Joint Dynamics of House Prices and Foreclosures

Yavuz Arslan¹ Bulent Guler² and Temel Taskin¹

¹Central Bank of Republic of Turkey

²Indiana University

November 2013

AGT (CBRT and IUB)

House Prices and Foreclosures

Real House Price Index - FHFA

<ロ> (日) (日) (日) (日) (日)

Foreclosures Started

(日) (周) (日) (日)

Motivation

What do we do?

• Model the relation between house prices and foreclosures

November 2013

(日) (同) (三) (三)

Motivation

- Model the relation between house prices and foreclosures
- Incorporate realistic structure for mortgages and allow foreclosures

- Model the relation between house prices and foreclosures
- Incorporate realistic structure for mortgages and allow foreclosures
- Analyze the feedback mechanism between house prices and foreclosures in response to three unexpected permanent shocks:

- Model the relation between house prices and foreclosures
- Incorporate realistic structure for mortgages and allow foreclosures
- Analyze the feedback mechanism between house prices and foreclosures in response to three unexpected permanent shocks:
 - Higher risk-free interest rate

- Model the relation between house prices and foreclosures
- Incorporate realistic structure for mortgages and allow foreclosures
- Analyze the feedback mechanism between house prices and foreclosures in response to three unexpected permanent shocks:
 - Higher risk-free interest rate
 - Tighter credit constraints (higher minimum down payment requirement)

- Model the relation between house prices and foreclosures
- Incorporate realistic structure for mortgages and allow foreclosures
- Analyze the feedback mechanism between house prices and foreclosures in response to three unexpected permanent shocks:
 - Higher risk-free interest rate
 - Tighter credit constraints (higher minimum down payment requirement)
 - Higher unemployment rate

- Model the relation between house prices and foreclosures
- Incorporate realistic structure for mortgages and allow foreclosures
- Analyze the feedback mechanism between house prices and foreclosures in response to three unexpected permanent shocks:
 - Higher risk-free interest rate
 - Tighter credit constraints (higher minimum down payment requirement)
 - Higher unemployment rate
- Explore the effect of two policies:

- Model the relation between house prices and foreclosures
- Incorporate realistic structure for mortgages and allow foreclosures
- Analyze the feedback mechanism between house prices and foreclosures in response to three unexpected permanent shocks:
 - Higher risk-free interest rate
 - Tighter credit constraints (higher minimum down payment requirement)
 - Higher unemployment rate
- Explore the effect of two policies:
 - Monetary Policy: Lower interest rates

- Model the relation between house prices and foreclosures
- Incorporate realistic structure for mortgages and allow foreclosures
- Analyze the feedback mechanism between house prices and foreclosures in response to three unexpected permanent shocks:
 - Higher risk-free interest rate
 - Tighter credit constraints (higher minimum down payment requirement)
 - Higher unemployment rate
- Explore the effect of two policies:
 - Monetary Policy: Lower interest rates
 - Macroprudential Policy: Tighter credit constraints,

• Life-cycle housing model

(日) (周) (三) (三)

- Life-cycle housing model
 - Gervais (2002), Li and Yao (2007), Chambers et al (2009), Guler (2008), Campbell and Cocco (2011), Chen et al (2013)

(日) (同) (三) (三)

- Life-cycle housing model
 - Gervais (2002), Li and Yao (2007), Chambers et al (2009), Guler (2008), Campbell and Cocco (2011), Chen et al (2013)
- Endogenous credit terms and default

< < p>< < p>

Motivation

Literature Review

- Life-cycle housing model
 - Gervais (2002), Li and Yao (2007), Chambers et al (2009), Guler (2008), Campbell and Cocco (2011), Chen et al (2013)
- Endogenous credit terms and default
 - Chatterjee et al (2007), Guler (2008), Corbae and Quintin (2011), Hatchondo et al (2011)

- Life-cycle housing model
 - Gervais (2002), Li and Yao (2007), Chambers et al (2009), Guler (2008), Campbell and Cocco (2011), Chen et al (2013)
- Endogenous credit terms and default
 - Chatterjee et al (2007), Guler (2008), Corbae and Quintin (2011), Hatchondo et al (2011)
- Endogenous house prices and foreclosures

