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Abstract

We consider the scope for targeting house prices in simple monetary policy rules using

a New Keynesian Dynamic Stochastic General Equilibrium model of the euro area with

a housing sector and financial frictions on the household side. If the central bank’s main

objective is the minimization of inflation and output fluctuations, then a systematic response

to house prices does not entail any systematic sizeable welfare improvement. When the

objective of monetary policy is the maximization of aggregate (and individual) welfare, then

the optimized rule does feature a systematic reaction to house price variations. The sign and

size of such reaction crucially depend on the degree of financial frictions in the economy.

If the economy is characterized by both a large share of constrained agents and a high

average loan-to-value ratio, then it is optimal to positively react to house price movements.

Finally, we show that uncertainty about the actual degree of financial frictions suggests some

caution in the construction of optimal monetary policy rules. The welfare costs generated

by systematically counteracting house price movements are in general smaller than those

implied by a procyclical response.
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1 Introduction

For a number of years, consensus has been unanimous that no major useful role can be played

by asset prices in monetary policy-making (see, e.g., Bernanke and Gertler (2001) and Mishkin

(2007)). Asset prices’ fate as a possible ingredient of monetary policy has long seemed set and

sealed. The events of the last few years - with repeated crises accompanied by and often stemming

from violent swings in asset prices - have stimulated the economic profession to reconsider whether

asset prices should not play some role of sort in monetary policy-making after all. Asset booms

and busts have been a systematic feature of the world economy for a number of decades now.

However, never before the financial crisis that started in 2007 had their contribution to an

economic downturn been so sharp, sizeable and extended as it was between 2008 and 2009.

Those dramatic events have left many wondering whether there might not be good reasons why

central banks should actually respond to asset prices.

In this paper we investigate whether the effectiveness of monetary policy may be enhanced by

the inclusion of house prices among the objectives and/or the instruments of the central bank,

exploring a variety of avenues. To this end, we develop a New Keynesian Dynamic Stochastic

General Equilibrium (DSGE) model of the euro area which includes a housing sector and credit

frictions on the household side. The model features a collateral constraint on a fraction of

households, along the lines of Kiyotaki and Moore (1997) and Iacoviello (2005), along with both

nominal and real rigidities, to replicate the observed dynamics of macroeconomic variables.1 We

restrict our attention to a class of simple monetary policy rules. More precisely, we analyse

the behavior of the model economy in response to various types of exogenous shocks (which

may or may not originate in the housing sector) and compute the optimal monetary policy rule

according to different objective functions. Our aim is to characterize the response of monetary

policy to house price fluctuations in a simple rule, depending on some fundamental properties of

the economy such as the degree of nominal rigidities and the importance of financial frictions.

We first consider a central bank concerned with business cycle stabilization, i.e. the mini-

mization of a weighted average of consumer price inflation and output fluctuations. Our results

1Recent contributions that introduce a housing sector in DSGE models for monetary policy analysis include
among others Andrés, Arce, and Thomas (2011), Aspachs-Bracons and Rabanal (2011), Darracq Pariès and
Notarpietro (2008), Forlati and Lambertini (2011), Finocchiaro and Queijo von Heideken (2012), Jeske and Liu
(2012), Iacoviello and Neri (2010), Monacelli (2009) and Rubio (2011).
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indicate, consistent with previous contributions in the literature, that adding the dynamics of

house prices to a standard Taylor-type rule does not significantly move the optimal frontier, if

at all.

We then consider the case in which a measure of house prices is included among the arguments

of the monetary policymaker’s objective function and ask the following question: does the policy

rule so obtained deliver any sizeable improvement in consumers’ welfare, compared to the case in

which no attention is paid to house prices at all? We find that including an indicator of house price

developments as part of the monetary policy targets may result in welfare improvements, which

can be sizeable; unfortunately, they are not systematic. Thus, not only do our results confirm the

usual finding that reacting to house prices does not per se enhance the stabilization effectiveness

of monetary policy. They also show that, in terms of (implicit) proximity to consumer welfare,

rules in which house prices play a role can be outperformed by a standard rule which does not

feature house prices at all.

Next, we analyse the case in which the monetary policymaker pursues the maximization

of aggregate consumer welfare, which is measured using a second-order approximation to the

households’ utility function. We find that in this case the optimized rule does feature a systematic

reaction to house price variations. The sign and size of such reaction crucially depend on the

degree of nominal rigidities (house prices and nominal wages) and financial frictions (measured

by the share of borrowers and the loan-to-value ratio) in the economy. We perform a sensitivity

analysis to explore the contribution of such factors. Our main conclusions are the following: the

presence of financial frictions per se does not alter the traditional prescription that the central

bank should focus on relative price movements insofar as there is a substantial degree of nominal

rigidity in each sector. In our case, allowing for a relatively small degree of house price stickiness

(corresponding to an average duration of a house price of about two quarters) is sufficient to

obtain a systematic positive response to house prices in the optimal simple rule. Moreover,

the average level of the loan-to-value ratio matters. The optimal response to house prices is

monotonically increasing in the loan-to-value ratio and becomes positive as soon as the latter

reaches 90%.

Motivated by the results of our sensitivity analysis, we then move to study the properties

of optimal monetary policy rules in an economy characterized by a higher degree of financial
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frictions compared to our baseline calibration. We show that, if the economy features both

(i) a large share of constrained agents and (ii) a high average loan-to-value ratio, it becomes

optimal for the central bank to systematically counteract house price movements. In such an

environment, the central bank assigns a positive weight to the housing sector in the implicit

overall consumer price index that it targets.

Finally, and related to the previous result, we show that uncertainty about the actual degree of

financial frictions in the economy suggests some caution in the construction of optimal monetary

policy rules. By resorting to a fault-tolerance analysis of the optimized rules in two model

economies characterized by different degrees of financial imperfections, we document that sticking

to a rule that features a positive systematic response to house price movements entails lower

welfare costs, in case of mis-measurement of financial frictions, than sticking to a rule that

features a negative response.

Our work relates to a number of previous contributions in the literature. Iacoviello (2005)

uses a very similar model to study the case of a central bank that minimizes the weighted sum

of the unconditional variances of inflation and output under technology, housing preference and

inflation shocks. He estimates a monetary policy rule for the U.S. over the period 1974 Q1

- 2003 Q2 and computes the optimal weight to be assigned to housing inflation in such rule,

letting the responses to inflation and output fixed at their estimated values. He finds that no

stabilization gains arise from a positive systematic response to house price changes. In our

first set of experiments we optimize over all the parameters in the rule, and obtain similar

results. Several contributions (see Aoki (2001), Benigno (2004), Mankiw and Reis (2003) and

Woodford (2003)) have established that, in the presence of multiple sources of nominal rigidities,

the optimal rule should target the sectoral inflation indices using different weights, which are

increasing functions of the degree of price stickiness in each sector and of the share of each good

in the final consumption basket. In the presence of durable goods, Erceg and Levin (2006) have

shown that a larger share than the one in consumption expenditure should be attributed to

durable goods inflation in the optimal policy rule. More closely related to our study are the

works by Mendicino and Pescatori (2005) and Rubio (2011), that analyse optimal monetary

rules in the presence of housing and borrowing constraints. Both studies conclude that the

aggressiveness of a central bank towards non-durable price inflation is reduced with respect to
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a standard New Keynesian model, because of the presence of collateral constraints. Intuitively,

a higher inflation rate relaxes the borrowing constraint and enhances borrowers’ welfare, all else

being equal. Monacelli (2006) also reaches similar conclusions, performing a more general, fully-

fledged Ramsey monetary policy exercise, which does not allow for an explicit characterization

of the optimal policy rule as is done in our paper. In an applied contribution, Finocchiaro and

Queijo von Heideken (2012) estimate the model of Iacoviello (2005) using quarterly data for U.S.,

U.K. and Japan and show that a non-negligible response to house prices is empirically plausible.

They also show that, when the central bank minimizes a standard quadratic loss function, it

is optimal to respond to house price movements, even though the corresponding gains are very

small. None of the above-mentioned works provides a systematic and comprehensive comparison

of alternative combinations of rules and objectives as we do here, nor they consider the role of

financial frictions extensively.

