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1 Introduction

Amid the deadliest pandemic since the 1918 influenza outbreak and the largest economic

contraction since the Great Depression, policymakers and intellectuals have debated a sup-

posed tradeoff between economic and public health outcomes. On one end of the spectrum,

President Trump on May 6, 2020, asked rhetorically, “Will some people be affected badly?”

and responded “Yes, but we have to get our country opened and we have to get it open

soon.”2 On the other end, New York Governor Cuomo on March 23, 2020, tweeted, “If it’s

public health versus the economy, the only choice is public health.”3 In this paper, however,

I show that it is possible to simultaneously improve public health and economic outcomes,

suggesting that there need not be a tradeoff between economic and health objectives.

To better understand the economic–health tradeoff (or lack thereof), I build a quantitative

model that I use as a laboratory to investigate the effects of various mitigation policies.

Building on the economic-epidemiological model developed by Eichenbaum et al. (2020)

that allows for rich feedback between economic activities and the spread of the virus, I

add three important ingredients: heterogeneity in age, heterogeneity in income and wealth,

and a distinction between inside (or safe) economic activities versus outside (or risky) ones.

Age heterogeneity is a necessary consideration since COVID-19 is particularly dangerous for

older individuals, while mitigation policies that restrict economic activity more adversely

affect working-age individuals. Heterogeneity in income and wealth is necessary in order to

consider the heterogeneous effects of mitigation policies—such as stay-at-home orders—that

may disproportionately harm low-wage workers, who are less likely to work from home, and

low-wealth workers, who lack the resources to weather prolonged time away from work. Since

mitigation policies focus on reducing economic activities that may contribute to spreading

the virus, it is important to allow for inside economic activities that do not, such as working

and consuming from home.

Using the model calibrated to the COVID-19 pandemic, I show that when governments

only use stay-at-home orders (lockdowns) to mitigate the virus, saving more lives leads to

reduced output, generating a tradeoff between lives and the economy. As an alternative,

when the government pays individuals to stay at home (and not work) by offering stay-at-

home subsidies, it is possible to save lives and increase output, relative to no mitigation

policy. In fact, relative to no mitigation policy, a weekly subsidy of $500 can increase output

2See https://www.cnbc.com/2020/05/05/trump-acknowledges-some-coronavirus-deaths-will-result-

from-reopening.html.
3See https://twitter.com/nygovcuomo/status/1242264009342095361?lang=en.
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by nearly 1 percent and reduce deaths by nearly 30 percent. Larger subsidies can reduce

deaths by up to 45 percent without any corresponding reduction in output, relative to no

mitigation policy.

How can a policy that subsidizes individuals to reduce their labor supply lead to increased

output? The increase is the result of two opposing effects. The first is the direct effect : The

subsidy provides an incentive to not work (holding fixed the severity of the pandemic),

which leads to less output. This effect is small for subsidies less than $500 per week because

they only change the behavior of very low-wage workers. The second is the indirect effect :

The mitigation policy attenuates the pandemic, leading to increased economic activity. For

mitigation policies with moderate subsidy amounts, the indirect effect dominates, leading to

better economic and health outcomes. This is possible because the labor from the lowest-

wage workers is almost exclusively “outside,” implying that most of the reduction in hours

contribute to mitigating the severity of the pandemic. Thus, stay-at-home subsidies change

the composition of labor supply: They decrease the hours of low-wage workers (who mostly

cannot work from home) and increase the hours of high-wage workers (who mostly but not

entirely work from home), simultaneously increasing production and mitigating the severity

of the pandemic.

To quantify these effects and analyze optimal mitigation policies, in the first part of the

paper I develop a quantitative heterogeneous agent–life cycle model with a fully integrated

epidemiological model in which economic activities such as outside consumption and outside

labor affect the spread of COVID-19, and conversely, the virus affects economic decisions.

The model also features incomplete markets, endogenous labor with the option to work from

home, and hospital capacity constraints.

The model has two main sources of externalities. The first is static and is generated by

currently infected individuals who do not take into account how their economic activities

may transmit the virus to susceptible individuals. The second externality is dynamic and is

generated by currently susceptible individuals who understand how their economic activities

affect their own probability of getting infected, but do not take into account how those activ-

ities could transmit the virus if they become infected. This latter externality is exacerbated

by the fact that COVID-19 fatality risk varies across age groups.

In the second part of the paper, I describe the model’s calibration. The model is solved at

a biweekly frequency to study the progression of the disease at a high frequency. The model’s

economic parameters are calibrated to match both aggregate and distributional features of

the US economy before the pandemic and the model’s epidemiological and clinical parameters
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are set to match features of COVID-19, such as estimates for the basic reproduction number,

age-specific fatality rates, and the time series of COVID-19 deaths in the United States. I

also show that the model matches key features of the data, both targeted and non-targeted,

and generates time series for relevant aggregate variables such as outside consumption and

labor that match the data reasonably well.

In the third part of the paper, I use the calibrated model to quantify the heterogeneous

responses to the pandemic across individuals.

The first main finding is that, in the absence of mitigation policies, private mit-

igation by individuals is heterogeneous. Individuals voluntarily reduce their outside

consumption and hours worked to reduce their probability of infection. While this is a com-

mon feature in economic-epidemiological models, such as Eichenbaum et al. (2020), the rich

heterogeneity in my model allows for additional new insights. All else equal, private mitiga-

tion is stronger for older individuals, who face higher death rates if infected; for higher-wage

workers, who are more likely to work from home; and for wealthier individuals, who can

afford to sustain prolonged time away from work. This highlights the dynamic external-

ity explained above: Young low wage–low wealth (susceptible) workers engage in too much

economic activity, relative to the social optimum, leading to higher infections and deaths

in the aggregate. Additionally, low-wage workers’ reduction of outside consumption and

hours by less than their high-wage counterparts is qualitatively consistent with the fact that

higher income locations had larger declines in spending and mobility than lower income lo-

cations (Chetty et al. 2020). It is also consistent with high-income individuals reducing their

outside labor more than their low-income counterparts, documented using individual-level

survey data provided by Bick et al. (2020).

These externalities give rise to the possibility of welfare-improving government inter-

ventions. Thus, I also use the calibrated model to compare and contrast the effects of a

stay-at-home order (lockdown) that imposes a cap on outside hours worked—resembling the

various stay-at-home and shelter-in-place orders implemented by local and state governments

in response to the pandemic—and a stay-at-home subsidy that provides a weekly subsidy

for individuals who do not work.

The second main finding is that the stay-at-home subsidy is superior to the stay-

at-home order. Relative to the lockdown policy alone, the subsidy policy alone delivers

a higher average welfare gain while reducing deaths by more and output by less. In the

case of the lockdown, older individuals experience a welfare gain because of the reduced

infection and death probability, but these gains are mostly offset by the welfare losses of
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low-wage workers, who face a large decline in their income. In contrast, the stay-at-home

subsidy can be Pareto improving. This contrast arises because while both policies result

in reduced economic activities of young, low-wage/low-wealth workers, the subsidy policy

provides the incentives to do so and the lockdown does not. Neither policy has a direct effect

on the labor supply of high-wage workers—who choose to work mostly from home during the

pandemic—though they do benefit from a milder pandemic as a result of either mitigation

policy.

In the final part of the paper, I study the optimal configuration of these policies by varying

the stay-at-home subsidy amount from $0 to $1,200 per week, the subsidy duration from 4

to 14 months, and the speed at which the subsidy phases out, with and without lockdowns

of different intensities. In these counterfactual exercises, I assume that the subsidy is fully

funded by a tax on consumption. I utilize high performance computing to solve for over

40,000 transition paths, including sensitivity analyses.

The third main finding is that it is possible to simultaneously improve public

health and economic outcomes. The output-maximizing policy, which involves a weekly

subsidy of $500, a duration of 10 months, and no lockdown, reduces deaths by 27 percent and

increases two-year output by nearly 1 percentage point, compared with no public mitigation.

Furthermore, this policy is Pareto improving. Larger subsidies can reduce deaths by up to

45 percent without a corresponding reduction in output, relative to no public mitigation.

Finally, I find that the best Pareto improving policy—which involves a weekly subsidy of

$700, a duration of 10 months, and no lockdown—reduces deaths by 36 percent, while also

slightly increasing output, relative to no public mitigation.

These mitigation policies are Pareto improving even though the subsidies are fully funded

with a consumption tax. Low-wage workers who choose to stay at home and accept the

subsidy are better off by revealed preference. Higher-wage workers and retired individuals,

who are not directly affected by the subsidy, benefit from the resulting attenuated pandemic

and thus are willing to pay the higher consumption tax that is used to fund the subsidy.

Furthermore, I show that a similar subsidy-and-tax policy is not welfare improving in the

absence of a pandemic. This suggests that the externalities generated during the pandemic

are essential for allowing for Pareto-improving policies.

Related literature. The epidemiological part of the model borrows from the SIR model

of disease transmission, originally developed by Kermack and McKendrick (1927). Atkeson

(2020) was one of the first papers to use the SIR model to study COVID-19 in an economics
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context.4 This literature is now very large. Alvarez et al. (2020), Eichenbaum et al. (2020),

Farboodi et al. (2020), and Jones et al. (2020) study optimal mitigation in SIR models

extended with lockdowns, economic-epidemiological feedback, social distancing, and work

from home with learning-by-doing, respectively. Bodenstein et al. (2020), Baqaee et al.

(2020), and Krueger et al. (2020) study the SIR model with multiple sectors. Birinci et al.

(2020), Garibaldi et al. (2020), and Kapicka and Rupert (2020) incorporate search and

matching frictions into the SIR framework, while Berger et al. (2020), Chari et al. (2020),

and Piguillem and Shi (2020) extend the SIR model to focus on testing and quarantine.

Argente et al. (2020) and Azzimonti et al. (2020) enrich the SIR model with city structure

and contact networks, respectively. Bognanni et al. (2020) develop a SIR model with multiple

regions and estimate it on daily county-level US data and Fernández-Villaverde and Jones

(2020) estimate a SIR model for many cities, states, and countries. Aum et al. (2020) study

the effects of lockdowns in a model with heterogeneous age, skill, and occupation choice and

Brotherhood et al. (2020b) study age-specific testing and quarantine policies.5

This paper is most related to Bairoliya and Imrohoroglu (2020), Glover et al. (2020),

Kaplan et al. (2020), and Nakajima (2020). Bairoliya and Imrohoroglu (2020) study targeted

lockdowns in a life-cycle model with heterogeneity across age, health, income, and wealth.

They find that lockdowns targeted toward individuals with greater risk to COVID-19 can

improve economic outcomes relative to lockdowns that are random. To my knowledge,

Nakajima (2020) is the only other paper that uses a quantitative economic-epidemiological

model that features heterogeneity across age, income, and wealth. Nakajima (2020) focuses

on evaluating US policies, while my paper focuses on characterizing optimal mitigation

policies. Glover et al. (2020) study optimal mitigation policies in a model with three types

of agents: retirees, young workers in the essential sector, and young workers in the non-

essential sector. Relative to their work, my paper features heterogeneity across not only age,

but also income and wealth, and complements Glover et al. (2020) by analyzing mitigation

policies specifically targeting the heterogeneous behavior of these subgroups. Kaplan et al.

(2020) do not model heterogeneity by age, but include heterogeneity across income, wealth,

sector, and occupation. Like my paper, they focus on policies that improve not only average

outcomes but also account for the distributional consequences of mitigation policies. Relative

to Kaplan et al. (2020), my paper addresses the externalities that are generated by the

4The SIR model has been used in economics to study other diseases, such as AIDS (Greenwood et al.

2019; Kremer 1996).
5Given the rapidly expanding literature, this is likely not an exhaustive list. I refer the reader to Brodeur

et al. (2020) and Hur and Jenuwine (2020) for reviews of this literature.
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differential effects of COVID-19 by age. It also explicitly accounts for the value of life so

that individual welfare changes directly reflect economic as well as expected health outcomes

and proposes policies that can improve aggregate outcomes in a Pareto improving sense.

Numerous papers have studied the tradeoff between health and economic outcomes, such

as Aspri et al. (2021), Assenza et al. (2020), Hall et al. (2020), and Mendoza et al. (2020).

Many papers have also questioned the tradeoff between economic and health outcomes as this

paper does. For example, Acemoglu et al. (2020) and Fajgelbaum et al. (2021) show that the

tradeoff can be improved when implementing lockdowns that target heterogeneous groups

and localities, respectively. As another example, Aum et al. (2020) show that implementing

South Korea’s testing and quarantine policies in the United Kingdom would have reduced

both deaths and output losses there. Relative to these papers, my paper focuses on suggesting

Pareto-improving policies in a model with rich heterogeneity that improve both health and

economic objectives.

