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1 Introduction

The solution of linear or linearized rational expectations (LRE) models is an important part of modern

macroeconomics. Blanchard and Kahn (1980) established the conditions under which a solution to an LRE

model exists and is unique (see also the related contributions and extensions of, among others, Broze et al.

(1985), Broze et al. (1990), King and Watson (1998), Uhlig (1999), and Klein (2000)). The unique solution

of an LRE model, when one exists, can be represented generically in linear state-space form as seen, e.g., in

Fernández-Villaverde et al. (2007) and Morris (2016).

Structural (finite-order) VAR models in the spirit of Sims (1980) provide a useful and widely popular

framework to investigate and organize the evidence on a set of observable variables. However, mapping the

identification restrictions arising from theory onto an estimated structural VAR is not without its problems.

Satisfying the ‘poor man’s invertibility condition’of Fernández-Villaverde et al. (2007) suffi ces to ensure

that, whenever the number of structural shocks is equal to the number of observable endogenous variables,

the unique linear state-space representation of the LRE model solution takes a companion VAR(∞) form.

However, unless a finite-order VAR representation describes exactly the solution, using it introduces a

truncation error when the unique LRE solution in fact is described by an infinite-order VAR (Inoue and

Kilian (2002)).

Morris (2016) has shown that any linear state-space framework can be cast in VARMA form and, in

some cases, can be reduced to a finite-order VAR form (see also the related illustrations in Morris (2017)).1

Ravenna (2007) studying the same question posed by this paper on the mapping of the reduced-form solution

of an LRE model finds a finite-order VARMA representation. The key contribution of this paper is to show

that imposing the cross-equation restrictions derived from the LRE model along the lines of Ravenna (2007)

suffi ces to prove by characterization that the unique solution of an LRE model, when one exists, can be cast

into a companion VAR specification of finite order.

The paper works out this result for a large class of LRE models whose endogenous variables can be

described with a canonical first-order expectational difference system of equations and where the forcing

variables behave as a VARMA(1, 1) process.2 Working with this, the paper shows that the reduced-form

solution of a purely-forward looking LRE model inherits the dynamics of the forcing variables and, therefore,

the endogenous variables display the dynamics of a VARMA(1, 1) process. The paper goes further showing

that, in some cases, the dynamics of the endogenous variables are simply those of a VAR(1) process even

when the forcing variables follow a VARMA(1, 1). Moreover, if the forcing variables behave as a VAR(1)

process, so do the endogenous variables.

The paper also finds that decoupling the backward- and forward-looking parts of the LRE model along

the lines of Binder and Pesaran (1995) and Binder and Pesaran (1997) is useful to characterize the reduced-

form solution with lagged endogenous variables. In that situation, the dynamics of the endogenous variables

are shown to follow a VARMA(2, 1) process. The endogenous variable dynamics are those of a VAR(2)

1Franchi and Paruolo (2015). explores general conditions that ensure any linear state-space representation can be re-written
as a finite-order VAR. Their related results apply to any type of linear state-space specification. Instead, by making use of the
cross-equation restrictions implied by the LRE model, this paper simplifies the derivation of the finite-order VAR representation
of the LRE solution and the conditions required to guarantee its existence, uniqueness, and fundamentalness. Moreover, it also
ties the companion finite-order VAR form directly to the deep structural parameters and relationships of the LRE model
and facilitates the mapping of the implied cross-equation restrictions onto structural (finite-order) VARs for estimation and
identification purposes.

2The canonical first-order system in (1)− (3) can be generalized to include LRE models with more than one lead and one lag
of the endogenous variables in Wt and of the forcing variables in Xt, as explained in Broze et al. (1985), Broze et al. (1990).
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whenever the forcing variables follow a VAR(1) but also in some cases when they follow a VARMA(1, 1).3

The paper also shows that, whenever the number of shocks is equal to the number of endogenous variables, the

finite-order VAR solution if it exists is a well-behaved multivariate process and satisfies the fundamentalness

property of Hansen and Sargent (1980). That is, it is stationary, its variance-covariance matrix is symmetric

and positive definite, and the corresponding shock innovations are recoverable.

Finally, the paper illustrates the practical use of the finite-order VAR solution with an illustration based

on the workhorse New Keynesian model. In doing so, I contribute to the ongoing debate on the assumptions

needed to correctly recover theoretically-consistent monetary policy shocks through structural VARs (see,

e.g., Carlstrom et al. (2009)). In particular, I highlight some of the contradictory empirical inferences

that can arise when using standard identification strategies (Cholesky, zero-restrictions, etc.) instead of the

identification restrictions implied by theory.

The rest of the paper proceeds as follows: Section 2 describes the mapping of the LRE model solution into

finite-order VAR form via companion quadratic and Sylvester matrix equations and the conditions under

which a unique and well-behaved finite-order VAR solution exists. I also explore the canonical representation

of the VARMA(1, 1) process for the forcing variables as a way to accommodate moving average terms into

the framework. The procedure to characterize the finite-order VAR solution is easily cast in an algorithmic

form and a collection of Matlab implementation codes is provided with the paper.4 Section 3 applies the

companion finite-order VAR structure to identify and explore the propagation of monetary policy shocks

using a variant of the workhorse New Keynesian model. Section 4 then concludes.

2 Mapping LRE Models into Finite-Order VARs

A large class of LRE models can be cast into a canonical first-order expectational difference system of equa-

tions, featuring forward- and backward-looking dynamics. The first-order expectational difference equations

capture the structural relationships between a set of k ≥ 1 forcing variables Xt = (x1t, x2t, ..., xkt)
T and

m ≥ 1 endogenous variables Wt = (w1t, w2t, ..., wmt)
T as follows:

Wt = Φ1Wt−1 + Φ2Et [Wt+1] + Φ3Xt + Φ4Et [Xt+1] . (1)

The conforming matrices Φ1 and Φ2 are m ×m square matrices, while Φ3 and Φ4 are m × k matrices. In
principle, as is the case for most LRE models, the expectational difference system in (1) includes m ≥ k

endogenous variables in Wt. However, the selection of m endogenous variables in Wt can be set to include

exactly the same number of endogenous variables as of forcing variables (that is, m = k) by dropping some of

the endogenous variables from Wt or by adding measurement error on some of them increasing the elements

in Xt.