In a recent study, Jeske and Liu (2012), using a two-sector DSGE model calibrated on U.S.

data show that, although rental prices are sticky and should therefore be stabilized under the

optimal monetary policy rule, asymmetries in factor intensities across sectors imply that the

optimal response to rental inflation is actually smaller than what theory would predict in the

case of symmetric sectors. Their model does not include credit constraints or any other type of

financial frictions. In a recent contribution, Lambertini, Mendicino, and Punzi (2013) document

the welfare gains obtained by letting the central bank react to fluctuations in housing and credit

markets that are driven by expectations of future developments. While the sources of macroeco-

nomic fluctuations are very different, both their paper and ours consider a micro-founded welfare

function as the objective of the monetary policymaker. One important difference is that they

consider Taylor rules and macro-prudential rules, while our paper only focuses on monetary

policy.

The rest of the paper is organized as follows. Section 2 describes the model. Section 3 il-

lustrates the calibration of the structural parameters. Section 4 outlines in detail the optimal

monetary policy experiments based on the assumption that the monetary policymaker is con-

cerned with business cycle stabilization. Section 5 considers the case in which the central bank

directly pursues social welfare minimization and illustrates the dynamic properties of the model

in response to different types of shocks, under different rules. Section 6 performs a sensitiv-
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ity analysis. Section 7 analyses the role of financial frictions in the setting of monetary policy

rules with particular reference to the response to house prices, by resorting to a fault-tolerance

analysis. Section 8 concludes.

2 The model

We specify a closed-economy model where two final goods are produced: non-durable consump-

tion and housing. We follow closely the framework illustrated in Darracq Pariès and Notarpietro

(2008). The model economy includes two groups of agents, labelled savers and borrowers : the

latter - who are relatively more impatient and have size ω ∈ (0,1) - face a collateral constraint,

which links the amount of borrowing supplied by lenders to the value of a house (the existing

collateral). Since in equilibrium all impatient agents behave as net borrowers and all patient

agents as savers, we use the terms impatient/borrower and patient/saver interchangeably in the

following.

2.1 Impatient households

Each impatient agent, denoted with a superscript b, maximizes the following stream of discounted

utility:

E0

∞∑

t=0

(
βB
)t{ 1

1− σX

(
Xb

t

)1−σX
−

LC,b

1 + σLC,b

(
N b

C,t

)1+σLC,b −
LD,b

1 + σLD,b

(
N b

D,t

)1+σLD,b

}
(1)

where Xb
t is an index of consumption services derived from non-durable consumption

(
Cb
)
and

the stock of residential goods
(
Db
)
, as follows:

Xb
t ≡

[(
1− εDt ωD

) 1
ηD

(
Cb

t − hbC
b
t−1

) ηD−1

ηD + εDt ω
1

ηD

D

(
Db

t

) ηD−1

ηD

] ηD
ηD−1

(2)

The utility function features habit formation in non-durable consumption, captured by the term

hb. We introduce a housing preference shock, εDt , which affects the marginal rate of substitution

between non-durable and residential consumption.2 Households receive negative utility from

2The shock is assumed to follow a stationary AR(1) process.
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providing labor supply in each sector (N b
C,t and N b

D,t, respectively). The specification of labor

supply assumes that hours worked in the two sectors are perfect substitutes for households. The

terms LC,b and LD,b are level-shift parameters used to normalize the impatient agent’s labor

supply in steady state.

All the impatient agents have limited access to the credit market and face a collateral con-

straint which, in real terms, reads:

bbt ≤ εLTV
t (1− χ)Et

{
TD,t+1D

b
t

πt+1

Rt

}
(3)

where bbt ≡
Bb

t

Pt
denotes real private debt, πt+1 ≡

Pt+1

Pt
is the gross inflation rate, Rt is the

short-term nominal interest rate, TD,t ≡
PD,t

Pt
is the relative price of residential goods in terms

of non-residential goods and χ ∈ (0, 1) is the down-payment rate, so that (1− χ) approximates

the loan-to-value ratio. The term εLTV
t denotes an exogenous shock to the loan-to-value ratio,

which follows a stationary AR(1) process. The impatient household thus maximizes (1) subject

to the collateral constraint (3) and the following sequence of real budget constraints:

Cb
t + TD,t(D

b
t − (1 − δ)Db

t−1) +
Rt−1

πt
bbt−1 = bbt +

Ab
t + TT b

t

Pt

+
W b

C,tN
b
c,t +W b

D,tN
b
D,t

Pt

(4)

where δ is the depreciation rate of the housing good, W b
C,t and W b

D,t denote the borrower’s

nominal wages in the two sectors, TT b
t are government transfers and Ab

t is the stream of income

derived from state-contingent securities, which allow the borrowers to hedge against wage income

risk.3 Further details about labor supply and wage setting are provided in Appendix A.

3We assume that the borrowers can trade such securities within their group, although they face financial
frictions when borrowing from savers. Under separable preferences, trading such assets ensures that all borrowers
have identical consumption plans in equilibrium.
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2.2 Patient households

Patient agents, indexed with a superscript s, receive instantaneous utility from the same type of

function specified for the impatient agents:

E0

∞∑

t=0

(
βS
)t{ 1

1− σX
(Xs

t )
1−σX −

LC,s

1 + σLC,s

(
Ns

C,t

)1+σLC,s −
LD,s

1 + σLD,s

(
Ns

D,t

)1+σLD,s

}
(5)

with βS > βB and

Xs
t ≡

[(
1− εDt ωD

) 1
ηD

(
Cs

t − hSC
s
t−1

) ηD−1

ηD + εDt ω
1

ηD

D (Ds
t )

ηD−1

ηD

] ηD
ηD−1

(6)

where εDt is the same housing preference shock introduced above.4 The saver’s real budget

constraint reads:

Cs
t+TD,t

(
Ds

t− (1− δ)Ds
t−1

)
+Ist+b

s
t =

Rt−1

πt
bst−1+

W s
C,tN

s
C,t+W

s
D,tN

s
D,t

Pt

+
∑

j=C,D

[
Rk,j

t ujtK
j
t−Φ

(
ujt

)
Kj

t

]
+
As

t+Πs
t+TT

s
t

Pt

(7)

where Kj
t denotes the capital stock and ujt is the degree of capacity utilization. TT s

t are gov-

ernment transfers to the savers group and Πs
t are distributed profits (more below). As for the

borrowers, we maintain the assumption that state-contingent assets are traded among the savers,

in order to hedge against wage income. The corresponding stream of income is denoted As
t . As

a result, all savers have identical consumption plans in equilibrium.

Capital is sector-specific. Patient agents own the full stock of capital and rent it out to

intermediate-goods firms at the sector-specific rental rate Rk,j
t (j = C,D). Investment consists

of the non-residential good only. The expression Rk,j
t ujtK

j
t represents the sector-specific nominal

return on the real capital stock, while Φ
(
ujt

)
Kj

t is the cost associated with variations in the

degree of capital utilization.5 The savers choose investment and capacity utilization in each

4We assume a common housing preference shock across agents, as a short-cut to capture a generalized increase
in housing demand.

5Following Smets and Wouters (2007), we assume that the income obtained from renting out capital services
depends on the level of capital augmented for its utilization rate. Moreover, the cost of capacity utilization is zero
when capacity is fully used (Φ(1) = 0). We assume the following functional form for the adjustment costs on
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sector to maximize their intertemporal utility, subject to the intertemporal budget constraint

and the capital accumulation equation:

Kj
t = (1 − δK)Kj

t−1 +

[
1− S

(
Ijt

Ijt−1

)]
Ijt (8)

where δK ∈ [0, 1] is the depreciation rate of capital, S is a non-negative adjustment cost function

formulated in terms of the gross rate of change in investment, Ijt /I
j
t−1.

