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Abstract

This document introduces the R library BGVAR to estimate Bayesian global vector
autoregressions (GVAR) with shrinkage priors and stochastic volatility. The Bayesian
treatment of GVARs allows us to include large information sets by mitigating issues related
to overfitting. This improves inference and often leads to better out-of-sample forecasts.
Computational efficiency is achieved by using C++ to considerably speed up time-
consuming functions. To maximize usability, the package includes numerous functions for
carrying out structural inference and forecasting. These include generalized and structural
impulse response functions, forecast error variance and historical decompositions as well
as conditional forecasts.
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2 BGVAR: Bayesian Global Vector Autoregressions

1. Introduction

Researchers in macroeconomics and finance increasingly wish to use large panel data sets.
Such panels typically include a wide range of indicators per unit. And these indicators are
frequently correlated within and across units. Additionally, cross-sectional heterogeneity in
coefficients is often necessary. Vector autoregressions (VARs) might be adequate tools that
allow for capturing rich dynamics within a panel data set.! But these models are tightly
parameterized, leading to over-fitting and computational issues in large data sets. A potential
solution is the global vector autoregressive (GVAR) modeling approach originally proposed
in Pesaran, Schuermann, and Weiner (2004) and estimated within a Bayesian framework in
Crespo Cuaresma, Feldkircher, and Huber (2016) and Feldkircher and Huber (2016).

Traditionally, these GVARs have been used in macroeconomic and financial applications (for a
survey, see, Chudik and Pesaran 2016). In macroeconomic applications, interest often centers
on modeling the relationship of a (potentially) large number of countries with a moderate
number of endogenous variables. But unrestricted estimation of multivariate time series
models such as VARs in this case is unfeasible. The GVAR approach solves the corresponding
overparameterization and computation issues by assuming that relations across units (or
countries in this case) are captured through cross-sectional weighted averages of other units
endogenous variables. This allows for unit-by-unit estimation and reduces the number of
parameters appreciably.

Estimation of GVAR models is frequently done using the classical GVAR framework of Pe-
saran et al. (2004), implemented in Matlab (Smith, L.V. and Galesi, A. 2014). In R (R Core
Team 2019a), however, there exists no comparable package to estimate GVAR models easily.
To estimate Bayesian GVARs, there is no fully fledged software available. In this paper, we
aim to fill this gap by proposing BGVAR. BGVAR is a highly efficient R package that entails
fast and simple estimation of GVAR models within a Bayesian framework. Computational
efficiency is achieved by coding up most functions in C++ using the Repp package. This
enables estimating Bayesian GVAR models on a standard desktop computer in a reasonable
amount of time.

In BGVAR, we provide recent shrinkage priors that avoid issues stemming from overparame-
terization and have been shown to work well for forecasting (see, e.g., Crespo Cuaresma et al.
2016; Dovern, Feldkircher, and Huber 2016; Huber 2016). All specifications can also be esti-
mated with stochastic volatility (SV). Allowing for heteroscedasticity in the error variances
can be particularly useful when the time period under study is volatile, leading to considerable
improvements in terms of forecasting (see, e.g., Clark 2011). The Bayesian treatment of the
unit-specific models also allows to handle larger models, either by including more variables
per unit, a larger number of units or by increasing the number of lags.

The BGVAR package is designed to reduce necessary input by the researcher to a minimum.
In fact, successful estimation that works for a wide range of data sets involves choosing a
prior distribution and a few hyperparameters. This constitutes a significant advantage and
improves usability substantially.

'For a recent survey on suitable methods for large cross-sectional data sets, see Feldkircher, Huber, and
Pfarrhofer (2019).

2There are several R packages that allow for estimating VARs (vars by Pfaff (2008), and Bayesian VARs
such as bvarsv by Krueger (2015), bvartools by Mohr (2019), mfbvar by Ankargren and Yang (2020), BVAR by
Kuschnig and Vashold (2019) and BHSBVAR by (Richardson 2020)). However, to the best of our knowledge,
none of these packages allows for estimating VARs with the corresponding GVAR restrictions.
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To maximize its functionality, the library comes along with convenience functions such as
print and plot functions that allow to summarize the output, carry out residual and model
diagnostics and analyze the in-sample fit of the model. In addition to estimating a GVAR,
BGVAR provides several functions to perform inference in multivariate time series models.
These cover structural and generalized impulse responses, forecast error variance and histor-
ical decompositions as well as unconditional and conditional forecasting. Structural analysis
can be done by using orthogonalization or zero and sign restrictions — the latter which can
be applied either in a single unit or on the cross-section.

The remainder of the paper is structured as follows. We first provide a brief and intuitive
overview of the GVAR approach in Section 2 and discuss the Bayesian priors included in the
package. Section 3 introduces the main function of the package to estimate Bayesian GVARs.
It also illustrates how to analyze GVAR output and perform diagnostic checks. In Section 4,
we showcase the full functionality of the package, which includes structural and generalized
impulse response analysis, forecast error variance and historical decompositions as well as
unconditional and conditional forecasting. Finally, Section 5 concludes.

2. Econometric Framework

2.1. Model Framework and Estimation

The GVAR modeling approach consists of two stages. The first stage deals with specifying
unit-specific models. The second stage combines these models to obtain a global representa-
tion of the model.