This paper is structured as follows. The next section presents the model. Section 3 de-

scribes the calibration of the model’s economic and epidemiological parameters and discusses

the model’s fit. In Section 4, the calibrated model is used to investigate the role of private

mitigation and the welfare consequences of the pandemic and mitigation policies. Section 5

discusses the properties of optimal policies. Finally, section 6 concludes.

2 Model

This section presents a model economy used to quantitatively analyze the welfare conse-

quences of COVID-19 and to run policy counterfactuals. The setting combines a heterogeneous-

agent overlapping-generations model with an economic-epidemiological model that resembles

that used in Eichenbaum et al. (2020). The economy is inhabited by overlapping generations

of stochastically aging individuals. Time is discrete and indexed by t = 0, ...,∞. Workers

face idiosyncratic efficiency shocks and borrowing constraints within an incomplete market

setting. I now describe the model in more detail.

2.1 Individuals

Epidemiological block. An individual’s health status is given by h ∈ {S, I, R,D}: Sus-

ceptible agents may contract the virus; infected agents have contracted the virus and may pass

it onto others; and agents that exit the infection can either recover or die. Let H ≡ {S, I, R}
denote the health states of living individuals. Recovered agents are assumed to be immune
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from further infection.6 The transitions between health states build on the widely used SIR

model, originally developed by Kermack and McKendrick (1927).7 Susceptible individuals

get infected with probability πIt, which depends on individual outside consumption and out-

side labor (co, `o) and the aggregate measure of infected individuals (µIt) and their outside

consumption and outside labor (Co
It, L

o
It).

8 Formally,

πIt(co, `o;Zt) = βccoC
o
It + β``oL

o
It + (βe + εt)µIt, (1)

where εt captures time-varying transmissibility (e.g. seasonal factors) and Zt ≡ {µIt, Co
It, L

o
It, εt}.

This framework allows the virus to be contracted from consumption-related activities, labor-

related activities, and from other settings. It also allows a feedback between disease pro-

gression and economic activities as in Eichenbaum et al. (2020), Glover et al. (2020), and

Jones et al. (2020). Relative to these papers, however, the richer heterogeneity in this model

allows for infection probabilities to be very different across the distribution.

Infected individuals exit the infection with probability πXt, and upon exit, they recover

with probability 1 − δjt(µIt) and die with probability δjt(µIt), where j is the individual’s

age. The fatality rate depends on the individual’s age and on the aggregate measure of

infected individuals, reflecting hospital capacity constraints. Finally, susceptible individuals

may transition directly to the recovered state with probability πjRt, for example, by a vaccine

when it becomes available. Then the transition matrix between health states is given by

Πjhh′t(c0, `0;Zt) = (2)

S I R D

S 1− πIt(c0, `0;Zt)− πjRt πIt(c0, `0;Zt) πjRt 0

I 0 1− πXt πXt(1− δjt(Zt)) πXtδjt(Zt)

R 0 0 1 0

D 0 0 0 1

.

6One could easily extend the model to have shorter durations of immunity.
7A popular variant of the SIR model is the SEIR model, which adds a category of individuals that have

been exposed to the virus, and may or may not be infectious without symptoms. This distinction is more

relevant for studying disease dynamics at an even higher frequency than in this paper, and particularly for

those that study testing and quarantine such as Berger et al. (2020).
8The distinction between inside and outside activities is based on whether or not there is infection risk

and not based on physical location.
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Economic block. Individuals of age j ∈ J ≡ {1, 2, .., J} face conditional aging proba-

bilities given by {ψj}, with mandatory retirement at age j = JR.9 Workers (j < JR) face

uninsurable wage risk: Each period, workers receive idiosyncratic efficiency shocks ε ∈ E,

which follow a Markov process, with transition matrix Γ. Their labor income is given by

wtηjhε`, where wt is the efficiency wage, ηjh is the health- and age-profile of efficiency units,

and ` is total hours worked. Workers may choose to work up to a fraction θ̄j(ε) of their labor

hours from home, where θ̄j(ε) is allowed to vary by age and efficiency. Retirees (j ≥ JR) are

assumed to receive a fixed income of s each period.10 Retirement income is funded by taxes

on labor income, τ`t. Individuals can accumulate non-contingent assets k, which deliver a

net return of rt.

Mitigation policies. Individuals take as given a sequence of taxes, subsidies, and other

restrictions on quantities that are designed to mitigate the severity of the pandemic.

1. Stay-at-home subsidies: Individuals receive a subsidy of Tt each period in which they

supply zero hours of total labor.

2. Stay-at-home order (lockdown): Lockdowns restrict the quantity of outside labor to at

most ¯̀
ot.

3. Taxes: In the baseline model, I consider taxes on consumption τct. These taxes serve

two purposes: a) They can be used to fund the stay-at-home subsidies and b) they

reduce economic activities that contribute to the spread of the virus. In extensions

of the model, I also consider taxes on labor income and Pigouvian taxes that directly

target outside consumption.

Individuals’ recursive problem. Given the sequence of prices {rt}, consumption taxes

{τct}, and aggregate states {Zt}, a retiree with age j ≥ JR, wealth k, and health h in period

9Given that the model will be used to analyze disease progression at a high (bi-weekly) frequency, the

assumption of stochastic aging greatly reduces the state space and computational burden.
10This can readily be extended to depend on lifetime earnings as in Hur (2018).
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t chooses inside and outside consumption {ci, co} and savings k′ to solve:

vRjt(k, h) = max
ci,co,k′≥0

u(ci, co) + ū (3)

+ βψj
∑
h′∈H

Πjhh′t(co, 0;Zt)v
R
j+1,t+1(k′, h′)

+ β(1− ψj)
∑
h′∈H

Πjhh′t(co, 0;Zt)v
R
j,t+1(k′, h′)

s.t. (1 + τct)c+ k′ ≤ s+ k(1 + rt)

where β is the time discount factor, u(ci, co) is the utility derived from inside and outside

consumption, c = ci + co is total consumption, and ū governs the flow value of being alive.

Solving this yields retiree policy functions {cRijt(k, h), cRojt(k, h), kRjt
′
(k, h)}j≥JR for inside and

outside consumption and savings, respectively. I normalize the value of death to zero and

set vR
J̄+1,t

= 0. Thus, agents in the last stage of life (j = J̄) may die due to stochastic aging

(with probability ψj) and, if infected, because of the virus (with probability ΠjIDt).

Given the sequence of prices {wt, rt}, fiscal and mitigation policies {τct, τ`t, Tt, ¯̀
ot}, and

aggregate states {Zt}, a worker with age j < JR, wealth k, efficiency ε, and health h in

period t chooses inside and outside consumption {ci, co}, inside and outside labor {`i, `o},
and savings k′ to solve:

vjt(k, ε, h) = max
ci,co,`i,`o,k′≥0

u(ci, co)− g(`) + ū (4)

+ βψj
∑
ε′∈E

∑
h′∈H

Γεε′Πjhh′t(co, `o;Zt)vj+1,t+1(k′, ε′, h′)

+ β(1− ψj)
∑
ε′∈E

∑
h′∈H

Γεε′Πjhh′t(co, `o;Zt)vj,t+1(k′, ε′, h′)

s.t. (1 + τct)c+ k′ ≤ wtη
h
j (1− τ`t)ε`+ k(1 + rt) + Tt(`)

`i ≤ θ̄j(ε)`, `o ≤ ¯̀
ot

where ` = `i + `o is total labor, g(`) is the disutility of labor, and vjt(k, ε, h) = vRjt(k, h)

for j ≥ JR and ε ∈ E. Solving this yields worker policy functions {cijt(k, ε, h), cojt(k, ε, h),

`ijt(k, ε, h), `ojt(k, ε, h), k′jt(k, ε, h)}j<JR for inside and outside consumption, inside and out-

side labor, and savings, respectively. Additionally, let cijt(k, ε, h) = cRijt(k, h), cojt(k, ε, h) =

cRojt(k, h), and k′jt(k, ε, h) = kRjt
′
(k, h) for j ≥ JR and ε ∈ E.
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2.2 Production

A representative firm hires labor (Lft) and capital (Kft) to produce according to

Yft = Kα
ftL

1−α
ft . (5)

Taking prices as given, the firm solves

max
Lft,Kft

Yft − wtLft − (rt + δ)Kft, (6)

where δ is the deprecation rate of capital. Optimality conditions are given by

wt = (1− α)Kα
ftL
−α
ft , (7)

rt = αKα−1
ft L1−α

ft − δ. (8)

2.3 Equilibrium

We are ultimately interested in studying disease dynamics and mitigation policies along

a transition path. However, because most of the model parameters are calibrated to an

initial pre-pandemic steady state, it is useful to first define a stationary equilibrium in which

µI = 0. In this case, aggregate outside consumption and outside labor of infected individuals

is trivially zero. Furthermore, if we set the time-varying transmissibility parameter εt = 0,

then Z = (0, 0, 0, 0) and Π is the identity matrix (with no vaccine). I set aside all mitigation

policies by assuming that τc = 0 and T = 0 and setting ¯̀
o sufficiently large such that it

is not binding for any individual. Finally, retirement income is financed by labor income

taxes, and accidental bequests from death are distributed to newborns each period. Define

the state space over wealth, efficiency, and health as X = K × E × H and let a σ-algebra

over X be defined by the Borel sets, B, on X.

Definition. A stationary recursive competitive equilibrium, given fiscal policies {τ`, s}, is a

set of value functions {vj}j∈J , policy functions {cij, coj, `ij, `oj, k′j}j∈J , prices {w, r}, producer

plans {Yf , Lf , Kf}, the distribution of newborns ω, and invariant measures {µj}j∈J such that:

1. Given prices and fiscal policies, retirees and workers solve (3) and (4), respectively.

2. Given prices, firms solve (6).

3. Markets clear:

(a) Yf =
∫
X

∑
j∈J

(cij(k, ε, h) + coj(k, ε, h) + δk) dµj(k, ε, h),
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(b) Lf =
∫
X

∑
j<JR

ηjhε (`ij(k, ε, h) + `oj(k, ε, h)) dµj(k, ε, h),

(c) Kf =
∫
X

∑
j∈J
kdµj(k, ε, h).

4. The government budget constraint holds:

τ`w

∫
X

∑
j<JR

ηjhε (`ij(k, ε, h) + `oj(k, ε, h)) dµj(k, ε, h) = s

∫
X

∑
j≥JR

dµj(k, ε, h). (9)

5. For any subset (K, E ,H) ∈ B, the invariant measure µj satisfies, for j > 1,

µj(K, E ,H) =

∫
X

ψj−11{k′j−1(k,ε,h)∈K}
∑
ε′∈E

∑
h′∈H

Γεε′Πjhh′dµj−1(k, ε, h) (10)

+

∫
X

(1− ψj)1{k′j(k,ε,h)∈K}
∑
ε′∈E

∑
h′∈H

Γεε′Πjhh′dµj(k, ε, h)

and

µ1(K, E ,H) =

∫
X

(1− ψ1)1{k′1(k,ε,h)∈K}
∑
ε′∈E

∑
h′∈H

Γεε′Πjhh′dµ1(k, ε, h) + ω(K, E ,H). (11)

6. The newborn distribution satisfies:∫
X

kdω(k, ε, h) =

∫
X

ψJ̄k
′
J̄(k, ε, h)dµJ̄(k, ε, h). (12)

Note that I assume that inside and outside consumption and investment use the same

good. Similarly, note that inside and outside labor are perfect substitutes in production. I

discuss the implications of these and other assumptions in Section 5.