2.3 The non-residential goods sector

Final producers of the non-residential good operate in perfect competition and aggregate a con-

tinuum of differentiated intermediate goods. The elementary differentiated goods are imperfect

substitutes with an elasticity of substitution denoted µC

µC−1 . Final goods are produced with the

following technology Yt =
[∫ 1

0 Yt(h)
1

µC dh
]µC

. The corresponding demand-based price index is

Pt =
[∫ 1

0 pt(h)
1

1−µC dh
]1−µC

. As a result, individual demand for each good is defined as:

Yt(h) =

(
pt(h)

Pt

)−
µC

µC−1

Yt

Intermediate-goods producers, indexed with h ∈ [0, 1], are monopolistic competitors and produce

differentiated products using a Cobb-Douglas function:

Zt(h) = εAt
(
uCt K

C
t−1(h)

)αC
LC
t (h)

1−αC − ΩC ∀h ∈ [0, 1]

where εAt is an exogenous technology process (following a stationary AR(1) process) and ΩC is

a fixed cost. Firms set prices on a staggered basis à la Calvo (1983): at any time t, a firm h

faces a constant probability 1 − θC of being able to re-optimize its nominal price. The average

duration between price changes is therefore 1
1−θC

. We introduce price indexation by assuming

that, if a firm cannot re-optimize its price, the price evolves according to the following simple

rule:

pt(h) = πγC

t−1π
1−γCpt−1(h)

capacity utilization: Φ(X) = Rk

ϕ
(exp [ϕ (X − 1)]− 1) .
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with γC denoting the degree of price indexation to past inflation and π being the long-run

(steady state) inflation rate. Under the specified assumptions, in a symmetric equilibrium (with

pt(h) = pt ∀h) the aggregate price index evolves as follows:

P
1

1−µC

t = θC (Pt−1)
1

1−µC + (1− θC)p̃t
1

1−µC

where p̃t is the price chosen by firm h to maximize its intertemporal profit.

2.4 The residential goods sector

Final producers of residential goods operate in perfect competition and aggregate a continuum of

differentiated intermediate products. The elementary differentiated goods are imperfect substi-

tutes with elasticity of substitution denoted µD

µD−1 . Final goods are produced with the following

technology ZD,t =
[∫ 1

0 ZD,t(h)
1

µD dh
]µD

; we denote pD,t(h) the corresponding price. The aggre-

gate residential price index is defined as PD,t =
[∫ 1

0 pD,t(h)
1

1−µD dh
]1−µD

. Demand is allocated

across the differentiated goods as follows: ZD,t
(h) =

(
pD,t(h)
PD,t

)− µD
µD−1

ZD,t.

Residential goods are produced using capital, labor and land. We assume that in each period

of time the savers are endowed with a given amount of land, which they sell to the firms in a fixed

quantity. The supply of land is exogenously fixed and each residential goods intermediate firm

takes the price of land as given in its decision problem. Producers make use of a Cobb-Douglas

technology as follows:

ZD,t(h) = εAD

t

(
uDt K

D
t−1(h)

)αD
LD
t (h)1−αD−αL

Lt(h)
αL − ΩD ∀h ∈ [0, 1]

where εAD

t is an exogenous sector-specific technology process, Lt(h) denotes the endowment of

land used by producer h at time t and ΩD is a fixed cost.

We allow for the presence of nominal price rigidity also in the residential sector. Firms are

monopolistic competitors and set prices on a staggered basis à la Calvo (1983), with a constant

probability 1 − θD of being able to re-optimize their nominal price in every period. Indexation

to past and steady-state inflation is also allowed, so that, if a firm cannot re-optimize its price,
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the price evolves according to the following simple rule:

pD,t(h) = πγD

D,t−1πD
1−γDpD,t−1(h)

with γD denoting the degree of price indexation to past sectoral inflation (πD,t−1) and πD being

the long-run (steady state) inflation rate.

2.5 Government and monetary policy rule

The government finances the exogenous public spending Gt with agent-specific lump-sum trans-

fers, denoted TTB
t and TT S

t , respectively.

Monetary policy is specified in terms of an interest rate rule:

Rt

R
=

(
Rt−1

R

)ρ
((πt

π

)φπ

(
Yt
Yt−1

)φ∆y

)1−ρ

(9)

where an upperbar denotes the steady-state value of a given variable.

2.6 Market clearing conditions

Non-residential goods demand can be expressed as follows:

Yt = ωCb
t + (1 − ω)Cs

t + ICt + IDt +Gt +Φ
(
uCt
)
KC

t−1 +Φ
(
uDt
)
KD

t−1 (10)

while aggregate non-residential production satisfies:

Zt = εAt
(
uCt K

C
t−1

)αC
(
LC
t

)1−αC
− ΩC (11)

so that the market clearing conditions in the non-residential goods market implies:

Zt = ∆tYt (12)

where ∆t =
∫ 1

0

(
pt(h)
Pt

)− µC
µC−1

dh is a measure of price dispersion among products.
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Similarly, equating demand and supply in the residential good sector yields:

ZD,t = ∆D,t

[
ω
(
Db

t − (1 − δ)Db
t−1

)
+ (1− ω)

(
Ds

t − (1− δ)Ds
t−1

)]
(13)

where ∆D,t =
∫ 1

0

(
pD,t(h)
PD,t

)− µD
µD−1

dh denotes price dispersion among non-residential intermediate

goods.

3 Calibration

Table 1 summarizes the calibration of model parameters. The model is calibrated to replicate

key features of the euro area economy. We rely on existing estimates where available. The

savers’ discount rate is set to 0.99, implying a steady-state interest rate of 4%; the borrowers’

discount rate is 0.96, following Iacoviello (2005). We assume log utility for both type of agents,

with labor supply elasticity σL equal to 2. The share of impatient agents, ω, is equal to 0.2,

according to the estimates of Darracq Pariès and Notarpietro (2008) for the euro area. Regarding

final consumption, habit persistence is set to 0.82 for the savers and 0.28 for the borrowers; the

share of housing services in the utility function, ωD, is chosen to pin down the steady-state ratio

of residential investment to GDP. The intratemporal elasticity of substitution between durable

and non-durable goods, ηD, is equal to one, thus implying a Cobb-Douglas specification for

the consumption bundle Xt. The depreciation rate of housing, δ, is set to 0.01, corresponding

to an annual rate of 4%. We set the down-payment ratio, χ, to 0.2, which implies a loan-to-

value ratio of 80%, in line with the average for euro area countries.6 About investment, the

depreciation rate for physical capital is set to 0.03; the investment adjustment cost φ and the

capital utilization cost ψ are set to 0.1 and 3, respectively, in the non-residential sector and to

0.005 and 10, respectively, in the residential goods sector. These values are chosen to match

aggregate investment volatility (see Table 3, more below). About production, the relative share

of capital is set to 0.3 in both sectors; the corresponding share of labor is 0.7 in the consumption

sector and 0.55 in the residential sector, where the share of land, αL, is set to 0.15. Elasticities of

substitution across varieties in both the goods and the labor markets are set to 4.33, in order to

6See Calza, Monacelli, and Stracca (2013).
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obtain a gross markup of 1.3. About nominal rigidities, we set the Calvo parameter θC = 0.92 ,

in line with the estimates of Smets and Wouters (2003, 2005), Christoffel, Coenen, and Warne

(2008) and Adolfson et al. (2007). The indexation parameter is set to 0.5. We assume perfectly

flexible prices in the residential sector, in line with Iacoviello and Neri (2010), Aspachs-Bracons

and Rabanal (2011) and Forlati and Lambertini (2011).7 Nominal wages are also assumed to

be rigid: we set the Calvo parameter θw to 0.92 in both sectors. Such value is higher than the

estimates reported in Christoffel et al. (2008). However, as observed in Iacoviello and Neri

(2010), nominal wage rigidity is crucial for replicating the co-movement of real variables after

technology and housing demand shocks. Therefore, given the relatively parsimonious stochastic

structure of our model, we calibrate nominal wage stickiness to help the model replicate the

observed standard deviations, as reported in Table 3.

Concerning the monetary policy rule (9), in our baseline specification we set ρ = 0.85, φπ =

1.25 and φ∆y = 0.015.

