Joint Dynamics of House Prices and Foreclosures

Yavuz Arslan \(^1\) Bulent Guler \(^2\) and Temel Taskin \(^1\)

\(^1\)Central Bank of Republic of Turkey

\(^2\)Indiana University

November 2013
Real House Price Index - FHFA

The chart above illustrates the Real House Price Index from 1975:Q1 to 2013:Q4. The index shows a trend of overall increase with fluctuations, peaking around 2007:Q2 and then declining sharply. The data is sourced from the FHFA.
Foreclosures Started

[Graph showing the percentage of foreclosures started over time from 1979 Q4 to 2012 Q4.]

AGT (CBRT and IUB) House Prices and Foreclosures November 2013
What do we do?

- Model the relation between house prices and foreclosures
What do we do?

- Model the relation between house prices and foreclosures
- Incorporate realistic structure for mortgages and allow foreclosures
What do we do?

- Model the relation between house prices and foreclosures
- Incorporate realistic structure for mortgages and allow foreclosures
- Analyze the feedback mechanism between house prices and foreclosures in response to three unexpected permanent shocks:
What do we do?

- Model the relation between house prices and foreclosures
- Incorporate realistic structure for mortgages and allow foreclosures
- Analyze the feedback mechanism between house prices and foreclosures in response to three unexpected permanent shocks:
 - Higher risk-free interest rate
- Explore the effect of two policies:
 - Monetary Policy: Lower interest rates
 - Macroprudential Policy: Tighter credit constraints
What do we do?

- Model the relation between house prices and foreclosures
- Incorporate realistic structure for mortgages and allow foreclosures
- Analyze the feedback mechanism between house prices and foreclosures in response to three unexpected permanent shocks:
 - Higher risk-free interest rate
 - Tighter credit constraints (higher minimum down payment requirement)
What do we do?

- Model the relation between house prices and foreclosures
- Incorporate realistic structure for mortgages and allow foreclosures
- Analyze the feedback mechanism between house prices and foreclosures in response to three unexpected permanent shocks:
 - Higher risk-free interest rate
 - Tighter credit constraints (higher minimum down payment requirement)
 - Higher unemployment rate
What do we do?

- Model the relation between house prices and foreclosures
- Incorporate realistic structure for mortgages and allow foreclosures
- Analyze the feedback mechanism between house prices and foreclosures in response to three unexpected permanent shocks:
 - Higher risk-free interest rate
 - Tighter credit constraints (higher minimum down payment requirement)
 - Higher unemployment rate
- Explore the effect of two policies:
What do we do?

- Model the relation between house prices and foreclosures
- Incorporate realistic structure for mortgages and allow foreclosures
- Analyze the feedback mechanism between house prices and foreclosures in response to three unexpected permanent shocks:
 - Higher risk-free interest rate
 - Tighter credit constraints (higher minimum down payment requirement)
 - Higher unemployment rate
- Explore the effect of two policies:
 - Monetary Policy: Lower interest rates
What do we do?

- Model the relation between house prices and foreclosures
- Incorporate realistic structure for mortgages and allow foreclosures
- Analyze the feedback mechanism between house prices and foreclosures in response to three unexpected permanent shocks:
 - Higher risk-free interest rate
 - Tighter credit constraints (higher minimum down payment requirement)
 - Higher unemployment rate
- Explore the effect of two policies:
 - Monetary Policy: Lower interest rates
 - Macroprudential Policy: Tighter credit constraints
Introduction

Motivation

Literature Review

- Life-cycle housing model
Literature Review

- Life-cycle housing model

- Endogenous credit terms and default

- Endogenous house prices and foreclosures
 - Chatterjee and Eyigungor (2011)

- Determinants of Foreclosures
Literature Review

- Life-cycle housing model
- Endogenous credit terms and default

- Determinants of Foreclosures
Literature Review

- Life-cycle housing model

- Endogenous credit terms and default
Literature Review

- Life-cycle housing model

- Endogenous credit terms and default

- Endogenous house prices and foreclosures
Literature Review

- Life-cycle housing model

- Endogenous credit terms and default

- Endogenous house prices and foreclosures
 - Chatterjee and Eyigungor (2011)
Literature Review

- Life-cycle housing model

- Endogenous credit terms and default

- Endogenous house prices and foreclosures
 - Chatterjee and Eyigungor (2011)

- Determinants of Foreclosures
Literature Review

- Life-cycle housing model

- Endogenous credit terms and default

- Endogenous house prices and foreclosures
 - Chatterjee and Eyigungor (2011)

