House Price Booms, Current Account Deficits, and Low Interest Rates

Andrea Ferrero
University of Oxford

FRB Dallas/IMF/JMCB Conference on
“Housing, Stability and the Macroeconomy: International Perspectives”

Dallas—November 14, 2013
House Prices

- Boom-bust cycle trigger for Great Recession: What drives house prices?
U.S. House Prices and Current Account

Correlation = −0.81

U.S. current account balance % of GDP

U.S. real house price index (FHFA/CPI, 2001=100)

Andrea Ferrero (Oxford)
“...[C]ountries in which current accounts worsened...had greater house price appreciation over this period [2001Q4-2006Q3]. ... This simple relationship requires more interpretation before any strong conclusions about causality can be drawn...”

Speech by Chairman Ben S. Bernanke
Annual Meeting of the American Economic Association
Atlanta, GA – January 3, 2010
Causality?

1. **Consensus**: From current account to house prices (foreign factors)

 - Global saving glut hypothesis (Bernanke, 2005)
 - Theory: Shortage of safe assets in emerging markets (Caballero et al., 2008b) or better risk-sharing opportunities in U.S. (Mendoza et al. 2009)
 - Evidence: 4% increase in lagged current account associated with 10% appreciation of real estate prices (Aizenman and Jinjarak, 2009)

2. This paper: From house prices to current account (domestic factors)

 - Theory: Financial deregulation (Boz and Mendoza, 2011; Favilukis et al. 2011) or preference shocks (Gete, 2010; Justiniano et al. 2013)
 - Evidence: House price shocks explain \(\approx 30\% \) of U.S. trade balance over a 20-quarter horizon (Fratzscher et al., 2010)
 - Problem: Domestic shocks \(\Rightarrow \) Real interest rate tends to increase

Andrea Ferrero (Oxford)
Causality?

1. **Consensus:** From current account to house prices (foreign factors)
 - Global saving glut hypothesis (Bernanke, 2005)
 - Theory: Shortage of safe assets in emerging markets (Caballero et al., 2008b) or better risk-sharing opportunities in U.S. (Mendoza et al. 2009)
 - Evidence: 4% increase in lagged current account associated with 10% appreciation of real estate prices (Aizenman and Jinjarak, 2009)

2. **This paper:** From house prices to current account (domestic factors)
 - Theory: Financial deregulation (Boz and Mendoza, 2011; Favilukis et al. 2011) or preference shocks (Gete, 2010; Justiniano et al. 2013)
 - Evidence: House price shocks explain $\approx 30\%$ of U.S. trade balance over a 20-quarter horizon (Fratzscher et al., 2010)
Causality?

1. **Consensus:** From current account to house prices (foreign factors)
 - Global saving glut hypothesis (Bernanke, 2005)
 - Theory: Shortage of safe assets in emerging markets (Caballero et al., 2008b) or better risk-sharing opportunities in U.S. (Mendoza et al. 2009)
 - Evidence: 4% increase in lagged current account associated with 10% appreciation of real estate prices (Aizenman and Jinjarak, 2009)

2. **This paper:** From house prices to current account (domestic factors)
 - Theory: Financial deregulation (Boz and Mendoza, 2011; Favilukis et al. 2011) or preference shocks (Gete, 2010; Justiniano et al. 2013)
 - Evidence: House price shocks explain \(\approx 30\%\) of U.S. trade balance over a 20-quarter horizon (Fratzscher et al., 2010)
 - **Problem:** Domestic shocks \(\Rightarrow\) Real interest rate tends to increase
Real Interest Rates

U.S. Short–Term Real Interest Rate

U.S. Long–Term Real Interest Rates

Andrea Ferrero (Oxford) House Prices, Current Account, Interest Rates November 14, 2013 6 / 41
Results

- If financial deregulation and/or preference shocks can explain house price boom and \(\text{corr}(hp, ca) \approx -1 \), what explains low real interest rates?
Results

- If financial deregulation and/or preference shocks can explain house price boom and $corr(hp, ca) \approx -1$, what explains low real interest rates?

 By now, everyone accepts some version of...a global savings glut is at the root of the problem [of low interest rates].

 Kenneth Rogoff
 “The Long Mystery of Low Interest Rates”
 The Korea Times, 04/19/2013
Results

- If financial deregulation and/or preference shocks can explain house price boom and $corr(hp, ca) \approx -1$, what explains low real interest rates?

- This paper: Abstract from saving glut, focus on monetary policy
Results

- If financial deregulation and/or preference shocks can explain house price boom and $corr(hp, ca) \approx -1$, what explains low real interest rates?

- **This paper**: Abstract from saving glut, focus on monetary policy
 - Low nominal interest rates in early 2000s
 - Foreign exchange rate pegs in emerging markets
Results

- If financial deregulation and/or preference shocks can explain house price boom and $\text{corr}(hp, ca) \approx -1$, what explains low real interest rates?

- **This paper:** Abstract from saving glut, focus on monetary policy
 - Low nominal interest rates in early 2000s
 - Foreign exchange rate pegs in emerging markets

- Do these factors play a role
 - For house prices (Taylor, 2008)?
 - For current account (Dooley et al., 2008)?
Results

- If financial deregulation and/or preference shocks can explain house price boom and $ corr(hp, ca) \approx -1 $, what explains low real interest rates?