About the exogenous shocks, we set the persistence of technology shocks, ρA and ρAD , to

0.9. For housing demand and loan-to-value ratio shocks, we set the corresponding persistence

parameters to 0.95, in line with the estimated values reported in Iacoviello and Neri (2010) for

the US and Darracq-Pariès and Notarpietro (2008) for the US and the euro area. A high degree

of persistence in the exogenous processes for housing preference and financial shocks is needed

to help the model replicate the observed volatility of housing prices and household debt. The

choice of the standard deviation of the shocks is driven by the same motivation.

Table 2 reports the model steady-state ratios, which broadly replicate the figures for the

euro area. Table 3 reports the model unconditional standard deviations, compared to the data.8

We match the volatility of GDP, consumption and investment almost perfectly. For residential

investment, the model-implied volatility is slightly above that observed in the data. Household

debt volatility is the most difficult empirical feature to match, given the upward trend observed in

the recent years. Still, the model-implied volatility falls short of the observed one by a relatively

small amount. Nominal interest rate volatility is almost perfectly matched. The same holds true

for consumption and housing inflation.

7In the sensitivity analysis we allow for a positive degree of nominal house price rigidity.
8We use linearly detrended data for the euro area over the period 1980 Q2 - 2010 Q1.
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4 Business cycle stabilization

In our normative analysis we look for the optimal monetary policy in the class of simple interest

rate rules. We assume that the central bank aims at minimizing some objective function (to be

defined below) by adopting an interest rate rule that is simple and operational, according to the

definition of Schmitt-Grohe and Uribe (2007). Namely, we restrict our attention to policy rules

that (i) respond to variables that can be easily observed and (ii) deliver equilibrium determinacy.

The general specification of such rules takes the form of equation (9). In the following, we analyse

the scope for including also house prices in the interest-rate rule and/or in the central bank’s

objective function.

In this section we consider a central bank that responds to house price movements in a

modified version of (9), to minimize a standard quadratic loss function with two arguments: the

unconditional variances of consumer price inflation, πt, and output, yt
9. We then extend the

loss function to include house price growth. Clearly, as the two loss functions feature different

arguments, a direct comparison of the respective minimized values is not allowed. Therefore,

we assess the relative performance of the alternative policy regimes by evaluating the welfare

loss attained under each optimized rule. The welfare loss is computed using a second-order

approximation of the utility functions of the two agents in the economy. Such measure is invariant

across rules and objective functions and is therefore suitable for the comparison of policy rules

under alternative objectives. We provide details about welfare loss computations in Appendix

B.

4.1 Standard loss function

We first consider a standard loss function, defined as a weighted average of the unconditional

variances of consumer inflation and output, and an instrument rule that includes house prices

among its arguments.10 Formally, the central bank minimizes the following intertemporal loss

9See Taylor and Williams (2010) for a complete treatment of optimal simple rules in monetary policy analysis.
10As mentioned in the introduction, Iacoviello (2005) performs the same experiment with a similar model and a

slightly different rule. In his analysis, however, the central bank only optimizes over the response to house prices,
while all the other parameters are kept constant at their estimated values, obtained using U.S. quarterly data
over the sample 1974Q1 - 2003Q2.
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function:

Lt ≡ Et

{
∞∑

i=0

δi
[
π2
t+i + λY 2

t+i + µ(∆Rt+i)
2
]
}

(14)

by choosing the coefficients γ1, γ2, γ3 and γ4 in the rule:

Rt

R
=
(πt
π

)γ1

(
Yt/Y

Yt−1/Y

)γ2 (
Rt−1

R

)γ3
(
πD,t

πD

)γ4

(15)

subject to the equations of the model economy.11 It is well known (see Svensson (1999)) that

as the intertemporal discount factor δ approaches one, the loss function Lt converges to its

unconditional mean, denoted E[Lt]. Hence, the central bank simply minimizes the following loss

function:

L ≡ E[Lt] = σ2
π + λσ2

∆y + µσ2
∆r (16)

where σ2 denotes the unconditional variance of a variable and the weights λ and µ are arbitrarily

assigned by the policymaker.

Figure 1 shows the optimal policy frontiers for two alternative policy regimes: in the first

one we set γ4 = 0, thus imposing no response to house prices; in the second one we optimize

over all the parameters in rule (15). Each frontier draws the optimal combinations of GDP

and inflation variance, as the relative weight attached to output fluctuations, λ, varies in the

range [0,1].12 Clearly, the optimal frontier does not change in the two scenarios. Moreover, the

optimal response to house price inflation is close to zero (see Table 4, more below). These results

confirm the evidence in Iacoviello (2005): if a central bank is interested only in minimizing a

linear combination of the variances of consumer price inflation and output, house prices do not

provide any useful additional information.

4.2 Augmented loss function

We consider now the case of a central bank that has a preference over stabilizing house prices

fluctuations, in addition to variations in consumer price and output. The period loss function

11The term ∆Rt+i ≡ Rt+i − Rt+i−1 is included to penalize rules that imply wide variations in the nominal
interest rate. See Rudebusch (2006) for an analysis of interest rate variability in the central bank’s loss function.

12In the figure we report the case corresponding to µ=0.001. Results are robust to larger values for µ.
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modifies as follows:

L = σ2
π + λσ2

y + νσ2
πD

+ µσ2
∆r (17)

When searching for the optimal coefficients in the rule (15), we do not impose the restriction

γ4 = 0 anymore: since the loss function now features housing inflation, it is natural to include

the same variable in the information set of the monetary policymaker. We let ν move in the

range [0.001, 1]. As already mentioned, a direct comparison of the minimum values of functions

(17) and (16) is not possible, since the two objectives feature different arguments. Therefore, we

assess the relative performance of the alternative policy regimes by evaluating the social welfare

loss attained under each optimized rule, computed as a second-order approximation to the indi-

vidual utility functions. Such approach has been largely used in the literature since the seminal

work of Rotemberg and Woodford (1997) to rank the performance of alternative monetary policy

rules.13 More precisely, we compute the fraction of consumption streams that is to be added to

each agent’s consumption under each monetary policy rule, in order to achieve the correspond-

ing individual steady-state welfare level. Appendix B provides additional computational details.

Table 4 reports the minimum values for aggregate and individual welfare cost and the corre-

sponding optimized coefficients. As a benchmark, in the first two rows we report the two cases

analysed above, with a standard loss function and the two alternative rules considered (Taylor

rule without and with a response to house prices, respectively), with the corresponding welfare

losses. We focus on the case λ = 0.5, µ = 0.001. As ν increases, the welfare cost attached to the

policy rule that minimizes (17) initially declines, reaching a minimum for the aggregate (as well

as individual) welfare cost around ν = 0.8. Note that even with a relatively small weight for ν in

the monetary policymaker’s preference function (17), the resulting monetary policy rule implies

a sizeable reduction in the associated welfare cost with respect to the case of ν = 0; the reduction

becomes very sizeable for ν larger than 0.5. Hence, even without explicitly pursuing a consumer

welfare maximization policy, a monetary policymaker can do much better, in terms of consumer

welfare, if the standard loss function is simply augmented with a term that (sufficiently) penalizes

house price volatility.

The results reported in Table 4 refer to the case λ = 0.5. Similar conclusions can be drawn

13See Gaĺı (2008) and Woodford (2003) for a discussion.
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for a variety of values of λ, but not for all. Figure 2 reports the welfare loss associated with

minimizing the standard loss function (equation (16); colour surface) and the welfare loss attain-

able when the policymaker’s loss function also includes house prices (equation (17); transparent

surface). In the latter case, the relative weight on house prices, ν, varies in the [0, 1] interval. As

a benchmark, the figure also reports the minimum welfare loss that can be achieved if the pol-

icymaker’s objective function is given by the welfare of the average consumer (blue surface, see

next section). Except for very small values of ν, the transparent surface lies below the coloured

one. However, this is not the case when ν is smaller than 0.2. Actually, the lowest welfare cost is

reached when ν = 0.01 and the policymaker’s loss function is given by (16) (i.e., house prices play

no role at all). Hence, welfare considerations, even though not explicitly driving the monetary

policymaker’s actions, would implicitly suggest that the best the central bank can do is to assign

no role to house prices.