- Life-cycle housing model
 - Gervais (2002), Li and Yao (2007), Chambers et al (2009), Guler (2008), Campbell and Cocco (2011), Chen et al (2013)
- Endogenous credit terms and default
 - Chatterjee et al (2007), Guler (2008), Corbae and Quintin (2011), Hatchondo et al (2011)
- Endogenous house prices and foreclosures
 - Chatterjee and Eyigungor (2011)

- Life-cycle housing model
 - Gervais (2002), Li and Yao (2007), Chambers et al (2009), Guler (2008), Campbell and Cocco (2011), Chen et al (2013)
- Endogenous credit terms and default
 - Chatterjee et al (2007), Guler (2008), Corbae and Quintin (2011), Hatchondo et al (2011)
- Endogenous house prices and foreclosures
 - Chatterjee and Eyigungor (2011)
- Determinants of Foreclosures

Motivation

Literature Review

- Life-cycle housing model
 - Gervais (2002), Li and Yao (2007), Chambers et al (2009), Guler (2008), Campbell and Cocco (2011), Chen et al (2013)
- Endogenous credit terms and default
 - Chatterjee et al (2007), Guler (2008), Corbae and Quintin (2011), Hatchondo et al (2011)
- Endogenous house prices and foreclosures
 - Chatterjee and Eyigungor (2011)
- Determinants of Foreclosures
 - Bajari et al (2010), Foote et al (2008,2012), Mayer et al (2009), Mian and Sufi (2011)

November 2013

イロト 不得下 イヨト イヨト

Environment

- Life-cycle model with deterministic time horizon
- Utility from both consumption good and housing
- They either rent or own a house
- Households are subject to idiosyncratic income shocks
- Households are subject to moving shocks
- Purchase of a house can be done through a mortgage

Environment

Environment (cont.)

- Perfect competition among risk-neutral lenders
- Mortgage holders can default on the mortgage
- Terms of mortgage contracts are endogenous (downpayment and mortgage interest rate)
- Only fixed-rate mortgages (FRM) and maturity is determined by the age of the individual (but allow for prepayment)
- Selling a house is entitled to an idiosyncratic capital gain/loss
- Fixed house supply

Environment (cont.)

- Fixed house size and no explicit refinancing (but allow for implicit refinancing)
- No unsecured borrowing

(日) (同) (三) (三)

• Four possible housing status: inactive renter, active renter, owner and mover

Image: A matrix

- **∢** ∃=

- Four possible housing status: inactive renter, active renter, owner and mover
 - Inactive Renter: Renter with default flag (cannot purchase a house): V^d

- Four possible housing status: inactive renter, active renter, owner and mover
 - Inactive Renter: Renter with default flag (cannot purchase a house): V^d
 - Active Renter: Can stay as a renter or purchase a house: $V^r = \max \left\{ V^{rr}, V^{rh} \right\}$

- Four possible housing status: inactive renter, active renter, owner and mover
 - Inactive Renter: Renter with default flag (cannot purchase a house): V^d
 - Active Renter: Can stay as a renter or purchase a house: $V^r = \max \left\{ V^{rr}, V^{rh} \right\}$
 - Owner: Can stay in the house, sell the house or default on the mortgage (if any): $V^h = \max \left\{ V^{hh}, V^{hr}, V^{hd} \right\}$

- Four possible housing status: inactive renter, active renter, owner and mover
 - Inactive Renter: Renter with default flag (cannot purchase a house): V^d
 - Active Renter: Can stay as a renter or purchase a house: $V^r = \max \left\{ V^{rr}, V^{rh} \right\}$
 - Owner: Can stay in the house, sell the house or default on the mortgage (if any): $V^h = \max \left\{ V^{hh}, V^{hr}, V^{hd} \right\}$
 - Mover: Can sell the house or default on the mortgage (if any): $V^m = \max \left\{ V^{hr}, V^{hd} \right\}$

・ロト ・聞ト ・ヨト ・ヨト

Purchaser's Problem

$$V_{j}^{rh}(a,z) = \max_{c,a'} \left\{ u_{h}(c) + \beta E\left[(1-\psi) V_{j+1}^{h}(a',z';r^{m}) + \psi V_{j+1}^{m}(a',z') \right] \right\}$$

$$c + qa' + p^{h} = y(z, j) + a$$

$$q = \begin{cases} \frac{1}{1+r} & \text{if } a' \ge 0\\ \frac{1}{1-(1+r^{m})^{-M}} & \text{if } a' < 0 \end{cases}$$

$$a' \in \Psi(\tilde{a}, r^{m}; a, z, j) \text{ with } \tilde{a} \ge -p^{h}(1-\phi)$$