- Determinants of Foreclosures
Environment

- Life-cycle model with deterministic time horizon
- Utility from both consumption good and housing
- They either rent or own a house
- Households are subject to idiosyncratic income shocks
- Households are subject to moving shocks
- Purchase of a house can be done through a mortgage
Perfect competition among risk-neutral lenders

Mortgage holders can default on the mortgage

Terms of mortgage contracts are endogenous (downpayment and mortgage interest rate)

Only fixed-rate mortgages (FRM) and maturity is determined by the age of the individual (but allow for prepayment)

Selling a house is entitled to an idiosyncratic capital gain/loss

Fixed house supply
Fixed house size and no explicit refinancing (but allow for implicit refinancing)

No unsecured borrowing
Value Functions

- Four possible housing status: inactive renter, active renter, owner and mover
Value Functions

- Four possible housing status: inactive renter, active renter, owner and mover
 - Inactive Renter: Renter with default flag (cannot purchase a house): V^d
Value Functions

- Four possible housing status: inactive renter, active renter, owner and mover
 - Inactive Renter: Renter with default flag (cannot purchase a house): \(V^d \)
 - Active Renter: Can stay as a renter or purchase a house:
 \(V^r = \max \{ V^{rr}, V^{rh} \} \)
 - Owner: Can stay in the house, sell the house or default on the mortgage (if any):
 \(V^h = \max \{ V^{hh}, V^{hr}, V^{hd} \} \)
 - Mover: Can sell the house or default on the mortgage (if any):
 \(V^m = \max \{ V^{hr}, V^{hd} \} \)
Value Functions

- Four possible housing status: inactive renter, active renter, owner and mover
 - Inactive Renter: Renter with default flag (cannot purchase a house): V^d
 - Active Renter: Can stay as a renter or purchase a house: $V^r = \max \{ V^{rr}, V^{rh} \}$
 - Owner: Can stay in the house, sell the house or default on the mortgage (if any): $V^h = \max \{ V^{hh}, V^{hr}, V^{hd} \}$
Value Functions

- Four possible housing status: inactive renter, active renter, owner and mover

 - Inactive Renter: Renter with default flag (cannot purchase a house): \(V^d \)

 - Active Renter: Can stay as a renter or purchase a house:
 \[
 V^r = \max \{ V^{rr}, V^{rh} \}
 \]

 - Owner: Can stay in the house, sell the house or default on the mortgage (if any):
 \[
 V^h = \max \{ V^{hh}, V^{hr}, V^{hd} \}
 \]

 - Mover: Can sell the house or default on the mortgage (if any):
 \[
 V^m = \max \{ V^{hr}, V^{hd} \}
 \]
Purchaser’s Problem

\[V_j^{rh} (a, z) = \max_{c, a'} \left\{ u_h (c) + \beta E \left[(1 - \psi) V_{j+1}^h (a', z'; r^m) + \psi V_{j+1}^m (a', z') \right] \right\} \]

\[c + qa' + p^h = y (z, j) + a \]

\[q = \begin{cases} \frac{1}{1+r^m} & \text{if } a' \geq 0 \\ \frac{1}{1-(1+r^m)^{-M}} & \text{if } a' < 0 \end{cases} \]

\[a' \in \Psi (\tilde{a}, r^m; a, z, j) \text{ with } \tilde{a} \geq -p^h (1 - \phi) \]
Seller’s and Defaulter’s Problem

Seller’s Problem:

\[V^{hr}_j (a, z; \kappa) = \max_{c, a'} \left\{ u_r(c) + \beta EV^{r}_{j+1}(a', z') \right\} \]

\[c + \frac{a'}{1 + r} = y(z, j) + a + p^h (1 - \varphi_h) (1 + \kappa) \]
Seller’s and Defaulter’s Problem

Seller’s Problem:

\[V_{j}^{hr} (a, z; \kappa) = \max_{c, a'} \left\{ u_r (c) + \beta E V_{j+1}^{r} (a', z') \right\} \]

\[c + \frac{a'}{1 + r} = y (z, j) + a + p^h (1 - \varphi_h) (1 + \kappa) \]

Defaulter’s Problem:

\[V_{j}^{hd} (a, z) = \max_{c, a'} \left\{ u_r (c) + \beta E \left[\delta V_{j+1}^{r} (a', z') + (1 - \delta) V_{j+1}^{d} (a', z') \right] \right\} \]

\[c + \frac{a'}{1 + r} = y (z, j) \]
Seller’s and Defaulter’s Problem

- **Seller’s Problem:**

\[
V_{j}^{hr} (a, z; \kappa) = \max_{c,a'} \left\{ u_r (c) + \beta EV_{j+1}^r (a', z') \right\}
\]

\[
c + \frac{a'}{1 + r} = y(z, j) + a + p^h (1 - \varphi_h) (1 + \kappa)
\]