- **This paper**: Abstract from saving glut, focus on monetary policy
 - Low nominal interest rates in early 2000s
 - Foreign exchange rate pegs in emerging markets

- Do these factors play a role
 - For house prices (Taylor, 2008)? No
 - For current account (Dooley et al., 2008)? No

- **Dichotomy**
 - Credit/Preference shocks ⇒ House prices and $ corr(hp, ca) $
 - Monetary policy ⇒ Low real interest rates
Two-Country Model with Borrowing Constraints

- Countries: Home and Foreign
- Goods:
 - Tradable consumption goods produced in each country
 - Housing in fixed supply (land)
- Assets:
 - Risk-free bond denominated in Home currency traded internationally
 - Risk-free bond denominated in Foreign currency traded domestically
- Frictions:
 - Financial: Collateral constraint
 - Nominal: Sticky prices and wages
- Monetary authority follows standard interest rate rule
Household Problem

- **Utility**

\[U_t \equiv \mathbb{E}_t \left\{ \sum_{s=0}^{\infty} \beta^s \left[\frac{X_t^{1-\sigma}}{1-\sigma} - \frac{1}{1+\nu} \int_0^1 L_{t+s}(i)^{1+\nu} di \right] \right\} \]

- **Consumption indexes**

\[X_t \equiv \left[\omega C_t^{\frac{e-1}{e}} + (1-\omega) e^{\eta_t} H_t^{\frac{e-1}{e}} \right]^{\frac{e}{e-1}} \quad \text{and} \quad C_t \equiv \left[\alpha^{\frac{1}{\gamma}} C_{ht}^{\frac{1}{\gamma}-1} + (1-\alpha)^{\frac{1}{\gamma}} C_{ft}^{\frac{1}{\gamma}-1} \right]^{\frac{\gamma}{\gamma-1}} \]

- **Budget constraint**

\[P_{ht} C_{ht} + P_{ft} C_{ft} + Q_t H_t - B_t \leq \int_0^1 W_t(i) L_t(i) di + Q_t H_{t-1} + T_t - (1+i_{t-1})B_{t-1} \]

- **Borrowing constraint**

\[(1+i_t)B_t \leq \Theta_t \mathbb{E}_t(Q_{t+1} H_t) \]
Wage and Price Setting

- Sticky wages:

\[
\max_{W_t(i)} \mathbb{E}_t \left\{ \sum_{s=0}^{\infty} (\beta \zeta^s)^s \lambda_{t+s} \left[W_t(i) L_{t+s}(i) - \frac{L_{t+s}(i)^{1+\nu}}{1+\nu} \right] \right\}
\]

subject to

\[
L_{t+s}(i) = \left[\frac{W_t(i)}{W_{t+s}} \right]^{-\phi_w} L_{t+s}
\]

- Sticky prices:

\[
\max_{P_t(h)} \mathbb{E}_t \left\{ \sum_{s=0}^{\infty} (\beta \zeta^s)^s \lambda_{t+s} \left[P_t(h) Y_{t+s}(h) - W_{t+s} L_{t+s} \right] \right\}
\]

subject to

\[
Y_{t+s}(h) = \left[\frac{P_t(h)}{P_{ht+s}} \right]^{-\phi_p} Y_{ht+s} \quad \text{and} \quad Y_t(h) = AL_t
\]
Monetary Policy and Equilibrium

- Interest rate rule (Taylor, 1993; plus smoothing)

\[
(1 + i_t) = (1 + i_{t-1})^{\rho_i} \left[(1 + i) \left(\frac{\Pi_{Xt}}{\tilde{\Pi}_{Xt}} \right)^{\psi_{\pi}} \left(\frac{Y_{ht}}{\tilde{Y}_{ht}} \right)^{\psi_y} \right]^{1-\rho_i} e^{\varepsilon_{it}}
\]

where \(\Pi_{Xt} \equiv P_{Xt} / P_{Xt-1}, \) \(P_{Xt} \equiv P_t^{\omega_X} OER_t^{1-\omega_X} \) and \(OER_t \equiv MRS_t^{C,H} \)
Monetary Policy and Equilibrium

- Interest rate rule (Taylor, 1993; plus smoothing)

\[(1 + i_t) = (1 + i_{t-1})^{\rho_i} \left[(1 + i) \left(\frac{\Pi_{Xt}}{\Pi_{Xt-1}} \right)^{\psi_\pi} \left(\frac{Y_{ht}}{Y_{ht-1}} \right)^{\psi_y} \right]^{1-\rho_i} e^{\epsilon_{it}} \]

where \(\Pi_{Xt} \equiv P_{Xt}/P_{Xt-1} \), \(P_{Xt} \equiv P_t^\omega OER_t^{1-\omega} \) and \(OER_t \equiv MRS_t^{C,H} \)

- Law of one price holds for tradable goods but PPP doesn’t because of home bias

\[P_{ht} = \mathcal{E}_t P_{ht}^* \quad \text{and} \quad S_t \equiv \frac{\mathcal{E}_t P_t^*}{P_t} \neq 1\]

- Equilibrium in the goods market

\[Y_{ht} = C_{ht} + C_{ht}^* = \left(\frac{P_{ht}}{P_t} \right)^{-\gamma} \left[\alpha C_t + (1 - \alpha) S_t^\gamma C_t^* \right] \]

- Equilibrium in asset markets

\[H_t = H \quad \text{and} \quad B_t + B_t^* = 0\]
Monetary Policy and Equilibrium

- Interest rate rule (Taylor, 1993; plus smoothing)

\[
(1 + i_t) = (1 + i_{t-1})^\rho_i \left[(1 + i) \left(\frac{\Pi X_t}{\Pi X_{t-1}} \right)^\psi_{\pi} \left(\frac{Y_{ht}}{Y_{ht}} \right)^\psi_y \right]^{1-\rho_i} e^{\epsilon_{it}}
\]

where \(\Pi X_t \equiv P_{Xt}/P_{Xt-1}, P_{Xt} \equiv P_t^{\omega X} \text{OER}_t^{1-\omega X}\) and \(\text{OER}_t \equiv \text{MRS}_t^{C,H}\)

- Law of one price holds for tradable goods but PPP doesn’t because of home bias

\[
P_{ht} = \mathcal{E}_t P_{ht}^* \quad \text{and} \quad S_t \equiv \frac{\mathcal{E}_t P_t^*}{P_t} \neq 1
\]

- Equilibrium in the goods market

\[
Y_{ht} = C_{ht} + C_{ht}^* = \left(\frac{P_{ht}}{P_t} \right)^{-\gamma} [\alpha C_t + (1 - \alpha) S_{\gamma}^t C_t^*]
\]