In this discussion, we remain very general and assume a panel structure where ¢ = 1,..., N
indicates unit ¢ and the total number of units is N. For each i, we assume that a k;-dimensional
vector of endogenous variables y;; follows a VAR model with P lags. To simplify notation, we
assume that k; = k; for all 7, j. These are complemented with contemporaneous and lagged
exogenous regressors yj;. For a pre-specified set of weights w;; (which satisfy Zévzl wij =1
and w;; = 0), the y};’s are given by

N

* 3
Yit = Z WijYjt-
Jj=1

The resulting unit-specific model is given by:

P Q
Yit = a0 + a;1t + Z P yi—; + Z Ny j +€it, € ~ N(0, ), (1)
p=1 q=0

where a;p and a;; denote k;—dimensional coefficient vectors. These relate to the deter-
ministic term of the model which we assume to consist of an intercept and a trend term.*
®;; (j = 1,...,P) denotes a k; x k;-dimensional coefficient matrix associated with the
lagged dependent variables. A;; (j = 0,...,Q) denotes a k; x k; matrix of coefficients

3This implies that each element in ¥, is based on the same set of weights. The package allows to relax this
restriction by using separate weights for different variable types.
“BGVAR allows for including additional deterministic components and exogenous variables.
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associated with the (weakly) exogenous regressors in x};, while €; is a Gaussian error vec-
tor with zero mean and k; x k;-dimensional variance-covariance matrix ;. To allow for
unit-by-unit estimation, we assume that e;; and €;; are independent for all ¢,j and hence
¥, = diag(Xy4, ..., Xny) is a block-diagonal matrix. This also implies that any co-movement
between y;; and y;; is exclusively driven by y7. And since ¥, is a deterministic function of
the weights, this specification implies that contemporaneous relations are effectively driven
by Ay and w; = (wy1,...,...,w;n)". The specification of the unit-specific models is com-
pleted by decomposing X;; = AgH;A{, with Ay denoting a lower uni-triangular matrix and
H,; = diag(eliv, ... elkit) with hy;, following an AR(1) process.

After estimating all unit-specific submodels, these can be combined using the weights w;; and
some straightforward algebra. Here, we omit the relevant derivations. These can be found
in, e.g., Pesaran et al. (2004) or Feldkircher and Huber (2016). The GVAR representation is
then easily obtained and given by:

P*
Y = bo + b1t + Z Fiy_j+e, e ~N(0,Xy), (2)
j=1
with yr = (Y4, - Yny) isa k= Z;-v:l kj-dimensional vector of endogenous variables and the

corresponding parameters depend on the estimates of the submodels and the weights. The
variance-covariance matrix X is a full matrix. Equation (2) resembles a standard large-scale
VAR model with P* = max(P, Q) lags.

2.2. Prior specification

Since the GVAR model is tightly parameterized we follow a Bayesian approach to estimation
and inference. The package allows for estimating the GVAR model using three different
priors. All these priors capture the notion that non-stationary variables follow a random
walk process a priori. But they differ with respect to how shrinkage is introduced. In this
paper, we only summarize the main features of these priors and refer to the relevant papers
for more information.

To simplify prior implementation, we collect all unit-specific coefficients in a N; = k; K; vector
v, = (a,-o, a1, ®i1,...,P;p, Ao, ..., Z(Q)/ (With K, =kP+ k:(Q + 1) + 2). Depending on
the transformations of the time series in y;;, we assume that the prior mean of ®;; is equal
to an identity matrix (if y; is integrated of order one) or equal to a zero matrix (if y;; is
stationary). To capture a situation where some of the endogenous variables are stationary
but persistent, the prior mean can also be centered on an AR(1) process. For the remaining
coefficients, the prior mean is always set equal to zero. For further convenience, we capture
these prior assumptions on the mean in a vector ¥,.

All priors on the unit-specific coefficients in ¥; are Gaussian and have a prior mean equal
to ¥,. However, they differ with respect to their treatment of the prior variance, V;. More
precisely, the prior on ¥, is given by:

U, ~N(¥,;,V,). 3)

Again, as stated above, we assume that W, is the same for all priors. The different priors
differ in the precise specification of V.
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The first prior we consider is a variant of the well-known non-conjugate Minnesota prior (for
an overview, see Koop and Korobilis 2010; Koop 2013). The prior variance of this setup differs
across the different coefficient types in our model. First, for some equation j in unit ¢ we
assume that the prior variance on the k" lag of T;j¢, the jth element of x;;, is equal to \?/k2.
A1 is a hyperparameter that is either set by the researcher or estimated. This specification
implies that higher lag orders will be forced towards zero since the prior variance is decreasing
in the lag length. The intuition is that the more recent past is likely to explain more variation
in x;j+ as compared to the more distant past.

Lags of the other endogenous variables x;,; for s # j are treated differently. For those, the
prior variance equals JJZO';QA% /k%. The first term serves to control for scaling differences
with oj, 0, denoting the OLS error standard deviations obtained by estimating univariate
autoregressive models of order P and @, respectively. The second term is similar to the prior
variance we use on "own” lags of a given variable but assume that A; > Ag. This controls
for the fact that lags of other variables tend to be less important than own lags of a given
variable. Higher lag orders are, again, increasingly forced to zero.

The third block we consider are the coefficients on the weakly exogenous variables. For them,
we specify the prior variance analogously to the case described in the previous paragraph but
replace Ao with A3. Finally, we set the prior variance on the deterministic part of the model
equal to g, with A4 being a large value to render the prior effectively non-informative.

Since A1, A2 and A3 are crucial and might exert a powerful effect on the posterior estimates,
we infer them from the data. Similar to Giannone, Lenza, and Primiceri (2015), we specify
Gamma priors on A\s(s = 1,...,3). These Gamma priors are set to be weakly informative.
This procedure allows us to estimate the shrinkage hyperparameters alongside the remaining
coefficients of the model.