AGT (CBRT and IUB)

November 2013

イロン イヨン イヨン イヨン

Seller's and Defaulter's Problem

• Seller's Problem:

$$V_{j}^{hr}(a, z; \kappa) = \max_{c, a'} \left\{ u_{r}(c) + \beta E V_{j+1}^{r}(a', z') \right\}$$
$$c + \frac{a'}{1+r} = y(z, j) + a + p^{h}(1 - \varphi_{h})(1 + \kappa)$$

AGT (CBRT and IUB)

November 2013

(日) (同) (三) (三)

Seller's and Defaulter's Problem

• Seller's Problem:

$$V_{j}^{hr}(a, z; \kappa) = \max_{c, a'} \left\{ u_{r}(c) + \beta E V_{j+1}^{r}(a', z') \right\}$$
$$c + \frac{a'}{1+r} = y(z, j) + a + p^{h}(1 - \varphi_{h})(1 + \kappa)$$

• Defaulter's Problem:

$$V_{j}^{hd}(a, z) = \max_{c, a'} \left\{ u_{r}(c) + \beta E \left[\delta V_{j+1}^{r}(a', z') + (1 - \delta) V_{j+1}^{d}(a', z') \right] \right\}$$

$$c + \frac{a}{1+r} = y(z,j)$$

AGT (CBRT and IUB)

November 2013

- **∢** ∃=

Image: A math a math

Seller's and Defaulter's Problem

• Seller's Problem:

$$V_{j}^{hr}(a, z; \kappa) = \max_{c, a'} \left\{ u_{r}(c) + \beta E V_{j+1}^{r}(a', z') \right\}$$
$$c + \frac{a'}{1+r} = y(z, j) + a + p^{h}(1 - \varphi_{h})(1 + \kappa)$$

• Defaulter's Problem:

$$V_{j}^{hd}(a,z) = \max_{c,a'} \left\{ u_{r}(c) + \beta E\left[\delta V_{j+1}^{r}(a',z') + (1-\delta) V_{j+1}^{d}(a',z')\right] \right\}$$

$$c + \frac{a'}{1+r} = y(z,j)$$

• Necessary condition for default: $a + p^{h} (1 - \varphi_{h}) (1 + \kappa_{\min}) \leq 0$

November 2013

< ロト < 同ト < ヨト < ヨト

Lender's Problem

• Expected continuation value of the mortgage contract:

$$V_j^l(a, z, r^m) = \begin{cases} a & \text{if hh sells} \\ p^h(1 - \varphi_l) & \text{if hh defaults} \\ \frac{a'}{1 + r^m} - a + \frac{1}{1 + r} E V_{j+1}^l(a', z', r^m) & \text{if hh stays} \end{cases}$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回

Lender's Problem

• Expected continuation value of the mortgage contract:

$$V_j^{I}(a, z, r^m) = \begin{cases} a & \text{if hh sells} \\ p^h (1 - \varphi_I) & \text{if hh defaults} \\ \frac{a'}{1 + r^m} - a + \frac{1}{1 + r} E V_{j+1}^{I}(a', z', r^m) & \text{if hh stays} \end{cases}$$

• At the time of origination we need to have (which pins down r^m):

$$V_j^l(a, z, r^m) = -a$$

(日) (同) (三) (三)

Functional Forms

• Preferences:

$$u_r(c) = \frac{c^{1-\sigma}}{1-\sigma}$$

$$u_h(c) = u_r(c(1+\gamma))$$

AGT (CBRT and IUB)

November 2013

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Functional Forms

• Preferences:

$$u_r(c) = \frac{c^{1-\sigma}}{1-\sigma}$$

$$u_h(c) = u_r(c(1+\gamma))$$

• Income process:

$$y(z,j) = \exp(f(j) + z)$$

 $z' = \rho z + \varepsilon$

AGT (CBRT and IUB)