The LRE model may contain p ≥ 0 other endogenous variables not in Wt all of which are collected in

the vector W̃t = (w̃1t, w̃2t, ..., w̃pt)
T . Then, the vector W̃t can be expressed as a linear transformation of the

3 It is worth noting that an LRE model whose solution can be cast with a linear state-space setup that includes lagged
endogenous variables would have a VARMA representation according to Morris (2016), but the paper shows that the solution
can still be represented in finite-order VAR form even in cases like that when imposing the cross-equation restrictions from
theory.

4All codes for this paper are available using the following link: https://bit.ly/2ZAHcvy.
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subset of endogenous variables in Wt and possibly of the vector of forcing variables Xt, i.e.,

W̃t = Λ1Wt + Λ2Xt, (2)

with conforming p×m matrix Λ1 and p×k matrix Λ2. Hence, given the exogenous dynamics for Xt, solving

for Wt and characterizing its endogenous dynamics suffi ces to completely describe all other endogenous

variables W̃t of the LRE model by means of (2).

The (first-order) specification for the vector of forcing variables Xt is given by a standard VARMA(1, 1)

of the following form:

Xt = A1Xt−1 + ut +A2ut−1, ut ≡ Bεt, (3)

including k exogenous shock innovations in εt = (ε1t, ε2t, ..., εkt)
T ∼ i.i.d. (0, Ik) where Ik denotes the k × k

identity matrix. The fact that there are as many driving processes as shock innovations (k) is often satisfied

by construction. When the model has more forcing variables than shock innovations, each of the forcing

variables can be expressed as a function of just k of them and, therefore, some can be replaced out so as

to end up with just k forcing variables. The real matrices A1, A2, and B are k × k square matrices which
satisfy the following assumptions:

Assumption 1 A1 has all its eigenvalues inside the unit circle ensuring the stationarity of the stochastic

VARMA(1, 1) process for Xt in (3) and, accordingly, A1 is invertible (has full rank, i.e., rank (A1) = k). A2
has all its eigenvalues inside the unit circle ensuring the invertibility of the stochastic VARMA(1, 1) process

for Xt in (3) and, accordingly, A2 is also invertible (has full rank, i.e., rank (A2) = k).

Assumption 2 B has all its eigenvalues inside the unit circle and, accordingly, is invertible (has full rank,

i.e., rank (B) = k). The corresponding variance-covariance matrix given by
(
BTB

)
is therefore symmetric,

positive definite, and invertible.

2.1 A Canonical Representation of the VARMA(1, 1) Process

The moving average representation of the stochastic process for the forcing variables Xt in (3) can be

expressed as follows:

Xt = ut +
∑∞

j=1
Aj−11 (A1 +A2)ut−j . (4)

From here, I can derive the canonical representation of the VARMA(1, 1) process as suggested by de Jong

and Penzer (2004). The moving average form makes it straightforward to define the minimum mean squared

error predictor Xt|t−1 ≡ Et−1 [Xt] as:

Xt|t−1 = Xt − ut =
∑∞

j=1
Aj−11 (A1 +A2)ut−j . (5)

Thus, I can re-write the moving average representation in (4) shifted one period ahead as:

Xt+1 = ut+1 +
∑∞

j=1
Aj−11 (A1 +A2)ut+1−j

= ut+1 + (A1 +A2)ut +A1
∑∞

j=1
Aj−11 (A1 +A2)ut−j

= ut+1 + (A1 +A2)ut +A1Xt|t−1, (6)
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where the last equality follows from (5). Hence, from (5) and (6), I obtain that the vector of forcing variables

Xt can be described with a linear state-space system using the following state equation:

Xt+1|t = Xt+1 − ut+1 = (A1 +A2)ut +A1Xt|t−1, (7)

and the corresponding observation equation given by:

Xt = Xt|t−1 + ut. (8)

Equations (7) and (8) can be used in place of the VARMA(1, 1) specification given by equation (3).

Given the structure of the VARMA(1, 1) for the forcing variables in (3), the structural relationships

implied by the expectational difference system in (1) can be re-written as follows:

Wt = Φ1Wt−1 + Φ2Et [Wt+1] + (Φ3 + Φ4A1)Xt + Φ4A2ut. (9)

In the special case where the stochastic process for Xt does not have a moving average component (that

is, when A2 = 0k, with 0k being the k × k matrix of zeros), then equation (1) does not include explicitly

the vector of random disturbances given by ut ≡ Bεt. In general, however, the canonical (first-order) LRE

model given by (1) and (3) can be re-written now as follows:

Wt = Φ1Wt−1 + Φ2Et [Wt+1] + (Φ3 + Φ4A1)Xt|t−1 + (Φ3 + Φ4 (A1 +A2))Bεt, (10)

Xt+1|t = A1Xt|t−1 + (A1 +A2)Bεt. (11)

This canonical representation implies that the redefined forcing variables Xt+1|t has an autoregressive struc-

ture and that the vector of shock innovations εt appears both in (10) and (11).

If a solution to the canonical first-order LRE model given by (10)− (11) exists, then it can be written in

linear state-space form as:

Wt = CXt|t−1 + ΘWt−1 +Dεt, (12)

together with the dynamics of Xt+1|t given by (11). Here, C and D are real-valued m × k matrices and Θ

is a real-valued m ×m square matrix, all of them unknown. Equations (12) and (11) can be cast into the

general linear state-space representation studied by Morris (2016).

2.2 Decoupling Backward- and Forward-Looking Terms

The canonical system in (10)− (11) can be decoupled in its backward- and forward-looking parts, along the

lines of Binder and Pesaran (1995) and Binder and Pesaran (1997). Let us assume that the m ×m square

matrix Θ in (11) is used to transform the vector of endogenous variablesWt into Zt ≡Wt−ΘWt−1. Replacing

the vector of endogenous variables with this transformation into the expectational difference system in (10)

implies that:

Zt + ΘWt−1 = Φ1Wt−1 + Φ2 [Et (Zt+1) + Θ (Zt + ΘWt−1)] + (Φ3 + Φ4A1)Xt|t−1 + (Φ3 + Φ4 (A1 +A2))Bεt,

(13)
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which then becomes:

(Im − Φ2Θ)Zt = Φ2Et (Zt+1) +
(
Φ2Θ

2 −Θ + Φ1
)
Wt−1 + (Φ3 + Φ4A1)Xt|t−1 + (Φ3 + Φ4 (A1 +A2))Bεt.