- **Defaulter’s Problem:**

\[
V_{j}^{hd} (a, z) = \max_{c,a'} \left\{ u_r (c) + \beta E \left[\delta V_{j+1}^r (a', z') + (1 - \delta) V_{j+1}^d (a', z') \right] \right\}
\]

\[
c + \frac{a'}{1 + r} = y(z, j)
\]

- **Necessary condition for default:**

\[
a + p^h (1 - \varphi_h) (1 + \kappa_{\text{min}}) \leq 0
\]
Lender’s Problem

Expected continuation value of the mortgage contract:

\[
V_j^l (a, z, r^m) = \begin{cases}
 a & \text{if hh sells} \\
 p^h (1 - \varphi_l) & \text{if hh defaults} \\
 \frac{a'}{1+r^m} - a + \frac{1}{1+r} EV_{j+1}^l (a', z', r^m) & \text{if hh stays}
\end{cases}
\]
Lender’s Problem

- Expected continuation value of the mortgage contract:

\[V_j^l (a, z, r^m) = \begin{cases}
 a & \text{if hh sells} \\
 p^h (1 - \varphi_I) & \text{if hh defaults} \\
 \frac{a'}{1+r^m} - a + \frac{1}{1+r} EV_{j+1}^l (a', z', r^m) & \text{if hh stays}
\end{cases} \]

- At the time of origination we need to have (which pins down \(r^m \)):

\[V_j^l (a, z, r^m) = -a \]
Functional Forms

Preferences:

\[u_r (c) = \frac{c^{1-\sigma}}{1-\sigma} \]
\[u_h (c) = u_r (c(1+\gamma)) \]
Functional Forms

Preferences:

\[u_r(c) = \frac{c^{1-\sigma}}{1 - \sigma} \]
\[u_h(c) = u_r(c(1 + \gamma)) \]

Income process:

\[y(z, j) = \exp(f(j) + z) \]
\[z' = \rho z + \varepsilon \]
Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Explanation</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>σ</td>
<td>risk aversion</td>
<td>2</td>
</tr>
<tr>
<td>ρ</td>
<td>persistence of income</td>
<td>0.84</td>
</tr>
<tr>
<td>σ_ε</td>
<td>std of innovation to AR(1)</td>
<td>0.34</td>
</tr>
<tr>
<td>φ_h</td>
<td>selling cost for a household</td>
<td>10%</td>
</tr>
<tr>
<td>r</td>
<td>risk-free interest rate - initial</td>
<td>2%</td>
</tr>
<tr>
<td>δ</td>
<td>prob. of being an active renter</td>
<td>0.14</td>
</tr>
<tr>
<td>u</td>
<td>unemployment shock</td>
<td>0.05</td>
</tr>
<tr>
<td>β</td>
<td>discount factor</td>
<td>0.95</td>
</tr>
<tr>
<td>φ_l</td>
<td>selling cost for a lender</td>
<td>10.7%</td>
</tr>
<tr>
<td>γ_h/γ_r</td>
<td>utility advantage of ownership</td>
<td>1.37</td>
</tr>
<tr>
<td>ψ</td>
<td>moving probability</td>
<td>4%</td>
</tr>
</tbody>
</table>
Steady State Analysis

<table>
<thead>
<tr>
<th>Statistic</th>
<th>Data</th>
<th>Model: (r=2%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Homeownership rate</td>
<td>68.8%</td>
<td>68.8%</td>
</tr>
<tr>
<td>Wealth-income ratio</td>
<td>4</td>
<td>4.1</td>
</tr>
<tr>
<td>Moving rate-owners</td>
<td>6.5%</td>
<td>6.3%</td>
</tr>
<tr>
<td>Foreclosure rate</td>
<td>1.7%</td>
<td>1.7%</td>
</tr>
<tr>
<td>Price to income ratio</td>
<td>3.0</td>
<td>3.0</td>
</tr>
<tr>
<td>Average down payment ratio</td>
<td>21.1</td>
<td>25.5%</td>
</tr>
<tr>
<td>Loan-to-Value ratio</td>
<td>58.4</td>
<td>53.3%</td>
</tr>
</tbody>
</table>
Who are the Purchasers?

Rent vs Own Decision

Asset

Income

RENT

OWN

AGT (CBRT and IUB) House Prices and Foreclosures November 2013
Who are the Sellers and Defaulters?