The big advantage of the prior discussed above is that it effectively depends on a low number
of hyperparameters. But this might be restrictive since it effectively introduces the same
degree of shrinkage on, for example, the coefficients related to the contemporaneous values
of x,. To allow for more flexibility and control for model uncertainty, we use the stochastic
search variable selection (SSVS) prior put forward in George and McCulloch (1993) and
subsequently introduced to the VAR literature by George, Sun, and Ni (2008). This prior
imposes a scale mixture of two Gaussian distributions on each element in ¥;, U;;:

ZJ | 51j ~ (1 - 52])'/\[( =17 70 zy) + 61]/\/( ’Lj77-1 z]) 5ij ~ Bernouni( ) (4)

where 0;; is a binary random Var1able and 77 i > 7'0 ij denote prior scaling parameters. If
8;; = 1, the prior variance is 77 ;- This will be set to a large value, implying that relatively
little information is introduced through the prior. By contrast, if §;; = 1, the prior variance
equals 7'0272-]- which will be very close to zero. In this case, the prior dominates the likelihood and
the resulting posterior estimate will be close to zero (i.e. the 5™ regressor will be excluded).
George et al. (2008) modify this approach by setting 73 i = 0063) and 77 = 0165) Here,
we let crw denote the OLS variance of 1);; and ¢y is set to a number close to zero and ¢; will
be large. Good standard choices are co = 0.1 and ¢; = 10. Finally, we set the prior inclusion
probability p = 0.5. This implies that all covariates are equally likely to enter the model a
priori. B

Spike and slab priors such as the SSVS prior have excellent theoretical properties (Bhat-
tacharya, Pati, Pillai, and Dunson 2015). However, in large models, estimating the discrete
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indicators becomes an issue since any algorithm has to explore a vast model space of dimen-
sion 2%, Since Kj is typically large, this is clearly unfeasible and even carefully constructed
MCMC algorithms might run into mixing issues. As a solution, one can approximate the
behavior of a spike and slab prior by specifying an absolutely continuous shrinkage prior.
Here, we use the Normal-Gamma (NG) global local shrinkage prior originally proposed in
Griffin, Brown et al. (2010) and applied to the VAR context in Huber and Feldkircher (2019).
The NG prior is given by:

Wij | A7, 05 ~ N(X5,207%055), 05 ~ G(19,70), A7 ~ G(da, ex). (5)

7;; denotes the local shrinkage parameter that is coefficient specific and A; is a global shrinkage
term that pulls all elements in ¥, towards zero. This can be viewed as a common scaling factor
with the 6;; allowing for coefficient-specific deviations in light of a large value of A?. On both
the global and local parameters, we impose Gamma distributed priors with hyperparameters
Ty, dy, ex. Ty controls the tail behavior of the prior with small values placing more prior mass
on zero and leading to heavier tails. The remaining two hyperparameters dy and ey control the
amount of global shrinkage with small values (i.e. of order 0.01) leading to heavy shrinkage
towards the origin.

The key feature of this prior is that if the local scaling parameters are integrated out, the
corresponding marginal prior is heavy tailed and effectively allows for separating signals and
noise. Huber and Feldkircher (2019) show that this prior works well for US macroeconomic
data and modify it to also capture features of the Minnesota prior such as increased penalty
for higher lag lengths.

This concludes the prior setup for the coefficients. For the remaining quantities in the model
we use standard priors in the literature that work reasonably well for a wide range of data sets.
More precisely, we use the prior setup proposed in Kastner and Frithwirth-Schnatter (2014)
on the coefficients in the log-volatility state equation.® Since we sample the free elements in
Ay using the algorithm outlined in Carriero, Clark, and Marcellino (2019), we can use a NG
prior similar to the one discussed above.

3. Implementation: The BGVAR package

3.1. Overview

The BGVAR library allows to estimate Bayesian Global Vector Autoregressions in R (R
Core Team 2019b). To maximize its functionality, the library comes along with various tool
functions to carry out predictions, impulse response functions, (generalized) forecast error
variance decompositions, historical decompositions and conditional forecasts. Each function
has its own class and helper functions are provided to summarize and plot the output. The
classes and an overview of all functions contained in the package are presented in Table 1.

5This corresponds to using a Gaussian prior with zero mean and variance 10 on the unconditional mean
of the log-volatility, a Beta prior on the persistence parameter p, (p + 1)/2 ~ B(25,5) and a non-conjugate
Gamma prior on the error variance of the log-volatility process os ~ G(1/2,1/2). In case we do not use SV,
we use weakly informative inverted Gamma priors on the innovation variances.
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Table 1: Functionality of BGVAR.

Function Class

Description

Estimation function

bgvar () bgvar Estimates the Bayesian Global Vector Autoregression.

BGVAR tool functions

IRFQ) bgvar.irf Computes impulse response functions offering various identifica-
tion procedures by using an object fitted by bgvar.

IRF.cf() bgvar.irf Computes counterfactual analysis of an object fitted by IRF.

predict () bgvar.pred  Computes predictions of an object fitted by bgvar.

fevd.decomp() bgvar.fevd
gfevd.decomp() bgvar.fevd

hd.decomp()
cond.pred()

bgvar.hd
bgvar.pred

Computes forecast error variance decompositions of an object fit-
ted by bgvar.

Computes generalized forecast error variance decompositions of
an object fitted by bgvar.

Computes historical decompositions of an object fitted by bgvar.
Computes conditional forecasts of an object fitted by bgvar and
predict.bgvar.

Helper functions

AICO
avg.pair.cc()

BICQ)

coef ()
coefficients()
conv.diag()
DICQ)

fitted()
logLik )

1ps O
matrix_to_list()

plot )

print ()

resid() bgvar.resid
residuals() bgvar.resid
residual.corr.test()
rmse ()

summary ()
veov ()

Computes Akaike information criterion.

Average pairwise cross-sectional correlations of either the data or
the unit-specific submodels’ residuals.

Computes Bayesian information criterion.

Extracts global model coefficients for certain posterior quantiles.
Extracts global model coefficients for certain posterior quantiles.
Computes Geweke’s convergence diagnostic.