3 Calibration

In this section, I begin by calibrating some of the model’s parameters to the pre-pandemic

steady state and discuss how other parameters that require solving for the transition path

are set. I then discuss the model’s fit by examining both targeted and non-targeted moments

in the steady state and during the course of the pandemic. The parameters are summarized

in Tables 1 and 2. See Appendix C for details regarding the computation and calibration

strategy.
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3.1 Calibration of the pre-pandemic steady state

Environment and demographics. A period in the model is two weeks. The aggregate

measure of individuals in the steady state economy is normalized to one. The number of age

cohorts, J , is set to 3, so that j = 1 corresponds to ages 25–44 (young), j = 2 corresponds

to ages 45–64 (middle), and j = JR = J̄ = 3 corresponds to ages 65+ (retired). The worker

aging probability ψ1 = ψ2 is set so that workers spend, on average, 20 years in each age

cohort. The aging (death) probability of retired individuals ψ3 is set so that the retired

account for 20 percent of the 25+ population. The wealth of deceased individuals is given

to a fraction of newborn individuals each period. Specifically, 85 percent of individuals are

born with zero wealth, whereas 15 percent of individuals are endowed with 28 times annual

per capita consumption.11

Preferences. The utility function is assumed to take the form:

u(ci, co) =
(cγi c

1−γ
o )

1−σ

1− σ
, (13)

which exhibits constant relative risk aversion over a Cobb-Douglas aggregation of inside and

outside consumption. There are two points worth discussing. First, the distinction between

inside and outside consumption in the model is purely based on whether there is risk of

infection. There is not such a clear distinction in the data. In order to pin down γ, I assume

that household expenditures on goods and housing and utility services represent expenditures

that are relatively safe, which constitute 51 percent of total household expenditures on goods

and services (2019, Bureau of Economic Analysis). Accordingly, γ is set to 0.51 to match this

share. I then show in Appendix D that the main findings of the paper are robust to alternative

values of this parameter. Second, I am assuming a unitary elasticity of substitution between

inside and outside consumption.12 I show later in this section that the model generates

11This is based on the fact that 85 percent of households whose heads are between the ages of 21 and 25

had a cumulative net worth of zero in 2016 (Survey of Consumer Finances). The calibrated value of the

endowment is rather large. This issue could be addressed by increasing the number of retired cohorts so that

retired individuals draw down more wealth before dying. In sensitivity analysis (Appendix D), I show that

the main results are robust to alternatively assuming that a deceased household is replaced by a newborn

with the same efficiency and wealth.
12A unitary elasticity is somewhat consistent with estimates for the elasticity of substitution between

market and home goods, which range between 0.8 (Duernecker and Herrendorf 2018) and 2.2 (Dotsey et al.

2014). However, these estimates are only partially informative since many market goods can be purchased

online and consumed safely at home (e.g. consumer electronics). Boppart et al. (2020) also use a unitary

elasticity of substitution between inside and outside consumption.
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reasonable time series of total and outside consumption in response to the pandemic.

The disutility from labor is given by:

g(`) = ϕ
`1+ν

1 + ν
+ 1{`=0}ũ, (14)

where ũ represents the disutility from not working (e.g. administrative costs, stigma, or any

other costs not modeled explicitly here).13 I set ũ so that not working is associated with

a 5 percent reduction in the flow value of life. This generates a 15 percent reduction in

employment during the transition path described in Section 3.2, matching the decline in the

data (2020, Bureau of Labor Statistics).14 The parameter that governs the disutility from

labor, ϕ, is set so that the model generates an average of 34.4 hours worked per week (2019,

Bureau of Economic Analysis).

The time discount factor β is chosen so that the model replicates the US net-worth-to-

GDP ratio (2010–2019, Board of Governors). Finally, I set risk aversion, σ, to be 2, and the

Frisch elasticity, 1/ν, to be 0.5—commonly used values in the literature (for example, see

Heathcote et al. 2014 and Storesletten et al. 2004 for risk aversion and Chetty et al. 2011

and Kaplan et al. 2018 for the Frisch elasticity).

Technology and income. The capital elasticity in the production function, α, is set to

match the aggregate capital income share of 0.36. The labor income tax τ` and retirement

income s are chosen so that retirement income is 30 percent of average labor earnings in the

model and the government budget constraint is satisfied. The depreciation rate of capital,

δ, is set at an annualized rate of 5 percent per year, a standard value used in the literature

(for example, see Kehoe et al. 2018 and Chari et al. 2007). The stay-at-home subsidy and

consumption tax are set to zero in the pre-pandemic steady state.

The age-profile of efficiency units, ηjS, is normalized to one for susceptible young workers

and susceptible middle-age workers are assumed to be 35 percent more efficient, to match

the wage ratio of middle-age to young workers in the data (2014, Panel Survey of Income

Dynamics). I assume that the efficiencies of recovered individuals are the same as those of

susceptible individuals, ηjR = ηjS.15 The fraction of labor that can be done from home,

13The fixed cost operates similarly to other settings with extensive margins in labor supply (e.g. French

and Jones 2011) and stock market participation (e.g. Allen and Gale 1994).
14Sensitivity analysis (Appendix D) demonstrates that the main results are robust to a lower utility cost,

which generates a higher reduction in employment that is closer to the 19 percent reduction reported by

Bick et al. (2020) based on survey data.
15It is too early to conclude about the potentially long-lasting consequences of COVID-19. That said,

these assumptions can easily be modified if evidence dictates.
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Table 1: Calibration of economic parameters

Parameters Values Targets / Source

Discount factor, annualized, β 0.97 Wealth-to-GDP: 4.8

Risk aversion, σ 2 Heathcote et al. (2014)

Inside consumption share, γ 0.51 Expenditure share

Disutility from labor, ϕ 20.55 Average weekly hours: 34.4

Frisch elasticity, 1/ν 0.50 Chetty et al. (2011)

Death probability, annualized, ψ3 0.10 65+ share of population 25+: 0.2

Aging probability, annualized, ψ1 = ψ2 0.05 Expected duration: 20 years

Efficiency units, η1S = η1R 1.00 Wage ratio of age 45-64 workers

η2S = η2R 1.35 to age 25-44 workers

Factor elasticity, α 0.36 Capital share

Capital depreciation, annualized, δ 0.05 Kehoe et al. (2018)

Retirement income, s 1.02 30% of average earnings per worker

Labor income tax, τ` 0.07 Government budget constraint

Persistence, annual, ρε 0.94 Author estimates

Standard deviation, annual, συ 0.19 Author estimates

θ̄j(ε), is set to match the average share of jobs that can be done from home by occupations

grouped into five wage bins, computed based on Dingel and Neiman (2020).16 Thus, θ̄j(ε)

is set to 0.03 for individuals in the bottom 20 percent of the wage distribution, 0.21 for the

second quintile, 0.32 for the third quintile, 0.47 for the fourth quintile, and 0.66 for those in

the top 20 percent of the wage distribution, where the wage is defined as wηjSε.

The labor efficiency shocks ε are assumed to follow an order-one autoregressive process

as follows:

log εt = ρε log εt−1 + υt, υt ∼ N
(
0, σ2

υ

)
. (15)

This process is estimated using annual wages constructed from the PSID to find a persistence

of ρε = 0.94 and a standard deviation of συ = 0.19.17 These parameters are then converted

to a higher frequency, following Krueger et al. (2016). The process is approximated with

a seven-state Markov process using the Rouwenhurst procedure described in Kopecky and

Suen (2010).

16See Appendix A.1 for details on data construction.
17The wages are constructed similarly to Floden and Lindé (2001) and the sample selection and estimation

procedures closely follow Krueger et al. (2016). See Appendix A.2 for details on the wage process estimation.
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Clinical and epidemiological parameters. The infection exit rate, πX , is set to 14/18 so

that the expected duration of the infection is 18 days, as in Atkeson (2020) and Eichenbaum

et al. (2020). For the unconstrained case fatality rates, I use data from South Korea’s

Ministry of Health and Welfare (accessed August 4, 2020) to compute a fatality rate of 8.47

percent for ages 65–84, 0.85 percent for ages 45–64, and 0.08 percent for ages 25–44. I use

South Korean data because testing has been abundant since the outbreak began18, the in-

sample peak in infections was early enough that case fatality rates are not biased due to lags

in deaths, and hospitals were not overwhelmed, as the number of active cases never exceeded

0.015 percent of the population.19

Next, I discuss the hospital capacity constraints and how they affect death rates. Fol-

lowing Piguillem and Shi (2020), I use the functional form

δj(µI) = δuj min

{
1,
κ

µI

}
+ δcj max

{
0, 1− κ

µI

}
(16)

where δuj and δcj denote the unconstrained and untreated death rates, respectively, and

κ denotes the measure of infected individuals that can be treated without the constraint

binding. According to the American Hospital Association, there are roughly 924,000 hospital

beds in the US, corresponding to 0.28 percent of the population.20 Since not all infected

cases require hospitalization, I use a generous capacity constraint, κ, of 1 percent. The

unconstrained death rates, δuj , are set to match those documented for South Korea, and the

untreated death rates are set as δcj = 2δuj , following Piguillem and Shi (2020). I later show

that infections peak at 1.4 percent, implying a 27.5 percent increase in fatality rates at the

peak (e.g. the middle-age fatality rate increases from 0.85 percent to 1.08 percent).21

There is some uncertainty regarding the basic reproduction number (R0), which corre-

sponds to the number of people to whom the average infected person passes the disease

absent mitigation efforts. Most estimates range between 2.2 and 3.1 (see for example, Wang

et al. 2020 and Fauci et al. 2020), so I use a conservative estimate of 2.2.22 By aggregating

18For example, see https://www.bloomberg.com/news/articles/2020-04-18/seoul-s-full-cafes-apple-store-

lines-show-mass-testing-success. Aum et al. (2020) also discuss the success of early testing and tracing

efforts in South Korea.
19Prior to the second wave in December of 2020, active infection cases in South Korea had peaked at 7,362

on March 11, 2020, according to https://www.worldometers.info/coronavirus/country/south-korea/.
20See https://www.aha.org/statistics/fast-facts-us-hospitals.
21In sensitivity analysis (Appendix D), I show that the main findings are robust to assuming that there is

no capacity constraint.
22It is worth noting that more recent Delta and Omicron variants are more infectious than the original

strain. In sensitivity analysis (Appendix D), I show that the main results are robust to a higher value for

the basic reproduction number.
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equation (1) over the measure of susceptible agents and applying the law of large numbers,

I obtain the expression for new infections in a given period:

Tt = βcC
o
StC

o
It + β`L

o
StL

o
It + (βe + εt)µStµIt, (17)

where Co
ht and Loht denote aggregate outside consumption and labor, respectively, of indi-

viduals with health h in period t. In the pre-pandemic steady state, workers are indifferent

between working outside or working from home. Thus, I assume that all steady state work is

done outside, which can be obtained by introducing an arbitrarily small difference in either

efficiency or preference in favor of working outside. By substituting LS/µS = LI/µI and

Co
S/µS = Co

I /µI , taking µS → 1, and setting εt = 0, the basic reproduction number is given

by

R0 =
βc(C

o
S)2 + β`(L

o
S)2 + βe

πX
. (18)

Thus, given values for the basic reproduction number, R0, the exit rate, πX , the steady state

values for aggregate outside consumption and labor, Co
S and LoS, we need to assign values to

the fractions of new infections occurring through consumption activities, work activities, and

other settings to pin down the values for βc, β`, and βe. Evidence on how COVID-19 is trans-

mitted is thus far limited, but in the case of other infectious diseases, Ferguson et al. (2006)

report that 70 percent of transmissions occur outside of the household. In another study

that investigates the transmission channels of infectious diseases, Mossong et al. (2008) find

that 35 percent of high-intensity contacts occur in workplaces and schools. Roughly based

on these studies, I assume that one-third of initial transmission occurs through consumption

activities, one-third through labor activities, and one-third through other channels.

I set the flow value of life ū so that the model generates an average value of statistical

life (VSL) of $6.9 million in 2019—the value used by U.S. Federal Emergency Management

Agency (2019)—corresponding to 4,096 times biweekly consumption per capita in 2019.23

See Appendix C.1.1 for the derivation of VSL in the model.

Next, I discuss how the efficiency units change when an individual gets infected. It

is reasonable to expect that those with no symptoms would suffer little, if any, efficiency

loss, whereas those that experience very severe symptoms would suffer something close to a

100 percent efficiency loss. Without sufficient evidence regarding how a COVID-19 infection

affects labor efficiency, I assume that infected individuals suffer a 50 percent loss in efficiency.

23As a robustness check, I use a higher VSL of $7.4 million in 2006—the value recommended by U.S.

Environmental Protection Agency (2020)—or 6,226 times biweekly consumption per capita (see Appendix

D). The main results of the paper are robust to this higher value.
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Table 2: Clinical and epidemiological parameters

Parameters Values Targets / Source

Infection exit rate, πX 0.78 Expected infection duration: 18 days

Unconstrained death rate, Fatality rates in South Korea

δu1 × 100 0.08

δu2 × 100 0.85

δu3 × 100 8.47

Untreated death rate, δcj 2δuj Piguillem and Shi (2020)

Hospital capacity, κ 0.01 See discussion above

Transmission parameters, Basic reproduction number, R0 = 2.2,

consumption-related, βc 0.23 and initial transmission equally

labor-related, β` 9.46 likely through three channels

other, βe 0.57

Flow value of life, ū 17.31 Value of statistical life: $6.9 million (2019)

Disutility from not working, ũ 0.82 15 percent reduction in employment

during pandemic

Efficiency units, ηjI 0.5ηjS See discussion above

Sensitivity analysis in Appendix D reveals that the main results are robust to assuming,

alternatively, a 30 percent loss in efficiency.