- Equilibrium in asset markets

\[
H_t = H \quad \text{and} \quad B_t + B^*_t = 0
\]

- Price of land explains 2/3 of U.S. house prices (Davis and Heathcote, 2007)
Asymmetric Steady State

- Two-country model admits
 - One symmetric steady state with $B = 0$
 - A continuum of asymmetric steady states indexed by $B \neq 0$

\begin{align*}
\theta_t & = \tilde{\theta}_t + \Xi \Theta \left[\xi_t + \theta_t - (\eta_t + c_t) + E_t q_t + 1 + E_t \pi_t + 1 \right]
\end{align*}

$\tilde{\theta}_t$ is formula for real house prices absent borrowing constraint

\Rightarrow Focus on asymmetric steady state ($\beta < \beta^* \Rightarrow B > 0 \Rightarrow \Xi > 0$)

Aside: Open economy model with incomplete markets but binding borrowing constraint pins down steady state net foreign debt position
Asymmetric Steady State

- Two-country model admits
 - One symmetric steady state with $B = 0$
 - A continuum of asymmetric steady states indexed by $B \neq 0$

- Solve the model with linear methods
 - Symmetric steady state not interesting for looking at effects of θ_t ($\Xi = 0$)

$$q_t = \tilde{q}_t + \Xi\Theta[\xi_t + \theta_t - (\eta_t + c_t) + \mathbb{E}_t q_{t+1} + \mathbb{E}_t \pi_{t+1}]$$

where \tilde{q}_t is formula for real house prices absent borrowing constraint
Asymmetric Steady State

- Two-country model admits
 - One symmetric steady state with $B = 0$
 - A continuum of asymmetric steady states indexed by $B \neq 0$

- Solve the model with linear methods
 - Symmetric steady state not interesting for looking at effects of θ_t ($\Xi = 0$)

$$q_t = \tilde{q}_t + \Xi \Theta [\xi_t + \theta_t - (\eta_t + c_t) + \mathbb{E}_t q_{t+1} + \mathbb{E}_t \pi_{t+1}]$$

where \tilde{q}_t is formula for real house prices absent borrowing constraint

\Rightarrow Focus on asymmetric steady state ($\beta < \beta^* \Rightarrow B > 0 \Rightarrow \Xi > 0$)
Asymmetric Steady State

- Two-country model admits
 - One symmetric steady state with $B = 0$
 - A continuum of asymmetric steady states indexed by $B \neq 0$

- Solve the model with linear methods
 - Symmetric steady state not interesting for looking at effects of θ_t ($\Xi = 0$)

$$q_t = \tilde{q}_t + \Xi \Theta [\xi_t + \theta_t - (\eta_t + c_t) + \mathbb{E}_t q_{t+1} + \mathbb{E}_t \pi_{t+1}]$$

where \tilde{q}_t is formula for real house prices absent borrowing constraint

\Rightarrow Focus on asymmetric steady state ($\beta < \beta^* \Rightarrow B > 0 \Rightarrow \Xi > 0$)

- Aside: Open economy model with incomplete markets but binding borrowing constraint pins down steady state net foreign debt position
Standard (International) Macro Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>β^*</td>
<td>0.99</td>
<td>Foreign discount factor</td>
</tr>
<tr>
<td>σ</td>
<td>2</td>
<td>Risk aversion</td>
</tr>
<tr>
<td>ν</td>
<td>2</td>
<td>Frisch elasticity</td>
</tr>
<tr>
<td>α</td>
<td>0.7</td>
<td>Home bias</td>
</tr>
<tr>
<td>γ</td>
<td>2</td>
<td>Elasticity of substitution H vs F</td>
</tr>
<tr>
<td>ϵ</td>
<td>1</td>
<td>Elasticity of substitution C vs H</td>
</tr>
<tr>
<td>$\phi_p = \phi_w$</td>
<td>7.67</td>
<td>Elasticity of substitution among varieties</td>
</tr>
<tr>
<td>$\zeta_p = \zeta_w$</td>
<td>0.75</td>
<td>Price and wage stickiness</td>
</tr>
<tr>
<td>ψ_{π}</td>
<td>1.5</td>
<td>Taylor rule coefficient on inflation</td>
</tr>
<tr>
<td>ψ_y</td>
<td>0.5</td>
<td>Taylor rule coefficient on output</td>
</tr>
<tr>
<td>ρ_i</td>
<td>0.7</td>
<td>Interest rate smoothing</td>
</tr>
<tr>
<td>ω_X</td>
<td>0.7</td>
<td>Weight on goods consumption price index</td>
</tr>
</tbody>
</table>
House Price Booms

- Two potential drivers (domestic factors):
 1. Financial deregulation
 2. Preference shocks

 1. Financial deregulation:
 - Debate on actual importance for house price boom/bust (Favilukis et al., 2011; vs. Justiniano et al., 2013)
 - Take as given ongoing debate on causes
 - Political response to inequality (Rajan, 2010)
 - Political economy of financial system (Mian et al., 2013)
 - Technological improvements in banking (Favara and Imbs, 2011)

 2. Preference shocks:
 - Possibly a stand-in for house price bubbles (Case and Shiller, 2003)
 - Crucial role in estimated DSGE models (Iacoviello and Neri, 2010)
 - Can generate negative correlation with current account (Gete, 2010)
House Price Booms

Two potential drivers (domestic factors):

1. Financial deregulation
2. Preference shocks

1. Financial deregulation:
 - Debate on actual importance for house price boom/bust (Favilukis et al., 2011; vs. Justiniano et al., 2013)
 - Take as given ongoing debate on causes
 - Political response to inequality (Rajan, 2010)
 - Political economy of financial system (Mian et al., 2013)
 - Technological improvements in banking (Favara and Imbs, 2011)

2. Preference shocks:
 - Possibly a stand-in for house price bubbles (Case and Shiller, 2003)
 - Crucial role in estimated DSGE models (Iacoviello and Neri, 2010)
 - Can generate negative correlation with current account (Gete, 2010)
House Price Booms