Computes Deviance information criterion.

Extracts model fitted values.

Computes log-likelihood of the model.

Computes log-predictive scores of an object of class bgvar.pred.
Converts an input matrix to a list suitable for estimation with
bgvar.

Plotting function available for class bgvar,
bgvar.irf, bgvar.fevd.

Summarizes model specification specified in bgvar.
Extract residuals of an object fitted with bgvar.
Extract residuals of an object fitted with bgvar.
Performs an F-test for serial autocorrelation in the residuals.
Computes root mean squared error of an object of class
bgvar.pred.

Computes summary and diagnostic statistics for bgvar.

Extracts global variance covariance matrix.

bgvar.resid,

The library depends on well established R packages. Most importantly, and to speed up com-
putational time, the estimation of the unit-specific submodels in Equation 1 as well as the
function to compute the global representation of the model in Equation 2 are implemented
in C++. This implies a dependency on Repp (Eddelbuettel and Frangois 2011) and ReppAr-
madillo (Eddelbuettel and Sanderson 2014). To further speed up computation, BGVAR allows
the use of parallel computation for the estimation of the unit-specific submodels as well as the
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sampling of rotation matrices when performing impulse response analysis identified through
sign restrictions. This implies that BGVAR relies on doParallel (Microsoft Corporation and
Weston 2019a) and foreach (Microsoft Corporation and Weston 2019b). Stochastic volatility
is implemented using the stochvol package of Kastner (2016).6

3.2. Estimation

In this section, we start describing the data requirements and the main function bgvar ()
which allows to estimate Bayesian GVARs using three different prior set-ups and various
specifications. To illustrate the function, we use the eerData data set of Feldkircher and
Huber (2016), which contains 76 quarterly observations for 43 countries and the period from
1995Q1 to 2013Q4. The units in the following example hence refer to countries. The euro
area (EA) is included as a regional aggregate.”

To get started, we load the BGVAR package and the data set by typing:

R> set.seed(571)
R> library(”BGVAR”)
R> data("eerData")

As a bare minimum, the estimation function needs two inputs from the researcher, a data
set (Data) and a weight matrix (W). With the example data set, this implies Data=eerData
and W=W.0012. In general, data can be provided in two forms. The first, as in this example,
is to provide a list object of length N (i.e., the number of countries / units) with each slot
containing a T' x k; data matrix. The names of the data list should correspond to the countries
/ units and the colnames in a given slot of Data denote the variable names.

R> names (eerData)

[1] IIEAII llUSll IIUKII IIJPII IICNII IICZII IIHUII IIPLII IISIII IlSKlI IIBGII IIROII IIEE“
[14] IILTII IILVII IIHRII IIALII IIRS n IIRUII IIUAII IIBYH IIGEII IIAR" IIBRH IICLII HMXH
[27] IIPEII llKRII IIPHII IISGlI IITHII n INII IIIDH IIMY" |IAUII IINZH IITR" ||CAII "CHH
[40] IINOII IISEII IIDKII IIISII

R> colnames (eerData$Us)

[1] llyll lleH llrerll llstirll Illtirll lltbll llpoilll

The library uses one important naming convention, which is that neither the unit names of
Data nor the variable names should contain a dot (hence use US instead of U.S.). It is also

possible to submit the data in form of a T' x k data matrix, with k = XX, k; denoting the sum
of endogenous variables in the system. The above mentioned naming convention implies that

SFurther dependencies are mvtnorm (Genz, Bretz, Miwa, Mi, Leisch, Scheipl, and Hothorn 2020), GIGrvg
(Leydold and Hormann 2017) to simulate from the conditional posterior distributions, packages abind (Plate
and Heiberger 2016), MASS (Venables and Ripley 2002) and Matrix (Bates and Maechler 2019) for matrix
manipulation and coda and bayesm (Rossi 2019) to inspect posterior output.

"For further examples with other datasets and showing additional possible specifications, we refer to the
vignette of the BGVAR package (accessible here: https://cran.r-project.org/web/packages/BGVAR/).
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the column names of Data have to include the name of the unit (country) and the variable
name, separated by a dot (i.e., US.gdp to denote GDP in the US country model). The N x N
weight matrix W should be row-standardized and the diagonal elements should be zero.

Using these data, we can now estimate a toy model as follows:

R> model.1<-bgvar (Data=eerData,
W=W.trade0012,
saves=500,
burns=500,
plag=1,
prior="NG",
hyperpara=NULL,
SV=TRUE,

thin=1,
trend=TRUE,
eigen=1.05,

h=8,
save.country.store=FALSE,
multithread=FALSE
)

+ + + + + + + + + F + + + o+

Start estimation of Bayesian Global Vector Autoregression.

Prior: Normal-Gamma prior.
Lag order: 1
Stochastic volatility: enabled.
Thinning factor: 1. This means every draw is saved.
Hyperparameter setup:
No hyperparameters are chosen, default setting applied.

Estimation of country models starts... took 1 min 52 seconds.
Start stacking:

Stacking finished.

Needed time for estimation of bgvar: 2 mins 1 second.

The default prior specification in BGVAR is to use the NG prior with stochastic volatility
and one lag for both the endogenous and weakly exogenous variables (plag=1). The setting
hyperpara=NULL implies that we use the standard hyperparameter specification for the NG
prior; see the help files for more details. The slots saves and burns denote the posterior
draws and the burn-in draws (i.e., the draws that are discarded). To ensure that the MCMC
estimation has converged, a high-number of burn-ins is recommended (say 15,000 to 30,000).
Saving the full set of posterior draws can eat up a lot of storage. To reduce this, we can use
a thinning interval which stores only each thin?” draw of the global posterior output. For
example, with thin=10 and saves=5000 posterior draws, the amount of MCMC draws stored
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is 500. TREND=TRUE implies that the model is estimated using a trend. Note that regardless
of the trend specification, each equation always automatically includes an intercept term.
To speed up computation, it is possible to set multithread=TRUE, which invokes parallel
computing using the doParallel package. The package then attempts to detect the number
of available CPU cores which it can use for parallel computing. Ideally this number would
be equal to the number of units N. In addition to storing the global posterior, we could
also be interested in inspecting the output of the N unit-specific submodels in more detail.
To do so, we could set save.country.store=TRUE which implies storing the whole posterior
distribution of each single unit-specific submodel. Due to storage reasons, the default is set
to FALSE and only the posterior medians of the submodels are reported. Note that thin also
applies to save.country.store=TRUE.