3.2 Calibration of the transition path

In this subsection, I start by discussing the initial conditions, the timing of a vaccine and

cure, and transition path assumptions. I then discuss how the mitigation policies are set to

align with mitigation policies implemented in the United States. Finally, I discuss how the

time-varying transmissibility parameter εt is set.

Initial conditions and timeline. The economy starts in the pre-pandemic steady state

in period t = 0. Then, in period t = 1 (March 27, 2020), the virus is introduced into the

model so that 0.5 percent of the population is infected.24 I assume that a vaccine becomes

available in t = 20 (December 18, 2020), after which individuals over the age of 45 transit

24In the US, there were 17,982 COVID-19-related deaths during the 14-day period from March 27, 2020,

to April 9, 2020, according to https://www.worldometers.info/coronavirus/country/us/. An initial infected

rate of 0.5 percent generates deaths in the model (t = 1) that are consistent with the data.
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to the recovered state with a probability of 10 percent every two weeks (5 percent for young

individuals). This implies an expected wait time of 20 and 40 weeks for older and younger

individuals, respectively. I assume that a cure is available in t = t̂ ≡ 53 (March 25, 2022),

when all remaining susceptible and infected individuals transit to the recovered state with

probability 1.25

While the steady state analysis is done in general equilibrium, the transition path analy-

sis is done in partial equilibrium. In other words, factor prices (w, r), retirement income (s),

and the labor income tax (τ`) are fixed at their pre-pandemic steady state levels.26 Further-

more, the measure of newborns and their wealth distribution is also assumed to be constant

throughout the transition. I provide a formal definition of the equilibrium with transition in

Appendix B.

Mitigation policies. While counterfactual mitigation policies are the focus of the next

sections, here they need to be specified to closely mimic mitigation policies implemented in

the United States for calibration purposes. I focus on the set of policies implemented at the

federal, state, and local levels that are relevant for virus mitigation. For example, I do not

consider tax credit payments that may have been important for distributional consequences

but otherwise not directly related to mitigating the virus.

The stay-at-home subsidy most closely resembles the $600 supplement to unemployment

benefits (Federal Pandemic Unemployment Compensation, FPUC) that was in effect March

27, 2020, to July 27, 2020, and the $300 supplement in effect between December 26, 2020,

and September 6, 2021 (Consolidated Appropriations Act and American Rescue Plan Act).

While the stay-at-home subsidy has similarities to the FPUC unemployment supplement,

one important difference is that unemployment benefits typically require involuntary unem-

ployment, while the model subsidy is based on voluntary nonemployment. However, this

difference is mitigated by the Pandemic Unemployment Act (PUA), which expanded the el-

igibility guidelines to include any individual out of work because of the pandemic, including

25This of course is counterfactual. However, the focus of this paper is optimal mitigation policies in the

first stage of the pandemic—before vaccines became widely available in early 2021. There are many other

papers that focus on the second stage of the pandemic (see, for example, Glover et al. 2022).
26While these assumptions have been made for computational tractability, there are also other considera-

tions. For instance, Social Security benefits and contribution rates do not typically respond to recessions at

a high frequency (and did not during the pandemic). One could also make the argument that wages did not

change much during the first phase of the pandemic (before vaccines became widely available in early 2021)

after accounting for composition effects (for example, see Rouse and Gimbel 2021).
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Figure 1: Mitigation policies
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self-employed and gig workers, whose labor supply decisions are likely more voluntary.27

Based on the timeline of the FPUC, the model subsidy of $600 per week begins at t = 1

(March 27, 2020), with a gradual reduction after t = 9 (July 30, 2020). There is a second

subsidy of $300, which begins at t = 21 (January 1, 2021) and ends at t = 38 (September

9, 2021). Figure 1 (panel a) plots the model subsidy amount over time. For the purpose

of calibration, I set the consumption tax τc = 0, since there was no associated tax increase

in the data, implying that the government budget constraint does not hold. In contrast, in

the counterfactual exercises in Section 5, I use the consumption tax as a means to fund the

stay-at-home subsidy.

The model stay-at-home order (lockdown) most closely resembles the local- and state-

level stay-at-home orders, which began in most states between March 23 and April 1. The

duration and intensity varied substantially across locations and many areas began reopening

in early May. One caveat is that the stay-at-home orders affected workers differently based

on whether their place of work was essential (grocery stores) or social-intensive (restaurants

and bars). By abstracting from sectors and occupations, the model cannot speak directly

to these differences. However, to the extent that social-intensive occupations tend to have

lower wages as documented by Kaplan et al. (2020), the model indirectly captures these

differences since the lockdown disproportionately affects lower-wage individuals.

The model lockdown is implemented by restricting outside labor supply to less than ¯̀o

= 0.13, equivalent to 15 hours per week, beginning at t = 1 (March 27, 2020), and gradually

27To a lesser extent, the subsidy is also related to the Paycheck Protection Program (PPP), part of which

was used by firms adversely impacted by the pandemic and mitigation policies to pay furloughed workers.
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phasing out after t = 4 (May 8, 2020). In equilibrium, the cap is no longer binding for any

individual after August 28, 2020. Figure 1 shows the time series of both the stay-at-home

subsidy and the hours cap implemented in the model. Since the lockdowns implemented

in the US differed across sectors and localities in scope and intensity, the model lockdown

should roughly be interpreted as capturing an average effect.

Time-varying transmissibility. Finally, I discuss how the time-varying parameter that

governs the virus transmission outside of consumption and work, εt, is set.

Because the progression of the pandemic in the data is a function of activities endogenous

in the model and a host of other factors that are not in the model, I use the time-varying

parameter to parsimoniously capture all of those other factors, which allows the model to

generate exactly the time series of deaths observed in the United States. I use the first 12

months of data on biweekly deaths in the United States (March 27, 2020–March 25, 2021) to

calibrate εt.
28 This corresponds to the first phase of the pandemic (before vaccines become

widely available), which is the period of focus in this paper. I then set εt = 0 for t ≥ 27

(after March 26, 2021). Figure 2 plots the calibrated path of βe + εt, which governs the

transmission of the virus other than through outside consumption and labor. It shows that

the fitted εt is consistent with a) a seasonal variation in which the transmissibility declines

during the summer months and b) changes in behavior not in the model such as increased

transmission around holidays such as July 4, 2020.29

A final note about the transition path: While susceptible workers optimally prefer to

work inside such that `i = θ̄j(ε)`, infected and recovered workers are indifferent about the

composition of their hours. Thus, I assume that infected workers also prefer to work inside

such that `i = θ̄j(ε)`, and recovered workers choose their hours to be entirely outside such

that `i = 0.

28See Appendix C.2 for details on the computation of the transition path, including how the path of εt is

found.
29See, for example, Grassly and Fraser (2006) for a discussion of what causes seasonality in infectious

diseases. One factor that may contribute to higher transmissibility in the winter is lower humidity, which

increases the survival of the influenza virus in air. Another factor is seasonal changes in human behavior,

such as those affected by summer vacation as well as a greater likelihood of family gatherings over the

November and December holidays.
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Figure 2: Time-varying transmissibility
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3.3 Model validity

In this subsection, I investigate the model’s fit by examining both targeted and non-targeted

moments in the steady state and during the course of the pandemic. The goal is to assess

whether we can plausibly use the model as a laboratory to run counterfactual experiments.

Pre-pandemic steady state. Table 3 reports some steady state moments that illustrate

the calibration’s overall performance. In addition to successfully matching the targeted

moments, the model also generates non-targeted moments that are reasonably close to the

data. For example, the model generates a gini for disposable labor income that is very

close to that in the data and a consumption gini that is also reasonably close. The model

balances a wealth gini that is somewhat lower than in the data with a 75-to-25 ratio that

is somewhat higher than in the data. There are two points to make regarding the wealth

distribution. On the one hand, the model inherits the limitations in generating a sufficiently

skewed wealth distribution that are common in standard incomplete market models. On the

other hand, for the context of this paper, this limitation is mitigated by the fact that the

behavior of wealthy individuals in this class of models is not very different from those of

extremely wealthy individuals.

Transition path with pandemic. So far, we have confirmed that the model generates

a reasonable starting point for the pandemic along the relevant margins. Another test of

the model lies in its performance along the transition path when COVID-19 is introduced.

Figure 3, which plots the time series of relevant variables for the model and data, shows that
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Table 3: Targeted and non-targeted moments

Data Model

Targeted moments

wealth/GDP 4.8 4.8

average weekly hours 34.4 34.4

average VSL (multiples of annual consumption per capita) 238.8 238.8

Non-targeted moments

disposable earnings gini 0.37 0.36

consumption gini 0.33 0.25

wealth gini 0.74 0.59

wealth p75/p25 11.9 13.2

Notes: Statistics related to the disposable earnings, consumption, and wealth distribution in the data are

computed on a per capita basis. See Appendix A.1 for details.

the model performs reasonably well in this dimension.

Panel (a) of Figure 3 shows that output contracts sharply in the second quarter with a

strong recovery in the third quarter (as in the data). From there, the model deviates slightly

from the data in generating small declines in output for two consecutive quarters before

rebounding in the second quarter of 2021 whereas the recovery in the data is smoother.

Panel (b) shows that consumption contracts less sharply relative to the data in the second

quarter and rebounds less strongly in the third quarter.30 Model consumption stalls in

the fourth quarter and begins recovering in early 2021, as in the data. Overall, the model

generates dynamics for aggregate output and consumption that are reasonably similar to the

data.

Panels (c) and (d) of Figure 3 show the time series of outside consumption and labor.

For each of these series, there is not a perfect data counterpart because of data limitations.

Having said that, the model-generated series for outside consumption lies between the data

series for Google mobility (retail and recreation) and OpenTable reservations. These are

imperfect yet informative measures of consumption activities that are risky in the sense that

they involve leaving the house and potentially getting the disease from or passing it onto

30One reason that model consumption declines less sharply than in the data may be that the model

lockdown is implemented as a cap on outside hours, without a corresponding cap on outside consumption.

In reality, business closures implied less opportunities for both outside labor and outside consumption.
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Figure 3: Aggregates during the pandemic
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(g) Share of deaths, 65+
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Notes: Both output and consumption in the data are linearly detrended at 2 percent per year.

Outside consumption and hours in the model are relative to the pre-pandemic steady state. Google

mobility and OpenTable reservations are year-over-year percent changes. Homebase hours are

percent changes relative to the median for each day of the week during the January 4–31, 2020.
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others. Similarly, the model generated series for outside hours tracks fairly closely the data

series for Google mobility (workplace) and Homebase hours worked, which reports changes

in hours worked for hourly employees that mostly work in contact-intensive sectors (e.g.

restaurants, retail, health care, and other services). These measures are also imperfect but

provide information regarding the changes in work-related activities that are risky because

they take place outside of one’s house. The model decline in outside hours is slightly larger

than the data counterparts: Most of this can be explained by the fact that the pre-pandemic

steady state assumes that no labor is done from home, whereas in the data, there was at

least some labor done from home before the pandemic. Nonetheless, the dynamics for both

outside consumption and labor are very similar to the data with large contractions in March

2020, followed by a strong recovery and a fourth-quarter decline that persisted into early

2021.

Panels (e) and (f) of Figure 3 plot the times series of cases and deaths, respectively.

Recall that the time-varying transmissibility parameter εt was calibrated to fit the death

series from March 27, 2020, to March 25, 2020. The data series for cases is well below

the model generated series in the early part of the pandemic, possibly reflecting the widely

reported lack of testing in early stages of the pandemic in the United States.31 Finally, panel

(g) of Figure 3 plots the share of COVID-19 deaths that are attributable to individuals

whose ages are 65 or older. The model captures the fact that the vast majority of deaths

from COVID-19 are among older individuals.

Overall, the model generates times series for relevant variables that are reasonably similar

to the data. Having established that the model can plausibly be used as a laboratory for

running counterfactual experiments, I quantify the effects of the pandemic and the hetero-

geneous mitigation efforts across the distribution and examine optimal policies in the next

two sections.