- Two potential drivers (domestic factors):
 1. Financial deregulation
 2. Preference shocks

1. Financial deregulation:
 - Debate on actual importance for house price boom/bust (Favilukis et al., 2011; vs. Justiniano et al., 2013)
 - Take as given ongoing debate on causes
 - Political response to inequality (Rajan, 2010)
 - Political economy of financial system (Mian et al., 2013)
 - Technological improvements in banking (Favara and Imbs, 2011)

2. Preference shocks:
 - Possibly a stand-in for house price bubbles (Case and Shiller, 2003)
 - Crucial role in estimated DSGE models (Iacoviello and Neri, 2010)
 - Can generate negative correlation with current account (Gete, 2010)
1. Θ literally represents Loan-to-Value ratio:
 - Θ_t from 85% to 95% between 2001 and 2006 (Justiniano et al., 2013)

Source: Duca, Muellbauer and Murphy (2011, updated 2013)
Financial Deregulation: Two Experiments

1. \(\Theta \) literally represents Loan-to-Value ratio:
 - \(\Theta_t \) from 85% to 95% between 2001 and 2006 (Justiniano et al. 2013)

2. \(B \) represents all forms of collateralized borrowing:
 - \(\Theta_t \) from 75% to 99% between 2001 and 2006 (Favilukis et al. 2011)
Financial Deregulation: Two Experiments

1. Θ literally represents Loan-to-Value ratio:
 - Θ_t from 85% to 95% between 2001 and 2006 (Justiniano et al. 2013)

2. B represents all forms of collateralized borrowing:
 - Θ_t from 75% to 99% between 2001 and 2006 (Favilukis et al. 2011)
 - HELs allow for additional credit (Mian and Sufi, 2011)
 - Also capture reduction of transaction costs (Favilukis et al. 2011)
 - Entry of households previously unable to buy (Geanakoplos, 2010a,b)
 - At peak of boom marginal household borrows with zero downpayment (Haughwout et al., 2011)
Financial Deregulation: Two Experiments

1. Θ literally represents Loan-to-Value ratio:
 - Θ_t from 85% to 95% between 2001 and 2006 (Justiniano et al. 2013)

2. B represents all forms of collateralized borrowing:
 - Θ_t from 75% to 99% between 2001 and 2006 (Favilukis et al. 2011)

- Persistence: $\rho_\theta = 0.99$
 - “Regime-switching effect” (Boz and Mendoza, 2012)

- Find β s.t. financial deregulation fully generates boom
 - If Θ_t from 85 to 95% $\Rightarrow \beta = 0.89$
 - If Θ_t from 75 to 99% $\Rightarrow \beta = 0.96$

- Generate full boom-bust cycle but focus on boom only
Financial Deregulation

House Prices

% deviations from steady state

Current Account

% GDP

-0.8
-0.6
-0.4
-0.2
0

Current Account

quarters

\(\theta = 0.85 \rightarrow 0.95 \)

\(\theta = 0.75 \rightarrow 0.99 \)
Preference Shocks: Equivalence Result

- In spite of evidence of higher LTVs, not obvious lower collateral constraints cause house price booms (Glaeser et al., 2008)
Preference Shocks: Equivalence Result

- In spite of evidence of higher LTVs, not obvious lower collateral constraints cause house price booms (Glaeser et al., 2008)

- **Alternative:** House price (preference) shocks

\[q_t = (1 - \beta - \Xi \Theta) \eta_t + \Xi \Theta \theta_t + \ldots, \]

- Direct impact of preference shocks \propto Direct impact of financial deregulation
Preference Shocks: Equivalence Result

- In spite of evidence of higher LTVs, not obvious lower collateral constraints cause house price booms (Glaeser et al., 2008)

- **Alternative:** House price (preference) shocks

 \[q_t = (1 - \beta - \Xi \Theta) \eta_t + \Xi \Theta \theta_t + ..., \]

 - Direct impact of preference shocks \(\propto \) Direct impact of financial deregulation

- Main difference: Preference shocks do not directly impact debt
 - Deterioration of current account less pronounced
Preference Shocks: Equivalence Result

House Prices

% deviations from steady state

0 5 10 15 20
2 4 6 8 10 12 14 16 18 20

House Prices

Current Account

% of GDP

Borrowing constraint shocks
Preference shocks

2 4 6 8 10 12 14 16 18 20

Andrea Ferrero (Oxford)

House Prices, Current Account, Interest Rates

November 14, 2013
Financial Deregulation and Preference Shocks

- Full house price boom
- Between 1/4 and almost 1/2 of current account deterioration (% of GDP)
 - Corollary: $\text{corr}(hp, ca) \approx -1$
Financial Deregulation and Preference Shocks

- Full house price boom
- Between 1/4 and almost 1/2 of current account deterioration (% of GDP)
 - Corollary: $\text{corr}(hp, ca) \approx -1$
- Also consistent with:
 - Increase in net foreign debt (Lane and Milesi-Ferretti, 2007)
 - Increase in consumption: Non-durable consumption $\approx 2\%$ above trend
Financial Deregulation and Preference Shocks

- Full house price boom
- Between 1/4 and almost 1/2 of current account deterioration (% of GDP)
 ▶ Corollary: $\text{corr}(hp, ca) \approx -1$

- Problem: Counterfactual evolution of real interest rate

```
<table>
<thead>
<tr>
<th>Year</th>
<th>Real Interest Rate: Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>4.5</td>
</tr>
<tr>
<td>2001</td>
<td>3.2</td>
</tr>
<tr>
<td>2002</td>
<td>2.1</td>
</tr>
<tr>
<td>2003</td>
<td>1.5</td>
</tr>
<tr>
<td>2004</td>
<td>1.0</td>
</tr>
<tr>
<td>2005</td>
<td>1.5</td>
</tr>
</tbody>
</table>
```

```
<table>
<thead>
<tr>
<th>Quarter</th>
<th>Real Interest Rate: Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Θ = 0.85−&gt;0.95</td>
</tr>
<tr>
<td>2</td>
<td>Θ = 0.75−&gt;0.99</td>
</tr>
<tr>
<td></td>
<td>Preference shocks</td>
</tr>
</tbody>
</table>
```

Popular explanation: Global saving glut (Bernanke, 2005)

This paper: A role for monetary policy?