The above model has been estimated with stochastic volatility (SV=TRUE). There are several
reasons why one may want to let the residual variances change over time. First and foremost,
data frequently used in macroeconometrics contain volatile periods, such as severe recessions
and gradual recoveries. Hence accounting for time variation can considerably improve the fit
of the model (Primiceri 2005; Sims and Zha 2006; Dovern et al. 2016; Huber 2016). Second,
the specification implemented in this library nests the homoskedastic case. Note that in case
the model has been estimated with stochastic volatility, the variance covariance matrix that
is used for structural analysis corresponds to the one with median volatilities (calculated over
the sample period) on its diagonal.® The volatilities of the first equation (y) in the euro area
country model can be accessed by:

R> stoch.vol.y<-model.1$cc.results$sig$EA[,"EA.y","EA.y"]

To discard explosive draws, we can compute the eigenvalues of the coefficient matrix F' of
the reduced form of the global model, written in its companion form. Note that this can
only be done once the single models have been estimated and stacked (and hence not directly
built into the MCMC algorithm for the unit-specific submodels). To discard draws that lead
to higher eigenvalues than 1.05, set eigen=1.05. Last, note that since we are also going to
demonstrate forecasting and forecast evaluation, we have set h=8. This implies that the last
8 observations are reserved as a hold-out sample and hence not used for estimation. The
default setting is h=0 which implies to use the full sample period.

3.3. Model diagnostics and output analysis

Having estimated the model, we can summarize the outcome in various ways. As such, we
could invoke the print method print(model.1). For the sake of brevity, we do not show
the lengthy output of the print function in this document. What it does is to print the
arguments submitted to BGVAR along with the model specification for each unit. For the
latter, asterisks indicate weakly exogenous variables, double asterisks exogenous variables and
variables without asterisks the endogenous variables per unit.

The summary method is a more enhanced way to analyze the output. It computes descriptive
statistics like convergence properties of the MCMC chain, serial autocorrelation in the errors
and the average pairwise autocorrelation of cross-unit residuals.

8 Alternatively, one would have T variance covariance matrices and hence T' impulse responses for each
variable. Since the size of the shock (i.e., the residual variance) varies over time, the resulting impulses would
be typically either up- or down-scaled, whereas the shapes of the impulse response functions are not affected.
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R> summary(model.1)

Model Info:
Prior: NG
Nr. of lags: 1
Nr. of posterior draws: 500/1=500
Number of stable posterior draws: 46
Number of countries: 43
Convergence diagnostics
Geweke statistic: 1578 out of 10580 variables' z-values exceed the 1.96 threshold (14.91%)
Global Likelihood: 41425.76
F-test, first order serial autocorrelation of cross-country residuals
Summary statistics:
# p-values in 7%

>0.1 "132" "57.39%"
0.05-0.1 "21" "9.13%"
0.01-0.05 "29" "12.61%"
<0.01 48" "20.87%"

Average pairwise cross-country correlation of country model residuals
Summary statistics:

y Dp rer stir
<0.1 "35 (81.4%)" "43 (100%)" "37 (92.5%)" "42 (100%)"
0.1-0.2 "8 (18.6%)" "0 (0" "3 (7.5%)" "0 (0%)"
0.2-0.5 "0 (0%)" "0 (0%)" "0 (0%)" "0 (0%)"
>0.5 "0 (0" "0 (0%)" "0 (0/" "0 (0%)"
ltir tb
<0.1 "17 (89.47%)" "42 (100%)"
0.1-0.2 "2 (10.53%)" "0 (04"
0.2-0.5 "0 (0%)" "0 (0%)"
>0.5 "0 (0%)" "0 (0%)"

We can now have a closer look at the information provided by summary. The header contains
some basic information about the prior used to estimate the model, how many lags, posterior
draws and countries. The next line shows Geweke’s CD statistic (Geweke 1992), which is
calculated using the coda package. Geweke’s CD assesses practical convergence of the MCMC
algorithm. In a nutshell, the diagnostic is based on a test for equality of the means of the
first and last part of a Markov chain (by default we use the first 10% and the last 50%). If
the samples are drawn from the stationary distribution of the chain, the two means are equal
and Geweke’s statistic has an asymptotically standard normal distribution. The test statistic
is a standard Z-score: the difference between the two sample means divided by its estimated
standard error. The standard error is estimated from the spectral density at zero and so takes
into account any autocorrelation. The test statistic shows that only a small fraction of all
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coefficients did not convergence. Increasing the number of burn-ins can help decreasing this
number further. The statistic can also be calculated by typing conv.diag(model.1).

The next model statistic is the likelihood of the global model. This statistic can be used
for model comparison. Next and to assess, whether there is first order serial autocorrelation
present, we provide the results of a simple F-test. The table shows the share of p-values
that fall into different significance categories. Since the null hypothesis is that of no serial
correlation, we would like to have as many large (> 0.1) p-values as possible. The statistics
show that already with one lag, serial correlation is modest in most equations’ residuals. To
further decrease serial correlation in the errors, one could increase the number of lags via
plag.