(14)

From here, this lemma follows:

Lemma 1 A transformation of the vector of endogenous variables Wt given by Zt ≡ (Wt −ΘWt−1) to

exclude the backward-looking terms in (10) can be attained if a square matrix Θ exists such that:

P (Θ) = Φ2Θ
2 −Θ + Φ1 = 0m, (15)

where 0m is an m×m matrix of zeroes.

Binder and Pesaran (1995) and Binder and Pesaran (1997) establish the necessary and suffi cient conditions

under which a real-valued solution for Θ exists satisfying the companion quadratic matrix equation in (15)

shown in Lemma 1. Given that, the vector of transformed endogenous variables, Zt, follows a first-order

forward-looking expectational difference system of this form:

Γ0Zt = Γ1Et [Zt+1] + Γ2Xt|t−1 + Γ3εt, (16)

where Γ0 ≡ (Im − Φ2Θ) and Γ1 ≡ Φ2 are conforming m ×m square matrices while Γ2 ≡ (Φ3 + Φ4A1) and

Γ3 ≡ (Φ3 + Φ4 (A1 +A2))B are the corresponding m× k matrices.
Proposition 2 in Binder and Pesaran (1997) provides suffi cient conditions under which the matrix Γ0

(which depends on the solution Θ to (15)) is nonsingular and invertible. Whenever Γ0 is indeed nonsingular,

the forward-looking expectational difference system in (16) can be re-stated as:

Zt = FEt [Zt+1] +GXt|t−1 +Hεt, (17)

where F ≡ (Γ0)
−1

Γ1 = (Im − Φ2Θ)
−1

Φ2 is anm×m square matrix whileG ≡ (Γ0)
−1

Γ2 = (Im − Φ2Θ)
−1

(Φ3 + Φ4A1)

and H ≡ (Γ0)
−1

Γ3 = (Im − Φ2Θ)
−1

(Φ3 + Φ4 (A1 +A2))B are m × k matrices. Notice here that G = H

if A2 = 0k, but more generally it should follow that H = (G+H1A2)B where H1 ≡ (Γ0)
−1

Φ4 =

(Im − Φ2Θ)
−1

Φ4.

The Purely Forward-Looking Solution. If a solution to the forward-looking part of the LRE model

given by (11) and (17) exists and is unique, then the reduced-form solution of the vector of transformed

endogenous variables Zt and the forcing variables vector re-expressed in terms of Xt+1|t can be written in

linear state-space form as:

Xt+1|t = A1Xt|t−1 + (A1 +A2)Bεt, (18)

Zt = CXt|t−1 +Dεt, (19)

where C and D are the same real-valued m × k matrices that describe the reduced-form solution for the

vector of untransformed endogenous variables Wt in (12) and A1, A2, and B are the same k × k matrices
that describe the stochastic process for the vector of forcing variables in (3).
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Here, equations (18) and (19) are the corresponding ABCD representation of the solution of a purely

forward-looking LRE model studied by Fernández-Villaverde et al. (2007) and Morris (2016). Equation (19)

simply indicates that the reduced-form solution for the vector of transformed endogenous variables Zt can

be expressed as a linear mapping of the lagged exogenous forcing variables given by Xt|t−1 and the vector of

shock innovations εt. Equation (18) simply recalls the dynamics of the redefined vector of forcing variables

Xt+1|t in (11).

Assuming the m × k matrix C has full column rank (rank (C) = k), a k ×m left inverse matrix C−1L
exists such that C−1L C = Ik. If m = k, then C is invertible and its unique inverse matrix C−1 satisfies that

C−1C = CC−1 = Ik. Accordingly, the left-inverse is also unique and must follow that C
−1
L = C−1. If m > k,

the left-inverse exists but is not unique (see, e.g., Theorem 2.1.1 of Rao and Mitra (1971)). Given that C is

assumed to have linearly independent columns, the Moore-Penrose pseudo-inverse C+ can be computed as

C+ = (C∗C)
−1
C∗ where C∗ denotes the Hermitian (or conjugate) transpose and C∗C is invertible. This

pseudoinverse matrix C+ is a useful way to obtain a left inverse matrix for C given that it naturally satisfies

that C+C = Ik.

If a left inverse of C exists, equation (18) can be re-written as:

Xt+1|t = A1C
−1
L CXt|t−1 + (A1 +A2)Bεt. (20)

Then, replacing CXt|t−1 = Zt −Dεt from (19) into (20), it follows that:

Xt+1|t = A1C
−1
L (Zt −Dεt) + (A1 +A2)Bεt, (21)

and, pre-multiplying (21) with C, that:

Zt+1 −Dεt+1 = CXt+1|t = CA1C
−1
L Zt +

(
C (A1 +A2)B − CA1C−1L D

)
εt. (22)

As a result, a straightforward re-arranging of (22) gives a VARMA(1, 1) form for the vector of transformed

endogenous variables Zt. That is, it follows that:

Zt = CA1C
−1
L Zt−1 +Dεt +

(
C (A1 +A2)B − CA1C−1L D

)
εt−1. (23)

Similar to Morris (2016), equation (23) allows casting the linear state-space form of the purely forward-

looking LRE model solution into a VARMA(1, 1) representation.

Up to this point, the existence of a VARMA representation derived from the linear state-space in (20)−
(19) requires only the left-invertibility of the matrix C while uniqueness necessitates additionally thatm = k.

This is so, irrespective of the relation between the matrices C and D in the linear state-space representation

and the structural matrices F , G, H, A1, A2, and B imposed by theory through the purely forward-looking

part of the expectational difference system in (17) and (11). Now, using (19) shifted one period ahead to

replace Zt+1 in the forward-looking system given in (17), I obtain that:

Zt = FCXt+1|t +GXt|t−1 +Hεt. (24)

In other words, this shows that the vector of transformed endogenous variables Zt that solves the forward-
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looking part of the LRE model is a linear mapping of the vectors describing the redefined forcing variables,

Xt+1|t and Xt|t−1, and the vector of shock innovations, εt.

From (24) it also follows that:

Zt =
[
FC +GA−11

]
A1Xt|t−1 + [FC (A1 +A2)B +H] εt, (25)

which arises after replacing Xt+1|t out with (18). By the method of undetermined coeffi cients of Christiano

(2002), matching the coeffi cients between (19) and (25) means that the unknown matrices that characterize

the linear state-space representation of the forward-looking part of the LRE model solution must satisfy the

following cross-equation restrictions:

C =
[
FC +GA−11

]
A1 = FCA1 +G, (26)

and

D = [FC (A1 +A2)B +H] = CA−11 (A1 +A2)B − TB, (27)

where I define the matrix T as T ≡ (Γ0)
−1

Φ3A
−1
1 A2. These equations relate C and D to the structural

matrices F , G, and T as well as to the matrices A1, A2, and B that describe the stochastic process for the

forcing variables.