⋆ Loose monetary policy in the U.S. (Taylor, 2008)

⋆ Foreign exchange rate pegs (Dooley et al., 2008)
Financial Deregulation and Preference Shocks

- Full house price boom
- Between 1/4 and almost 1/2 of current account deterioration (% of GDP)
 - Corollary: \(\text{corr}(hp, ca) \approx -1 \)

Problem: Counterfactual evolution of real interest rate

- Popular explanation: Global saving glut (Bernanke, 2005)
Financial Deregulation and Preference Shocks

- Full house price boom
- Between 1/4 and almost 1/2 of current account deterioration (% of GDP)
 - Corollary: \(\text{corr}(hp, ca) \approx -1 \)

Problem: Counterfactual evolution of real interest rate

- Popular explanation: Global saving glut (Bernanke, 2005)
- This paper: A role for monetary policy?
 - Loose monetary policy in the U.S. (Taylor, 2008)
 - Foreign exchange rate pegs (Dooley et al., 2008)
Taylor’s Hypothesis

- Loose U.S. monetary policy caused housing bubble (Taylor, 2008)
Taylor’s Hypothesis

- Loose U.S. monetary policy caused housing bubble (Taylor, 2008)
 - Fed kept FFR below “prescribed” interest rate between 2001 and 2005
 - If inflation expectations anchored \Rightarrow Real interest rate too low
 - Interest-rate sensitive sectors (e.g. housing) took off

Quantitative evaluation of Taylor’s hypothesis:
- Domestic factors continue to generate house price boom
 Θ from 85 to 95% ($\beta = 0.95$) \Rightarrow 50% of boom
 Other 50% due to preference shocks
- Departures of FFR from interest rate prescribed by $i_t = 0.7 \ast i_{t-1} + 0.3 \ast [1.5 \ast (\pi_t - 2) + 0.5 \ast (y_t - \tilde{y}_t)]$
 $\pi_t \equiv$ YOY CPI inflation
 $y_t - \tilde{y}_t \equiv$ Deviation of real GDP from CBO potential
Taylor’s Hypothesis

- Loose U.S. monetary policy caused housing bubble (Taylor, 2008)
 - Fed kept FFR below “prescribed” interest rate between 2001 and 2005
 - If inflation expectations anchored ⇒ Real interest rate too low
 - Interest-rate sensitive sectors (e.g. housing) took off

- Quantitative evaluation of Taylor’s hypothesis:
 - Domestic factors continue to generate house price boom
 - Θ from 85 to 95% ($\beta = 0.95$) ⇒ 50% of boom
 - Other 50% due to preference shocks
 - Departures of FFR from interest rate prescribed by
 \[
 i_t = 0.7^* i_{t-1} + 0.3^* [1.5^* (\pi_t - 2) + 0.5^* (y_t - \tilde{y}_t)]
 \]
 - $\pi_t \equiv$ YOY CPI inflation
 - $y_t - \tilde{y}_t \equiv$ Deviation of real GDP from CBO potential
Evaluating Taylor’s Hypothesis

House Prices

Current Account

Real Interest Rate

Domestic and Monetary Policy shocks

Domestic shocks only

Andrea Ferrero (Oxford)
Summary

1. Domestic shocks account for house price boom and $corr(hp, ca) \approx -1$

2. Monetary policy shocks unimportant for house prices and current account

3. Monetary policy shocks explain low real interest rate
Summary

1. Domestic shocks account for house price boom and $\text{corr}(hp, ca) \approx -1$

2. Monetary policy shocks unimportant for house prices and current account

3. Monetary policy shocks explain low real interest rate
 - Effect still small (model: $\approx -1\%$, data: $\approx -4\%$)
Summary

1. Domestic shocks account for house price boom and $corr(hp, ca) \approx -1$

2. Monetary policy shocks unimportant for house prices and current account

3. Monetary policy shocks explain low real interest rate
 - Effect still small (model: $\approx -1\%$, data: $\approx -4\%$)

Role for foreign monetary policy?
 - Assume ROW pegs to \Rightarrow Evaluation of “Bretton Woods II” hypothesis
Who Finances U.S. External Deficits?

Bilateral U.S. trade balance % of GDP by area

Europe
Canada
Japan
Other (includes China and OPEC until 1998)
China (post−1998)
OPEC (post−1998)
The “Bretton Woods II” Hypothesis

- Emerging markets and oil producers pegged exchange rate to $
 - IMF exchange rate regime classification
- These countries “finance” widening U.S. current account deficit
 - Emerging Asia: High productivity growth
 - Oil Producers: High oil prices
- Flexible exchange rates \Rightarrow Appreciation of domestic currency
The “Bretton Woods II” Hypothesis

- Emerging markets and oil producers pegged exchange rate to $
 - IMF exchange rate regime classification

- These countries “finance” widening U.S. current account deficit
 - Emerging Asia: High productivity growth
 - Oil Producers: High oil prices

- Flexible exchange rates \Rightarrow Appreciation of domestic currency

- Peg \Rightarrow Emerging economies “import” U.S. monetary policy

- Loose U.S. monetary policy \Rightarrow Loose global monetary policy
 - Downward pressure on world real interest rates
 - Prevents U.S. real exchange rate from depreciating
 - Policy stimulus for emerging markets exports
Evaluating “Bretton Woods II” Hypothesis

House Prices

Current Account

Real Interest Rate

Andrea Ferrero (Oxford)
Conclusions

- Financial deregulation + Preference Shocks $\Rightarrow \text{corr}(hp, ca) \approx -1$