Summing up, in line with previous results in the literature, there appears to be no room

for house prices in monetary policymaking if the objective of the central bank is assumed to

be the minimization of a standard loss function (or a slight variation of it). Moreover, we have

documented that if one looks at the implied (and unintended, given the setup of the exercise)

consequences for welfare, a policy that takes house prices into account can be outperformed by

one that does not.

5 Welfare-maximizing monetary policy rules

In this section we consider the problem of a central bank that optimally chooses the coefficients

in (15) to minimize the social welfare cost function. As already mentioned, such metric is micro-

founded, since it is derived from agents’ preferences and model parameters. Moreover, using

it as the central bank’s objective function has the advantage of eliminating the choice of free

parameters, such as λ and ν in (17).

Table 5 reports the results. The minimum welfare cost is attained when the rule is allowed

to respond to house prices (first row). A higher welfare cost is obtained when the monetary

policymaker does not target house price fluctuations, i.e. under the assumption that γ4 = 0 in

the rule (15). Also, responding to house prices makes both savers and borrowers better off, as
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reflected in a lower individual welfare cost (second and third columns, respectively). Notably,

the optimal response to house price fluctuations is negative (last column), which implies that the

central bank must lower the nominal interest rate in response to shocks that generate a surge in

house prices. The finding that the optimal response to a movement in house prices is negative

should not be regarded as completely unusual. Faia and Monacelli (2007) compute optimal

interest rate rules in a model with credit market imperfections and heterogeneous households,

where firms face agency costs that generate a countercyclical premium on external finance. In

such framework, the optimal (in the sense of welfare-maximizing) response to asset prices is

negative, as long as the response to the inflation rate is sufficiently mild; responding to asset prices

becomes irrelevant, from a welfare perspective, when the anti-inflationary stance is particularly

strong. In their model, the rationale for reducing interest rates in response to a surge in asset

prices is related to alleviating the inefficiency in capital accumulation implied by credit market

imperfections. In our setup, the presence of a perpetually binding borrowing constraints for the

impatient household generates an inefficient response of consumption to, say, a housing demand

shock. By lowering the interest rate in response to a surge in house prices, the monetary authority

makes the borrowers better off, partially alleviating the inefficiency related to the borrowing limit.

At the same time, the increase in inflation is detrimental to the savers. The optimal rule strikes

a balance between these two opposite tendencies.

In the remainder of this Section we analyse the dynamic behavior of the economy in response

to, alternatively, housing demand, financial and productivity shocks, when the optimal monetary

policy rule is implemented. Figures 3 to 6 report the responses of the main macroeconomic

variables under two alternative monetary policy rules: (i) the welfare-maximizing rule (solid

blue line) and (ii) a standard Taylor-type rule with no response to house prices (dashed red line),

with parameter values reported in Table 1.

5.1 Housing demand shock

An increase in housing demand drives up real house prices immediately (see Figure 3), as housing

supply is kept from adjusting instantaneously by the fixed supply of land. A positive valuation

effect is produced on the existing collateral, which allows the borrowers to increase non-durable
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consumption and debt. On the other hand, the savers increase lending and reduce consumption,

due to the complementarity between non-durable consumption and housing in the utility function.

Overall, the impact response of aggregate consumption is slightly positive (not reported). The

dynamics of investment crucially depends on the response of the monetary policy rate. Under

a standard Taylor rule that ignores house price fluctuations, the nominal interest rate is almost

unchanged, largely reflecting inflation dynamics. Investment starts increasing only 6 quarters

after the shock. Under the welfare-maximizing rule, the impact response of the policy rate to

CPI inflation is much stronger (around 10 basis points in annualized terms). As the optimal

response to house prices is negative, the latter increase more (almost 1 percent, as opposed

to 0.8 under a Taylor rule), determining a larger collateral effect and a stronger consumption

increase. Investment also increases, driven by the higher return on capital. The overall GDP

response is larger and more persistent.

5.2 Financial shock

The dynamic effects of a shock to the loan-to-value ratio are qualitatively similar to those ob-

served after a housing demand shock (Figure 4). The main difference is in the response of

savers’ consumption, which now increases instead of falling, reflecting the much smaller increase

of real house prices after the shock. Again, the overall response of GDP is amplified under the

welfare-maximizing monetary policy rule.

5.3 Technology shock

Figure 5 reports the responses to a technology shock in the non-residential sector. The negative

impact on the inflation rate implies, under a simple Taylor rule, an increase in the real interest

rate, which determines a fall in borrowers’ consumption and an increase in investment. Under the

welfare-maximizing rule the nominal interest rate falls by around 30 basis points (as opposed to

less than 10), while inflation almost replicates the path observed with a Taylor rule. As a result,

borrowers’ consumption falls by a smaller amount. The same holds true for savers’ consumption

and investment, and GDP. Things are different when the shock hits the residential goods sector

(Figure 6). As house prices are flexible in our benchmark parametrization, under a simple Taylor
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rule the nominal interest rate does not respond, mirroring the behavior of CPI inflation. The

overall response of real variables is muted. To the opposite, under the welfare-maximizing rule

the nominal interest rate has to increase in response to the fall in house prices. As a result,

borrowers’ consumption falls substantially, but its negative impact on GDP is compensated by

the large positive response of investment, fuelled by the increase in the real interest rate.

6 Sensitivity analysis

In this section we perform a sensitivity analysis on some crucial parameters. First, we analyse

the characteristics of welfare-maximizing rules under different assumptions about the degree of

nominal rigidity in the economy: we consider in particular the degree of price stickiness in the

residential goods sector and the degree of wage stickiness in both sectors. Second, we vary the

degree of financial frictions in the economy by moving the share of borrowers and the loan-to-

value ratio, one at a time. Finally, considering the stochastic structure of the model, we allow

for different degrees of persistence of the housing demand shock.

6.1 Nominal rigidities in the residential sector

As mentioned in the introduction, a number of contributions14 have established that, in the

presence of multiple sources of nominal rigidities, the optimal interest rate rule should target

the sectoral inflation indices using different weights, which are increasing functions of the degree

of price stickiness in each sector and of the share of each good in the final consumption basket.

However, in our baseline specification housing is both a flexible-price good and a durable good.

Table 7 reports the optimal rules coefficients and the corresponding welfare costs for different

degrees of house price stickiness. As the probability of not being able to reset prices, θD, increases,

the optimal response to house prices becomes larger (smaller in absolute value) and turns positive

for θD > 0.3, i.e. for an average duration of a house price of about one and a half quarters. Hence,

the presence of financial frictions does not seem to change the traditional prescription that the

central bank should focus on relative price movements insofar as there is a substantial degree of

14See Aoki (2001), Benigno (2004), Mankiw and Reis (2003) and Woodford (2003).
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nominal rigidity in each sector.15

6.2 Nominal wage rigidities

As suggested by Iacoviello and Neri (2010) and Aspachs-Bracons and Rabanal (2011), the role of

nominal frictions in the labor market is crucial in explaining the co-movement between residential

and non-residential goods after a housing preference shock. Table 8 reports the results obtained

when we let the degree of nominal wage rigidity in both sectors vary. With perfectly flexible

wages, the optimal response to house prices is zero. The welfare cost suffered by the savers is

lower than in the baseline case, while it is larger for the borrowers. The second and third row of

Table 8 report two alternative calibrations in which we set the degree of nominal wage stickiness

and wage indexation in the two sectors to one half and three quarters of their baseline levels,

respectively. Two results stand out: first, the optimal response to house prices moves from neg-

ative to slightly positive (virtually zero) as wage flexibility increases; second, the corresponding

response to CPI inflation (γ1) increases and becomes predominant in the limit-case of flexible

wages. As wages adjust more frequently, the higher volatility of nominal wages generates larger

volatility in price inflation, forcing the monetary authority to react more strongly to variations in

the CPI, while at the same time ignoring the dynamics of house prices. In other words, as wage

flexibility increases, the distortion generated by financial market imperfections is dominated by

the inefficiency stemming from nominal price rigidity.