Moreover, imposing the cross-equation restrictions in (27) also on the MA part of the VARMA(1, 1) in

(23) implies that: (
C (A1 +A2)B − CA1C−1L D

)
= 0m×k + CA1C

−1
L TB, (28)

and from here it follows that:

Zt = CA1C
−1
L Zt−1 +

(
CA−11 (A1 +A2)− T

)
Bεt + CA1C

−1
L TBεt−1. (29)

Replacing equation (18) re-written as Xt|t−1 = A−11
(
Xt+1|t − (A1 +A2)Bεt

)
into (19), it holds that:

Zt = CA−11 Xt+1|t +
[
D − CA−11 (A1 +A2)B

]
εt = CA−11 Xt+1|t − TBεt, (30)

which follows from the cross-equation restrictions that characterize the matrix D in (27). Hence, the linear

mapping of the vector of exogenous forcing variables Xt+1|t into transformed endogenous variables Zt in (24)

can be re-written and simplified as in (30), but still depends on the vector of shock innovations.

This comes to show that when the forcing variables are driven by a VAR(1) stochastic process (i.e.,

A2 = 0k), then T = 0m×k and accordingly the forward-looking part of the solution in (29) naturally inherits

its VAR(1) form from that of the stochastic process for the forcing variables. In general, when the forcing

variables behave as a VARMA(1, 1) stochastic process, the forward-looking part of the solution also inherits

a VARMA(1, 1) representation. However, whenever the structural relationships of the LRE model in (1) can

be cast in such a way that only Xt+1|t enters into the specification (i.e., when Φ3 = 0m×k), then T = 0m×k

and once again the forward-looking part of the solution can be described with a VAR(1) form even when

the forcing variables follow a VARMA(1, 1).

Accordingly, re-writing the cross-equation restrictions that pin down C in (26), the characterization of

the forward-looking part of the LRE solution in (29) can be obtained with the following lemma:
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Lemma 2 Assumption 1 and Assumption 2 hold and Γ0 is invertible. The matrix C solves the companion

Sylvester matrix equation:

FC + C
(
−A−11

)
= −GA−11 , (31)

and the matrix D is the linear transformation of C given by (27) where F , G, H, T , A1, A2, and B are the

matrices that describe the structural relationships of the purely forward-looking part of the LRE model and

the stochastic processes in (3) and (17).

(a) If a matrix C that solves (31) exists, the matrix D pinned down by (27) also exists and they both

characterize a linear state-space of the form given in (18)− (19).

(b) If a matrix C that solves (31) is also left invertible, a solution for the vector of transformed en-

dogenous variables Zt that follows the VARMA(1, 1) representation given by (29) can be obtained using the

pseudoinverse (that is, using C−1L = C+ = (C∗C)
−1
C∗ where C∗ is the Hermitian transpose).

(c) If it also holds that m = k, then the VARMA(1, 1) representation given by (29) not only exists but

it is also unique (and C−1L = C−1). Moreover, if the stochastic process in (3) is a VAR(1) process (i.e.,

A2 = 0k) or the structural relations in (17) depend on Xt+1|t and not on Xt (i.e., Φ3 = 0m×k), then the

unique solution given by (29) takes the following VAR(1) form:

Zt = CA1C
−1
L Zt−1 + CA−11 (A1 +A2)Bεt. (32)

The proof of this lemma follows directly from the implications of the cross-equation restrictions in (26)−
(27), as discussed above. It should be noted here that Corollary 3 of Morris (2016) similarly shows that

the linear state-space model in (18) − (19) can be cast as a VAR(1). The logic of Morris (2016) is similar

to the one I follow to derive equation (32). The contribution of this paper is to exploit the cross-equation

restrictions of the LRE model to characterize the mapping in terms of the structural matrices of the LRE

model itself. Hence, Lemma 2 provides a simple way to both determine the existence and uniqueness of

the VARMA(1, 1)/VAR(1) representation given by (29)/(32) and a simple way to characterize that solution

from the matrices F , G, H, T , A1, A2, and B. Moreover, the paper also shows next that, by decoupling the

forward- and backward-looking parts of the LRE model solution, the results of Lemma 2 can then be easily

extended to richer models whose solution can be cast in the linear state-space form given by (11) and (12).

2.3 The Canonical First-Order LRE Model Solution

The solution of the full canonical (first-order) system of equations from the LRE model in (1) and (3) can be

recovered combining its backward-looking part, ΘWt−1, and its forward-looking part, Zt ≡ (Wt −ΘWt−1).

Simply replacing Zt ≡ (Wt −ΘWt−1) into (29), it follows that:

(Wt −ΘWt−1) = CA1C
−1
L (Wt−1 −ΘWt−2) +

(
CA−11 (A1 +A2)− T

)
Bεt + CA1C

−1
L TBεt−1. (33)

Hence, the dynamics of the vector of endogenous variables Wt can be described with this lemma:

Lemma 3 If Assumption 1, Assumption 2, and the conditions associated with Lemma 1 and Lemma 2 hold,
it follows that:

(a) The VARMA(2, 1) representation of the first-order canonical LRE model solution for the vector of
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endogenous variables Wt, when one exists, is given by:

Wt = Ψ1Wt−1 + Ψ2Wt−2 + Ψ3εt + Ψ4εt−1, εt ∼ i.i.d. (0, Ik) , (34)

where Ψ1 ≡
(
Θ + CA1C

−1
L

)
and Ψ2 ≡ −CA1C−1L Θ arem×m square matrices while Ψ3 ≡

(
CA−11 (A1 +A2)− T

)
B

and Ψ4 ≡ CA1C−1L TB are m× k matrices. If it also holds that m = k, the VARMA(2, 1) representation in

(34) is also unique.