- Monetary policy shocks + Foreign peg \Rightarrow Decline in real interest rate
Conclusions

- Financial deregulation + Preference Shocks $\Rightarrow \text{corr}(hp, ca) \approx -1$

- Monetary policy shocks + Foreign peg \Rightarrow Decline in real interest rate

- Results complement role of global saving glut
Conclusions

- Financial deregulation + Preference Shocks $\Rightarrow corr(hp, ca) \approx -1$
- Monetary policy shocks + Foreign peg \Rightarrow Decline in real interest rate
- Results complement role of global saving glut

Extensions:

1. Risk-taking channel of monetary policy? Little evidence from LTVs and FFR
Conclusions

- Financial deregulation + Preference Shocks $\implies corr(hp, ca) \approx -1$

- Monetary policy shocks + Foreign peg \implies Decline in real interest rate

- Results complement role of global saving glut

Extensions:

1. Risk-taking channel of monetary policy? Little evidence from LTVs and FFR
2. Monetary policy response to house prices? Recession and deflation
Interest Rates and Financial Deregulation

- Financial deregulation process exogenous to monetary policy
 - Objection: Low(er) interest rates encourage excessive risk-taking
 1. Lower than predicted by benchmark rule? (Taylor, 2008)
 2. Low levels? (Rajan, 2013)

\[
LTV_t = \alpha + \rho LTV_{t-1} + \beta x_t + u_t
\]

\begin{align*}
\alpha &= 0.000 \quad 0.000 \quad 0.000 \\
\rho &= 0.696 \quad 0.000 \quad 0.000 \\
\beta &= 0.480 \quad 0.500 \quad 0.502 \\
\end{align*}

\begin{align*}
x_t &= \text{FFR}_t \\
\end{align*}

(0.004) (0.074) (0.003)

(0.004) (0.079) (0.002)
Interest Rates and Financial Deregulation

- Financial deregulation process exogenous to monetary policy
 - Objection: Low(er) interest rates encourage excessive risk-taking
 1. Lower than predicted by benchmark rule? (Taylor, 2008)
 2. Low levels? (Rajan, 2013)

- Dependent variable: Non-government median LTV series for first-time home buyers from American Housing Survey (Duca et al., 2013)
Interest Rates and Financial Deregulation

- Financial deregulation process exogenous to monetary policy
 - Objection: Low(er) interest rates encourage excessive risk-taking
 1. Lower than predicted by benchmark rule? (Taylor, 2008)
 2. Low levels? (Rajan, 2013)

- Dependent variable: Non-government median LTV series for first-time home buyers from American Housing Survey (Duca et al., 2013)

\[
LTV_t = \alpha + \beta x_t + u_t
\]

\[
\begin{array}{ccc}
 & \alpha & \beta & R^2 \\
\hline
x_t = \varepsilon_{FFR,t} & -0.010** & -0.013*** & 0.145 \\
& (0.005) & (0.003) & \\
\hline
x_t = FFR_t & -0.001 & -0.008*** & 0.146 \\
& (0.005) & (0.002) & \\
\end{array}
\]
Interest Rates and Financial Deregulation

- Financial deregulation process exogenous to monetary policy
 - Objection: Low(er) interest rates encourage excessive risk-taking
 1. Lower than predicted by benchmark rule? (Taylor, 2008)
 2. Low levels? (Rajan, 2013)

- Dependent variable: Non-government median LTV series for first-time home buyers from American Housing Survey (Duca et al., 2013)

\[
LTV_t = \alpha + \rho LTV_{t-1} + \beta x_t + u_t
\]

<table>
<thead>
<tr>
<th></th>
<th>(\alpha)</th>
<th>(\rho)</th>
<th>(\beta)</th>
<th>(R^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x_t = 0)</td>
<td>0.000</td>
<td>0.696***</td>
<td>0</td>
<td>0.480</td>
</tr>
<tr>
<td></td>
<td>(0.004)</td>
<td>(0.074)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(x_t = \varepsilon_{FFR,t})</td>
<td>-0.004</td>
<td>0.641***</td>
<td>-0.005*</td>
<td>0.500</td>
</tr>
<tr>
<td></td>
<td>(0.004)</td>
<td>(0.079)</td>
<td>(0.003)</td>
<td></td>
</tr>
<tr>
<td>(x_t = FFR_t)</td>
<td>0.000</td>
<td>0.640***</td>
<td>-0.003**</td>
<td>0.502</td>
</tr>
<tr>
<td></td>
<td>(0.004)</td>
<td>(0.078)</td>
<td>(0.002)</td>
<td></td>
</tr>
</tbody>
</table>
Dicotomy:

- Financial deregulation + Preference Shocks $\Rightarrow corr(hp, ca) \approx -1$
- Monetary policy shocks + Foreign peg \Rightarrow Decline in real interest rate
Monetary Policy and Asset Prices

- Dicotomy:
 - Financial deregulation + Preference Shocks \(\Rightarrow \text{corr}(hp, ca) \approx -1 \)
 - Monetary policy shocks + Foreign peg \(\Rightarrow \text{Decline in real interest rate} \)

- What would have happened if Fed had responded to house prices?

\[
i_t = \rho_i i_{t-1} + (1 - \rho_i) (\psi \pi_X + \psi y_y h_t) + \psi q \Delta q_t + \varepsilon_t
\]
Monetary Policy and Asset Prices

- **Dicothomy:**
 - Financial deregulation + Preference Shocks ⇒ $\text{corr}(hp, ca) \approx -1$
 - Monetary policy shocks + Foreign peg ⇒ Decline in real interest rate

- What would have happened if Fed had responded to house prices?
 - Modify Taylor rule to introduce response to house price inflation

\[
i_t = \rho_i i_{t-1} + (1 - \rho_i) (\psi_{\pi} \pi_X + \psi_y y_{ht}) + \psi_q \Delta q_t + \varepsilon_{it}
\]