6.3 Varying the share of borrowers

We consider an alternative case of a model economy with two sectors (residential and non-

residential goods) but no financial frictions. To do so, we set the share of borrowers to zero. Table

9 reports the results. In the first row we set θD = 0, corresponding to perfectly flexible house

prices: the resulting optimal response to house prices is zero. Comparing this result to the one

reported in Table 5 (first row), we observe the following: the optimal response to house prices is

larger (smaller in absolute value); the response to price inflation is smaller; the individual welfare

cost incurred by the savers (which coincide with the whole household sector in this setup) is now

15Qualitatively similar results are obtained by letting θD vary in the same interval, while setting the degree of
indexation in the residential goods sector to a non-zero value.
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smaller than the one achieved in the economy with financial frictions. Intuitively, the presence of

the borrowers in the objective function requires a more accommodative response of the interest

rate. We then depart from the baseline case of flexible house prices and consider alternative

assumptions on the degree of house price stickiness (rows 2-10). Without borrowers, when the

degree of nominal price rigidity in the residential sector increases, the optimal response to house

prices soon becomes positive, even for values of θD lower than 0.3. Overall, the results are

qualitatively similar with and without financial frictions: the optimal response to house prices is

an increasing function of the degree of house price stickiness.

We then consider the effects of increasing the share of borrowers, under both flexible and

sticky house prices (Table 10 and Table 11, respectively). Under flexible house prices (see Table

10), a non-zero share of borrowers calls for a negative (but small in absolute value) response

to house prices. The optimal response to CPI inflation and output is fairly stable with respect

to changes in the share of borrowers (Table 10). The response to house prices is close to zero

without borrowers; the optimal coefficient then smoothly declines to reach a minimum value of

-0.1 in correspondence of a fraction of constrained agents in the economy between 0.2 and 0.3 and

returns to zero when ω = 0.8. In the intermediate case θD = 0.4 (see Table 11), corresponding to

an average duration of house prices of about one and a half quarters, we observe a qualitatively

similar pattern (the optimal response to house prices is increasing in ω), although the optimal

values of γ4 are now larger.

6.4 Varying the loan-to-value ratio

Table 12 reports the results obtained when the loan-to-value (LTV) ratio is allowed to move

from 99% to 60 %. For a very high degree of leverage (LTV ratio higher than 92%) the optimal

response to house prices becomes positive. Its value declines as the ratio decreases, and becomes

negative for a loan-to-value ratio of 80%. As the ratio goes below 80% (corresponding to our

baseline calibration) the response to house prices remains fairly stable at an average value close

to -0.15.
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6.5 Persistence of housing demand shocks

Table 13 reports the results of the optimization exercise for different degrees of persistence of the

housing demand shock, which is the main driver of short-run movements in house price in our

model. It is quite natural to conjecture that the persistence of this shock may have an impact

on the dynamics of house prices and real variables in general: a highly persistent shock implies

in fact a higher predictability of future house prices.16 In a recent contribution, Xiao (2013)

uses the model of Iacoviello (2005) and shows that responding to house prices, in addition to

output and inflation, helps stabilizing the economy (namely, it expands the determinacy region

of the model) only if both private agents and the central bank do not possess current data on

inflation and output and must forecast them, but do observe current housing prices. Hence, we

explore the effects of changing the persistence of the housing demand shock, which, according

to the stochastic structure of the model, should directly influence the forecastability of future

house prices. However, as reported in the last column of Table 13, the optimal response to house

prices is virtually unaffected by the persistence of the housing demand shock. Moreover, both

individual and aggregate welfare costs are largely stable as ρD varies.

7 The role of financial frictions

In order to identify the main drivers of our results, we analyse the case of an economy charac-

terized by a higher degree of financial frictions compared to our baseline calibration. We assume

that (i) the share of constrained borrowers amounts to 30% of the population (as opposed to

20%) and (ii) the average loan-to-value (LTV) ratio is 90%, instead of 80%. We expect such

economy to be more prone to displaying larger fluctuations in both prices and quantities, for

two reasons. First, a higher LTV ratio provides the borrowers with more resources for any given

quantity of collateral pledged, all else being equal. Hence, fluctuations in house prices, the real

interest rate, or both, would result in larger fluctuations in the amount of debt compared to our

baseline case, according to the standard financial accelerator mechanism (see Kiyotaki and Moore

(1997)). Second, the presence of a larger share of borrowers further magnifies such amplification,

via a mechanical effect on aggregate variables.

16We assume a stationary AR(1) process for the evolution of the housing preference shock εDt .
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Table 6 reports the results. The response to house prices is now positive: consistent with

our expectations, in the presence of a more leveraged household sector the central bank has

an incentive to counteract movements in house prices, which are more likely to generate wide

oscillations in real variables in response to exogenous shocks of any type. Although we do not

derive an analytical expression for the (utility-based) welfare criterion, such function will include

a number of terms featuring, among others, non-durable consumption and housing services.

As the degree of financial frictions increases, such variables will display larger fluctuations in

response to, say, a housing demand shock, and therefore a central bank interested in minimizing

the welfare cost will find it optimal to counteract the excess fluctuations by moving the interest

rate adequately.17

It is instructive to compare the optimal weight attached to house prices in the rule obtained

in this case to the weight of housing services in the individual utility functions (see equations (5)

and (1)). In order to do so, we compute the optimal weight attached to housing inflation in an

implicit overall consumer price index. Let us first define an overall price index πO
t as follows:

πO
t = πα

t π
(1−α)
D,t (18)

where α ∈ [0, 1]. Plugging (18) into (15) gives:

Rt

R
=

(
πO
t

πO

)γ1
(

Yt/Y

Yt−1/Y

)γ2 (
Rt−1

R

)γ3

where we have dropped the last term on the right-hand side: since house prices now enter the

overall price index πO
t , it is no longer necessary to target the two sectoral indices separately.

Rewriting the last equation in log-deviations from steady-state levels (denoted with a ”̂”) and

substituting the definition of πO
t yields:

r̂t = γ1
(
απ̂t + (1− α)π̂D,t

)
+ γ2 (ŷt − ŷt−1) + γ3r̂t−1

Finally, substituting the optimized coefficients reported in Table 6, simple algebra gives the

17The example is merely illustrative: the argument would apply to all the shocks considered here. Notice that
the welfare loss function features unconditional variances of model variables, just as the ad-hoc loss functions
considered in the previous section.
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following:

r̂t = 1.77 (0.98π̂t + 0.02π̂D,t) + 1.08 (ŷt − ŷt−1) + 0.03r̂t−1

As the last equation clearly shows, in an economy characterized by a large degree of financial

frictions the optimal monetary policy rule prescribes an aggressive response to variations in the

overall price index, where the housing sector receives a weight equal to 2%. Such weight is much

lower than the share of housing services in consumption (ωD = 0.1) and is broadly comparable

to the share of the residential sector in GDP (3%, see Table 2). Such result contrasts with

the conclusion of Erceg and Levin (2006). In a recent work, Jeske and Liu (2012) perform a

similar exercise, computing optimal monetary policy rules in a model of the U.S. economy with a

residential and a non-residential sector, sticky rents and asymmetric labor intensity across sectors,

but without financial frictions. They show that the optimal rule assigns a weight to rental price

inflation that is much smaller than the housing expenditure share in the consumption basket

(0.1 vs. 0.3, with roughly the same ratio between the two as in our experiment above). They

attribute their result to the different degrees of factor intensity in the two sectors. In our case, the

existence of a sufficiently large degree of financial frictions turns out to be sufficient to modify the

traditional optimal monetary policy prescriptions in multi-sector models with multiple sources

of nominal rigidities, i.e. that the central bank should assign weights to sectoral inflation indices

that reflect both relative price stickiness and the expenditure shares of each sectoral good in final

consumption.18

Having established the case for a systematic response to house price fluctuations as a conse-

quence of financial frictions, we now analyse the robustness of our result, by means of a fault-

tolerance analysis.