4 Quantitative exercises

This section uses the calibrated model to investigate the properties of private mitigation and

the distributional consequences of the pandemic and mitigation policies. First, I study how

private mitigation differs across the age, income, and wealth distribution. Second, I quantify

the effects of the pandemic and the mitigation policies that resemble those implemented in

31Note that the model projects a monotonic decline in cases and deaths from January 2021 onward. This,

of course, is counterfactual. Recall, though, that this paper focuses on the first phase of the pandemic, before

vaccines became widely available.
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the US. In particular, I contrast the stay-at-home order (lockdown) and the stay-at-home

subsidy. While both policies reduce infections and deaths, the subsidy policy delivers a

higher welfare gain and is favored by all individuals in the economy, whereas the lockdown

benefits older individuals at the expense of low-wage workers.

4.1 Private mitigation

To study how private mitigation differs across the age, income, and wealth distribution,

consider the plots of outside consumption and labor—in the absence of any public mitigation

policies (Figure 4). The decline in outside consumption and hours is broad based. However,

the decline in outside consumption is much greater for middle-aged and old agents than for

young agents (panels a–c), and the decline in outside hours is much larger for middle-aged

workers than for young workers (panels d–e). As a result, young workers experience a much

larger increase in infections, as shown in panel (f).32

Additionally, within each age cohort, the declines in outside consumption and hours

are the smallest for low-wage/low-wealth workers. The reasons are threefold. First, while

high-wage workers can switch to mostly working from home, low-wage workers are unable

to do so. Second, low-wealth workers are not able to weather prolonged time away from

work. The fact that low-wage/high-wealth workers significantly reduce their outside hours

during the pandemic (even in the absence of mitigation policies) suggests that the lack of

precautionary savings prevents low-wage/low-wealth workers from similarly reducing their

labor supply. Finally, high-wage and high-wealth individuals are more willing to curtail

activities that increase infection risk because they have higher expected continuation values

that are derived from higher expected future consumption and leisure.33 Thus, they are more

willing to substitute outside consumption with inside consumption, increasingly so during

the peaks of the pandemic.

These properties are qualitatively consistent with the data. Using the Real-Time Popu-

lation Survey (RPS), an individual-level nationwide survey developed by Bick et al. (2020),

I document that, from February 2020 to May 2020, low-income individuals reduced their

outside labor (days commuted) by 36 percent, which is significantly less than the 47 percent

reduction among their high-income counterparts. These properties are also qualitatively

32Despite lower infection rates, because older individuals face a higher fatality risk, they account for the

vast majority of all COVID deaths, as in the data.
33For example, the model-implied VSL for high-wage/high-wealth individuals is roughly six times higher

than that for low-wage/low-wealth individuals.
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Figure 4: Response to pandemic (no public mitigation)
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(e) Outside hours (middle)
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Notes: Low wage and high wage correspond to below and above the steady state median wage, respectively.

Low wealth and high wealth correspond to below and above the steady state median wealth, respectively.

26



consistent with empirical facts documented by recent papers. Brotherhood et al. (2020a)

use Brazilian data to find that social distancing increased by less in areas with slums (low-

income) than those without slums (high-income). Chetty et al. (2020) find that spending

and mobility declined more in higher-income locations than in lower-income locations. Hevia

et al. (2022) use data from Bogotá to find that individuals in the low socioeconomic stratum

(SES) are twice as likely to have been infected with COVID-19 than high SES individuals.

Similarly, Bruckner et al. (2021) use a study of adults in Orange County, California, to find

higher COVID-19 prevalence among low-income adults relative to high-income adults and

among young adults relative to old adults.

4.2 Welfare consequences of COVID-19 and mitigation policies

The previous subsection highlighted the externalities at work: Young workers—especially

those that are low-wage and low-wealth—do not reduce their outside consumption and labor

as much as their older counterparts and incur higher rates of infection. These responses are

individually rational in the sense that young workers do not face high fatality risk. However,

higher rates of infection among young agents contribute to higher infections among older

individuals, who face higher fatality rates. In this subsection, I quantify the distributional

effects of the pandemic and mitigation policies.

Table 4 shows the welfare, economic, and health outcomes of the pandemic and miti-

gation policies, decomposed by the effects of the subsidy policy and the lockdown policy.

The first column shows that even without mitigation policies, the contraction of output is

large, amounting to a nearly 3 percent loss in two-year output. The welfare consequences

of the pandemic—measured as permanent consumption equivalents—are large across the

distribution, but largest for retirees, who face a higher fatality risk.

Mitigation policies that most closely resemble mitigation policies implemented in the US

(described in Section 3.2) reduce deaths and output, relative to no public mitigation (second

column of Table 4). The third and fourth columns of Table 4 decompose the effects of the

subsidy and lockdown separately. Both policies improve average welfare and reduce deaths.

All individuals benefit from the subsidy policy (i.e. the policy is a Pareto improvement). This

is not surprising given that the benefits of the subsidy are provided without a corresponding

cost (i.e. no tax increase). In the next section, however, I show that Pareto improving

policies are possible even when the subsidies are fully financed with a consumption tax. In

contrast, the lockdown policy is favored by only 72.7 percent of the initial population. This is

because the lockdown is mainly favored by older agents who most value the lower risk of death
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Table 4: Welfare consequences of pandemic and mitigation policies

no public US subsidy lockdown
mitigation mitigation only only

welfare –5.4 –4.4 –4.4 –5.3

working-age –3.1 –2.4 –2.4 –3.1

retired –14.8 –12.4 –12.6 –14.2

low-wage –1.8 –1.3 –1.3 –2.0

high-wage –4.3 –3.5 –3.6 –4.1

low-wealth –3.8 –3.0 –3.0 –3.9

high-wealth –6.9 –5.7 –5.8 –6.6

policy support 89.7 100.0 72.7

2-year output 97.3 96.7 97.7 96.4

deaths per 10k 22.0 17.7 18.0 21.0

Notes: Low- and high-wage correspond to below and above the median wage, respectively. Low- and high-

wealth corresponds to below and above the median wealth, respectively. Welfare refers to permanent con-

sumption equivalents (i.e. the percent change in permanent consumption in the pre-pandemic steady state

that would make an individual indifferent with the transition path with the pandemic from t = 1 forward).

Blue and red colors denote groups with welfare gains and losses from the mitigation policies, respectively.

Policy support refers to the percent of the initial population that benefits from the mitigation policy. Output

refers to output from t = 1 (March 27, 2020) to t = 52 (March 24, 2022), compared with the analogous

52-period output in the steady state, indexed at 100.
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induced by the policy and is opposed by low-wage workers for whom the lockdown policy is

most binding. In terms of output, the subsidy alone increases output relative to no public

mitigation, whereas the lockdown is contractionary. In the next section, which examines the

properties of optimal policies, I show that lockdowns generally are a very inefficient means

to save lives and discuss how mitigation policies can simultaneously increase output and save

lives.

5 Optimal mitigation policies

I investigate the properties of optimal mitigation policies over a limited set of policy in-

struments. In particular, I solve for the transition paths for 3,800 combinations of policy

parameters, which vary along the weekly subsidy amount, T ($0–$1,200), the duration (4–14

months), and the speed at which the subsidy phases out34, with and without lockdowns

of varying intensities (10, 15, and 20 weekly hour limits on outside labor). In all cases

with a positive subsidy, I solve for a consumption tax—levied over the same period as the

subsidy—that clears the government budget constraint in present value, making all config-

urations budget-neutral. All other parameters, including the time-varying transmissibility,

εt, are kept the same as described in Section 3.

Figure 5 plots the effects of varying subsidy amounts and duration, keeping fixed the

speed at which the subsidy phases out and no lockdown. Panel (a) shows that average

welfare is increasing in both the subsidy amount and duration and panel (b) shows that

for subsidies that are not too large or long, support for the mitigation policy is unanimous.

Falling support for the policy is due to the higher consumption tax rate associated with larger

and longer duration subsidies (panel e). Panel (c) demonstrates that deaths are decreasing

in both the subsidy amount and duration.

Interestingly, the effects of the subsidy amount on output are nonmonotonic (panel d).

In particular, for moderate subsidy amounts, the mitigation policy actually increases output

34Specifically, the subsidy amount follows

Tt =


T if 1 ≤ t ≤ t̄

T

(
1− t− t̄

t̂− t̄

)x

if t̄ < t < t̂

0 otherwise.

(19)

where t̄ denotes the period at which the phase-out begins and x ∈ {1, 2, 4, 8} determines the speed of the

phase-out. The consumption tax and lockdowns, where applicable, are phased out in an analogous manner.
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Figure 5: Effects of subsidy amount and duration
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Notes: The graphs show the effects of varying subsidy amounts and duration, keeping fixed the pace at which

the subsidy phases out and no lockdown. Average welfare change reports the population-weighted average

of individual consumption equivalents. Policy support refers to the percent of the initial population that

benefits from the mitigation policy. Output refers to output from t = 1 (March 27, 2020) to t = 52 (March
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52-period average hours with no public mitigation, indexed at 100, for low- and high-wage individuals (i.e.,

individuals with below and above the median wage, respectively).
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relative to the case with no public mitigation. This is due to two opposing effects. The

first is the direct effect of the subsidy reducing labor supply, holding fixed the severity of

the pandemic. Moderate subsidies (less than $500 per week) induce only the very low-wage

workers to reduce their hours, leading to a small decline in output. The direct effect can

be seen in panel (f), where larger subsidies induce larger reductions in hours of low-wage

workers, relative to no public mitigation. The second is the indirect effect of the subsidy

attenuating the pandemic, thereby leading to increased labor supply. Specifically, because

the labor from low-wage workers is almost exclusively “outside,” most of the reduction in

hours due to the direct effect meaningfully contributes to mitigating the virus, making it

safer to engage in more economic activities.35 This indirect effect is most evident among

high-wage workers, as can be seen in panel (f), which demonstrates that larger subsidies

induce more hours of high-wage workers, relative to no public mitigation. At moderate

subsidy amounts, the indirect effect dominates the direct effect, leading to an increase in

output relative to the no-public-mitigation scenario.

Mitigation policies have often been portrayed in the context of a tradeoff between output

and health. Figure 6 illustrates the relation between two-year output and lives saved: The

solid line depicts the best mix of policies that maximize output for each level of lives saved

during the pandemic and the dashed line is the analogous line that does so with only lock-

downs. We can see that, when exclusively relying on lockdowns to save lives, there is indeed

a tradeoff between output and lives saved: A better health outcome is associated with lower

output. However, we can also see that there are many policy configurations that simultane-

ously increase output and save more lives, relative to no public mitigation. In fact, Figure 6

shows that COVID-19 deaths can be reduced by as much as 45 percent without any further

reduction in output, relative to no public mitigation. As reference points, I include the best

Pareto-improving policy, which maximizes welfare conditional on full support; the output-

maximizing configuration; and the configuration that most closely resembles US mitigation

policy as described in Section 3.2. The policy parameters of the best Pareto-improving and

output-maximizing configurations are summarized in Table 5 (top panel).

Relative to no public mitigation, Table 5 shows that a subsidy of $700 per week for 10

months can lead to a substantial reduction in deaths and increased output. In addition,

a slightly smaller subsidy of $500 per week for 10 months increases output even further

(but saves fewer lives). Neither the best Pareto-improving nor the output-maximizing policy

35Additionally, taxes used to fund the subsidy also contribute to mitigating the virus, allowing additional

economic activity.
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Figure 6: Output and lives
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Notes: The solid line depicts the best mix of policies that maximize output for each level of lives saved during

the pandemic and the dashed line is the analogous line that does so with only lockdowns. Output refers to

output from t = 1 (March 27, 2020) to t = 52 (March 24, 2022), compared with the analogous 52-period

output in the steady state. Lives saved are relative to no public mitigation.
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Table 5: Optimal mitigation policies

no output- best subsidy tax

public maximizing Pareto- only only

mitigation policy improving

subsidy ($/week) 0 500 700 700 0

duration (months) 0 10 10 10 10

cons. tax (percent) 0 2.2 5.5 0 5.5

lockdown no no no no no

welfare –5.4 –4.1 –3.7 –3.7 –5.4

working-age –3.1 –2.2 –1.9 –1.9 –3.1

retired –14.8 –11.5 –10.5 –10.8 –14.5

low-wage –1.8 –1.2 –0.9 –0.8 –1.9

high-wage –4.3 –3.3 –3.0 –3.0 –4.3

low-wealth –3.8 –2.8 –2.4 –2.3 –3.9

high-wealth –6.9 –5.4 –4.9 –5.0 –6.8

policy support 100.0 100.0 100.0 43.4

2-year output 97.3 98.0 97.8 97.8 97.4

deaths per 10k 22.0 16.0 14.0 15.1 20.9

Notes: Average welfare change reports the population-weighted average of individual consumption equiva-

lents. Output refers to output from t = 1 (March 27, 2020) to t = 52 (March 24, 2022), relative to the

analogous 52-period output in the steady state, indexed at 100.

features a lockdown. The middle panel of Table 5 shows the welfare consequences of the

mitigation policies across the distribution. In particular, the second and third columns

reveal that the welfare gains from both the output-maximizing and the best Pareto-improving

policies (derived by subtracting the first column from the second or third column) are large

and widely shared. Importantly, note that both of these policies are Pareto improvements.