(b) Whenever A2 = 0k or Φ3 = 0m×k, the VARMA(2, 1) representation in (34) reduces to a VAR(2) of

the following form:

Wt = Ψ1Wt−1 + Ψ2Wt−2 + et, et ∼ i.i.d. (0,Ω) , Ω ≡ ΨT
3 Ψ3, (35)

where Ψ1 ≡
(
Θ + CA1C

−1
L

)
and Ψ2 ≡ −CA1C−1L Θ are the same m×m square matrices but Ψ4 = 0m×k and

the m×k matrix Ψ3 reduces to Ψ3 ≡ CA−11 (A1 +A2)B. The VAR(2) residual innovations et ≡ Ψ3εt in (35)

are a rotation of the shock innovations εt. If it also holds that m = k, then the the VAR(2) representation

of the LRE model solution in (35) not only exists but is also unique.

(c) The ‘poor man’s invertibility condition’of Fernández-Villaverde et al. (2007) can also be trivially ver-

ified and the VAR(2) representation in (35) satisfies Hansen and Sargent (1980)’s fundamentalness property.

Whenever (35) holds with A2 6= 0k, this would also require that rank (A1 +A2) = k.

The proof of the VARMA representation in (34) and the finite-order VAR form in (35) as well as its

uniqueness follows directly from an algebraic manipulation of (33) and Lemma 2.

The ‘poor man’s invertibility condition’assumes that the number of endogenous variables in Wt is equal

to the number of exogenous forcing variables in Xt (that is, m = k) and holds whenever all eigenvalues of(
A1 − (A1 +A2)BD

−1C
)
(k × k matrix) lie inside the unit circle. As indicated by part (b) of Lemma 2,

whenever the matrix T satisfies that T = 0k×k, D is invertible if both the solution C to the companion

Sylvester matrix equation in (31) and (A1 +A2) have full column rank (that is, when C and (A1 +A2) are

invertible).5 Assuming that all of this indeed holds and replacing D out with the cross-equation restrictions

in (27), it follows that
(
A1 − (A1 +A2)BD

−1C
)

=
(
A1 − (A1 +A2)BB

−1 (A1 +A2)
−1
A1C

−1
1 C

)
= 0k.

Hence, the ‘poor man’s invertibility condition’of Fernández-Villaverde et al. (2007) is trivially satisfied, i.e.,

has all its eigenvalues inside the unit circle.

The LRE model solution in finite-order VAR form given by (35) can be re-written to express the vector

of shock innovations εt in terms of the observable vector of endogenous variables Wt as follows:

εt = Ψ−13 [Wt −Ψ1Wt−1 −Ψ2Wt−2] , (36)

where Ψ3 is invertible if indeed C and (A1 +A2) are invertible. Hence, the shock innovations can be

recovered from the finite-order VAR form for all t ≥ 0 given initial conditions W−1 and W−0, that is, the

fundamentalness property holds in the sense of Hansen and Sargent (1980).

5Notice that T = 0k if the stochastic process for the vector of forcing variables is a VAR(1) (that is, A2 = 0k). In this case,
the inverse (A1 +A2)−1 = A−11 is well-defined given Assumption 1. If instead T = 0k because Φ3 = 0m×k, then Assumption
1 is not suffi cient to ensure that the inverse (A1 +A2)−1 exists because the sum of two invertible matrices is not necessarily
invertible since rank (A1 +A2) ≤ k holds but not necessarily always with equality. A suffi cient condition would be that A1
and A2 be also positive definite because, if so, the sum is also positive definite and invertible.
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Some additional conditions regarding the properties of the matrix Θ that solves the companion quadratic

matrix equation in (15) in Lemma 1 ensure the companion finite-order VAR form of the LRE model solution

in (35) is well-behaved:

Corollary 1 The unique VAR(2) representation for the vector of endogenous variables Wt in (35) charac-

terized by Lemma 3 where m = k satisfies the following properties:

(a) If the matrix Θ that solves (15) in Lemma 1 has all its eigenvalues inside the unit circle (that is, Θ

is invertible), the VAR(2) process can be shown to be stationary.

(b) Under the prevailing assumptions in Lemma 3, the variance-covariance matrix Ω is symmetric and

positive definite.

The VAR(2) representation in (35) can be re-cast in companion VAR(1) form as follows:(
Wt

Wt−1

)
=

(
Ψ1 Ψ2

Ik 0k

)(
Wt−1

Wt−2

)
+

(
et

0k×1

)
, (37)

where Ik is the k × k identity matrix, 0k is a k × k matrix of zeroes as noted before, and 0k×1 is a k × 1

column-vector of zeroes. The VAR(2) in (35) is stationary if the VAR(1) specification in (37) is shown to be

stationary, i.e., if all eigenvalues of Ψ ≡
(

Ψ1 Ψ2

Ik 0k

)
are inside the unit circle. Using the Schur complement

method, the determinant of the block matrix Ψ − λI2k (where I2k is the 2k × 2k identity matrix) can be

expressed as det
(
Ψ− λI2k

)
= det

(
λ2Ik − λΨ1 −Ψ2

)
. From here, using the definitions of Ψ1 and Ψ2 given

in Lemma 3, it follows that:

det
(
Ψ− λI2k

)
= det

(
λ2Ik − λ

(
Θ + CAC−1

)
+ CAC−1Θ

)
= det (Θ− λIk) det

(
CAC−1 − λIk

)
. (38)

Thus, this suffi ces to show that the eigenvalues of the block matrix Ψ are the combined eigenvalues of Θ and

CAC−1.

The matrix CA1C−1 is similar to the matrix A1 so long as the solution C to the companion Sylvester

matrix equation in (31) exists and is invertible, as implied by Lemma 2. Two similar matrices have the

same eigenvalues and, therefore, Assumption 1 which establishes that the eigenvalues of A1 are all inside the

unit circle implies that all eigenvalues of CA1C−1 are inside the unit circle as well. Therefore, as indicated

in Corollary 1, the stationarity of the stochastic process in (35) requires solely that the eigenvalues of the

solution Θ to the companion quadratic matrix equation in (15) in Lemma 1 also lie inside the unit circle.

The matrix Ψ3 ≡ CA−11 (A1 +A2)B is k × k square. The variance-covariance matrix is Ω ≡ ΨT
3 Ψ3 and

its transpose is ΩT =
(
ΨT
3 Ψ3

)T
. The transpose of a product is the product of the transposes in the opposite

order, therefore it follows that ΩT = ΨT
3

(
ΨT
3

)T
. Furthermore, by the properties of the transpose it is true

that
(
ΨT
3

)T
= Ψ3 and, accordingly, it should hold that ΩT = ΨT

3

(
ΨT
3

)T
= Ω. Thus, the variance-covariance

matrix Ω is indeed symmetric.

