compared with the

1990s. In the most recent sub-sample, almost 40% of the pass-through is estimated to materialize

within five working days.

The rest of this paper is organized as follows. Section 2 introduces the model, defines the

IRFs, and derives asymptotic properties of the MFDL estimators. Section 3 presents Monte Carlo

experiments. Section 4 presents estimates of the daily crude oil price pass-through, and the last

section concludes. Proofs, extensions, summary of notations and additional supplementary material

are provided in the Appendix.

2 The MFDL estimators

This section first describes the data-generating process (DGP) and the main assumptions (Subsec-

tion 2.1), and then defines the objects of interests (Subsection 2.2), before proposing the MFDL
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estimators and providing their asymptotic properties (Subsection 2.3).

2.1 Data-generating process and assumptions

Consider the following DGP for the n× 1 dimensional vector of variables zt,

zt = Φzt−1 + ut, for t = 0, 1, 2, ..., T, (1)

where Φ is an n × n matrix of coeffi cients, ut is an n × 1 vector of reduced-form errors. For

simplicity of exposition but without any loss of generality, one lag and no deterministic terms in

(1) are assumed. Introducing additional lags and/or deterministic terms in (1) is straightforward

but bears a loss of notational and expositional clarity. The DGP given by (1) is a standard VAR(1)

model, which can be obtained, for instance, as the solution of a log-linearized dynamic stochastic

general equilibrium model describing the evolution of the endogenous variables.

Let zt be, without any loss of generality, partitioned as zt = (xt,q
′
t)
′, where xt is the outcome

variable of interest and qt is an (n − 1) × 1 vector of remaining variables. Notice that it is not

assumed that the remaining variables in qt are observed. It is not assumed that n is known, as is

often the case in empirical work, in which the choice of variables is a contentious issue. Furthermore,

partition ut as

ut = aet + vt, (2)

where vt is the component of ut that is uncorrelated with the shock of interest et. Notice that in

this paper we assume that the shock et in the decomposition (2) is observed, and therefore we do

not contribute to the important problem of shock identification.

The decomposition given by (2) is quite general, and it nests two important examples. The first

example is the structural model

ut = Aξt,

where ξt is an l×1 vector of structural shocks that contains et as one of its elements, andA is an n×l

matrix of coeffi cients, and the number of structural shocks, l, could be greater, equal, or smaller

than the number of variables, n. In this example, let the vector of structural shocks, without

any loss of generality, be partitioned as ξt =
(
et, ζ

′
t

)′. Partitioning accordingly A =
[
a,A−1

]
,
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and assuming that structural shocks are mutually uncorrelated, we obtain (2) by noting that

ut = Aξt = aet + A−1ζt = aet + vt, with vt = A−1ζt being uncorrelated with et. The IRF of

a unit shock to et (formally defined in Section 2.2 below) is the structural IRF of the structural

shock et.

The second example is letting et be one of the reduced-form shocks in ut = (u1t, u2t, ..., unt)
′. In

particular, let et = ujt for some given j ∈ {1, 2, ..., n}, and let E (ut| et) = aet. Then, we can define

vt ≡ ut−E (ut| et). Hence, we obtain (2), where, by construction, et and vt are uncorrelated. The

IRF of a unit shock to et = ujt in this example corresponds to the generalized IRF of a unit shock

to ujt, as considered by Koop et al. (1996) and Pesaran and Shin (1998).

We assume that the variable of interest, xt, is observed only at a lower frequency than the shock

et. Let m > 1 be the number of high-frequency time periods contained in one low-frequency period.

For instance, if high frequency is monthly and low frequency is quarterly, then m = 3. Define

ts = ms (3)

and Tm = [T/m] − 1, where [T/m] is the integer part of T/m. Thus, T is the number of high-

frequency time periods for which et is observed, and Tm is the number of low-frequency time periods

for which the temporally aggregated time series

x̄w,s =

m−1∑
h=0

whxts−h, for s = 1, 2, ..., Tm, (4)

is observed. For example, a simple averaging of the high-frequency observations contained in one

low-frequency time period is represented by equal temporal aggregation weights wh = 1/m, for

h = 0, 1, ...,m− 1. Sequential sampling is represented by setting one of the weights to 1 and others

to 0. When low frequency is quarterly and high frequency is monthly, sequentially sampling the

last month of each quarter is represented by w0 = 1, and w1 = w2 = 0. Using the notation ts = ms

allows us to conveniently refer to the high-frequency periods ts− (m−1), ts− (m−2), . . . , ts within

the low-frequency period s. For example, when the low frequency is annual and the high-frequency

is monthly, then ts − h for h = 0, 1, . . . , 11, refers to the hth month of year s before December.

Remark 1 The framework we suggest below can also be used for the case of more complex temporal
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aggregation schemes than in (4), for example x̄wq ,s =
∑qm−1
h=0 wqhxts−h, for s = 1, 2, ..., Tm, and

some fixed q > 1. The case of q = 2 can be of particular interest, since it represents the case of

first-differences of the temporally aggregated data. This extension is relegated to Appendix A.3.

It is useful to define m sequentially sampled shock series:

ēsh = ets−h, for h = 0, 1, 2, ...,m− 1. (5)

It is clear that observations ēsh, for h = 0, 1, 2, ...,m− 1, are available for s = 1, 2, ..., Tm and so is

x̄w,s.

The following assumptions are postulated. We use c and K to denote generic small and large

positive constants that do not depend on the sample size T . These constants can take different

values at different instances in the paper.

ASSUMPTION 1 |λ1 (Φ)| ≤ ρ < 1, where λ1 (Φ) is the largest eigenvalue of Φ.

ASSUMPTION 2 Innovations ut are given by (2), where et ∼ IID
(
0, σ2e

)
, c < σ2e < K, and

‖a‖ < K. In addition, vt ∼ IID (0k×k,Ξ), and et is orthogonal to vt′ for any t 6= t′. The fourth

moments of et and individual elements of vt exist.

Assumption 1 is the standard stationarity condition on the coeffi cient matrix Φ, when n does

not increase with T . Assumption 2 implies uncorrelatedness of et and vt, which is important for

the consistency of the estimators proposed in this paper.

2.2 Objects of interest and further definitions

Under Assumptions 1-2, xt is represented by the sum of the following two moving-average processes,

xt =
∞∑
`=0

b`et−` + εt, (6)

where

b` = s′n,1Φ
`a, for ` = 0, 1, 2, ..., (7)
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sn,1 = (1, 0, ..., 0)′ is an n× 1 selection vector that selects the first element, and

εt =

∞∑
`=0

s′n,1Φ
`vt−`. (8)

The sequence {b`}∞`=0 is the IRF of a unit shock to et on the variable of interest, xt, at the high

frequency at which the shock is observed, namely

b` = E (xt+`| et = 1, It−1)− E (xt+`| It−1) , for ` = 0, 1, ..., (9)

where It−1 = {zt−1, zt−2, ...} is an information set featuring all variables up to t − 1. Our main

goal is to estimate the high-frequency IRF coeffi cients b` defined by (9) and given by (7).

In order to estimate {b`}, it is going to be useful to consider the impact of a shock observed

at the high frequency on the low-frequency, temporally aggregated outcome variable, namely the

coeffi cients

drh = E ( x̄w,s+r| ets−h = 1, Its−h−1)− E ( x̄w,s+r| Its−h−1) , for r = 0, 1, ..., and h = 0, 1, ...,m− 1,

(10)

where ts is given by (3). Note that the parameter h in (10) refers to the timing of the shocks

within the low-frequency period, namely occurring h high-frequency periods before the end of the

low-frequency period. The parameter r in (10) refers to the low-frequency horizon.