The last part of the summary output contains a statistic of cross-unit correlation of (posterior
median) residuals. One assumption of the GVAR framework is that of negligible, cross-unit
correlation of the residuals. Significant correlations prohibit structural and spillover analysis
(Dees, di Mauro, Pesaran, and Smith 2007). In this example, correlation is reasonably small.

Some other useful methods the library offers include the coef (or coefficients as its alias)
methods to extract the k& x k x plag matrix of reduced form coefficients of the global model.
Via the vcov command, we can access the global variance covariance matrix and the logLik
function allows us to gather the global log likelihood.

R> Fmat <- coef(model.1)
R> Smat <- vcov(model.1)
R> 1ik <- logLik(model.1)

Last, we can have a quick look at the in-sample fit using either the posterior median of
the country models’ residuals (global=FALSE) or those of the global solution of the GVAR
(global=TRUE). The in-sample fit can also be extracted by using fitted().

In Figure 1 we show the in-sample fit of the euro area model (global=FALSE).

4. Extensions: Structural analysis and predictions

In this section, we illustrate functions of BGVAR to perform structural analysis and fore-
casting. Further technical details can be found in textbooks such as Kilian and Liitkepohl
(2017).

4.1. Impulse response analysis

One of the main applications of a GVAR is to assess the domestic and international impulse
responses to a structural / identified macroeconomic shock. To do so, we can invoke the
function IRF() which can be used to either calculate generalized impulse response functions
(GIRFs) as in Pesaran and Shin (1998), orthogonalized impulse response functions using
a Cholesky decomposition or impulse response functions given a set of user-specified sign
restrictions.

We provide two examples of the functionality of IRF, one where we make use of the Cholesky
decomposition for identification and one where we apply sign-restrictions to identify the
model. In both schemes we follow the bulk of the GVAR literature (Dees et al. 2007; Eickmeier
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Figure 1: In-sample fit for euro area variables.
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the local identification yields orthogonal residuals in country model i, whereas the remaining
residuals are potentially correlated, which implies that spillovers are of the generalized type.
Identification via sign restrictions follows in the same fashion with the exception that instead
of Qg we use Qo Ry with Ry denoting a kg X kg rotation matrix. The rotation matrix has to

and Ng 2015; Feldkircher and Huber 2016) and identify the model only locally. This trans-
lates into applying the Cholesky decomposition or sign-restrictions only in the unit (country)
of interest. For example, to identify a US monetary policy shock, it suffices to apply the
identification scheme under consideration to ¥¢; (with i = 0 denoting the US).
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More specifically, local identification in model ¢ — omitting the deterministic terms — boils

with Q ! being the lower Cholesky factor of 3g;. To construct the corresponding global
representation of the GVAR with a locally identified shock, we have to set up a matrix Q

/
.,€1) . Hence,
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be sampled either using the algorithm of Rubio-Ramirez, Waggoner, and Zha (2010) or — in
case also zero restrictions are placed — the algorithm of Arias, Rubio-Ramirez, and Waggoner
(2018). BGVAR also allows to place sign restrictions on the cross-section or to examine
responses to a joint / regional shock. This implies that the identity matrices on the diagonal
of Q are replaced by suitable Q; / Q;R; matrices.

We start illustrating the functionality of IRF by using a Cholesky decomposition to identify
a US monetary policy shock. For that purpose, we have to set up a list shock that contains
information about which variable we want to shock shocks$var, in which country shocks$cN,
the forecast horizon (nhor) and whether we want a recursive identification, GIRFs or sign
restrictions (shocks$ident). We can also scale the shock using shocks$scal. In the example
below, we want the impulse responses calculated over 24 time periods (nhor=24) and decide
to store the full posterior of the responses (save.store=TRUE).

R> shocks<-1ist();shocks$var="stir";shocks$cN<-"US"
R> shocks$ident="chol";shocks$scal=-0.5 # 50 bps
R> irf.chol.us.mp<-IRF(obj=model.1,shock=shocks,nhor=24,save.store=TRUE)

Start computing impulse response functions of Bayesian Global Vector Autoregression.

Identification scheme: Short-run identification via Cholesky decomposition.
Structural shock of interest: US.stir.
Start impulse response analysis on single core (46 stable draws in total).

Impulse response analysis took O mins 18 seconds.

Size of IRF object: 4.2 Mb
Needed time for impulse response analysis: O mins 27 seconds.

The results are stored in irf.chol.us.mp$posterior, which is a K x nhor x nr.ofshocks x 7
object. The last slot contains the 50%, 68% and 95% credible intervals along the pos-
terior median. If save.store=TRUE, set of impulse response draws can be accessed by
irf.chol.us.mp$IRF_store.

We can plot the set of all responses of a particular unit by typing:
R> plot(irf.chol.us.mp,resp="US")

The plot shows the posterior median response (solid, black line) along 50% (dark grey) and
68% (light grey) credible intervals.

In the next example, we show how to identify an aggregate demand and supply shock in the US
country model using sign restrictions. A positive shock to aggregate demand is characterized
by a parallel upward movement of output (y) and inflation. The positive supply shocks, by
contrast, leads to a decrease in output. The opposite movements of output hence separate
the two shocks. The signs are summarized in Table 2.

The restrictions in Table 2 can be passed on to IRF by setting up a list. In the example
below we specify sign.constr.eer which has to contain the variable to shock (shock), which
responses to restrict (restrictions), the direction of the restrictions (sign) and the horizon
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Figure 2: Impulse response functions in the US country model (Cholesky identification).

Shock y Dp
Aggregate demand 1 (shock) 1 (restriction)
Aggregate supply | (restriction) 1 (shock)

Table 2: Sign restrictions for the US country model.
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how long these restrictions should hold (rest.horz). The maximum number of rotation
matrices sampled per MCMC draw before we jump to the next draw can be specified by
MaxTries. Increasing the number of restrictions (on the variables or the horizon) will lead
to preciser inference; however, finding a suitable rotation matrix will become substantially
harder in which case we want to increase MaxTries.