![Graph showing the decision between selling or defaulting based on income and debt/house price ratio.]

- **Sell vs Default Decision**
 - **Debt/House Price**
 - **Income**

SELL

DEFAULT

- **AGT (CBRT and IUB)**
- **House Prices and Foreclosures**
- **November 2013**
Mortgage Rate as a Function of Downpayment

Mortgage Interest Rate vs Downpayment

- **unemployed**
- **median income**
- **high income**

AGT (CBRT and IUB)
House Prices and Foreclosures
November 2013
Foreclosure Dynamics

Foreclosure Rate over the Life-Cycle

- Red: unemployed
- Dashed: median income
- Blue: high income

Age vs. Foreclosure Rate

November 2013
Quantitative Exercise

- We consider three unexpected shocks:
 - Higher risk free interest rate (an increase from 2% to 3%)
 - Tighter credit constraints (minimum down payment increases from 0% to 20%)
 - Higher unemployment rate (an increase from 5% to 6.5%)
- We analyze both steady-state and transitional dynamics
Steady State Comparison

<table>
<thead>
<tr>
<th>Statistic</th>
<th>SS1</th>
<th>SS2</th>
<th>SS3</th>
<th>SS4</th>
<th>SS5</th>
</tr>
</thead>
<tbody>
<tr>
<td>r=2%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>λ=0%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>u=5%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Homeownership rate</td>
<td>68.8%</td>
<td>68.8%</td>
<td>68.8%</td>
<td>68.8%</td>
<td>68.8%</td>
</tr>
<tr>
<td>Price to income ratio</td>
<td>3.0</td>
<td>2.68</td>
<td>2.80</td>
<td>2.82</td>
<td>2.51</td>
</tr>
<tr>
<td>Foreclosure rate</td>
<td>1.7%</td>
<td>0.2%</td>
<td>0%</td>
<td>1.2%</td>
<td>0%</td>
</tr>
<tr>
<td>Down payment ratio</td>
<td>25.5%</td>
<td>33%</td>
<td>33%</td>
<td>27.5%</td>
<td>35.4%</td>
</tr>
<tr>
<td>Mortgage Premium</td>
<td>0.1%</td>
<td>0.001%</td>
<td>0%</td>
<td>0.03%</td>
<td>0%</td>
</tr>
</tbody>
</table>
Transitional Dynamics - Interest Rate Shock

- Only risk free interest rate shock (an increase from 2% to 3%)
Transitional Dynamics - Financial Shock

- Only financial shock (min down payment increases from 0% to 20%)
Transitional Dynamics - Unemployment Shock

- Only unemployment shock (an increase from 5% to 6.5%)
Transitional Dynamics - All Three Shocks

- All three shocks together

House Price–All Shocks

Foreclosure Rate–All Shocks

House Prices and Foreclosures

November 2013
Transitional Dynamics - Comparison

- All three shocks together

House Price—Comparison of Shocks

- all shocks
- interest rate shock
- financial shock
- unemployment shock

Foreclosure Rate—Comparison of Shocks

- all shocks
- interest rate shock
- financial shock
- unemployment shock

AGT (CBRT and IUB) House Prices and Foreclosures November 2013
FED lowers the interest rate two periods after the shocks to 0.5% and commits to this policy for a certain period of time.
Timing of Monetary Policy

- FED lowers the interest rate on impact of the shocks to 0.5% and commits to this policy for 6 periods.
Macroprudential Policy

- Ex-ante macroprudential policy: Minimum down payment requirement is set to 20%.
Build a model of housing and mortgage with endogenous credit terms and default.
Conclusion

- Build a model of housing and mortgage with endogenous credit terms and default
- The transition analysis is important to understand the foreclosure and price dynamics
Conclusion

- Build a model of housing and mortgage with endogenous credit terms and default

- The transition analysis is important to understand the foreclosure and price dynamics

- Monetary policy is less effective in house price dynamics but has almost no effect on foreclosure dynamics
Build a model of housing and mortgage with endogenous credit terms and default

The transition analysis is important to understand the foreclosure and price dynamics

Monetary policy is less effective in house price dynamics but has almost no effect on foreclosure dynamics

Tighter credit constraints would result a less volatility in the housing market
Conclusion

- Build a model of housing and mortgage with endogenous credit terms and default

- The transition analysis is important to understand the foreclosure and price dynamics

- Monetary policy is less effective in house price dynamics but has almost no effect on foreclosure dynamics

- Tighter credit constraints would result in less volatility in the housing market

- Need to do welfare analysis