Using (4) and (9) in (10), we obtain the following mapping between the high-frequency IRFs

{b`, ` = 0, 1, 2, ...}, and the low-frequency IRFs {drh, r = 0, 1, 2, ...} for h = 0, 1, ...,m− 1.

d0,h =
h∑
q=0

wqbh−q, for h = 0, 1, ...,m− 1, (11)

dr,h =
m−1∑
q=0

wqbmr+h−q, for r = 1, 2, ... and h = 0, 1, ...,m− 1. (12)

2.3 Estimation of IRF coeffi cients

In order to propose estimators of the high-frequency IRFs {b`}, we derive the following represen-

tation for x̄w,s.
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Lemma 1 Let zt be given by model (1), and suppose Assumptions 1-2 hold. Consider the tem-

porally aggregated variable x̄w,s =
∑m−1
h=0 whxts−h as defined in (4), where ts = ms, wh for

h = 0, 1, ...,m− 1 are the temporal aggregation weights, and m > 1 is the number of high-frequency

periods contained in one low-frequency period. Then,

x̄w,s =
m−1∑
h=0

∞∑
r=0

drhēs−r,h + ε̄w,s, (13)

where drh is given by (11)-(12), ēsh is defined in (5), namely ēsh = ets−h, for h = 0, 1, 2, ...,m− 1,

and ε̄w,s =
∑m−1
h=0 whεts−h with εt given by (8).

Representation (13) shows that the temporally aggregated variable x̄w,s defined in (4) and

observed at the low frequency can be written as a weighted sum of current and lagged shocks that

are observed at the high frequency. The low-frequency IRF coeffi cients drh, given by (11)-(12), are

functions of the temporal aggregation weights {wh, h = 0, 1, ...,m− 1} and of the high-frequency

IRF coeffi cients {b`, ` = 0, 1, 2, ...}.

For the estimation of the low-frequency IRF coeffi cients {drh}, we propose the following auxiliary

MFDL regression based on a truncated version of (13),

x̄w,s =
m−1∑
h=0

p∑
r=0

drhēs−r,h + ϑps, (14)

where

ϑps = ε̄w,s +
m−1∑
h=0

∞∑
r=p+1

drhēs−r,h, (15)

and p is a chosen truncation lag. Regression (14) can be compactly written as

x̄w,s = d′(p)ē(p),s + ϑps, (16)

where d(p) =
(
d′0,d

′
1, ...,d

′
p

)′ is (p+ 1)m × 1 dimensional vector of coeffi cients partitioned into

(p+ 1)× 1 dimensional subvectors

d`
m×1
≡ (dr,0, dr,1, ..., dr,m−1)

′ for r ≥ 0, (17)
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and ē(p),s =
(
ē′s, ē

′
s−1, ..., ē

′
s−p
)′ is (p+ 1)m × 1 dimensional vector of sequentially sampled shock

series, in which ēs = (ēs,0, ēs,1, ..., ēs,m−1)
′. The subscript (p) is used to distinguish d(p) from its

p + 1 components dr, for r = 0, 1, ..., p, defined in (17). It is clear that the low-frequency IRF

coeffi cients drh, h = 0, 1, ...,m− 1 and r = 0, 1, ..., p, can be consistently estimated by least squares

(LS), since ϑps is uncorrelated with ē(p),s. Moreover, a consistent estimate of the high-frequency

IRF coeffi cients {b`} can be obtained from the consistent estimates of {drh}, using the mapping in

(11)-(12). In particular, given the truncation lag order p in (14), the mapping between the low-

frequency IRF coeffi cients {drh} and the high-frequency IRF coeffi cients {b`} given by (11)-(12)

can be compactly written as

d(p) =



d0

d1
...

dp


=



Wb 0m×m 0m×m · · · 0m×m

Wa Wb 0m×m · · · 0m×m

0m×m Wa Wb 0m×m
...

. . . . . .

0m×m 0m×m · · · Wa Wb


︸ ︷︷ ︸

Wp
(p+1)m×(p+1)m

·



b0

b1
...

b(p+1)m


︸ ︷︷ ︸

bp

, (18)

where

Wa
m×m

≡



0 wm−1 wm−2 wm−3 · · · w1

0 0 wm−1 wm−2 · · · w2

0 0 0 wm−1 w3
...

...
...

. . .
...

0 0 0 0 wm−1

0 0 0 0 · · · 0


, Wb

m×m
≡



w0 0 0 · · · 0

w1 w0 0 · · · 0

w2 w1 w0 · · · 0

...
. . .

...

wm−1 wm−2 wm−3 · · · w0


.

Assuming Wp is invertible, using (18) we obtain

bp = W−1
p d(p). (19)

Remark 2 By the lower-triangularity of Wp, det (Wp) = w
(p+1)m
0 it follows that Wp is invertible

8



if and only if w0 6= 0. However, if w0 = w1 = ... = wj = 0 for some 0 < j < m in the

temporal aggregation of the outcome variable xt, then we can simply re-define Wp by considering a

modified version of the auxiliary regression (14) that does not include the j most recent regressors

ēs,0, ēs,1, ..., ēs,j.

Consider the following unrestricted MFDL estimator of bp =
(
b0, b1, ..., b(p+1)m−1)

)′,
b̂p = W−1

p d̂(p), (20)

where d̂(p) is the LS estimator based on the auxiliary regression (16) given by

d̂(p) =
(
E′E

)−1
E′x̄, (21)

in which x̄ = (x̄p+1, x̄p+2, ..., x̄Tm)′ is the vector of observations on the dependent variable x̄w,s in

(16), and E is the matrix of observations on ē(p),s in (16), namely E = (E0,E1,E2, ...,Ep), where

E` =
(
ē′p−`+1, ē

′
p−`+2, ..., ē

′
Tm−`

)′
, for ` = 0, 1, ..., p, and ē′s, for s = 1, 2, ..., Tm is defined below

(16). The dimensions of E and x̄ depend on the sample size, T , as well as the truncation lag, p,

but we omit these subscripts to simplify the notation. Similarly, the vectors b̂p and d̂(p) depend

on T , but the subscript T is again not used to simplify the notation.

The asymptotic distribution of b̂p is established in the next theorem.

Theorem 1 Let zt be generated by the DGP in (1), and suppose Assumptions 1-2 hold. Let the

matrix Wp defined in (18) be invertible, and consider the estimator b̂p defined in (20). Let T →∞,

and suppose m and p are fixed. Then,

√
T/m− p

(
b̂p − bp

)
→d N (0,Ωp) , (22)

where bp =
(
b0, b1, ..., b(p+1)m−1)

)′ is the vector of high-frequency IRF coeffi cients defined in (9),
and

Ωp = σ−2e W−1
p

 p∑
`=−p

γp`Hp,`

W−1′
p , (23)

in which σ2e = E
(
e2t
)
is the variance of et, γp` = E (ϑpsϑp,s−`) is the autocovariance function of
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ϑps defined in (15), Hp,` = Gp` ⊗ Im, Im is an m ×m identity matrix, Gp` is a (p+ 1) × (p+ 1)

dimensional shift matrix with its (i, j)-th element given by δi+`,j, and

δi,j =

 1 for i = j

0 for i 6= j
, (24)

is the Kronecker delta.

The asymptotic variance matrix Ωp can be consistently estimated by

Ω̂p = σ̂−2e W−1
p

 p∑
`=−p

γ̂p`Hp,`

W−1′
p , (25)

where σ̂2e = T−1
∑T
t=1 e

2
t , and γ̂p` is the sample autocovariance of ϑ̂ps, namely

γ̂p` =
1

Tm − p

Tm∑
s=p+1

ϑ̂psϑ̂p,s−`, (26)

and ϑ̂ps = x̄w,s −W−1
p b̂′(p)ē(p),s are the residuals from (16).

It is interesting to point out that using the temporally aggregated shock series

ēw,s =
m−1∑
h=0

whets−h, for s = 1, 2, ..., Tm. (27)

in a regression of the temporally aggregated outcome variable of interest x̄w,s on {ēw,s, ēw,s−1, ..., ēw,s−p}

will in general not yield a consistent estimate of the temporally aggregated IRF defined as

b̄w,s =
m−1∑
h=0

whbsm−h, for s = 0, 1, ....

We illustrate this in an example.

Example 1 Consider m = 3 and p = 0. Suppose the object of interest is the temporally aggregated

impact response in the low frequency, namely b̄w,0 = w2b0 + w1b1 + w0b2. Using the aggregated

shock ēw,s defined in (27) in a regression of x̄w,s on ēw,s will not yield a consistent estimate of b̄w,0.
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Instead, the inconsistency (large-T bias) of this estimator is

inc =
E (ēw,sx̄w,s)

E
(
ē2w,s

) − b̄w,0,

which, after substituting the expression for ēw,s and (14) for x̄w,s and after some algebra is given

by

inc = b0 (1− w0) + b1

(
w1w0 + w2w1
w20 + w21 + w22

− w1
)

+ b2

(
w0

w20 + w21 + w22
− w2

)
.