The last two columns of Table 5 decompose the effects of the best Pareto-improving

subsidy and tax separately (I omit the analogous decomposition for the output-maximizing

policy as the effects are smaller but qualitatively similar). The majority of the lives saved and

the welfare gains from the optimal policy are due to the subsidy. However, the consumption

tax also contributes to saving lives and increasing output (by making it safer to work); it

also results in a welfare gain for older and wealthy individuals who put a larger value in
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containing the virus. In Appendix D, I show that using a smarter Pigouvian tax on outside

consumption is even more effective in savings lives and improving welfare.36

Discussion and caveats. The stay-at-home subsidy, fully funded by a consumption tax,

can be Pareto improving because it addresses a key externality: Susceptible individuals

understand that outside labor and consumption increases their own risk of infection, but they

do not take into account the risk induced by the outside labor and consumption of their future

infected selves. As seen in Section 4.1, private mitigation is smallest for young, low-wage,

and low-wealth individuals. This subsidy is particularly effective because it provides the

incentive for this demographic to stay at home, attenuating the externality and consequently

the severity of the pandemic.

Might a similar tax-and-subsidy policy be Pareto improving in normal times? When

conducting the analogous policy search over the same set of instruments in the absence of

a pandemic, I am unable to find any policy that is welfare improving, let alone one that is

Pareto improving (see Appendix D). This suggests that the externalities generated by the

COVID-19 pandemic are crucial for the possibility of allowing Pareto improving policies.

In sensitivity analysis (Appendix D), I show that the main results of the paper are robust

to alternative values for ū, which governs the value of statistical life, ηjI , which governs the

efficiency loss during infection, the disutility of not working (ũ), the basic reproduction

number (R0), and the preference for inside consumption (γ). The results are also robust to

many alternative model assumptions. For example, in Appendix D, I show that the main

results are robust to eliminating the hospital capacity constraint, funding the subsidy using

a tax on outside consumption, funding the subsidy using a tax on labor income, and an

alternative bequest assumption where a deceased individual is replaced by a newborn with

the same productivity and wealth level.

The results could be sensitive, however, to other modeling assumptions. For instance,

the model assumes that both outside and inside consumption use an identical good, dif-

ferentiated only in the manner in which that good is consumed (e.g. food at a restaurant

versus food at home). If, alternatively, inside and outside consumption were different goods

(with limited labor mobility across sectors), then a reduction in the relative demand for

outside consumption would lead to declines in the relative price of outside consumption

36I do not consider this for the baseline, however, as implementing such a Pigouvian tax could be difficult,

since the relevant margin is not the physical location of consumption but whether the activity is high-risk for

transmission. For example, in-home dining can be high-risk if it includes individuals from outside of one’s

own household.
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and the relative wage in that sector. There are two points to make here. First, including

the dynamics of the relative price of outside consumption goods would likely strengthen

the need for mitigation policies, since private mitigation would be reduced as a result of

cheaper outside consumption. Second, while including labor immobility across sectors and

the dynamics of the relative wage would certainly change the distribution of welfare losses

from the pandemic, it would not necessarily change the importance of the subsidy-and-tax

mitigation policy since the low-wage and low-wealth individuals that accept the subsidy are

still better off relative to no public mitigation (by revealed preference), and higher-wage and

higher-wealth individuals would still value the attenuated severity of the pandemic.

The model also assumes that inside labor and outside labor are perfect substitutes as

factor inputs. What if, alternatively, the production of outside consumption goods was com-

paratively intensive in outside labor (e.g. restaurant dining requires onsite restaurant staff)?

One concern could be that subsidizing low-wage individuals (who work almost exclusively

outside) to stay at home would create labor shortages in the production of outside goods. All

else equal, this would lead to an increase in the relative cost of outside labor and the relative

price of outside goods, the latter of which would be desirable from a policy perspective since

it would contribute to reducing the transmission of the virus (it would be akin to a Pigouvian

tax on outside consumption). Thus, incorporating limited factor substitutability would also

likely strengthen the need for mitigation policies.

A major caveat to the main findings of this paper is that the model abstracts from

children. As shown by Agostinelli et al. (2022) and Fuchs-Schündeln et al. (2020), the

COVID-19 pandemic and associated school closures have a first order welfare effect on school-

age children. While children do not directly contribute to economic production, they can

play an important role in transmitting the virus to others. Thus, an interesting avenue for

future research would be to jointly study optimal mitigation and school closure policies.

Finally, the model omits other potentially important sources of heterogeneity, such as

pre-existing health conditions and finer age bins. For example, as studied by Bairoliya and

Imrohoroglu (2020), lockdowns that specifically target age and pre-existing health status can

be an effective tool in combating the virus. Thus smarter and better targeted lockdowns

may affect the size of the optimal subsidy-and-tax policy. Investigating optimal mitigation

policies that incorporate these and other additional sources of heterogeneity are left for future

research.
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6 Conclusion

In this paper, I developed a quantitative life cycle–economic epidemiology model that was

used to measure the heterogeneous welfare consequences of COVID-19 and to investigate the

properties of optimal mitigation policies. Using the calibrated model, I show that private

mitigation plays a substantial role in reducing deaths and output during the pandemic,

but there is large heterogeneity in the intensity of private mitigation across individuals. In

particular, reductions in economic activities that contribute to the spread of COVID-19 are

larger for individuals that are older, have higher wages, or have higher wealth. I also show

that stay-at-home subsidies are superior to stay-at-home orders because they reduce deaths

by more and output by less. Furthermore, Pareto improving policies can simultaneously

improve economic and public health outcomes.

Widespread vaccines have contributed to putting the pandemic in the rear-view mirror in

the United States and other developed economies, though the advent of variants that bypass

existing vaccines remains a concern. Thus, the policy implications raised in this paper are

valuable not only for pandemics in the future, but also in the present, especially for other

countries where wide-scale vaccine implementations may take longer.
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Floden, M. and J. Lindé (2001): “Idiosyncratic risk in the United States and Sweden:

Is there a role for government insurance?” Review of Economic dynamics, 4, 406–437,

https://doi.org/10.1006/redy.2000.0121.

French, E. and J. B. Jones (2011): “The effects of health insurance and self-insurance

on retirement behavior,” Econometrica, 79, 693–732, https://doi.org/10.3982/ECTA7560.

Fuchs-Schündeln, N., D. Krueger, A. Ludwig, and I. Popova (2020): “The long-

term distributional and welfare effects of Covid-19 school closures,” Tech. rep., National

Bureau of Economic Research, https://doi.org/10.3386/w27773.

Garibaldi, P., E. R. Moen, and C. A. Pissarides (2020): “Modelling con-

tacts and transitions in the SIR epidemics model,” Covid Economics, 5, 1–20,

https://www.carloalberto.org/wp-content/uploads/2020/04/garibaldi.pdf.

40

https://doi.org/10.3386/w26882
https://doi.org/10.1257/aeri.20200401
https://doi.org/10.3386/w27059
https://doi.org/10.1056/NEJMe2002387
https://doi.org/10.1038/nature04795
http://doi.org/10.3386/w27128
https://doi.org/10.1006/redy.2000.0121
https://doi.org/10.3982/ECTA7560
https://doi.org/10.3386/w27773
https://www.carloalberto.org/wp-content/uploads/2020/04/garibaldi.pdf


Glover, A., J. Heathcote, D. Krueger, and J.-V. Rıos-Rull (2020): “Health ver-

sus Wealth: On the Distributional Effects of Controlling a Pandemic,” Covid Economics,

6, 22–64, https://doi.org/10.1006/redy.2000.0121.

Glover, A., J. Heathcote, D. Krueger, J.-V. Rios-Rull, et al. (2022):

“Optimal age-based vaccination and economic mitigation policies for the second

phase of the covid-19 pandemic,” Journal of Economic Dynamics and Control,

https://doi.org/10.18651/RWP2021-15.

Grassly, N. C. and C. Fraser (2006): “Seasonal infectious disease epidemi-

ology,” Proceedings of the Royal Society B: Biological Sciences, 273, 2541–2550,

https://doi.org/10.1098/rspb.2006.3604.

Greenwood, J., P. Kircher, C. Santos, and M. Tertilt (2019): “An equi-

librium model of the African HIV/AIDS epidemic,” Econometrica, 87, 1081–1113,

https://doi.org/10.3982/ECTA11530.

Hall, R. E., C. I. Jones, and P. J. Klenow (2020): “Trading Off Consump-

tion and COVID-19 Deaths,” Tech. rep., National Bureau of Economic Research,

https://doi.org/10.3386/w27340.

Heathcote, J., K. Storesletten, and G. L. Violante (2014): “Consumption and la-

bor supply with partial insurance: An analytical framework,” American Economic Review,

104, 2075–2126, https://doi.org/10.1257/aer.104.7.2075.

Hevia, C., M. Macera, and P. A. Neumeyer (2022): “Covid-19 in

unequal societies,” Journal of Economic Dynamics and Control, forthcoming,

https://doi.org/10.1016/j.jedc.2022.104328.

Hur, S. (2018): “The lost generation of the Great Recession,” Review of Economic Dynam-

ics, 30, 179–202, https://doi.org/10.1016/j.red.2018.05.004.

Hur, S. and M. Jenuwine (2020): “Lessons on the Economics of Pandemics from Recent

Research,” Economic Commentary, https://doi.org/10.26509/frbc-ec-202011.

Jones, C., T. Philippon, and V. Venkateswaran (2020): “Optimal Mitigation

Policies in a Pandemic: Social Distancing and Working from Home,” Tech. rep.,

https://doi.org/10.3386/w26984.

41

https://doi.org/10.1006/redy.2000.0121
https://doi.org/10.18651/RWP2021-15
https://doi.org/10.1098/rspb.2006.3604
https://doi.org/10.3982/ECTA11530
https://doi.org/10.3386/w27340
https://doi.org/10.1257/aer.104.7.2075
https://doi.org/10.1016/j.jedc.2022.104328
https://doi.org/10.1016/j.red.2018.05.004
https://doi.org/10.26509/frbc-ec-202011
https://doi.org/10.3386/w26984


Kapicka, M. and P. Rupert (2020): “Labor markets during pandemics,” Tech. rep., UC

Santa Barbara.

Kaplan, G., B. Moll, and G. L. Violante (2018): “Monetary pol-

icy according to HANK,” American Economic Review, 108, 697–743,

https://doi.org/10.1257/aer.20160042.

——— (2020): “The Great Lockdown and the Big Stimulus: Tracing the Pandemic

Possibility Frontier for the US,” Tech. rep., National Bureau of Economic Research,

https://doi.org/10.3386/w27794.

Kehoe, T. J., K. J. Ruhl, and J. B. Steinberg (2018): “Global imbalances and

structural change in the United States,” Journal of Political Economy, 126, 761–796,

https://doi.org/10.1086/696279.

Kermack, W. O. and A. G. McKendrick (1927): “A contribution to the

mathematical theory of epidemics,” Proceedings of the royal society of london. Se-

ries A, Containing papers of a mathematical and physical character, 115, 700–721,

https://doi.org/10.1098/rspa.1927.0118.

Kopecky, K. A. and R. M. Suen (2010): “Finite state Markov-chain approxima-

tions to highly persistent processes,” Review of Economic Dynamics, 13, 701–714,

https://doi.org/10.1016/j.red.2010.02.002.

Kremer, M. (1996): “Integrating behavioral choice into epidemiological models of AIDS,”

The Quarterly Journal of Economics, 111, 549–573, https://doi.org/10.2307/2946687.

Krueger, D., K. Mitman, and F. Perri (2016): “Macroeconomics and house-

hold heterogeneity,” in Handbook of Macroeconomics, Elsevier, vol. 2, 843–921,

https://doi.org/10.1016/bs.hesmac.2016.04.003.

Krueger, D., H. Uhlig, and T. Xie (2020): “Macroeconomic dynamics and reallocation

in an epidemic,” Covid Economics, 5, 21–55, https://doi.org/10.3386/w27047.

Mendoza, E. G., E. I. Rojas, L. L. Tesar, and J. Zhang (2020): “A Macroeconomic

Model of Healthcare Saturation, Inequality and the Output-Pandemia Tradeoff,” Tech.

rep., National Bureau of Economic Research, https://doi.org/10.3386/w28247.