Under Assumption 1 and Assumption 2, rank (A1) = rank (B) = k and by implication also holds true

that rank
(
A−1

)
= rank

(
B−1

)
= k. As noted before in regards to Lemma 2, a unique solution in finite-order

VAR form exists if the matrix C that solves the companion Sylvester equation in (31) is invertible and has

10



rank (C) = k. Given this, it is straightforward to show that rank (Ψ3) = k and accordingly the k columns

of Ψ3 ≡ CA−1 (A1 +A2)B are linearly independent when rank (A1 +A2) = k.

Using the Gram-Schmidt orthonormalization method, there is a k × k invertible matrix Q such that the

columns of Ψ3Q are a family of k orthonormal vectors such that (Ψ3Q)
T

(Ψ3Q) = Ik. Let x ∈ Rk \ {0} and,
from Q−1x 6= 0, it follows that

∥∥Q−1x∥∥ > 0. From here, xT
(
ΨT
3 Ψ3

)
x = xT

(
Ψ3QQ

−1)T (Ψ3QQ
−1)x =(

Q−1x
)T (

(Ψ3Q)
T

(Ψ3Q)
) (
Q−1x

)
=
(
Q−1x

)T
Ik
(
Q−1x

)
=
∥∥Q−1x∥∥ > 0. Being x arbitrary, it naturally

must hold that:

∀x ∈ Rk \ {0} , xT
(
ΨT
3 Ψ3

)
x > 0, (39)

and, therefore, the variance-covariance matrix Ω is shown to be positive definite (and that, in turn, ensures

it is invertible as well).

In short, Corollary 1 implies that the finite-order VAR representation in (35) that characterizes the unique

solution– when one exists– to the first-order canonical LRE model given by (1) and (3) is a well-behaved

stochastic process that can be related to the structure of the model given by the matrices F , G, H, and T

(tied to Φ1, Φ2, Φ3, Φ4) together with A1, A2, and B, under some conditions. Taking as given Assumption

1 and Assumption 2, the required conditions are that m = k as well as the invertibility of the matrix C that

solves the companion Sylvester matrix equation in (31) and the invertibility of the matrix Θ that solves the

companion quadratic matrix equation in (15) if A2 = 0k plus the invertibility of (A1 +A2) if Φ3 = 0m×k.6

The key to the results of this paper is two-fold. First, I take advantage of the cross-equation restrictions

that link the matrices of the linear state-space representation to the structural matrices of the LRE model.

That allows me to recover a VAR form, but also provides a way to characterize it. Second, using the canonical

representation of the VARMA process for the vector of forcing variables and decoupling the forward-looking

part from the backward-looking part of the LRE model, I am able to investigate a more general structure

that includes lags of the endogenous variables and moving average terms on the process for the forcing

variables. Indeed, this idea of simplifying richer models to make them amenable to be cast in finite-order

VAR form can be pushed even further noting that the canonical first-order LRE model in (1) and (3) can

be generalized with more than one lead and one lag of the endogenous variables in Wt and of the forcing

variables in Xt, as shown elsewhere in Broze et al. (1985) and Broze et al. (1990).

2.4 Local Identification of the Finite-Order VAR

The elements of the matrices Φ1, Φ2, Φ3, Φ4, A1, A2, and B that describe the structural relationships and the

dynamics of the forcing variables for the canonical (first-order) LRE model in (1) and (3) are each a function

of a vector of structural parameters δ, where δ contains j > 0 elements and lies in the space of admissible

parameter values ∆ ⊂ Rj . Lemma 3 and Corollary 1 establish the mapping between the matrices Φ1, Φ2,

Φ3, Φ4, A1, A2, and B that characterize the LRE model and the matrices Ψ1, Ψ2, and Ω that describe its

reduced-form solution in finite-order VAR form given by (35). For a given vector δ, it follows that if the

finite-order VAR representation in (35) exists and is unique (where m = k), then Ψ1, Ψ2, and Ω completely

characterize the dynamics of the endogenous variables inWt. I define τ ≡
[
vec (Ψ1)

T
, vec (Ψ2)

T
, vech (Ω)

]T
as the vector collecting all the elements of Ψ1, Ψ2, and Ω, where vec (·) refers to the vector of columns of a

6This finite-order VAR representation in (35) is obtained for the linear state-space solution given by (12) and (3). It is worth
noting that the VAR form is only considered by Morris (2016) under the conditions of his Corollary 3 which amount here to
the special case where Θ = 0k.
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given matrix and vech (·) refers to the same operation except that for each column only that part which is
on or below the diagonal of the given matrix is kept.7 Hence, the vector τ contains 2k2 + k

(
k+1
2

)
distinct

elements.

It follows from (35) that the unconditional second moments of Wt are given by the k × k matrix of

autocovariances Σ (s) ≡ E
(
WtW

T
t+s

)
for any s such that:

Σ (s) =

{
Ψ1Σ (0) ΨT

1 + Ψ1Σ (1) ΨT
2 + Ψ2Σ (1) ΨT

1 + Ψ2Σ (0) ΨT
2 + Ω, if s = 0,

Ψ2Σ (s− 1) + Ψ1Σ (s− 2) , for any other s 6= 0,
(40)

which satisfies that Σ (s) ≡ E
(
WtW

T
t+s

)
= E

(
WtW

T
t−s
)
≡ Σ (−s). If I denote the sample size of the observed

endogenous variablesWt as T , then the vector of unique elements that describes the variance-covariance ma-

trix for the observed data
[
WT
1 ,W

T
2 , ...,W

T
T

]T
can be defined as σT ≡

[
vech

(
Σ (0)

T
)
, vech

(
Σ (1)

T
)
, ..., vech

(
Σ (T − 1)

T
)]T

.

This is a vector of k
(
k+1
2

)
+ (T − 1) k2 elements collecting all the distinct coeffi cients that determine the

second moments of the observed data sample. Iskrev (2010) further generalizes this to include, for instance,

the joint estimation of the steady state using also the first moments of the data. If et is Gaussian, σT
together with the means of the data contains all the model-implied information that can be used for estima-

tion purposes. Assuming that τ is unique for each admissible value of δ, then σT is a function of δ as well.