It can be seen that the sign and the magnitude of this inconsistency depend on the true high-frequency

IRF coeffi cients {b0, b1, b2} and the aggregation weights {w0, w1, w2} in a non-trivial way. In the

case in which b0 = 1, b1 = φ, b2 = φ2 and w0 = w1 = w2 = 1, which corresponds to a DGP with an

AR(1) with autoregressive parameter φ at the high frequency and the temporally aggregated variable

being the sum of the data at the high frequency. In this case, for φ = 0.75 we have b̄w,0 = 2.3125

and inc = −0.625, which is sizeable.

2.3.1 Potential small sample drawbacks of the unrestricted MFDL estimator

As can be seen from (20) and (23), the inverse of the aggregation matrix Wp is important for

the asymptotic and small sample properties of the unrestricted MFDL estimator b̂p. It is use-

ful to clarify the role of Wp for two common aggregation schemes: end-of-period sequential

sampling with w = (1, 0, 0, ..., 0)′, period sums with w = (1, 1, ..., 1)′ or period averages with

w = (1/m, 1/m, ..., 1/m)′.

In the former case, Wp is an identity matrix, which is a very convenient case since W−1
p also is

an identity matrix so that b̂p coincides with d̂(p).

The latter case, however, is more challenging. Under w = τ = (1, 1, ..., 1)′, the first m − 1

subdiagonals and the main diagonal of the matrix Wp consist of ones, which results in a rather

inconvenient structure of W−1
p . In particular, the diagonal elements of W−1

p W′−1
p linearly increase

along the diagonal, meaning that the variance of the low-frequency IRF coeffi cient estimates increase

with the IRF horizon `. Given that the variance of b̂p depends on W−1
p W′−1

p in (23), this implies

that the low-frequency IRF coeffi cients are less precisely estimated at longer horizons. This is

illustrated in the upper part of Figure A1, which plots the diagonal elements of W−1
p W′−1

p for
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m = 3. Furthermore, for any selection vector s` that selects the `-th element, the vector W−1
p s`

exhibits a cyclical pattern from ` onward. This suggests that a one-off large sampling error for

one of the elements in d̂(p) can cause a cyclical pattern in b̂p even if the true low-frequency IRF

coeffi cients do not exhibit such a pattern. This is illustrated in the lower panel of Figure A1, which

plots elements of W−1
p s1 as well as W−1

p τ for m = 3. This cyclical accumulation of estimation

errors in d̂(p) can be an important small-sample drawback under some DGPs and sample sizes, as

we document below in the Monte Carlo experiments.

Since the unrestricted MFDL estimator (22) can be noisy in small samples, we propose next a

restricted MFDL estimator, which improves on the performance of the unrestricted estimator by

assuming that the true IRFs can be well approximated by a suffi ciently general function featuring

a smaller set of unknown parameters.

2.3.2 Restricted MFDL estimator

We postulate the following assumption.

ASSUMPTION 3 Let bp = fp (ψ0), where fp (ψ) : Θ→Rk is continuously differentiable, k =

(p+ 1)m, the support Θ is a compact set, and fp (ψ) = bp if and only if ψ = ψ0, where ψ0 is a

q × 1 vector of unknown parameters and q ≤ k.

We propose the minimum distance estimator

ψ̂ = arg min
ψ∈Θ

∥∥∥b̂p − fp (ψ)
∥∥∥

Ω̂−1p
, (28)

where b̂p, is the unrestricted MFDL estimator, Θ is a compact set of admissible values of ψ,

‖x‖Ω̂−1p = x′Ω̂−1p x, and Ω̂p is a consistent estimator of Ωp defined in (25), which we assume is

invertible. The asymptotic distribution of fp

(
ψ̂
)
is established in the next theorem.

Theorem 2 Let zt be generated by the DGP in (1), and suppose Assumptions 1-3 hold. Let the

matrices Wp and Ω̂p, defined in (18) and (25), respectively, be invertible, and consider the estimator

b̃p = fp

(
ψ̂
)
, (29)

12



where ψ̂ is given by (28). Let T →∞, and suppose m and p are fixed. Then,

√
T/m− p

(
b̃p−bp

)
→d N (0,Σp) , (30)

where

Σp = Jp
(
J′pΩ

−1
p Jp

)−1
J′p, (31)

Jp is the k × q dimensional Jacobian of fp at ψ0,

Jp≡ Jp (ψ0) =
∂fp (ψ)

∂ψ′

∣∣∣∣
ψ=ψ0

, (32)

and Ωp is a k × k variance matrix given by (23).

Remark 3 Any continuously differentiable function could be considered for fp (.). One possible

choice is the function with elements given by the elements of the polynomial ψ−1 (L, q), where

ψ (L, q) ≡ ψ0 + ψ1L+ ...+ ψq−1L
q−1 (33)

is invertible. Examples of other flexible choices include Exponential Almon Lag parametrization,

or Beta Lag parametrization employed in the mixed-frequency literature, see, for example, Section

2.3.1 of Foroni and Marcellino (2013) for a description of these and other alternatives.

Remark 4 It can be seen from (31) that when the number of unknown parameters in ψ is the same

as the dimension of bp, namely when q = k, then Σp = Ωp and no improvement in the asymptotic

variance is obtained. Consequently, the restricted MFDL estimator b̃p can be asymptotically more

effi cient only if q < k.

ReplacingΩp with its consistent estimator Ω̂p given by (25), and Jp with its consistent estimator

Ĵp = Jp

(
ψ̂
)
, the asymptotic variance matrix Σp given by (31) can be consistently estimated by

Σ̂p = Ĵp

(
Ĵ′pΩ̂

−1
p Ĵp

)−1
Ĵ′p. (34)

Remark 5 It is possible to improve the asymptotic variance of the unrestricted and the restricted

13



MFDL estimators by augmenting the auxiliary regressions (16) with variables that are correlated

with the residual term ϑps, but uncorrelated with the regressors in ē(p),s =
(
ē′s, ē

′
s−1, ..., ē

′
s−p
)′. One

candidate for the augmentation of (16) is the dependent variable lagged by (at least) p+ 1 periods,

which (under Assumptions 1-2) is uncorrelated with the regressors but correlated with the dependent

variable, and could therefore improve the fit of the auxiliary regression. However, whether such

augmentation is helpful or not in finite samples will depend on the magnitude of the improvement

in the fit, which might be small when p is large and when, at the same time, the dependent variable

is not very persistent. When the target variable is very persistent, or even integrated of order one,

I(1) for short, then the augmentation of the auxiliary regression by the dependent variable lagged

by p+ 1 periods will be necessary.2

3 Monte Carlo experiments

This section investigates the small sample performance of the unrestricted and restricted MFDL

estimators, b̂(p) and b̃(p), under two temporal aggregation weight schemes. Subsection 3.1 sets out

the design of the experiments, and Subsection 3.2 summarizes the findings.

3.1 Data-generating process

We consider n = k = 2 and generate zt = (xt, qt)
′ based on a VAR model (1) augmented with

deterministic terms:

zt = (I2 −Φ)µz + Φzt−1 + Aξt, with ξt = (ξ1t, ξ2t)
′ ∼ IIDN (0, I2) , (35)

for t = −M + 1,−M + 2..., 0, 1, ..., T , where µz = (1, 1)′, and the starting values z−M = 0. We set

M = 100 and discard the firstM time periods as burn-in periods. The matrix of the autoregressive

coeffi cients, Φ, and the matrix of parameters A are set equal to

Φ =

 0.6 0.1

0.2 0.5

 , and A =

 1 −0.2

0.2 1

 . (36)

2The theory developed in this paper covers the stationary case. The I(1) case could be considered by adding the
(p+ 1)-th lag of the dependent variable in the auxiliary regression (14). We leave the I(1) case for future research.
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We assume that ξ1t is observed for t = 1, 2, ..., T . In addition, the aggregate series x̄w,s =∑m−1
h=0 whxts−h is observed for s = 1, 2, ..., Tm. We set m = 3, which corresponds to a setting

in which there are quarterly observations on the variable of interest and monthly data on the

shock of interest. Furthermore, we consider two aggregation schemes, wa = (1, 0, 0)′ and wb =

(1, 1, 1)′. The former represents the sequential sampling, or “end-of-period” measurement; the

latter represents the sums of the m high-frequency periods, and, when dividing by m, “average-of-

period”measurement.

