Comment on

by Michael Woodford

John B. Taylor
Stanford University

Federal Reserve Bank of Dallas
October 13, 2007
Thanks to Dallas Fed
The Proposed Monetary Policy Research Program

- **Goal**: Practical implementation of *forecast targeting* as a monetary policy rule.

- **Definition**: Policy makers choose instruments of policy so that expected future values of target variables are related in every future period.

- **Example**: An optimally-chosen linear combination of inflation and the GDP gap forecasts should equal to zero.
Why do we need a research program?

• While some central banks follow procedures similar to forecast targeting, none do it the way Woodford proposes.
• Hence, focus should now be on “translational economics” or translating the theoretical ideas into “the actual actions of the central bank.”
• Similar to early work on instrument rules
Still need a decision rule

“Certainly one cannot compare a forecast targeting strategy to [an instrument] rule, without also describing what forecast targeting means for the way in which the policy instrument should be adjusted over time.”
Very useful

• Complementary, not mutually exclusive
• Dual aspects of the same objective:
 – First order conditions and decision rules
• Does not require dumping on instrument rules
• McCallum-Nelson (2005) and Svensson (2005)
• Are forecast targeting rules really
 – greater protection against political pressure?
 – more predictable?
 – more deserving of being called a policy rule?
• Recent evidence that policy rules are helpful:
 – The Great Moderation
 – The Great Monetary Policy Shift
 – An Episode from Mission Impossible?
Illustration of Complementarities

The road to instrument rules went through the land of forecast targeting rules

\[y_t + \beta p_t = v_t \quad (1) \]

- \(y_t \) is detrended log GDP
- \(p_t \) is detrended log price level,
- \(v_t = \eta_t + \eta_{t-1} \) with \(\eta_t \) iid zero mean.

Analogous to Woodford’s forecast targeting rule (2.3); \(h = 2 \).

Policy objective: minimize quadratic in \(y \) and \(p \) with target 0. Each value of \(\beta \) corresponded to different weights in objective.

The other equation: a staggered contract equation. This was before the Calvo (1983) paper, but the properties are very similar to equation (2.1) in Woodford with annual data.
How big was β?
Estimated empirically with rational expectations
cross equation restrictions (1956-76)

<table>
<thead>
<tr>
<th>Country</th>
<th>β</th>
</tr>
</thead>
<tbody>
<tr>
<td>Austria</td>
<td>0.0114</td>
</tr>
<tr>
<td>Canada</td>
<td>0.0901*</td>
</tr>
<tr>
<td>Denmark</td>
<td>0.0373</td>
</tr>
<tr>
<td>Germany</td>
<td>0.3727*</td>
</tr>
<tr>
<td>Italy</td>
<td>0.2967*</td>
</tr>
<tr>
<td>Netherlands</td>
<td>0.0008</td>
</tr>
<tr>
<td>Norway</td>
<td>0.1255*</td>
</tr>
<tr>
<td>Sweden</td>
<td>0.1317*</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>0.1165*</td>
</tr>
<tr>
<td>United States</td>
<td>0.2936*</td>
</tr>
</tbody>
</table>
Estimated Tradeoff with Some Wishful Thinking

But what policy instrument settings would do this?

Fig. 1. Effect of a policy induced shift in the output–price stability tradeoff.

Three forecast targeting rules were simulated in a simple VAR model.

\[
(y_t - y_{t-1}) + (p_t - p_{t-1}) = 0 \tag{1}
\]

Increased volatility

\[y_t + (p_t - p_{t-1}) = 0 \tag{2} \]

Reduced volatility

\[y_t + \beta (p_t - p_{t-1}) = 0 \tag{3} \]

Reduced volatility with tradeoff possibilities

Hence, instrument rule had to generate (3)-type behavior
The Future of Policy Rules?

• The next Mission Impossible: Prevent the forces of globalization from reversing the missions already accomplished.
 – Check out policy coordination, exchange rate role with newer models

• Better principles for off the rule behavior
 – liquidity, frozen markets, risk management

• Better estimates and micro-foundations of the models—as the research presented at this conference is doing.