Accordingly, Iskrev (2010) shows that the j parameters of δ are locally identifiable at δ0 from the sample

likelihood in a limited information setting if the Jacobian J (δ0) = ∂σT
∂δT

∣∣
δ=δ0

has full column rank (that is,

if rank (J (δ0)) = j). On this point see also Komunjer and Ng (2011), Qu and Tkachenko (2012), and also

the in-depth discussions in Morris (2016) and Morris (2017).

3 An Illustration with a Monetary Model

In this section, I illustrate the finite-order VAR representation articulated in (35) in the context of a simplified

version of the medium-scale New Keynesian model of Smets and Wouters (2003) and Smets and Wouters

(2007), as described in Martínez-García (2018). This application is similar to that studied in Morris (2016)

or that, more extensively analyzed, by Morris (2017). It illustrates the practical significance of mapping

LRE solutions into exact finite-order VARs not just for theoretical, but also for applied empirical research

too.

3.1 The Workhorse New Keynesian Model

The model includes a dynamic Investment-Saving (IS) equation with external habit formation given by:

yt =
1

1 + h
Et (yt+1) +

h

1 + h
yt−1 −

1− h
(1 + h)σc

(
it − Et (πt+1)− (1− ρb) εbt

)
, (41)

where 0 ≤ h < 1 is the habit persistence parameter and σc determines the inverse of the intertemporal

elasticity of substitution. The dynamics of the preference shock εbt given by:

εbt = ρbε
b
t−1 + σζζt, (42)

7Hence, using vech (Ω) means that I retain only the distinct elements of the variance-covariance matrix Ω.
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act as a shifter of the IS equation. The innovation ζt is assumed to be i.i.d.(0, 1) white noise with −1 < ρb < 1

and σζ > 0 being the corresponding persistence and volatility parameters, respectively.

The hybrid Phillips curve equation relates inflation πt to output yt as follows:

πt = γfEt (πt+1) + γbπt−1 + κ

[(
σl + σc

1

1− h

)
yt − σc

h

1− hyt−1 + εlt − (1 + σl) ε
a
t

]
, (43)

where γf ≡ β
1+βγp

> 0 and γb ≡
γp

1+βγp
≥ 0 satisfy γf + γb ≤ 1 and the composite coeffi cient κ ≡

1
1+βγp

(1−βξp)(1−ξp)
ξp

≥ 0 defines the slope of the hybrid Phillips curve. Here, 0 < β < 1 is the intertemporal

discount factor, σl > 0 is the inverse of the Frisch elasticity of labor, ξp is the Calvo (1983) parameter that

sets the degree of price stickiness, and the parameter 0 ≤ γp ≤ 1 regulates the pass-through from previous

period inflation.

The exogenous productivity shock process εat and the labor supply shock ε
l
t behave as follows:

εat = ρaε
a
t−1 + σδδt, (44)

εlt = ρlε
l
t−1 + σννt, (45)

and enter as shifters (also referred as cost-push shocks) of the hybrid Phillips curve. The innovations δt
and νt are i.i.d.(0, 1) white noise. The corresponding persistence parameters are −1 < ρa, ρl < 1, while the

volatility parameters are σδ, σν > 0.

The model is completed with a standard Taylor (1993) rule with inertia as follows:

it = ρiit−1 + (1− ρi)
[
ψππt + ψy (yt − ynt )

]
+ εmt , (46)

where the policy rate it responds to the output gap (yt − ynt ) as well as to inflation πt. The corresponding

policy parameters satisfy that ψπ > 1 and ψy ≥ 0 while the policy inertia is modeled with the parameter

0 ≤ ρi < 1. The associated monetary policy shock εmt follows an exogenous process of the following form:

εmt = ρmε
m
t−1 + σξξt, (47)

where ξt is i.i.d.(0, 1) white noise, the persistence parameter is −1 < ρm < 1 and the volatility parameter is

given by σξ > 0.

Finally, the potential output ynt is the level of economic activity that would prevail absent all frictions

(nominal rigidities). A standard log-linearization of the labor supply and labor demand equations around

the steady state under flexible prices yields:

ynt =
σch

σl (1− h) + σc
ynt−1 +

(1− h) (1 + σl)

σl (1− h) + σc
εat −

(1− h)

σl (1− h) + σc
εlt, (48)

which is driven solely by the exogenous productivity shock εat and the labor supply shock ε
l
t.

Let me define the vector of endogenous variables as Wt = (yt, πt, it, y
n
t )
T , the forcing variables as Xt =(

εat , ε
b
t , ε

l
t, ε

m
t

)T
, and the vector of innovations as εt = (δt, ζt, νt, ξt)

T . In Table 1, I adopt a parameterization

of the New Keynesian model largely based on the values estimated by Smets and Wouters (2003):
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Table 1. Parameterization of the Workhorse New Keynesian Model

Structural Parameter Notation Value Source

Discount factor 0 < β < 1 0.990 Smets and Wouters (2003)

Degree of price stickiness 0 ≤ ξp< 1 0.905 Smets and Wouters (2003)

Degree of price indexation 0 ≤ γp≤ 1 0.472 Smets and Wouters (2003)

B Forward-looking weight on Phillips curve γf≡ β
1+βγp

0.675 Composite

B Backward-looking weight on Phillips curve γb≡
γp

1+βγp
0.322 Composite

B Slope of the Phillips curve κ ≡ (1−βξp)(1−ξp)
(1+βγp)ξp

0.007 Composite

Inverse intertemporal elasticity of substitution σc> 0 1.371 Smets and Wouters (2003)

Inverse of the Frisch elasticity of labor supply σl> 0 2.491 Smets and Wouters (2003)

External habit formation parameter 0 < h < 1 0.595 Smets and Wouters (2003)

Monetary Policy

Policy inertia 0 ≤ ρi< 1 0.958 Smets and Wouters (2003)

Response to inflation deviations ψπ> 1 1.688 Smets and Wouters (2003)

Response to output gap deviations ψy≥ 0 0.095 Smets and Wouters (2003)

Exogenous Shock Parameters

Persistence of the productivity shock −1 < ρa< 1 0.815 Smets and Wouters (2003)

Volatility of the productivity shock σδ> 0 0.345∗∗ Smets and Wouters (2003)

Persistence of the preference shock −1 < ρb< 1 0.842 Smets and Wouters (2003)

Volatility of the preference shock σζ> 0 0.089∗∗ Smets and Wouters (2003)

Persistence of the labor supply shock −1 < ρl< 1 0.891 Smets and Wouters (2003)

Volatility of the labor supply shock σν> 0 1.244∗∗ Smets and Wouters (2003)

Persistence of the monetary shock −1 < ρm< 1 0.750∗ Parameterized

Volatility of the monetary shock σξ> 0 0.001∗∗ Smets and Wouters (2003)

* Introduces persistence unlike the parameterization in Smets and Wouters (2003) ensuring also that the matrix A is invertible.