We investigate the bias and root mean square error (RMSE) of the unrestricted and restricted

MFDL estimators b̂(p) and b̃(p) defined in (20), and (29). We set p = 3, and approximate the true

high-frequency IRF coeffi cients in bp with ψ−1 (L, q) with q = 5, where ψ (L, q) is an invertible

q-order polynomial given by (33). In addition, we investigate the size and power properties of the

tests based on the two MFDL estimators. The variances of b̂(p) and b̃(p) are estimated using (25)

and (34), respectively. We consider Tm = {50, 100, 200, 500} and conduct R = 4, 000 Monte Carlo

replications. In the context of the quarterly-monthly setting mentioned above, this choice of sample

sizes corresponds to datasets that span 12.5 to 125 years of quarterly (monthly) observations on

the outcome variable (shock) of interest. For later reference, the true IRFs are represented by the

thick black lines in Figures A2-A3.

3.2 Monte Carlo findings

The results from the Monte Carlo experiments are presented in Table 1 for the temporal aggregation

weights wa = (1, 0, 0)′ and in Table 2 for wb = (1, 1, 1)′.

The findings for the aggregation scheme wa in Table 1 show little or no bias for all values of Tm.

The RMSE of the restricted and unrestricted MFDL estimators decreases with Tm. The RMSE

of the two estimators is quite similar for shorter IRF horizons (0 to 3), whereas the RMSE of the

restricted MFDL estimator is substantially smaller, about only half, compared with the unrestricted

estimator for longer horizons. The size of the tests based on the two estimators is quite similar,

with slight over-rejections in the range of 11 to 15 percent in case of Tm = 50. These size distortions

disappear as Tm increases. The power findings qualitatively correspond to the RMSE findings and

document significantly better power of the tests based on the restricted MFDL estimator for longer
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IRF horizons (h > 3).

The small sample performance significantly deteriorates in case of the temporal aggregation

scheme wb = (1, 1, 1)′, as can be expected against the background of discussion in Subsection

2.3.1. While the deterioration in the magnitude of the bias is overall not serious, the RMSE

findings reported in Table 2 document a substantial deterioration, especially in the case of the

unrestricted MFDL estimator at longer IRF horizons. The RMSE of b̂(p) increases by a factor

of two to four, and, in addition, we see that the RMSE of the unrestricted MFDL estimator now

considerably increases with the IRF horizon, which is a consequence of increasing diagonal elements

of W−1
p W′−1

p . In contrast, the restricted MFDL estimator b̃(p) performs much better than its

unrestricted counterpart, as its RMSE tends to decline with higher IRF horizons, and is smaller for

all choices of Tm and h than in case of the unrestricted MFDL estimator. The differences between

the RMSE findings of the two estimators are very large for higher IRF horizons. For instance, for

h = 10, the RMSE of the unrestricted MFDL estimator is 5 to 18 times as large as that of the

restricted MFDL estimator. The tests based on the two estimators are somewhat oversized for

Tm = 50, but the size distortions disappear with an increase in the sample size. Corresponding to

the findings for the RMSE, the power of the tests based on the restricted MFDL estimator is in all

cases higher, and in many cases substantially higher, than for the unrestricted MFDL estimator.3

To shed light on the concern on the possibility of a spuriously cyclical behavior of b̂(p), in Figures

A2-A3 we plot the first 50 estimates of b(p) for the restricted and unrestricted MFDL estimators for

the two cases of temporal aggregation schemes wa and wb. We see that the IRF estimates appear

rather smooth under wa, for both estimators, but some draws of the unrestricted MFDL estimator

exhibit a somewhat cyclical behavior. This is a small sample issue, since the RMSE declines with

an increase in sample size and consequently any estimation error eventually becomes negligible.

However, in finite samples, this is a drawback. The restricted MFDL estimator (lower panel of

Figure A3) mitigates substantially this undesirable property of the unrestricted MFDL estimator.

Overall, the results from the Monte Carlo experiments document that the restricted MFDL

estimator performs satisfactorily. Moreover, the restricted MFDL estimator seems to always per-

form better than the unrestricted MFDL estimator, which could suffer from serious small sample

3 In the Appendix we also report results from Monte Carlo experiments in which the regression (16) is augmented
with the dependent variable lagged by p+ 1 periods in order to improve the fit.
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performance issues, depending on the temporal aggregation weights. Consequently, we recommend

to use the restricted MFDL estimator when the aggregation weights {w`} do not correspond to the

sequential sampling scheme wa. We follow this recommendation in the empirical section below.

4 Daily crude oil price pass-through

In order to illustrate the usefulness of the estimators developed in this paper, we estimate the

pass-through of changes in the Brent crude oil price observed at the daily frequency to U.S. retail

prices for regular grade gasoline observed at the weekly frequency. Specifically, we obtain daily

data on European Free Market Brent Crude Oil price ($/Barrel) reported by the Financial Times,

which we label as Pt. The daily series is available for working days only (Mondays to Fridays). We

transform the daily series in logs and compute first differences, et = ∆ ln (Pt). We find that et does

not exhibit any significant serial correlation, and consequently we treat et as the observed (white

noise) reduced-form price shock. This is in line with approximating ln (Pt) by a daily random-walk.

Since we cannot distinguish between the underlying reasons for the daily crude oil price changes

(which could be due to a combination of supply, demand or speculative considerations), we refer to

et as an oil price shock, without giving it a structural interpretation. This is in line with the price-

pass-through literature, which does not distinguish the underlying sources of price movements.

In turn, we obtain weekly data on U.S. Retail Gasoline Prices (Regular Grade, Monday prices,

Cents/Gallon), which, after taking logs and first differences, we denote by x̄w,s. Our low-frequency

period is therefore one week consisting of m = 5 working days. The observed retail price series x̄w,s

corresponds to the sum of daily log-differences, and therefore the aggregation weights vector w is

a vector of ones. Our sample spans the time period from 16 January 1991 to 22 May 2017, which

gives Tm = 1374 weeks and T = 6870 working days.

Using the daily data on crude oil prices and the weekly data on U.S. retail prices for gasoline,

we estimate the pass-through of a unit crude oil price shock at the daily frequency. We use the

restricted MFDL estimator with p = 4 weeks, and set the lag of the polynomial that approximates

the true high-frequency IRF coeffi cients in (33) to q = 5. Figure 1 reports estimates and 95%

confidence intervals of the cumulative IRF coeffi cients for horizons of h = 0, 1, ..., 20 days. The

estimates suggest that about 12% of the crude oil price increase is passed through to retail gasoline
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prices on the impact day (h = 0), about 28% of the crude oil price increase is passed through five

working days after the shock (h = 5), and about 48% twenty working days after the shock (h = 20).

To shed some light on whether the pattern of the crude oil price pass-through has been stable

throughout our sample period, we re-estimate the pass-through using rolling window with a length

of Tm = 500 weeks. Figure 2 reports the rolling-window estimates of the cumulative pass-through

for the horizons of h = 0, 2, 5, 10 and 20 days. The findings show that the pass-through has

increased over time for each of the chosen horizons, with the exception of the last two years, when

pass-through estimates at horizons of h ≥ 2 days decreased slightly.

5 Conclusion

This paper considers the estimation of IRFs in settings in which the outcome variables of interest

are observed at a lower frequency than the shock. We propose a restricted and an unrestricted

MFDL estimator, derive their asymptotic distribution, and document by means of Monte Carlo

experiments that only the restricted MFDL estimator has satisfactory small-sample performance

across different temporal aggregation weights. Against the background of these findings, we employ

the restricted MFDL estimator to estimate the daily pass-through of changes in crude oil prices

in the U.S. observed at the daily frequency on U.S. retail gasoline prices observed at the weekly

frequency. There are many other interesting empirical questions that can be addressed within the

framework we propose in this paper. One example concerns the effects of exchange rate changes

observed at high frequency on consumer prices observed at best at monthly frequency. Another

example relates to the effects of monetary policy shocks constructed at high frequency on GDP

observed at best at the quarterly frequency.
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Figure 1: Full sample crude oil price pass-through estimates (cumulative IRF): Point estimates

and 95% confidence intervals.