7.1 A fault-tolerance analysis

Fault-tolerance analysis of optimized interest-rate rules, as proposed by Levin and Williams

(2003), provides useful insights onto the reasons that underlie our earlier findings. Fault-tolerance

analysis is a concept borrowed from engineering and involves, in the present context, appraising

the increase in the welfare loss function that results when a single parameter of an optimized

18See Aoki (2001), Benigno (2004) and Woodford (2003).
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interest-rate rule is varied, holding the other parameters constant at their optimized values. A

highly fault-tolerant model is one for which the parameters of the rule may vary over a relatively

broad range of values without resulting in a large deterioration of its performance (in welfare

terms). By contrast, an intolerant model would be a model whose performance deteriorates

dramatically as soon as one deviates even modestly from some optimized parameter value (i.e.,

the welfare loss function exhibits strong curvature with respect to suboptimal variations in some

parameter). We are interested in comparing the performance of our baseline economy, calibrated

to replicate the main features of the euro area business cycle, to the one of an economy charac-

terized by a larger degree of financial frictions, illustrated in the previous subsection. We aim at

assessing, in particular, how much the welfare loss function increases as each parameter in the

optimized monetary policy rule moves away from its optimal value. By measuring such variations

we will be able to assess the scope for allowing the policymaker to deviate from optimal policy

rules, with particular attention to the response to house price fluctuations. Figure 7 plots the

fault tolerance of the two model economies to variations in the policy rules: each curve shows

the change in the aggregate welfare loss function under the optimized rule (see Table 5, first row,

and Table 6 for the corresponding values) as each single parameter is varied, with its minimum

attained at the optimized value itself.

We perform the following thought experiment. Suppose that the central bank does not know

with certainty the degree of financial frictions in the economy. Let us assume, for instance, that

the policymaker acts as if the correct description of the euro area economy was the one implied

by our baseline calibration, and implements the corresponding optimized monetary policy rule.

What would be the cost of implementing such policy, if the true degree of financial imperfections

was instead the one of our alternative calibration, namely ω = 0.3 and χ = 0.1? To answer this

question, we compare the (minimum) value of the welfare loss implied by the optimal rule under

the baseline calibration to the value of the welfare loss corresponding to the optimal rule with

a high degree of financial frictions attained in correspondence of the same parameter value. In

the case of the response to non-durable inflation, GDP growth and the lagged interest rate, the

behavior of the welfare loss is qualitatively similar. In all cases, the additional loss generated by

mistakenly enacting the ”baseline” optimized rule amounts to about 0.07. When we focus on

the response to house prices, instead, the value of such extra-loss almost doubles: in particular,
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as soon as the coefficient becomes negative, the welfare loss function corresponding to the ”high

financial frictions” economy increases very rapidly. To the opposite, graphical inspection of

Figure 7 suggests that, if the central bank were to apply the optimized coefficient corresponding

to the alternative calibration (γ4 = 0.03) also in the baseline case, the corresponding additional

loss would be much smaller (0.02). Such effects suggests some caution in adopting the optimized

rule in our baseline economy, if the central bank is not fully sure about the values of ω and χ.

All in all, fault-tolerance analysis suggests that a systematic, positive response to house price

fluctuations may not be pointless also in our benchmark model, if the monetary policymaker has

a sufficient degree of uncertainty about the true amount of financial frictions that characterize

the economy. A more detailed characterization of financial market imperfections, that possibly

affect other elements of the economy than the household sector, would help the analysis of optimal

monetary policy rules.

8 Conclusions

We develop a model of the euro area that includes house prices and a financial accelerator

mechanism related to household borrowing, to analyse the scope for including house prices in

the set of variables that the monetary policymaker targets and/or reacts to. Our main findings

can be summarized as follows.

If the central bank’s main objective is business cycle stabilization, i.e. the minimization of

inflation and output fluctuations, then systematically responding to house prices does not entail

any welfare improvement. This remains the case, to a large extent, even if the objective function

includes the stabilization of house prices.

When the objective of monetary policy is instead the maximization of aggregate (and indi-

vidual) welfare, the optimized rule does feature a systematic reaction to house price variations.

The sign and size of such reaction crucially depend on the degree of nominal rigidities (house

prices and nominal wages) and financial frictions (measured by the share of borrowers and the

loan-to-value ratio) in the economy. Sensitivity analysis shows that allowing for a relatively small

degree of house price stickiness (corresponding to an average duration of a house price of about

two quarters) is sufficient to obtain a systematic positive response to house prices in the optimal
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simple rule. Moreover, the average level of the loan-to-value ratio matters. The optimal response

to house prices is monotonically increasing in the loan-to-value ratio and becomes positive as

soon as the latter reaches 90%.

Hence, the degree of financial frictions in the economy turns out to be of crucial importance

in determining the response to house prices. If the economy is characterized by both (i) a large

share of constrained agents (30%) and (ii) a high average loan-to-value ratio (90%), then it is

optimal to systematically counteract house price movements. We have shown that in such an

environment the central bank should assign a positive weight to the housing sector in an overall

consumer price index. However, and different from previous results in the literature, such weight

is lower than the corresponding share of housing services in the final consumption bundle.

Finally, and related to the previous result, uncertainty about the actual degree of financial

frictions suggests some caution in the construction of optimal monetary policy rules. By resorting

to a fault-tolerance analysis of the optimized rules in two model economies characterized by

different degrees of financial imperfections, we have shown that the welfare cost entailed by a sub-

optimal positive response to house price variations when the economy features less imperfections

than the central bank estimates is substantially smaller than that implied by a negative response

when financial frictions are larger than estimated.

Our results suggest that modelling financial imperfections, possibly also on the firms’ side,

seems of crucial relevance for the evaluation of monetary policy rules. We leave the investigation

of the links between the two areas to future research.
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Appendix A. Labor supply and wage setting

The labor market structure is modelled following Schmitt-Grohe and Uribe (2006). Households

of each type provide homogeneous labor services, which are transformed by monopolistically

competitive unions into differentiated labor inputs. As a result, all household of the same type

supply the same amount of hours worked in each sector, in equilibrium.

In each sector j (j = C,D), we assume the existence of perfectly competitive labor packers,

who buy the individual agents’ labor supplies N i
jt (i = B,S) and aggregate them using a Cobb-

Douglas function, to produce the aggregate labor indicators LC,t and LD,t that enter the firms’

production function (more later). We specify the details of the labor packers profit-maximization

problem below.

We also assume that in each sector j (j = C,D) there exist monopolistically competitive labor

unions indexed by i (i = B,S), representing the patient and impatient households, respectively.

Unions differentiate the homogeneous labor provided by households, creating a continuum of

measure one of labor services (indexed by z ∈ [0, 1]) which are sold to the above-mentioned

labor packers in each sector. Each union thus faces the following labor demand (originating from

sector-specific labor packers):

Lj,i,t(z) =

(
Wj,i,t(z)

Wj,i,t

)−
µw

µw−1

Lj,i,t

where z ∈ [0, 1], µw = θw
θw−1 and θw > 1 is the elasticity of substitution between differentiated

labor services, which we assume to be constant across types and sectors. Lj,i,t measures demand

for labor type i by firms in sector j,

Lj,i,t =

[∫ 1

0

Lj,i,t(z)
1

µw dz

]µw
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while Wj,i,t denotes the nominal wage set by union i in market j at time t19:

W j,i,t =

[∫ 1

0

Wj,i,t(z)
1

1−µw dz

]1−µw

Clearly, our structure gives rise to four different wages in equilibrium, each corresponding to a

specific worker type (patient, impatient) in a specific sector (C,D). Every period, each union

faces a constant probability 1 − αwji of being able to adjust its nominal wage. If the union is

not allowed to re-optimize, wages are indexed to past and steady-state inflation according to the

following rule:

W j,i,t(z) = [πt−1]
ξj,iw [π]1−ξj,iw Wj,i,t−1(z)

where πt =
Pt

Pt−1
and ξj,iw denotes the degree of indexation in each sector, for each type. Taking

into account that unions might not be able to choose their nominal wage optimally in the future,

the optimal nominal wage W̃j,i,t(z) is chosen to maximize intertemporal utility under the budget

constraint and the labor demand function. The first-order condition for the wage setting program

of agent i in sector j can be written recursively as follows:

W̃j,i,t

Pt

=

(
µw

H
wji
1,t

H
wji
2,t

)µw−1

µw−1

The resulting aggregate wage dynamics for each type in each sector is:

(Wj,i,t)
1

1−µw = (1− αwji)

(
µw

H
wji
1,t

H
wji
2,t

)−
1

µw−1

(19)

+ αwji (Wj,i,t−1)
1

1−µw

(
πt

π
ξwji

t−1 π
1−ξwji

) −1

1−µw

19The following definitions also hold:

NB
j,t ≡

∫ 1

0

L j,B,t(z)dz

and

NS
j,t ≡

∫ 1

0

L j,S,t(z)dz
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where

H
wji
1,t = Lj,i

(
N i

j,t

)1+σLj,i
(Wj,i,t)

µw
µw−1 + αwjiβiEt



(

πt+1

π
ξwj,i

t [π]
1−ξwj,i

) µw
µw−1

H
wji
1,t+1


 (20)

and

H
wji
2,t = ΛitN

i
j,t (Wj,i,t)

µw
µw−1 + αwjiβiEt

(
πt+1

π
ξwj,i

t [π]
1−ξwj,i

) 1
µw−1

H
wji
2,t+1 (21)

with βi = β if i = S and βi = γ if i = B. Also, Wj,i,t denotes the real wage of type i in sector j

and Λit is the marginal utility of consumption of type i.