R> sign.constr.eer<-list()

R> sign.constr.eer$shockl$shock<-"US.y" #Positive AD Shock, GDP up,

R> sign.constr.eer$shockl$restrictions$resi<-"US.Dp" #infl. and int. rates up
R> sign.constr.eer$shockl$sign<-c(">",">")

R> sign.constr.eer$shockl$rest.horz<-c(1,1)

R> sign.constr.eer$shockl$constr<-c(1,1)# no cc restr., set constr. to 1
R> sign.constr.eer$shockl$scal<-1 #+1), increase

R> sign.constr.eer$shock2$shock<-"US.Dp" # Negative AS shock, infl. up

R> sign.constr.eer$shock2$restrictions$resi<-"US.y"

R> sign.constr.eer$shock2$sign<-c(">","<")

R> sign.constr.eer$shock2$rest.horz<-c(1,1)

R> sign.constr.eer$shock2$constr<-c(1,1) # no cc restr., set constr. to 1
R> sign.constr.eer$shock2$scal<-1 # +1), increase

R> names(sign.constr.eer)<-c("AD","AS")

R> sign.constr.eer$MaxTries<-10000 # maximum number of rotations per draw

With the information from above, we can then proceed by invoking the IRF command to actu-
ally compute the impulse responses. By default, we use one CPU core (multithread=FALSE)
and do not store the full set of responses (save.store=FALSE).

R> irf.sign<-IRF(obj=model.1,nhor=24,sign.constr=sign.constr.eer,save.store=TRUE)

We can infer the number of successful rotation matrices by looking at irf.sign$rot.nr. To
verify the sign restrictions visually, we can plot the respective responses and display them in
Figure 3.

R> plot(irf.sign,resp="US.y",shock.nr=1)

R> plot(irf.sign,resp="US.y",shock.nr=2)

4.2. Generalized forecast error variance decomposition (GFFEVD)

A forecast error variance decomposition indicates the amount of information each variable
contributes to the other variables in the autoregression. It is calculated by examining how
much of the forecast error variance of each of the variables can be explained by shocks to the
other variables. In a system with fully orthogonalized errors, the shares of FEVD sum up to
1. In the GVAR context, however, and since we identify a shock only locally in a particular
unit-specific submodel we typically have a certain degree of cross-unit residual correlation
left. Consequently, the shares of the FEVD typically exceed unity. By contrast, a fully
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Figure 3: Responses of US output to positive aggregate supply and demand shocks.

orthogonalized system would yield shares that sum up to unity but inherits assumptions that
are likely hard to defend for all units contained in the system.

One way of fixing this is to use a generalized forecast error variance decomposition. Like
GIRFs, these are independent of the ordering but, since the shocks are not orthogonalized,
shares of explained forecast error variance exceed unity. Recently, Lanne and Nyberg (2016)
proposed a way of scaling the GFEVDs, which has the convenient property of the shares
summing up to 1. Also, the results are independent of the ordering of the variables in
the system. The Lanne-Nyberg corrected GFEVDs can be calculated using the GFEVD.LN
command. We can either use a running mean (running=TRUE) or the full set of posterior
draws. The latter is computationally very expensive.

R> gfevd.us.mp=gfevd.decomp(obj=model.1,nhor=24,
+ running=TRUE,multithread=TRUE) $GFEVD

Start computing generalized forecast error variance decomposition of Bayesian Global Vecto

Start computation on 8 cores (46 stable draws in total).
Size of IRF object: 9.9 Mb
Needed time for computation: O mins 9 seconds.

R> idx<-which(grepl ("EA.",dimnames (gfevd.us.mp)[[2]]))

R> own<-colSums (gfevd.us.mp["EA.y",idx,])

R> foreign<-colSums(gfevd.us.mp["EA.y",-idx,])

R> par(mar=c(2.5,2.5,5,1))

R> barplot (t(cbind(own,foreign)),legend.text=c("own","foreign"),
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+ args.legend=1ist (cex=2,x = "top", bty="n",ncol=2,
+ inset=c(-0.50,-0.25), xpd = TRUE))
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Figure 4: Shares of GFEVD explained by own and foreign variables.

In case we want to focus on a single unit in which we have fully identified all shocks, we
can compute a simple forecast error variance decomposition (FEVD). This can be done by
using the command fevd.decomp. Since the computation is very time consuming, the FEVDs
are based on the posterior median only (as opposed to calculating FEVDs for each MCMC
draw or using a running mean). In case the underlying shock has been identified via sign
restrictions, the corresponding rotation matrix is the one that fulfills the sign restrictions
at the point estimate of the posterior median of the reduced form coefficients (stored in
irf.obj$struc.obj$Rmed). Alternatively one can submit a rotation matrix using the option
R in fevd.decomp.

4.3. Historical decomposition

A historical decomposition allows to examine the relative importance of structural shocks
in explaining deviations of a time series from its unconditional mean. This can be used to
assess the hypothetical question of how data would have looked like if it was driven only
by a particular structural shock (e.g., monetary policy shock) or a combination of structural
shocks. It can be calculated using the function hd.decomp. The function also allows to
compute the structural error of the model. To save computational time as well as due to
storage limits, we use the point estimate of the posterior median (as opposed to calculating
HDs and the structural error for each draw of the MCMC chain). In case the shock has been
identified via sign restrictions, a rotation matrix has to be selected. If not specified otherwise
(via R), the rotation matrix based on the posterior median of the reduced form coefficients
(irf.obj$struc.obj$Rmed) will be used.