Figure 2: Rolling window estimates of the crude oil price pass-through at chosen horizons

(h = 0, 2, 5, 10, and 20 days).
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Table 1: Monte Carlo findings using aggregation weights wa

Dependent variable is observed as temporally aggregated using the weights wa = (1, 0, 0)′.

b` : b0 b1 b2 b3 b4 b5 b6 b7 b8 b9 b10
Bias (×100)

Tm Unrestricted MFDL estimator b̂`,p
50 -0.13 -0.11 0.04 -0.05 -0.06 -0.10 -0.07 -0.05 -0.04 -0.03 -0.11
100 -0.02 -0.04 -0.01 -0.02 -0.03 -0.06 -0.07 0.02 -0.01 0.02 -0.09
200 -0.02 0.01 0.01 0.02 -0.01 0.02 -0.07 -0.01 -0.04 -0.01 -0.06
500 -0.01 0.00 0.00 0.02 -0.02 0.01 0.00 -0.01 -0.02 -0.01 -0.01

Restricted MFDL estimator b̃`,p
50 -0.17 -0.11 0.00 -0.01 -0.10 -0.16 0.12 -0.15 0.04 -0.11 -0.11
100 -0.03 -0.03 -0.02 -0.03 -0.06 0.01 0.08 -0.07 -0.03 -0.09 -0.10
200 -0.03 0.01 0.00 0.01 -0.04 0.07 0.07 -0.04 -0.04 -0.08 -0.09
500 -0.01 0.01 -0.01 0.01 -0.07 0.10 0.08 -0.01 -0.04 -0.07 -0.07

RMSE (×100)
Unrestricted MFDL estimator b̂`,p

50 3.79 3.78 3.76 3.73 3.76 3.80 3.79 3.76 3.79 3.77 3.70
100 2.37 2.38 2.35 2.37 2.32 2.41 2.37 2.34 2.37 2.39 2.36
200 1.60 1.62 1.60 1.58 1.64 1.63 1.59 1.59 1.63 1.61 1.58
500 0.99 1.01 0.98 0.98 0.98 0.98 0.99 0.97 0.99 0.97 1.00

Restricted MFDL estimator b̃`,p
50 3.87 3.88 3.92 3.84 3.69 1.90 1.79 1.74 1.52 1.30 1.05
100 2.39 2.42 2.37 2.38 2.24 1.09 1.07 1.05 0.93 0.79 0.65
200 1.61 1.62 1.60 1.57 1.57 0.74 0.72 0.70 0.63 0.53 0.44
500 0.98 1.01 0.98 0.97 0.94 0.45 0.44 0.43 0.39 0.33 0.28

Size (×100, 5% level)
Unrestricted MFDL estimator b̂`,p

50 11.5 11.8 11.5 11.3 12.3 12.1 12.1 11.5 11.9 11.5 11.1
100 7.6 7.8 7.1 7.4 7.4 8.1 7.3 6.9 7.9 7.6 7.4
200 6.3 6.6 6.3 6.2 7.2 6.3 6.0 6.1 6.5 6.3 6.0
500 5.0 6.1 5.2 5.6 5.2 5.3 5.3 5.2 5.3 5.3 5.7

Restricted MFDL estimator b̃`,p
50 13.3 14.0 15.3 15.0 14.6 13.5 12.8 12.5 12.0 12.2 12.0
100 8.4 8.7 8.3 8.5 8.3 7.8 7.6 7.9 7.3 7.5 7.4
200 6.8 6.9 6.5 6.5 7.7 6.6 6.7 6.5 6.3 6.6 6.7
500 5.1 6.3 5.5 5.6 5.6 6.3 5.6 5.3 5.3 5.6 6.0

Power (×100, 5% level)
Unrestricted MFDL estimator b̂`,p

50 39.3 39.6 41.6 40.0 39.1 39.4 40.5 40.6 39.7 39.2 39.1
100 62.4 62.3 62.0 63.3 63.1 60.9 61.2 63.4 62.2 63.1 61.7
200 89.2 89.2 89.5 90.2 88.5 89.1 88.9 90.1 89.0 88.8 88.2
500 99.8 99.9 99.9 100.0 99.8 99.9 99.9 99.9 100.0 99.9 99.9

Restricted MFDL estimator b̃`,p
50 40.6 42.0 43.7 43.6 44.9 85.1 90.5 88.7 95.3 97.0 99.5
100 62.1 62.6 63.3 64.2 67.2 99.5 99.7 99.7 99.9 100.0 100.0
200 89.2 89.4 90.3 90.1 91.1 100.0 100.0 100.0 100.0 100.0 100.0
500 99.9 99.9 99.9 100.0 99.9 100.0 100.0 100.0 100.0 100.0 100.0

Notes: zt = (xt, qt)
′ is generated by VAR model (35), namely zt = (I2 −Φ)µz +Φzt−1+Aξt, with ξt = (ξ1t, ξ2t)

′ ∼
IIDN (0, I2), µz = (1, 1)′ and the coeffi cient matrices Φ and A are given by (36). The aggregate series x̄w,s =∑m−1

h=0 whxts−h is observed for s = 1, 2, ..., Tm, and the shock ξ1t is observed for t = 1, 2, ..., T , where Tm = T/m,

ts = s ·m, and m = 3. Unrestricted MFDL estimator b̂`,p, given by (20), is computed using p = 3. The restricted

MFDL estimator b̃`,p, given by (29), is computed using p = 3 and IRF coeffi cients are approximated by the coeffi cients

of ψ−1 (L, q) with q = 5. The IRF coeffi cients are given by b` = s′2,1Φ
`a1, for ` = 0, 1, ..., where s2,1 = (1, 0)′, and

a1 = As2,1. The power rejection frequencies are reported using the alternative H1 : b` = s′2,1Φ
`a1−0.05. See Section

3 for additional details. 20



Table 2: Monte Carlo findings using aggregation weights wb

Dependent variable is observed as temporally aggregated using the weights wb = (1, 1, 1)′.

b` : b0 b1 b2 b3 b4 b5 b6 b7 b8 b9 b10
Bias (×100)

Tm Unrestricted MFDL estimator b̂`,p
50 -0.24 0.01 0.10 -0.34 0.20 0.08 -0.55 0.38 0.04 -0.57 0.29
100 -0.16 0.01 0.03 0.01 -0.03 0.00 -0.17 0.19 -0.06 -0.20 0.20
200 -0.02 0.03 -0.02 -0.01 -0.03 0.04 -0.13 0.03 0.08 -0.11 -0.02
500 -0.04 0.00 0.02 0.05 -0.05 0.01 0.03 -0.08 -0.01 0.01 -0.03

Restricted MFDL estimator b̃`,p
50 -0.03 -0.10 -0.53 0.67 -0.05 -0.94 0.97 -0.70 0.14 0.00 0.05
100 -0.07 -0.03 -0.20 0.41 -0.21 -0.34 0.46 -0.31 0.08 -0.01 -0.05
200 0.07 -0.08 -0.09 0.26 -0.24 -0.10 0.26 -0.16 0.03 -0.03 -0.06
500 0.01 -0.07 0.01 0.18 -0.20 0.02 0.13 -0.06 -0.01 -0.05 -0.06

RMSE (×100)
Unrestricted MFDL estimator b̂`,p

50 7.24 10.29 10.26 12.04 13.38 13.56 14.75 15.20 15.72 16.69 16.85
100 4.51 6.48 6.46 7.42 8.52 8.46 8.87 9.40 9.42 9.65 10.05
200 3.05 4.32 4.37 4.94 5.56 5.68 5.85 6.17 6.16 6.26 6.43
500 1.91 2.70 2.71 3.06 3.46 3.43 3.58 3.75 3.71 3.85 3.86

Restricted MFDL estimator b̃`,p
50 6.86 9.47 8.98 9.27 6.81 5.07 4.36 3.99 3.39 3.26 2.93
100 4.14 5.48 5.33 5.26 3.45 1.96 1.47 1.23 1.05 0.93 0.71
200 2.79 3.60 3.51 3.57 2.20 0.92 0.71 0.62 0.54 0.46 0.36
500 1.72 2.21 2.11 2.09 1.33 0.47 0.36 0.34 0.32 0.28 0.23