November 2013

(日) (周) (三) (三)

Parameters

Parameter	Explanation	Value	
σ	risk aversion	2	
ρ	persistence of income	0.84	
σ_{ε}	std of innovation to AR(1)	0.34	
φ_h	selling cost for a household	10%	
r	risk-free interest rate - initial	2%	
δ	prob. of being an active renter	0.14	
и	unemployment shock	0.05	
β	discount factor	0.95	
φ_1	selling cost for a lender	10.7%	
γ_h/γ_r	utility advantage of ownership	1.37	
ψ	moving probability	4%	

Steady State Analysis

Statistic	Data	Model: r=2%	
Homeownership rate	68.8%	68.8%	
Wealth-income ratio	4	4.1	
Moving rate-owners	6.5%	6.3%	
Foreclosure rate	1.7%	1.7%	
Price to income ratio	3.0	3.0	
Average down payment ratio	21.1	25.5%	
Loan-to-Value ratio	58.4	53.3%	

イロト イヨト イヨト イヨト

Steady-State Analysis

Who are the Purchasers?

Results

Steady-State Analysis

Who are the Sellers and Defaulters?

Mortgage Rate as a Function of Downpayment

Foreclosure Dynamics

Quantitative Exercise

- We consider three unexpected shocks:
 - Higher risk free interest rate (an increase from 2% to 3%)
 - Tighter credit constraints (minimum down payment increases from 0% to 20%)
 - Higher unemployment rate (an increase from 5% to 6.5%)
- We analyze both steady-state and transitional dynamics

Steady-State Analysis

Steady State Comparison

	SS1	SS2	SS3	SS4	SS5
	r=2%	r=3%	r=2%	r=2%	r=3%
	$\lambda = 0\%$	$\lambda = 0\%$	$\lambda = 20\%$	λ =0%	$\lambda = 20\%$
Statistic	u=5%	u=5%	u=5%	u=6.5%	u=6.5%
Homeownership rate	68.8%	68.8%	68.8%	68.8%	68.8%
Price to income ratio	3.0	2.68	2.80	2.82	2.51
Foreclosure rate	1.7%	0.2%	0%	1.2%	0%
Down payment ratio	25.5%	33%	33%	27.5%	35.4%
Mortgage Premium	0.1%	0.001%	0%	0.03%	0%

November 2013

イロト イ団ト イヨト イヨト

Transitional Dynamics - Interest Rate Shock

• Only risk free interest rate shock (an increase from 2% to 3%)

Transitional Dynamics - Financial Shock

• Only financial shock (min down payment increases from 0% to 20%)

Transitional Dynamics - Unemployment Shock

• Only unemployment shock (an increase from 5% to 6.5%)

AGT (CBRT and IUB)

Transitional Dynamics - All Three Shocks

All three shocks together

Transitional Dynamics - Comparison

All three shocks together

Monetary Policy

• FED lowers the interest rate two periods after the shocks to 0.5% and commits to this policy for a certain period of time.

Timing of Monetary Policy

• FED lowers the interest rate on impact of the shocks to 0.5% and commits to this policy for 6 periods.

Macroprudential Policy

• Ex-ante macroprudential policy: Minimum down payment requirement is set to 20%.

• Build a model of housing and mortgage with endogenous credit terms and default

(日) (周) (三) (三)

- Build a model of housing and mortgage with endogenous credit terms and default
- The transition analysis is important to understand the foreclosure and price dynamics

(日) (同) (三) (三)

- Build a model of housing and mortgage with endogenous credit terms and default
- The transition analysis is important to understand the foreclosure and price dynamics
- Monetary policy is less effective in house price dynamics but has almost no effect on foreclosure dynamics

- Build a model of housing and mortgage with endogenous credit terms and default
- The transition analysis is important to understand the foreclosure and price dynamics
- Monetary policy is less effective in house price dynamics but has almost no effect on foreclosure dynamics
- Tighter credit constraints would result a less volatility in the housing market

- Build a model of housing and mortgage with endogenous credit terms and default
- The transition analysis is important to understand the foreclosure and price dynamics
- Monetary policy is less effective in house price dynamics but has almost no effect on foreclosure dynamics
- Tighter credit constraints would result a less volatility in the housing market
- Need to do welfare analysis