** The volatility parameters are chosen such that the standard deviation of each shock innovation recovered from the data is equal
to 1.

3.2 Some Implications for Monetary VARs

Given the parameterization reported in Table 1, the Blanchard and Kahn (1980) conditions are satisfied

and a solution exists and is unique. Moreover, a solution Θ to the companion quadratic matrix equation in

(15) exists that has all its roots inside the unit circle and the solution C to the companion Sylvester matrix

equation (31) exists and is invertible. Therefore, the unique solution of the workhorse New Keynesian model

has a VAR(2) representation given by (35) where the corresponding composite coeffi cient matrices take the
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following form:

Ψ1 =


1.5057 −0.5355 −3.2133 −0.0607

−0.0648 1.4821 0 0.0648

−0.0039 0.0576 1.7171 0.0043

0.5847 −1.9717 −5.4962 0.7552

 ,

Ψ2 =


−0.5253 0.2655 2.4934 0.0179

0.0222 −0.4768 0 −0.0222

0.0006 −0.0367 −0.7254 −0.0009

−0.2740 1.0036 4.2124 −0.1464

 ,

Ψ3 =


0.0282 0.0203 −0.0405 −0.0132

−0.0263 0.0048 0.0312 −0.0055

−0.0026 0.0004 0.0029 0.0006

0.2050 0 −0.2117 0

 ,

(49)

with non-zero entries almost everywhere. The variance-covariance matrix Ω ≡ ΨT
3 Ψ3 is symmetric and

positive definite and the VAR(2) specification is also stationary.

The matrices that characterize the companion finite-order VAR representation in (49) indicate already

that any empirical evidence which hinges upon Cholesky (and, in general, zero) restrictions should be

interpreted with caution as it imposes identification restrictions that may not have a structural interpretation

tied to theory– to be more specific, a structural interpretation tied to the workhorse New Keynesian model–

as noted, among others, by Carlstrom et al. (2009).

Figure 1 plots the theoretical one-standard deviation impulse response functions (IRFs) at different

degrees of the anti-inflation bias ψπ in order to showcase the potential changes in the transmission mechanism

of monetary policy arising from the policymakers willingness to respond to inflation deviations. For starters,

Figure 1 confirms that the paradoxical empirical finding that a monetary shock could lead to an increase

in inflation (the "price puzzle") is inconsistent with the predictions of the workhorse New Keynesian model

laid out here.

While the propagation of monetary shocks in this model appears inconsistent with the implications of

a Cholesky (or zero-restriction) identification strategy, it is nonetheless consistent with the sign-restrictions

proposed by Uhlig (2005). That is because the propagation of the monetary shock does not increase inflation

nor lower the short-term interest rate for a number of periods after the shock. Furthermore, Figure 1 also

shows that the decline on inflation and output resulting from a one-standard deviation positive (contrac-

tionary) shock to monetary policy gets attenuated the higher the anti-inflation bias stance on monetary

policy (↑ ψπ) becomes.
The findings in Figure 1 show that the transmission mechanism of structural shocks– not just monetary

policy shocks– and their spillovers ultimately depend in nonlinear ways on the policy parameters of the

Taylor (1993) rule. A higher anti-inflation bias stance on monetary policy (↑ ψπ) tends to dampen the
endogenous output response to preference and monetary policy shock innovations while it amplifies the

response to productivity and labor supply shock innovations. In turn, the response of endogenous inflation

to all types of shocks becomes more muted as the anti-inflation bias stance increases (↑ ψπ). Inflation and
output move in the same direction in response to preference shocks and monetary policy shocks, but they
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move in opposite directions in response to productivity shocks and labor supply shocks.8

Figure 1. Theoretical IRFs at Different Degrees of Anti-Inflationary Bias
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Note: This figure displays the theoretical impulse response functions (IRFs) of the workhorse New Keynesian model
keeping the parameterization invariant as in Table 1 except for the policy parameter ψπ .

To sum up, the New Keynesian model laid out here suggests that popular identification strategies used

in structural VAR studies impose restrictions on how monetary policy (or other structural) shocks affect

macroeconomic variables that can be contrasted (and mapped) against a theory-implied VAR specification.

The standard Cholesky identification, on the one hand, is shown to potentially distort the impulse response

functions, and could be a contributing factor of a number of empirical anomalies such as the so-called "price

puzzle" even when underneath it all the true data-generating process is the New Keynesian model.9 On the

other hand, sign-restrictions as those proposed by Uhlig (2005) for monetary policy shocks do better without

having to impose all cross-equation restrictions implied by the model.

4 Concluding Remarks

I show that under some conditions the solution to a large class of LRE models– when one exists and is

unique– can be represented in finite-order VAR form. An important contribution of the paper is to establish

8Additional analysis exploring the implications of this model can be found in Martínez-García (2018).
9The "price puzzle" refers to the paradoxical result that an empirically identified monetary shock leads to an increase in

inflation which seems counterintuitive based on theory.
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the conditions under which such a finite-order VAR representation of the solution exists, is well-behaved, and

satisfies the fundamentalness property of Hansen and Sargent (1980). This, in turn, is tied to the solution of

a well-known companion quadratic matrix equation and a companion Sylvester matrix equation. The paper

is complemented with a number of Matlab routines and codes for the solution of those companion matrix

equations and the characterization of the finite-order VAR representation of the LRE model solution.

The economic-significance of the finite-order VAR mapping arising from theory is illustrated studying

the transmission mechanism of monetary policy with a variant of the workhorse New Keynesian model. For

this purpose, the paper analyzes the finite-order VAR representation of the model solution with particular

attention paid to the role of the anti-inflation stance of the monetary policy rule. The paper shows how the

identification of fundamental shocks for empirical research– including the recovery of monetary shocks– can

be made tractable using the cross-equation restrictions obtained from the model. In contrast, it also shows

that standard identification assumptions (Cholesky, zero-restrictions, etc.) used in the estimation of related

structural VARs present significant shortcomings.
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