Size (×100, 5% level)
Unrestricted MFDL estimator b̂`,p

50 11.2 12.1 11.7 12.3 11.8 12.9 13.7 12.8 14.4 15.3 14.0
100 7.1 7.7 7.3 7.1 8.6 8.7 8.2 9.3 9.1 8.7 9.2
200 5.9 6.0 6.2 5.9 5.8 6.8 6.6 6.9 6.5 6.6 7.2
500 5.6 5.6 6.2 4.8 6.1 5.7 5.2 5.9 5.1 5.6 5.6

Restricted MFDL estimator b̃`,p
50 15.1 18.0 20.3 19.1 14.4 6.2 6.5 7.8 7.0 7.4 7.8
100 8.1 9.1 10.5 9.6 7.1 2.2 2.7 3.9 4.8 5.7 5.6
200 6.7 7.3 8.3 7.7 5.5 1.5 2.6 3.8 4.9 5.4 5.2
500 5.9 5.4 6.5 5.5 5.2 2.4 3.6 4.6 5.6 6.1 6.5

Power (×100, 5% level)
Unrestricted MFDL estimator b̂`,p

50 19.6 15.9 16.6 14.7 15.6 15.0 15.4 14.7 16.5 16.8 15.6
100 23.2 16.4 16.7 14.3 14.0 13.6 12.8 12.9 13.6 12.8 13.2
200 40.3 23.6 23.8 18.7 17.4 17.2 15.3 15.9 15.8 15.2 14.7
500 75.1 48.1 47.5 39.5 31.5 32.5 29.9 27.8 28.2 28.7 25.9

Restricted MFDL estimator b̃`,p
50 25.0 24.2 29.1 20.5 35.7 54.3 74.4 64.3 87.7 86.2 92.5
100 28.2 23.1 28.1 20.6 44.0 82.2 98.3 93.5 98.5 99.5 99.4
200 47.8 33.6 39.0 34.4 62.9 96.3 100.0 99.8 100.0 100.0 100.0
500 85.1 63.2 68.0 72.2 93.3 100.0 100.0 100.0 100.0 100.0 100.0

Notes: See notes to Table 1.
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A Appendix

A.1 Notation

Matrices are denoted by bold upper case letters and vectors by bold lower case letters. All vectors

are column vectors. O (.) and o (.) denote the Big O and Little o notations, respectively. If {fn}∞n=1
is any real sequence and {gn}∞n=1 is a sequences of positive real numbers, then fn = O(gn) if there

exists a positive finite constant K such that |fn| /gn ≤ K for all n. fn = o(gn) if fn/gn → 0 as

n→∞. Convergence in probability and in distribution are denoted as p→ and d→, respectively.

A.2 Proofs

Proof of Lemma 1. Consider xts first. Using (6), we have for t = ts,

xts =

∞∑
`=0

b`ets−` + εts =

m−1∑
q=0

∞∑
`=0

b`m+qets−`m−q + εts .

Using ts = ms, we obtain ts− `m− q = t(s−`)− q and therefore ets−`m−q = ēs−`,q, and we can write

xts as

xts =
m−1∑
q=0

∞∑
`=0

b`m+q ēs−`,q + εts . (A.1)

Consider xts−h, for h = 1, 2, ...,m− 1, next. Using (6), we have for t = ts − h,

xts−h =
∞∑
`=0

b`ets−h−` + εts−h. (A.2)

Consider the first component on the right side of (A.2),

∞∑
`=0

b`ets−`−h =
m−h−1∑
`=0

b`ets−h−` +
∞∑

`=m−h
b`ets−`−h

=

m−h−1∑
q=0

bq ēs,h+q +

m−1∑
q=0

∞∑
`=1

bm`+q−hēs−`,q,

and therefore

xts−h =
m−h−1∑
q=0

bq ēs,h+q +
m−1∑
q=0

∞∑
`=1

bm`+q−hēs−`,q + εts−h. (A.3)
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The representation for x̄w,s can now be readily obtained by substituting (A.1) and (A.3) in (4),

x̄w,s = w0

m−1∑
q=0

∞∑
`=0

b`m+q ēs−`,q +
m−1∑
h=1

wh

m−h−1∑
q=0

bq ēs,h+q +
m−1∑
q=0

∞∑
`=1

bm`+q−hēs−`,q

+ ε̄w,s, (A.4)

where ε̄w,s =
∑m−1
h=0 w`εts−h. Collecting the individual terms, we obtain the representation (13).

Proof of Theorem 1. Let Tmp = T/m− p. Using (20) and b(p) = W−1
p d(p), we have

√
Tmp

(
b̂(p) − b(p)

)
=
√
TmpW

−1
p

(
d̂(p) − d(p)

)
,

and substituting (21) for d̂(p), we obtain

√
Tmp

(
b̂(p) − b(p)

)
= W−1

p

(
E′E

Tmp

)−1 E′ϑp√
Tmp

, (A.5)

where E is Tmp × (p+ 1)m dimensional matrix of observations on the (p+ 1)m regressors in

ē(p),s =
(
ē′s, ē

′
s−1, ..., ē

′
s−p
)′, and ϑp = (ϑp,p+1, ϑp,p+2, ..., ϑp,Tm)′ with ϑps, for s = p+1, p+2, ..., Tm,

given by (15). We focus on the individual terms on the right side of (A.5). Note that under

Assumption 2, et ∼ IID
(
0, σ2e

)
, for some c < σ2e < K, and the fourth order moments of et are

finite. Hence (for a fixed m and p), E′E/Tmp →p σeI(p+1)m, and therefore also

(
E′E

Tmp

)−1
→p σ

−2
e I(p+1)m, (A.6)

as T → ∞. We focus on the term E′ϑp/
√
Tmp next. Let us define ys = ē(p),sϑps, where we

suppressed the subscript p to simplify the notations, but it is understood that the vector ys depends

on p. Then we can write E′ϑp/
√
Tmp as

E′ϑp√
Tmp

=
1√
Tmp

Tm∑
s=p+1

ys

Note that E (ys) = 0, since ē(p),s =
(
ē′s, ē

′
s−1, ..., ē

′
s−p
)′ is independently distributed of ϑps, and

both have zero mean. Also, ϑps is serially correlated, but ēs is independently distributed over t.
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Hence, ys is independently distributed from ys′ for |s− s′| > p. Let

Ψ ≡
p∑

`=−p
E
(
ysy

′
s+`

)
=

p∑
`=−p

γp`Hp,`,

where γp` and Hp,` are defined in the statement of this theorem, and we have again suppressed the

subscript p. Let also

ΨTmp = E

 1

Tmp

Tm∑
s=p+1

Tm∑
s′=p+1

ysys′

 ,
and note that (by independence of ys and ys′ for |s− s′| > p)

ΨTmp = Ψ +O
(
T−1mp

)
. (A.7)

In addition, define the stochastic vector sequence Vs =
(
ets , ets−1, ..., ets−m+1,v

′
ts ,v

′
ts−1, ...,v

′
ts−m+1

)′,
and for any (p+ 1)m dimensional vector a satisfying ‖a‖ = 1 define the stochastic array

XTmp,s = a′Ψ
−1/2
Tmp

ys/cTmp ,

for s = p + 1, p + 2, ..., Tmp, where cTmp is a sequence of constants set equal to cTmp = 1/
√
Tmp.

Under Assumptions 1-2, we have (i) ys and therefore also XTmp,s is L2-NED of any size on {Vs},

(ii) Vs is IID over s with bounded fourth order moments, (iii) supTmp,t
∥∥XTmp,s/cTmp∥∥r < ∞ for

some r > 2, and (iv) supTmp Tmpc
2
Tmp

= 1 < ∞. Hence conditions of Corollary 24.7 of Davidson

(1994) are satisfied and it follows that

Tmp∑
s=p+1

XTmp,s →d N (0, 1) .

Since this result holds for any ‖a‖ = 1, we obtain (using Cramer-Wold theorem)

1√
Tmp

Tm∑
s=p+1

Ψ
−1/2
Tmpys →d N

(
0, I(p+1)m

)
,
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and therefore, noting (A.7),
E′ϑp√
Tmp

→d N (0,Ψ) . (A.8)

Using now (A.6) and (A.8) in (A.5), we obtain (22). This completes the proof.