42

https://doi.org/10.1257/aer.20160042
https://doi.org/10.3386/w27794
https://doi.org/10.1086/696279
https://doi.org/10.1098/rspa.1927.0118
https://doi.org/10.1016/j.red.2010.02.002
https://doi.org/10.2307/2946687
https://doi.org/10.1016/bs.hesmac.2016.04.003
https://doi.org/10.3386/w27047
https://doi.org/10.3386/w28247


Mossong, J., N. Hens, M. Jit, P. Beutels, K. Auranen, R. Mikolajczyk,

M. Massari, S. Salmaso, G. S. Tomba, J. Wallinga, et al. (2008): “Social con-

tacts and mixing patterns relevant to the spread of infectious diseases,” PLoS medicine,

5, https://doi.org/10.1371/journal.pmed.0050074.

Nakajima, M. (2020): “Consumption and Saving during the Pandemic,” Tech. rep.,

https://makotonakajima.github.io/files/paper/cscovid-paper-201030.pdf.

Piguillem, F. and L. Shi (2020): “The Optimal COVID-19 Quarantine and Test-

ing Policies,” Tech. rep., Einaudi Institute for Economics and Finance (EIEF),

http://www.eief.it/eief/images/WP 20.04.pdf.

Rouse, C. and M. Gimbel (2021): “The Pandemic’s Effect on Mea-

sured Wage Growth,” Tech. rep., Council of Economic Advisors,

https://www.whitehouse.gov/cea/blog/2021/04/19/the-pandemics-effect-on-measured-

wage-growth/.

Storesletten, K., C. I. Telmer, and A. Yaron (2004): “Cyclical dynamics in id-

iosyncratic labor market risk,” Journal of political Economy, 112, 695–717.

U.S. Environmental Protection Agency (2020): “Mortality Risk Valuation,” Tech.

rep., https://www.epa.gov/environmental-economics/mortality-risk-valuation.

U.S. Federal Emergency Management Agency (2019): “Introduction to

Benefit-Cost Analysis,” Tech. rep., https://www.fema.gov/sites/default/files/2020-

04/fema bca student-manual unit-3.pdf.

Wang, H., Z. Wang, Y. Dong, R. Chang, C. Xu, X. Yu, S. Zhang, L. Tsam-

lag, M. Shang, J. Huang, et al. (2020): “Phase-adjusted estimation of the

number of coronavirus disease 2019 cases in Wuhan, China,” Cell Discovery, 6, 1–8,

https://doi.org/10.1038/s41421-020-0148-0.

43

https://doi.org/10.1371/journal.pmed.0050074
https://makotonakajima.github.io/files/paper/cscovid-paper-201030.pdf
http://www.eief.it/eief/images/WP_20.04.pdf
https://www.whitehouse.gov/cea/blog/2021/04/19/the-pandemics-effect-on-measured-wage-growth/
https://www.whitehouse.gov/cea/blog/2021/04/19/the-pandemics-effect-on-measured-wage-growth/
https://www.epa.gov/environmental-economics/mortality-risk-valuation
https://www.fema.gov/sites/default/files/2020-04/fema_bca_student-manual_unit-3.pdf
https://www.fema.gov/sites/default/files/2020-04/fema_bca_student-manual_unit-3.pdf
https://doi.org/10.1038/s41421-020-0148-0


A Data appendix

A.1 Details on data construction

• Inside (safe) expenditure share (Table 1): Using 2019 data on personal consumption ex-

penditures (BEA), I compute inside consumption as the sum of expenditures on goods

and housing and utilities. The inside expenditure share is then inside consumption

divided by the sum of consumption expenditures on all goods and services.

• Wage ratio (Table 1): I use annual income data from the PSID core sample (2004–

2014), selecting all household heads, ages 25 to 64. I compute total head labor income

as the sum of the head’s labor income (excluding farm and business income), head’s

labor part of business income, and 50 percent of household farm income, divided by

two if married. Next, I construct wages by dividing head’s total labor income by head’s

hours worked. I drop observations with missing education, with wages that are less

than half of the minimum wage, with top-coded income, and with fewer than 1,000

hours per year. The ratio of the average wage for households aged 45–64 to that of

households aged 25–44 is 1.35.

• Share of jobs that can be done from home (Section 3.1): Using the data provided by

Dingel and Neiman (2020), I first sort occupations by their median wage. Then I place

them into wage quintiles, weighted by total employment in each occupation. Finally,

within each wage bin, I compute the average share of jobs that can be done from

home—also provided by Dingel and Neiman (2020)—weighted by total employment.

• Per capita disposable earnings, consumption, and wealth (Table 3): I use annual income

data from the PSID core sample (2014) for households whose heads are ages 25 and

above. I first compute total household labor income as the sum of the head’s and

spouse’s labor income (excluding farm and business income), head’s and spouse’s labor

part of business income, and 50 percent of household farm income. I then use TAXSIM9

to estimate household taxes and transfers. Disposable earnings is defined as household

labor income minus taxes plus transfers. Consumption is defined as expenditures on

child care, clothing, education, food, health care, housing (except expenditures on

mortgage, property taxes, and homeowner’s and renter’s insurance), transportation,

vacation and entertainment, and in the case of homeowners, I add owner’s equivalent

rent (as in Carroll and Hur 2020b). Wealth is simply defined as household net worth
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(total assets minus liabilities). I obtain per capita measures by dividing by two for

married households.

A.2 Estimation of wage processes

The sample selection and estimation procedure closely follows the procedure described in

Krueger et al. (2016) and Carroll and Hur (2020a). I use annual income data from the PSID

core sample (1970–1997), selecting all household heads, ages 23 to 64. For waves before 1993,

I use the variable Total Labor Income of Head, which is the sum of wages, tips, labor part of

farm and business income, and other items. For waves after 1993, I compute total head labor

income as the sum of the head’s labor income (excluding farm and business income), head’s

labor part of business income, and 50 percent of household farm income, divided by two

if married. Next, I construct wages by dividing head’s total labor income by head’s hours

worked. I drop observations with missing education, with wages that are less than half of

the minimum wage, with top-coded income, and with fewer than 1,000 hours per year. On

this sample, I regress the log wage on age and education dummies, their interaction, and

year dummies. I then exclude all individual wage sequences shorter than 5 years, leaving

final samples of 4,524 individuals, with an average length of 9 years. On these samples, I

compute the autocovariance matrix of the residuals. The stochastic process in equation (15)

is estimated using GMM, targeting the covariance matrix, where the weighting matrix is the

identity matrix. I thank Chris Tonetti for providing the Matlab routines that perform the

estimation.

B Definition of equilibrium with transition

In this section, I provide the details regarding the equilibrium with transition. While the

steady state analysis was done in general equilibrium, the transition path analysis is done

in partial equilibrium. In other words, factor prices (w, r), retirement income (s), and

the labor income tax (τ`) are fixed at their steady-state levels. Furthermore, the measure

of newborns and their wealth distribution is also assumed to be constant throughout the

transition. While these assumptions have been made for computational tractability37, there

are also other considerations. For instance, social security benefits and contribution rates do

37It is not that solving for general equilibrium dynamics would be infeasible for given a set of parameters.

Calibrating the transition dynamics and solving for optimal policies in a general equilibrium setting would

add considerably to the computational burden.
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not typically respond to recessions at a higher frequency (and did not during the pandemic).

Even though prices are fixed on the transition path, agents still need to be given the

correct path of aggregate states (Zt), i.e. the measures of infected agents and their outside

consumption and labor. This path needs to be consistent with equilibrium choices. In that

sense, the transition analysis incorporates general equilibrium dynamics on the epidemiolog-

ical dimension, but omits general equilibrium dynamics on the economic dimension.

A final note about the environment is that firms are not optimizing along the transition

path. Instead, they rent supply-determined labor and capital to produce output and, as a

consequence, suffer losses during the transition path.38 The formal definition is provided

below.

Definition. A competitive (partial) equilibrium with transition, given an initial distribution

{µ∗j1}j∈J , prices {w, r}, and fiscal policies
{
τct, Tt, ¯̀o

t , τ`, s
}∞
t=1

, is a sequence of value functions

{{vjt}j∈J}∞t=1, policy functions {{cijt, cojt, `ijt, `ojt, k′jt}j∈J}∞t=1, producer plans {Yft, Lft, Kft}∞t=1,

the distribution of newborns ω, measures {{µjt}j∈J}∞t=1, and aggregate states {Zt}∞t=1 such

that, for all t ≥ 1:

1. Given prices, fiscal policies, and aggregate states, retirees and workers solve (3) and

(4), respectively.

2. Producer plans satisfy

Yft = Kα
ftL

1−α
ft (20)

Lft =

∫
X

∑
j<JR

(`ijt(k, ε, h) + `ojt(k, ε, h)) dµjt(k, ε, h) (21)

Kft =

∫
X

∑
j∈J

kdµjt(k, ε, h). (22)

3. The government budget for mitigation policies clears in present value:

∞∑
t=1

{
(1 + r)1−tτct

∫
X

∑
j∈J

(cijt(k, ε, h) + cojt(k, ε, h)) dµjt(k, ε, h)

}
(23)

=
∞∑
t=1

{
(1 + r)1−tTt

∫
X

1{`ijt(k,ε,h)+`ojt(k,ε,h)=0}
∑
j<JR

dµjt(k, ε, h)

}
.

38Though not explicitly modeled here, the Paycheck Protection Program can be interpreted as a way to

keep firms operating in this environment. An alternative approach would be to assume a small open economy

environment, in which domestic capital markets do not clear. In this case, aggregate capital demanded by

firms would decline, leading to a larger decline in output.
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4. For any subset (K, E ,H) ∈ B, the measure µjt satisfies, for j > 1,

µjt(K, E ,H) =

∫
X

ψj−11{k′j−1,t−1(k,ε,h)∈K}
∑
ε′∈E

∑
h′∈H

Γεε′Πjhh′tdµj−1,t−1(k, ε, h) (24)

+

∫
X

(1− ψj)1{k′j,t−1(k,ε,h)∈K}
∑
ε′∈E

∑
h′∈H

Γεε′Πjhh′tdµj,t−1(k, ε, h)

and

µ1t(K, E ,H) =

∫
X

(1− ψ1)1{k′1,t−1(k,ε,h)∈K}
∑
ε′∈E

∑
h′∈H

Γεε′Πjhh′tdµ1,t−1(k, ε, h) (25)

+ ω(K, E ,H).

5. The aggregate states Zt ≡ {µIt, Co
It, L

o
It, εt}, for any {εt}∞t=0, satisfy:

µIt =

∫
X

∑
j∈J

1{h=I}µjt(k, ε, h) (26)

Co
It =

∫
X

∑
j∈J

1{h=I}cojt(k, ε, h)µjt(k, ε, h) (27)

LoIt =

∫
X

∑
j∈J<JR

1{h=I}`ojt(k, ε, h)µjt(k, ε, h) (28)

C Computational appendix

The solution algorithm broadly consists of two steps:

1. Solve for the pre-pandemic steady state.

2. Solve for pandemic transition path.

In each step, I solve the worker and retiree problems over an unevenly spaced grid of 120

wealth points, kcoarse. To improve solution accuracy, I place more points near zero, where the

value function is more concave. I store the equilibrium wealth distribution as a histogram

over an unevenly spaced wealth grid of 2000 points, kfine. I set the maximum wealth level

on kfine much lower than the one on kcoarse and check that this upper bound is not overly

restrictive by verifying that the equilibrium distribution has no mass on the highest grid

point in the steady state or at any point along the transition.

To calibrate the pre-pandemic steady state, I guess a vector of parameters [β, ϕ, ū, s, τ`].

I then solve for the steady state, calculate the model-implied values for the targets, and

update the guess using a quasi-Newton method with some dampening.
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C.1 Solving for a steady state

1. Let µinitj (k, ε, h) be an initialization of the distribution over kfine, E, and H.

2. Solve for the equilibrium rental rate, r?.

(a) Guess r0.

(b) Given r0, use equations (7) and (8) to get the wage,

w0
(
r0
)

= (1− α)

(
r + δ

α

) α
α−1

.

(c) Starting at j = J̄ , iterate on the Bellman equation in (3) until the value function

converges to find the retiree value and policy functions, conditional on prices.

Repeat for j = J̄ − 1, .., JR if J̄ > JR.

(d) Starting at j = JR − 1, iterate on the Bellman equation in (4) until the value

function converges to find the worker value and policy functions, conditional on

prices. Repeat for j = JR − 2, .., 1 if JR > 2.

(e) Use linear interpolation to map the policy functions from kcoarse onto kfine.