- Experiment:
 - Same combination of financial deregulation and preference shocks as before
 - No monetary policy shocks
 - Pick ψ_q so that house prices increase by 10% max
Monetary Policy and Asset Prices

- Dicotomy:
 - Financial deregulation + Preference Shocks $\Rightarrow \text{corr}(hp, ca) \approx -1$
 - Monetary policy shocks + Foreign peg \Rightarrow Decline in real interest rate

- What would have happened if Fed had responded to house prices?
 - Modify Taylor rule to introduce response to house price inflation
 \[i_t = \rho_i i_{t-1} + (1 - \rho_i) (\psi_{\pi} \pi X_t + \psi_{y} y_{ht}) + \psi_{q} \Delta q_t + \varepsilon_{it} \]
 - Experiment:
 - Same combination of financial deregulation and preference shocks as before
 - No monetary policy shocks
 - Pick ψ_q so that house prices increase by 10% max
Response to house prices ⇒ Recession + Deflation
Financial Deregulation: Intuition (Partial Equilibrium)

- Steady state of small open economy version with single consumption good, fixed labor supply, no nominal rigidities

\[
RB = \Theta QH \\
QH = (\omega^{-1} - 1) C / (1 - \beta - \Xi \Theta)
\]
Financial Deregulation: Intuition (Partial Equilibrium)

- Steady state of small open economy version with single consumption good, fixed labor supply, no nominal rigidities

\[
\text{Net foreign debt: } RB = \Theta QH \\
\text{Real value of housing stock: } QH = (\omega^{-1} - 1) C / (1 - \beta - \Xi \Theta)
\]

- **Experiment**: Permanent increase in \(\Theta \) (borrowing constraint)
 - For given consumption, foreign debt and real house prices increase
Financial Deregulation: Intuition (Partial Equilibrium)

- Steady state of small open economy version with single consumption good, fixed labor supply, no nominal rigidities

\[RB = \Theta QH \]

\[QH = (\omega^{-1} - 1) C / (1 - \beta - \Xi \Theta) \]

- **Experiment:** Permanent increase in \(\Theta \) (borrowing constraint)
 - For given consumption, foreign debt and real house prices increase
 - Endogenous amplification on \(B \) via \(QH \)
Financial Deregulation: Intuition (Partial Equilibrium)

- Steady state of small open economy version with single consumption good, fixed labor supply, no nominal rigidities

\[
RB = \Theta QH \\
QH = (\omega^{-1} - 1) C / (1 - \beta - \Xi \Theta)
\]

- Experiment: Permanent increase in \(\Theta \) (borrowing constraint)
 - For given consumption, foreign debt and real house prices increase
 - Endogenous amplification on \(B \) via \(QH \)
 - Eventually, consumption decreases to repay debt
 \[
 C = Y - (R - 1)B
 \]
 But along transition consumption booms (credit availability increases)
Permanent Increase in LTV from 80% to 90%
Intuition (Partial Equilibrium)

- Steady state of small open economy version with single consumption good, fixed labor supply, no nominal rigidities

Net foreign debt \(RB = \Theta QH \)

Real value of housing stock \(QH = (\eta^{-1} - 1) C / (1 - \beta - \Xi \Theta) \)

- **Note:** Borrowing constraint binding

\[\Xi = (1 - \beta R) / R > 0 \]

- True only if \(1 - \beta R > 0 \) ⇒ “Low” real interest rate \((R < 1/\beta) \)
 - True in the data
 - Problem for a two-country model conditional on shocks to \(\Theta \) only
United States: A Nation in Debt

Data source: FRBNY Quarterly Report on Household Debt and Credit

1Data source: FRBNY Quarterly Report on Household Debt and Credit
Growth of Subprime

Mortgage Origination by Product (in %)

<table>
<thead>
<tr>
<th>Year</th>
<th>FHA/VA</th>
<th>Conv/Conf</th>
<th>Jumbo</th>
<th>Subprime</th>
<th>Alt A</th>
<th>HEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>2001</td>
<td>8</td>
<td>57</td>
<td>20</td>
<td>7</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>2002</td>
<td>7</td>
<td>63</td>
<td>21</td>
<td>1</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>2003</td>
<td>6</td>
<td>62</td>
<td>16</td>
<td>8</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>2004</td>
<td>4</td>
<td>41</td>
<td>17</td>
<td>18</td>
<td>6</td>
<td>12</td>
</tr>
<tr>
<td>2005</td>
<td>3</td>
<td>35</td>
<td>18</td>
<td>20</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>2006</td>
<td>3</td>
<td>33</td>
<td>16</td>
<td>20</td>
<td>13</td>
<td>14</td>
</tr>
<tr>
<td>2007</td>
<td>4</td>
<td>48</td>
<td>14</td>
<td>8</td>
<td>11</td>
<td>15</td>
</tr>
</tbody>
</table>

* Source: Abraham, Pavlov and Wachter (2008)
- FHA/VA = Federal Housing / Veteran Administration
- Conv/Conf = Convertible/Conformable loans
- Jumbo = Above conformable ($417K)
- Alt A = “Alternative to Agency”
- HEL = Home Equity Loans
Growth of Subprime

Mortgage Origination by Product (in %)

<table>
<thead>
<tr>
<th>Year</th>
<th>FHA/VA</th>
<th>Conv/Conf</th>
<th>Jumbo</th>
<th>Subprime</th>
<th>Alt A</th>
<th>HEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>2001</td>
<td>8</td>
<td>57</td>
<td>20</td>
<td>7</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>2002</td>
<td>7</td>
<td>63</td>
<td>21</td>
<td>1</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>2003</td>
<td>6</td>
<td>62</td>
<td>16</td>
<td>8</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>2004</td>
<td>4</td>
<td>41</td>
<td>17</td>
<td>18</td>
<td>6</td>
<td>12</td>
</tr>
<tr>
<td>2005</td>
<td>3</td>
<td>35</td>
<td>18</td>
<td>20</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>2006</td>
<td>3</td>
<td>33</td>
<td>16</td>
<td>20</td>
<td>13</td>
<td>14</td>
</tr>
<tr>
<td>2007</td>
<td>4</td>
<td>48</td>
<td>14</td>
<td>8</td>
<td>11</td>
<td>15</td>
</tr>
</tbody>
</table>