Proof of Theorem 2. Consider the mean-value expansion of b̂(p) − fp

(
ψ̂
)
around ψ0,

b̂(p) − fp

(
ψ̂
)

= b̂(p) − fp (ψ0)−
[
Jp
(
ψ̄
)] (

ψ̂ −ψ0
)
,

where ψ̄ lies, element by element, between ψ̂ and ψ0, and

Jp
(
ψ̄
)

=
∂fp (ψ)

∂ψ′

∣∣∣∣
ψ=ψ̄

.

Pre-multiplying from the left by J′p

(
ψ̂
)

Ω−1p gives

J′p

(
ψ̂
)

Ω−1p

[
b̂(p) − fp

(
ψ̂
)]

= J′p

(
ψ̂
)

Ω−1p

[
b̂(p) − fp (ψ0)

]
− J′p

(
ψ̂
)

Ω−1p
[
Jp
(
ψ̄
)] (

ψ̂ −ψ0
)
.

But J′p

(
ψ̂
)

Ω−1p

[
b̂(p) − fp

(
ψ̂
)]

= 0 are the first order conditions of the minimization problem

(28), and therefore

J′p

(
ψ̂
)

Ω−1p
[
Jp
(
ψ̄
)] (

ψ̂ −ψ0
)

= J′p

(
ψ̂
)

Ω−1p

[
b̂(p) − fp (ψ0)

]
.

Under Assumption 3, we have b̂(p) − fp (ψ0) = b̂(p) − b(p), and using result (22) of Theorem 1, we

have
√
T/m− p

[
b̂(p) − fp (ψ0)

]
→d N (0,Ωp). Since also Jp

(
ψ̄
)
is continuous by Assumption 3,

we obtain √
T/m− p

(
ψ̂ −ψ0

)
→d N

[
0,
(
J′pΩ

−1
p Jp

)−1]
.

Noting that b̃p = fp

(
ψ̂
)
and bp = fp (ψ0), where fp (.) satisfies Assumption 3, it now follows that√

T/m− p
(
b̃p − bp

)
→d N

[
0,Jp

(
J′pΩ

−1
p Jp

)−1
J′p

]
. This completest the proof.
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A.3 Extension of aggregation schemes

This part of Appendix explores the extension to the case where the aggregate variable is defined as

x̄wq ,s =

qm−1∑
h=0

wqhxts−h, for s = 1, 2, ..., Tm,

for some finite q > 1. The case of q = 2 is of particular interest, since it represents the case of

first-differences of the temporally aggregated data, as illustrated in the next example.

Example 2 Consider the case with m = 3, which corresponds to quarterly-monthly case and sup-

pose that yt represents logs of GDP in a month t = 1, 2, ...T . Then, quarterly GDP series is given

by

ȳws =
m−1∑
h=0

whyts−h =
2∑
h=0

yts−h, for s = 1, 2, ..., Tm,

where wh = 1 for h = 0, 1, 2 and Tm = [T/3]. Suppose that a researcher observes the first differences

of ȳwt, which can be represented as a temporal aggregate of the monthly growth series as

x̄wq ,s = ȳws − ȳw,s−1

=

(
m−1∑
h=0

whyts−h

)
−
(
m−1∑
h=0

whyts−h−1

)

=

qm−1∑
h=0

wq,h∆yts =
6−1∑
h=0

w2,h∆yts,

where ∆yts = yts −∆yts−1, q = 2, m = 3, and (w2,0, w2,1, ..., w2,5)
′ = (1, 2, 3, 2, 1, 0)′.

The earlier analysis can be readily extended to cases with q > 1. Consider for the simplicity of

exposition p = hq for some h = 0, 1, 2, ..., and define

Wb,q
qm×qm

≡



w0 0 0 · · · 0

w1 w0 0 · · · 0

w2 w1 w0 · · · 0

...
. . .

...

wqm−1 wqm−2 wqm−3 · · · w0


, and Wa,q

qm×qm
≡



0 wqm−1 wqm−2 wqm−3 · · · w1

0 0 wqm−1 wqm−2 · · · w2

0 0 0 wqm−1 w3
...

...
...

. . .
...

0 0 0 0 wqm−1

0 0 0 0 · · · 0


.
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Then (18) holds with Wp defined as

Whq
(h+1)qm×(h+1)qm

=



Wb 0qm×qm 0qm×qm · · · 0qm×qm

Wa Wb 0qm×qm · · · 0qm×qm

0qm×qm Wa Wb 0qm×qm
...

. . . . . .

0qm×qm 0qm×qm · · · Wa Wb


, (A.9)

and the previous theorems continue to apply. In practice it is not required that p is a multiple of q,

and the expression for Wp can be easily obtained by removing the appropriate number of rows of

Wp from the bottom. Specifically, Let h = [(p+ 1) /q] + 1 and nr = (hq − p) qm, where [(p+ 1) /q]

is denote the integer part of (p+ 1) /q. Then nr rows need to be removed from the matrix Whq

defined above.

A.4 Augmenting the auxiliary regression with the dependent variable lagged

by p+ 1 periods

Tables 3 and 4 report results from Monte Carlo experiments in which the regression in (16) is

augmented with the dependent variable lagged by p+ 1 periods in order to improve the fit.

There are no clear systematic differences across the results for the cases with and without

augmentation with the lagged dependent variable under the aggregation weights wb. The results

for the aggregation weights wa suggest that in smaller samples both the unrestricted and the

restricted MFDL estimators exhibit larger RMSE, although the finite-sample bias is reduced. For

the smaller values of T , the size performance has deteriorated for both estimators, while the power

has improved. For the larger sample sizes, findings are very similar to the case in which the

regression is not augmented with the lagged dependent variable.
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Table 3: Monte Carlo findings in experiments with augmentation by lagged dependent
variable and aggregation weights wa

Dependent variable is observed as temporally aggregated using the weights wa = (1, 0, 0)′ and the
auxiliary regression (16) is augmented by (p+ 1)-th lag of the dependent variable.

b` : b0 b1 b2 b3 b4 b5 b6 b7 b8 b9 b10
Bias (×100)

Tm Unrestricted MFDL estimator b̂`,p
50 -0.08 -0.10 0.06 0.00 -0.05 -0.09 0.01 -0.01 -0.03 -0.01 -0.09
100 0.01 -0.02 0.00 0.00 -0.02 -0.05 -0.03 0.04 0.00 0.04 -0.08
200 -0.01 0.01 0.01 0.03 -0.01 0.02 -0.06 0.00 -0.03 0.00 -0.05
500 -0.01 0.00 0.00 0.02 -0.02 0.01 0.01 -0.01 -0.01 -0.01 -0.01

Restricted MFDL estimator b̃`,p
50 -0.12 -0.09 0.01 0.07 -0.10 -0.14 0.17 -0.12 0.07 -0.08 -0.09
100 0.00 -0.02 -0.02 -0.01 -0.05 0.03 0.10 -0.05 -0.01 -0.08 -0.09
200 -0.02 0.02 0.00 0.02 -0.04 0.07 0.07 -0.03 -0.04 -0.08 -0.09
500 -0.01 0.01 -0.01 0.01 -0.06 0.10 0.08 0.00 -0.03 -0.07 -0.07

RMSE (×100)
Unrestricted MFDL estimator b̂`,p

50 3.90 3.90 3.86 3.82 3.86 3.89 3.87 3.88 3.94 3.85 3.81
100 2.40 2.40 2.37 2.39 2.34 2.43 2.39 2.35 2.39 2.41 2.39
200 1.60 1.62 1.61 1.58 1.65 1.64 1.59 1.59 1.64 1.61 1.57
500 0.99 1.01 0.98 0.98 0.98 0.98 0.99 0.97 0.98 0.98 1.00

Restricted MFDL estimator b̃`,p
50 3.98 4.02 4.05 3.97 3.77 1.95 1.86 1.79 1.57 1.33 1.07
100 2.41 2.44 2.40 2.41 2.26 1.10 1.08 1.05 0.93 0.79 0.65
200 1.61 1.63 1.61 1.58 1.58 0.74 0.72 0.70 0.63 0.53 0.44
500 0.98 1.01 0.98 0.97 0.93 0.45 0.44 0.43 0.38 0.33 0.28