R> HD<-hd.decomp(irf.chol.us.mp)

Start computing historical decomposition of Bayesian Global Vector Autoregression.
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Start computing HDs...
Size of object: 27.8 Mb
Needed time for computation: O mins 4 seconds.

4.4. Unconditional forecasts

Since the GVAR framework was developed to capture cross-sectional dependencies, it can
handle a rich set of dynamics. This can also be useful for forecasting global components
(e.g., global output) or unit-specific variables, controlling for global factors. Pesaran, Schuer-
mann, and Smith (2009) show that the GVAR yields competitive forecasts for a range of
macroeconomic and financial variables. Crespo Cuaresma et al. (2016) demonstrate that
Bayesian shrinkage priors can help improving GVAR forecasts and Dovern et al. (2016) and
Huber (2016) yield evidence for further gains in forecast performance by using GVARs with
stochastic volatility.

To compute forecasts with the BGVAR package, we use the command predict. To be able
to evaluate the forecast, we have to specify the size of the hold-out sample when estimating
the model. Here, model.1 was estimated choosing a hold-out-sample of 8 observations (h=8).
The 8-steps ahead forecasts (fhorz=8) can then be calculated by:

R> fcast <- predict(model.l, fhorz=8,save.store=TRUE)

The values for the forecasts are stored in fcast$fcast which contains also the credible inter-
vals of the predictive posterior distribution. We can evaluate the forecasts with the retained
observations looking at the root mean squared errors (RMSEs) or log-predictive scores (LPS).

R> 1ps.h8 <- 1ps(fcast)
R> rmse.h8 <- rmse(fcast)

The objects 1ps.h8 and rmse.h8 then each contain a 8 x k matrix with the LPS scores /
RMSEs for each variable in the system over the forecast horizon.

Last, we can visualize the forecasts by typing
R> plot(fcast, resp="US.Dp", Cut=8)

with Cut denoting the number of realized data points that should be shown in the plot prior
the forecasts start.

4.5. Conditional forecasts

Similar to structural analysis, it is possible to use conditional forecasts, identified in a unit-
specific submodel. For that purpose, we use the methodology outlined in Waggoner and
Zha (1999) and applied in Feldkircher, Huber, and Moder (2015) in the GVAR context. The
following lines set up a conditional forecast fixing US inflation for 5 periods to its last observed
value in the sample.

19
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Figure 5: Unconditional forecast of US inflation, 8 periods ahead.

R> # matrix with constraints

R> constr <- matrix(NA,nrow=fcast$fhorz,ncol=ncol (model.1$xglobal))

R> colnames(constr) <- colnames (model.1$xglobal)

R> # set "US.Dp" for five periods on its last value

R> constr[1:5,"US.Dp"] <- model.1$xglobal [nrow(model.1$xglobal),"US.Dp"]
R> # compute conditional forecast (hard restriction)

R> cond_fcast <- cond.predict(constr=constr, bgvar.obj=model.1,

+ pred.obj=fcast, constr_sd=NULL)

We could impose the same restrictions as "soft conditions' accounting for uncertainty by
drawing from a Gaussian distribution with the conditional forecast in constr as mean and
standard deviations in the matrix constr_sd of same size as constr.

R> constr_sd <- matrix(NA,nrow=fcast$fhorz,ncol=ncol(model.1$xglobal))
R> colnames(constr_sd) <- colnames(model.1$xglobal)
R> constr_sd[1:5,"US.Dp"] <- 0.001

R> cond_fcast2 <- cond.predict(constr=constr, bgvar.obj=model.l, pred.obj=fcast,

+ constr_sd=constr_sd)

After having computed the conditional forecasts we plot them.

5. Summary and discussion

This article introduces the R package BGVAR. It implements Bayesian global vector au-
toregressions with shrinkage priors and stochastic volatility. The package comes along with
convenience functions such as, print and plot functions that allow to summarize the out-
put, carry out residual and model diagnostics and analyze the in-sample fit of the model.
In addition, the library offers a fully fledged toolkit to compute impulse response functions,
forecast error variance and historical error variance decompositions. Structural shocks can
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Figure 6: Conditional forecast of US inflation, holding inflation constant for 5 periods.

be identified either using a combination of zero and sign restrictions or by applying a simple
Cholesky decomposition. Sign restrictions and shocks can be applied on single units or on the
cross-section. Generalized impulse response functions are implemented as well. The package
also provides functions to conduct and evaluate out-of-sample forecasts as well as conditional
forecasts that allow to set a future path for a particular variable of interest.

Further applications of the BGVAR package are contained in the vignette that accompanies
the package. These feature estimation of the models with different weights, including addi-
tional units to model e.g., the joint monetary policy in the euro area (Feldkircher, Gruber,
and Huber 2020), or the oil price (Cashin, Mohaddes, Raissi, and Raissi 2014), applications
of zero-and sign restrictions coupled with rationality conditions of D’Amico and King (2015),
and conditional and unconditional forecasts. Naturally, all the necessary commands are ex-
plained in the package documentation that also include detailed examples.

The Bayesian treatment of the unit-specific models is a unique feature of BGVAR. This allows
to include large information sets and in turn, typically results in considerable gains in forecast
performance over standard GVAR models. Another stand-alone feature of BGVAR is its
efficient implementation: large parts of the estimation function are written in C++ utilizing
the Repp and ReppArmadillo packages. In addition, both estimation and structural analysis
can be carried out using parallel computing drawing on the doParallel and foreach packages.
This implies that most applications can be carried out on standard desktop computer and in
a reasonable amount of time, which greatly enhances the usability of the BGVAR package.

Computational details

The results in this paper were obtained using R 3.6.3 with the BGVAR 2.0.1 package. R itself
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and all packages used are available from the Comprehensive R Archive Network (CRAN) at
https://CRAN.R-project.org/.
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