* Source: Abraham, Pavlov and Wachter (2008)
 - FHA/VA = Federal Housing / Veteran Administration
 - Conv/Conf = Convertible/Conformable loans
 - Jumbo = Above conformable ($417K)
 - Alt A = “Alternative to Agency”
 - HEL = Home Equity Loans

Definition of “subprime” (Board of Governors, 2001)
- ≥ 2 30-day (≥ 1 60-day) delinquencies in last 12 (24) months
- Judgment, foreclosure, repossession, or charge-off in prior 24 months
- Bankruptcy in last 5 years
- Relatively high default probability (FICO ≤ 660)
- Debt-income ratio ≥ 50%

Pinto (2008): Subprime is larger than “subprime” (Alt-A and HELs also have subprime characteristics)
Loan-to-Value Ratios

LTVs for prime, Alt-A and subprime mortgages (in %)

<table>
<thead>
<tr>
<th>Year</th>
<th>Fixed-Rate</th>
<th>Adjustable-Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CLTV</td>
<td>Mean</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mean</td>
</tr>
<tr>
<td>Prime</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2002</td>
<td>65.4 3.0</td>
<td>66.5 4.1</td>
</tr>
<tr>
<td>2003</td>
<td>63.8 4.4</td>
<td>68.2 10.1</td>
</tr>
<tr>
<td>2004</td>
<td>67.4 7.0</td>
<td>73.5 20.7</td>
</tr>
<tr>
<td>2005</td>
<td>70.9 13.4</td>
<td>74.1 21.7</td>
</tr>
<tr>
<td>2006</td>
<td>74.5 23.1</td>
<td>75.3 26.2</td>
</tr>
<tr>
<td>Alt-A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2002</td>
<td>74.7 22.0</td>
<td>74.3 20.8</td>
</tr>
<tr>
<td>2003</td>
<td>71.5 21.4</td>
<td>78.0 33.3</td>
</tr>
<tr>
<td>2004</td>
<td>75.3 29.5</td>
<td>82.6 46.9</td>
</tr>
<tr>
<td>2005</td>
<td>76.2 31.3</td>
<td>83.5 49.6</td>
</tr>
<tr>
<td>2006</td>
<td>79.4 39.6</td>
<td>85.0 55.4</td>
</tr>
<tr>
<td>Subprime</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2002</td>
<td>77.3 38.0</td>
<td>81.2 46.8</td>
</tr>
<tr>
<td>2003</td>
<td>78.0 41.7</td>
<td>83.5 55.6</td>
</tr>
<tr>
<td>2004</td>
<td>77.7 41.2</td>
<td>85.3 61.1</td>
</tr>
<tr>
<td>2005</td>
<td>78.7 44.5</td>
<td>86.6 64.4</td>
</tr>
<tr>
<td>2006</td>
<td>78.7 44.6</td>
<td>86.7 64.0</td>
</tr>
</tbody>
</table>

* Source: Abraham, Pavlov and Wachter (2008)
- CLTV = Combined (i.e. first and second mortgage) loan-to-value ratio
Loan-to-Value Ratios

LTV ratios (in %)

<table>
<thead>
<tr>
<th>Year</th>
<th>25(^{th})</th>
<th>50(^{th})</th>
<th>75(^{th})</th>
<th>90(^{th})</th>
</tr>
</thead>
<tbody>
<tr>
<td>2004</td>
<td>56</td>
<td>80</td>
<td>95</td>
<td>100</td>
</tr>
<tr>
<td>2005</td>
<td>64</td>
<td>86</td>
<td>99</td>
<td>100</td>
</tr>
<tr>
<td>2006</td>
<td>70</td>
<td>90</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

All Housing Purchases\(^2\)

<table>
<thead>
<tr>
<th>Year</th>
<th>25(^{th})</th>
<th>50(^{th})</th>
<th>75(^{th})</th>
<th>90(^{th})</th>
</tr>
</thead>
<tbody>
<tr>
<td>2004</td>
<td>80</td>
<td>95</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>2005</td>
<td>80</td>
<td>95</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>2006</td>
<td>90</td>
<td>99</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

Non-Prime Purchases\(^3\)

\(^2\)Source: Glaeser, Gottlieb and Gyourko (2010)

\(^3\)Source: Haughwout, Lee, Tracy and Van der Klaauw (2011)
Beyond LTV Ratios: Home Equity Loans (HEL)

- From 5 to 15% of **new** mortgage origination between 2001 and 2007
- Mian and Sufi (2011): Increase in HEL by **existing** homeowners responsible for substantial fraction of:
 - Increase in household **leverage** between 2002 and 2006
 - Increase in **default** rates between 2006 and 2008
- Average household extracts 25c per $1 of house price appreciation
- Borrowed funds not used to buy new real estate or repay (high interest) credit card debt
 - Must be used for real outlays
 - Consumption
 - Home improvement
Notable International Episodes

- **Iceland**: LTVs from 65% to 90% in 2003 (EMF Hyopstat, 2008)
 - 60% increase in real house prices between 2001 and 2006
 - 20% deterioration of current account over same period

- **UK (80s)**: LTVs from 75% to 85% (Ortalo-Magné and Rady, 2004)
 - House prices up 88% between 1982 and 1989
 - Current account balance from $\approx +2\%$ to $\approx -5\%$ over a decade

- **Spain**: Tight regulation on LTV ratios (Bank of Spain)
 - Recent events revealed different reality
 - Plus other ways to get around restrictions (e.g. inflated appraisals)
Lagrange Multipliers

Andrea Ferrero (Oxford)
House Prices, Current Account, Interest Rates
November 14, 2013 39 / 41
The Role of Nominal Rigidities