Size (×100, 5% level)
Unrestricted MFDL estimator b̂`,p

50 13.1 13.4 13.0 13.5 13.9 14.0 13.5 13.4 14.5 13.4 13.0
100 8.1 8.3 7.7 7.8 8.2 8.5 7.8 7.1 8.4 8.3 7.9
200 6.6 7.1 6.3 6.4 7.1 6.6 6.5 6.6 6.8 6.2 5.9
500 5.0 6.2 5.2 5.6 5.2 5.2 5.3 4.9 5.4 5.4 5.5

Restricted MFDL estimator b̃`,p
50 15.1 15.7 17.4 17.2 16.0 15.2 14.8 14.4 13.9 14.0 13.9
100 8.8 9.3 8.9 8.7 8.7 8.5 8.0 8.4 7.8 7.8 7.9
200 7.2 6.9 6.7 6.7 8.1 6.9 6.6 6.5 6.6 6.9 7.0
500 5.2 6.1 5.4 5.5 5.7 6.2 5.8 5.4 5.1 5.4 6.0

Power (×100, 5% level)
Unrestricted MFDL estimator b̂`,p

50 41.1 42.2 42.5 41.7 40.5 40.7 42.4 41.5 41.7 41.3 40.8
100 62.5 62.8 62.4 63.4 63.6 61.9 62.2 64.0 62.7 63.8 62.2
200 89.5 89.1 89.6 90.1 88.9 89.1 89.3 90.0 88.8 89.0 88.6
500 99.9 99.8 99.9 100.0 99.9 99.9 99.9 99.9 100.0 99.9 99.9

Restricted MFDL estimator b̃`,p
50 42.7 43.5 45.7 45.7 45.9 85.3 90.6 89.0 95.8 97.0 99.4
100 63.0 62.8 64.0 64.4 67.2 99.7 99.7 99.7 100.0 100.0 100.0
200 89.3 89.6 90.4 90.2 91.0 100.0 100.0 100.0 100.0 100.0 100.0
500 99.9 99.9 99.9 100.0 99.9 100.0 100.0 100.0 100.0 100.0 100.0

Notes: See notes to Table 1.
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Table 4: Monte Carlo findings in experiments with augmentation by lagged dependent
variable and aggregation weights wb

Dependent variable is observed as temporally aggregated using the weights wb = (1, 1, 1)′ and the
auxiliary regression (16) is augmented by (p+ 1)-th lag of the dependent variable.

b` : b0 b1 b2 b3 b4 b5 b6 b7 b8 b9 b10
Bias (×100)

Tm Unrestricted MFDL estimator b̂`,p
50 -0.11 0.04 0.11 -0.26 0.21 0.15 -0.49 0.41 0.12 -0.61 0.36
100 -0.08 0.01 0.04 0.05 -0.04 -0.01 -0.08 0.18 -0.07 -0.15 0.20
200 0.02 0.03 -0.03 0.04 -0.03 0.01 -0.07 0.03 0.03 -0.05 -0.01
500 -0.03 0.01 0.01 0.06 -0.04 0.01 0.03 -0.07 -0.01 0.00 -0.01

Restricted MFDL estimator b̃`,p
50 0.15 -0.09 -0.64 0.94 -0.09 -1.02 1.19 -0.75 0.17 0.12 0.02
100 0.00 -0.03 -0.19 0.44 -0.20 -0.34 0.49 -0.28 0.10 0.01 -0.03
200 0.10 -0.07 -0.08 0.29 -0.24 -0.10 0.27 -0.15 0.04 -0.03 -0.06
500 0.02 -0.07 0.01 0.19 -0.20 0.02 0.14 -0.05 0.00 -0.05 -0.06

RMSE (×100)
Unrestricted MFDL estimator b̂`,p

50 7.38 10.52 10.55 12.52 13.87 14.01 15.27 15.96 16.42 17.25 17.76
100 4.52 6.50 6.46 7.39 8.54 8.41 8.86 9.42 9.36 9.71 10.04
200 3.04 4.32 4.36 4.95 5.51 5.62 5.82 6.10 6.07 6.19 6.35
500 1.89 2.69 2.70 3.03 3.42 3.39 3.52 3.68 3.66 3.77 3.79

Restricted MFDL estimator b̃`,p
50 7.09 9.71 9.36 9.92 7.28 5.58 5.07 4.52 3.89 3.91 3.52
100 4.17 5.55 5.40 5.31 3.52 2.07 1.52 1.30 1.11 0.98 0.80
200 2.78 3.59 3.52 3.57 2.20 0.92 0.72 0.62 0.53 0.46 0.36
500 1.71 2.20 2.11 2.09 1.32 0.46 0.36 0.34 0.31 0.27 0.23

Size (×100, 5% level)
Unrestricted MFDL estimator b̂`,p

50 12.7 13.8 13.6 15.0 15.2 14.7 15.6 16.6 17.1 17.8 17.4
100 7.2 8.7 8.0 7.7 9.3 9.0 8.8 9.6 9.5 9.8 10.4
200 6.1 6.4 6.3 6.6 6.0 7.0 6.9 7.1 6.2 7.0 7.5
500 5.6 5.7 6.2 5.1 6.0 5.6 5.2 5.8 5.5 5.8 5.6

Restricted MFDL estimator b̃`,p
50 16.9 19.7 22.7 21.7 16.0 7.6 8.4 8.5 8.2 8.3 8.8
100 8.6 9.3 11.3 10.0 7.5 2.5 2.8 4.2 5.1 5.9 6.1
200 6.6 7.3 8.5 8.1 5.4 1.6 2.8 4.0 5.0 5.7 5.5
500 6.0 5.4 6.6 5.5 5.2 2.6 3.6 4.5 5.7 6.2 6.3

Power (×100, 5% level)
Unrestricted MFDL estimator b̂`,p

50 21.3 17.5 17.8 17.1 17.6 17.9 17.9 18.2 19.0 19.7 19.6
100 24.6 16.5 17.4 15.2 14.9 14.5 13.2 13.8 13.5 14.1 14.7
200 41.6 24.7 23.8 19.7 17.8 17.6 16.8 16.5 16.7 16.6 15.8
500 75.9 48.9 48.0 40.0 32.9 33.5 31.1 28.7 29.5 29.3 27.7

Restricted MFDL estimator b̃`,p
50 27.6 26.5 31.7 22.9 38.5 55.7 75.6 65.1 88.0 86.1 92.1
100 29.5 23.1 29.2 22.2 44.8 82.7 98.2 93.6 98.5 99.5 99.3
200 49.9 34.0 39.6 35.4 63.3 96.3 100.0 99.8 100.0 100.0 100.0
500 85.6 64.2 68.9 72.7 93.4 100.0 100.0 100.0 100.0 100.0 100.0

Notes: See notes to Table 1.
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A.5 Additional Figures

Figure A1: Selected features of matrix Wp for m = 3 with aggregation weights wb = (1, 1, 1)′.

A. Diagonal elements of
(
W−1

p W′−1
p

)
.

B. Elements of Wps1 (solid line) and Wpτ (dashed line), where s1 = (1, 0, ..., 0)′ and τ =

(1, 1, ..., 1)′.
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Figure A2: First 50 unrestricted (top chart) and restricted (bottom chart) MFDL estimates of

IRF function in MC experiments with aggregation weights wa = (1, 0, 0)′.

A. The first r = 1, 2, ..., 50 unrestricted IRF estimates
{
b̂
(r)
`,p , ` = 0, 1, ..., 10

}
, and the true IRF

coeffi cients (solid bold black line).

B. The first r = 1, 2, ..., 50 restricted IRF estimates
{
b̃
(r)
`,p , ` = 0, 1, ..., 10

}
, and the true IRF

coeffi cients (solid bold black line).

Notes: Horizon ` = 0, 1, ..., 10 (at the high frequency of the shock) is on the horizontal axis.

33



Figure A3: First 50 unrestricted (top chart) and restricted (bottom chart) MFDL estimates of

IRF function in MC experiments with aggregation weights wb = (1, 1, 1)′.

A. The first r = 1, 2, ..., 50 unrestricted IRF estimates
{
b̂
(r)
`,p , ` = 0, 1, ..., 10

}
, and the true IRF

coeffi cients (solid bold black line).

B. The first r = 1, 2, ..., 50 restricted IRF estimates
{
b̃
(r)
`,p , ` = 0, 1, ..., 10

}
, and the true IRF

coeffi cients (solid bold black line).

Notes: Horizon ` = 0, 1, ..., 10 (at the high frequency of the shock) is on the horizontal axis.
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