(f) Beginning at µinitj , update the distribution using equations (10)–(11) and the

fine-grid decision rules for saving. Repeat until µj converges to µ?j (r0).

(g) Use µ?j and the fine-grid decision rules to compute all aggregates, including K0

and L0.

(h) Find the implied interest rate, r0 = α
(
K0

L0

)α−1

− δ.

(i) Use Brent’s method to solve for r? over a fixed interval.

C.1.1 Value of statistical life

The value of ū only affects the level of the value function and does not affect the policy

functions in the pre-pandemic steady state. Therefore, the value of ū can be found after first

calibrating [β, ϕ, s, τ`]. To calculate an individual’s VSL, I take the following steps:

1. I start with the pre-pandemic steady state value function:

vj(k, ε, h) =
((c∗i )

γ(c∗o)
1−γ)

1−σ

1− σ
− g(`∗i + `∗o) + ū

+ β
∑
ε′∈E

Γε,ε′ [ψjvj+1(k′, ε′, h) + (1− ψj)vj(k′, ε′, h)]

where c∗i , c
∗
o, `
∗
i , `
∗
o denote the pre-pandemic steady-state policy functions.
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2. Then, imposing optimality conditions, I define

v̂j(k, ε, h) =
[(c∗ + ∆c) γ

γ(1− γ)1−γ]
1−σ

1− σ
− g(`∗i + `∗o) + ū

+ β(1 + ∆s)
∑
ε′∈E

Γε,ε′ [ψjvj+1(k′, ε′, h) + (1− ψj)vj(k′, ε′, h)]

where c∗ = c∗i + c∗o is the policy function for total consumption and ∆c,∆s are small

one-time deviations to consumption and survival probability.

3. Then, the VSL—defined as the marginal rate of substitution between survival and

consumption—can be expressed as

V SLj(k, ε, h) =
∂v̂
∂∆s

∂v̂
∂∆c

∣∣∣∣∣
∆c=0, ∆s=0

=

β
∑
ε′∈E

Γε,ε′ [ψjvj+1(k′, ε′, h) + (1− ψj)vj(k′, ε′, h)]

(c∗)−σ
(
γγ (1− γ)1−γ)1−σ

4. Set ū such that∫
X

∑
j∈J

V SLj(k, ε, h)dµj(k, ε, h) = 4096

∫
X

∑
j∈J

(cij(k, ε, h) + coj(k, ε, h)) dµj(k, ε, h).

C.2 Solving for a transition path

Recall that all individuals are assumed to be in the recovered state by t = t̂ (e.g. vaccine

and cure). Combined with the assumption that prices are fixed at their initial steady state

values throughout the transition path, this implies that, even though the measure µjt takes

a very long time to return to its steady state values, value and policy functions only need to

be solved for t ≤ t̂ since all the relevant variables for solving the individual’s optimization

problem are constant for t > t̂ (at steady-state levels).

To introduce COVID-19 in the economy, set µj1(k, ε, I) = 0.005µj0(k, ε, S), µj1(k, ε, S) =

0.995µj0(k, ε, S), and µj1(k, ε, R) = 0 for j ∈ J , k ∈ K, and ε ∈ E. Recall that all agents

are susceptible in the pre-pandemic steady state (t = 0).

1. Guess the sequence {Zt, τct}t̂t=1.

2. Set vj,t̂+1 equal to the steady-state value function for j ∈ J . Then, starting in period

t̂, solve the Bellman equations in (3) and (4) backward. This produces a sequence of

policy functions for periods t = 1, .., t̂.
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3. Starting at µj1, simulate forward using the policy functions to find the sequence of

measures from t = 1, ..., tend for a very large tend (recall that the stated assumptions

guarantee that the policy functions are constant for t ≥ t̂). Along the way, solve for

aggregate variables in each period, including Z̄t ≡ {µIt, Co
It, L

o
It, εt}, where εt is set so

that the model generates the same times series of deaths as in the data for t < 26 (this

step is only required for the calibration described in Section 3.2).

4. Check that the difference between the guess for {Zt} and the implied value {Z̄t} (mea-

sured under the sup norm) is less than a small tolerance. Additionally, if T > 0, check

that the government budget for mitigation policies in (23) clears in present value. If

so, a transition path has been found.

5. If not, update the guess using a dampening method and repeat.

Note that, while the solution for {Zt} is not guaranteed to have a unique solution, I have

checked that starting the routine with alternative guesses converge to the same solution.

D Robustness

In this section, I explore the robustness of the results to alternative parameter and model-

ing choices. In all of the robustness exercises, I recalibrate the model to match the same

moments as in the baseline calibration, with the exception of the cases in which the stay-

at-home subsidy is financed with alternative tax instruments (these counterfactual exercises

do not affect the calibration). I find that although the level of average welfare, deaths, and

output can vary substantially, the main policy implications are extremely robust. Under

all alternative configurations, the output-maximizing policy simultaneously improves output

and reduces deaths, and is Pareto improving. Moreover, neither the output-maximizing nor

the best Pareto-improving policies involve a lockdown. The policy parameters and selected

outcomes of the best Pareto-improving and output-maximizing policies under alternative

parameter values and modeling choices are summarized in Tables 6–7.

Higher value of statistical life. In the baseline calibration, I use a VSL of $6.9 million

in 2019, which corresponds to 4,096 biweekly consumption per capita. As a robustness

check, I use an higher VSL recommended by U.S. Environmental Protection Agency (2020)

of $7.4 million in 2006, or 6,226 times biweekly consumption per capita. By comparing

the no public mitigation results in Tables 5 and 6, I find that assigning a higher value of
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statistical life leads to slightly lower deaths and output and a larger welfare loss as result of

the pandemic. The main policy implications remain the same: Both the output-maximizing

and best Pareto-improving policies simultaneously save lives and increase output relative to

no public mitigation, and feature no lockdowns.

Smaller efficiency loss during infection. Next, I consider a 30 percent reduction in

labor efficiency during infection, compared with the baseline calibration of a 50 percent

reduction. Interestingly, comparing the no public mitigation scenarios under a 30 percent

versus a 50 percent efficiency reduction during infection reveals that welfare and output is

actually lower under the 30 percent reduction. This is because the smaller efficiency loss

for infected individuals induce these infected individuals to work more, leading to a more

severe pandemic and a larger decline in economic activity among susceptible agents. The

main policy implications are nevertheless unchanged.

Lower disutility of not working. The baseline calibration (ũ = 0.82) induces a 15

percent decline in employment that is consistent with data (2020, Bureau of Labor Statistics).

As a robustness check, here I consider a lower disutility of ũ = 0.61, which generates a 19

percent decline in employment, consistent with the real-time survey data reported by Bick

et al. (2020). As can be expected, the no-mitigation case is identical to the baseline. The

main policy implications are similar to the baseline, except that the subsidies are smaller in

size since in this specification individuals are less averse to accepting the subsidies.

Higher basic reproduction number. I also investigate the implications of assuming a

higher basic reproduction number of 2.5, compared to the baseline value of 2.2. As expected,

a higher basic reproduction number leads to a larger number of deaths. Nevertheless, the

policy implications are similar to the baseline.

Higher inside consumption. In the baseline calibration, I set the inside consumption

preference parameter γ = 0.51 to match the expenditure share on goods and housing and

utility services in 2019. As I discuss in the main text, an exact mapping between inside (or

safe) consumption in the model to the data is not possible due to data limitations. Thus, as

a robustness check, I consider a higher value of γ = 0.61. Table 6 shows that the results are

nearly identical to those in the baseline.
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Table 6: Sensitivity analysis

average

subsidy welfare 2-year

amount duration lock- change output deaths

($/week) (months) down (percent) (index) (per 10k)

higher value of statistical life (V SL = 6226c̄)

best Pareto-improving∗ 900 9 no –5.1 97.2 13.5

output-maximizing∗ 850 11 no –5.1 97.4 13.6

no public mitigation 0 0 no –7.1 96.2 20.1

smaller efficiency loss during infection (ηjI = 0.7ηjS)

best Pareto-improving∗ 700 10 no –4.1 97.4 16.0

output-maximizing∗ 650 11 no –4.2 97.4 16.4

no public mitigation 0 0 no –6.0 96.5 24.8

lower disutility of not working (ũ = 0.61)

best Pareto-improving∗ 600 7 no –3.6 97.4 13.6

output-maximizing∗ 350 13 no –4.4 98.3 17.4

no public mitigation 0 0 no –5.4 97.3 22.0

higher basic reproduction number (R0 = 2.5)

best Pareto-improving∗ 700 12 no –4.7 97.1 18.2

output-maximizing∗ 650 11 no –4.9 97.3 19.1

no public mitigation 0 0 no –6.7 96.1 27.8

higher inside consumption (γ = 0.61)

best Pareto-improving∗ 700 9 no –3.6 97.8 14.1

output-maximizing∗ 500 9 no –4.0 98.0 16.0

no public mitigation 0 0 no –5.3 97.3 22.1

Notes: Average welfare change reports the population-weighted average of individual consumption equiva-

lents. Output refers to output from t = 1 (March 27, 2020) to t = 52 (March 24, 2022), compared with the

analogous 52-period output in the steady state, indexed at 100. ∗ denotes Pareto improvements relative to

the no public mitigation case.
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No hospital capacity constraint. I also investigate the implications of assuming that

there is no hospital capacity constraint. As expected, this leads to fewer deaths and a smaller

welfare loss under the no public mitigation scenario, compared with the baseline calibration.

Nevertheless, the policy prescriptions are similar: the output-maximizing policy parameters

are unchanged, while the best Pareto-improving policy features a smaller but slightly longer

subsidy than in the baseline calibration.

Subsidy funded by tax on outside consumption. In the baseline calibration, I as-

sumed that the stay-at-home subsidy is funded by a tax on total consumption. Here, I

consider a Pigouvian tax that specifically targets outside consumption. The main policy

implications are similar to that in the baseline. The most significant difference is that the

Pigouvian tax is much more effective at reducing deaths. A nearly identical subsidy brings

down deaths to 10.7 (per 10 thousand), compared to 14.0 in the baseline. This is because

the Pigouvian tax more directly reduces outside consumption, leading to less infections and

deaths.

Subsidy funded by tax on labor income. Here, I use a labor income tax to fund the

stay-at-home subsidy. Compared to the baslinee, the policy prescriptions are similar except

with smaller subsidies, resulting in smaller increases in output and smaller reductions in

deaths.

Deceased individual replaced by newborn. The baseline model assumes that acci-

dental bequests from deceased individuals are given to a fraction of newborn individuals

each period. Here, I consider an alternative assumption: a deceased individual is replaced

by a newborn with the same productivity and wealth level. I find that the main policy

prescriptions are similar to the baseline model.

No pandemic. Given the relatively large, broad, and robust support of the mitigation

policies, one might wonder whether such policies would be beneficial in normal times. I find

that this is not the case. In fact, in the absence of a pandemic, there is no policy configuration

that delivers higher output or an average welfare gain, let alone one with unanimous support.
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Table 7: Sensitivity analysis (2)

average

subsidy welfare 2-year

amount duration lock- change output deaths

($/week) (months) down (percent) (index) (per 10k)

no hospital capacity constraint (κ = 1)

best Pareto-improving∗ 550 11 no –4.1 97.9 15.8

output-maximizing∗ 500 10 no –4.2 98.0 16.5

no public mitigation 0 0 no –5.3 97.4 21.3

subsidy funded by tax on outside consumption

best Pareto-improving∗ 700 11 no –2.9 98.0 10.7

output-maximizing∗ 500 10 no –3.7 98.2 14.4

no public mitigation 0 0 no –5.4 97.3 22.0

subsidy funded by tax on labor income

best Pareto-improving∗ 500 10 no –4.1 97.5 16.1

output-maximizing∗ 400 12 no –4.7 97.8 18.9

no public mitigation 0 0 no –5.4 97.3 22.0

deceased individual replaced by newborn

best Pareto-improving∗ 600 11 no –3.7 97.9 14.5

output-maximizing∗ 400 10 no –4.5 98.0 18.6

no public mitigation 0 0 no –5.2 97.4 21.7

no pandemic

best Pareto-improving 0 0 no 0.0 100.0 0.0

output-maximizing 0 0 no 0.0 100.0 0.0

no public mitigation 0 0 no 0.0 100.0 0.0

Notes: Average welfare change reports the population-weighted average of individual consumption equiva-

lents. Output refers to output from t = 1 (March 27, 2020) to t = 52 (March 24, 2022), compared with the

analogous 52-period output in the steady state, indexed at 100. ∗ denotes Pareto improvements relative to

the no public mitigation case.
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