We can now define the labor packers’ Cobb-Douglas production function as follows:

Lj ≡ ωω(1− ω)(1−ω)

(
NS

j,t

∆w
j,S,t

)(1−ω)(
NB

j,t

∆w
j,B,t

)ω

where
NB

j,t

∆w
j,B,t

Wj,B,t =
NS

j,t

∆w
j,S,t

Wj,S,t

and the term ∆w
j,i,t denotes wage dispersion in sector j, related to agent i. Such term is a state

variable that evolves as follows:

∆w
j,i,t = (1− αwji) (Wj,i,t)

µw
µw−1

(
µw

H
wji
1,t

H
wji
2,t

)−
µw

µw−1

+αwji∆
w
j,i,t−1

(
Wj,i,t

Wj,i,t−1

) µw
µw−1

(
πt

π
ξwj,i

t−1 [π]1−ξwj,i

) µw
µw−1

Notice that wage dispersion is inefficient, as all job varieties are ex-ante identical (see SGU2006).

The solution to the labor packers’ cost-minimization problem also determines the following wage

indices:

Wj,t =
(Wj,S,t)

1−ω
(Wj,B,t)

ω

ωω(1− ω)1−ω

If wages were perfectly flexible, in every period t we would have:

µwLj,i

(
N i

j,t

)σLj,i
= Λi,tWj,i,t
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with j = C,D and i = P, I. The real wage would be equal to a markup µw over the marginal

rate of substitution between consumption and labor.

Appendix B. Welfare loss computations

Individual welfare measures are defined as follows:

Wb
t ≡ E0

∞∑

t=0

(
βb
)t{ 1

1− σX

(
Xb

t

)1−σX
−∆w

C,b,t

LC,b

1 + σLC,b

(
N b

C,t

)1+σLC,b −∆w
D,b,t

LD,b

1 + σLD,b

(
N b

D,t

)1+σLD,b

}

and

Ws
t ≡ E0

∞∑

t=0

(βs)
t

{
1

1− σX
(Xs

t )
1−σX −∆w

C,s,t

LC,s

1 + σLC,s

(
Ns

C,t

)1+σLC,s −∆w
D,s,t

LD,s

1 + σLD,s

(
Ns

D,t

)1+σLD,s

}

for the impatient and patient agent, respectively, where ∆w
j,i,t denotes wage dispersion in

sector j, related to agent i. In order to evaluate the utility losses experienced by each agent

under a given policy, we compute the fraction of consumption streams from an alternative policy

regime (labelled ψ) that is to be added (or subtracted) to each agent’s consumption in order to

achieve the reference welfare level, corresponding to the steady state welfare. Formally, we solve

the following equations:

Wb = E0

∞
∑

t=0

(

βb
)t

{

1

1− σX

(

X
b,a
t (1 + ψb)

)1−σX
−DeltawC,b,t

LC,b

1 + σLC,b

(

N
b,a
C,t

)1+σLC,b
−DeltawD,s,t

LD,b

1 + σLD,b

(

N
b,a
D,t

)1+σLD,b

}

and

Ws = E0

∞
∑

t=0

(βs)t

{

1

1− σX

(

X
s,a
t (1 + ψs)

)1−σX
−DeltawC,b,t

LC,s

1 + σLC,s

(

N
s,a
C,t

)1+σLC,s
−DeltawD,b,t

LD,s

1 + σLD,s

(

N
s,a
D,t

)1+σLD,s

}

where Wb and Ws denote the steady-state welfare level of the impatient and patient agent,

respectively. Under our functional assumptions for the utility functions of the individuals, we

have:

ψb =

(
Wb +W

b,a
t,L

W
b,a
t +W

b,a
t,L

) 1
1−σX

− 1

36



and

ψs =

(
Ws +W

s,a
t,L

W
s,a
t +W

s,a
t,L

) 1
1−σX

− 1

Finally, we compute an aggregate welfare cost as a weighted sum of individual welfare costs, as

follows:

ψ ≡ ωψb + (1− ω)ψs
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Table 1. Calibrated parameters

Parameter Description Value
Preferences

βB Discount factor (patient) 0.99
βS Discount factor (impatient) 0.96
σX Intertemporal elasticity of substitution 1.00
σLC

Labor supply elasticity (non-housing) 2.00
σLD

Labor supply elasticity (housing) 2.00
ω Share of impatient agents 0.20
Final consumption

hs Habit persistence (patient) 0.82
hb Habit persistence (impatient) 0.28
ωD Share of housing services in consumption 0.10
ηD Nondurable consumption–housing substitution 1.00
δ Housing depreciation rate 0.01
χ Downpayment ratio 0.20
Investment

δK Capital depreciation rate 0.03
φ Investment adjustment cost (non-residential) 0.10
ψ Capital utilization adjustment cost (non-residential) 3
φD Investment adjustment cost (residential) 0.005
ψD Capital utilization adjustment cost (residential) 10
Firms

αC Share of capital (non-residential) 0.30
αD Share of capital (residential) 0.30
αL Share of land (residential) 0.15
µC Intermediate non-residential goods substitution 4.33
µD Intermediate residential goods substitution 4.33
µw Labor varieties substitution (residential) 4.33
µw Labor varieties substitution (non-residential) 4.33
Nominal rigidities

θC Calvo non-residential (goods) 0.92
γC Indexation non-residential (goods) 0.50
θD Calvo residential (goods) 0.00
γD Indexation residential (goods) 0.00
θwC

Calvo non-residential (labor) 0.92
γwC

Indexation non-residential (labor) 0.23
θwD

Calvo residential (labor) 0.93
γwD

Indexation residential (labor) 0.44
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Table 1. Calibrated parameters (continued)

Parameter Description Value
Monetary policy rule

Interest-rate persistence ρ 0.85
Response to inflation φπ 1.25
Response to GDP growth φ∆y 0.015
Exogenous shocks: persistence

Technology (non-residential) ρA 0.90
Technology (residential) ρAD 0.90
Housing demand ρD 0.95
Financial (loan-to-value) ρLTV 0.95
Exogenous shocks: standard deviation

Technology (non-residential) σA 1.50
Technology (residential) σAD 1.10
Housing demand σD 2.85
Financial (loan-to-value) σLTV 0.01

Table 2. Steady state ratios

Variable Description Value
R Nominal interest rate (annualized) 4.00
C/Y Consumption-to-output ratio 0.58
TDZD/Y Residential investment-to-output ratio 0.03
I/Y Investment-to-output ratio 0.21
B/(4Y ) Private debt-to-annual-output ratio 0.50
PHG/Y Public expenditure-to-output ratio 0.18

Table 3. Comparison of standard deviations

Model Data
GDP 2.54 2.21
Consumption 2.35 2.20
Investment 6.23 6.18
Residential investment 6.51 5.70
Household debt 8.07 5.84
Nominal interest rate 0.32 0.39
CPI inflation 0.32 0.46
House price inflation 0.99 1.03
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Table 4. Loss function minimization: results (λ = 0.5, µ = 0.001)

Wtot Ws Wb γ1 γ2 γ3 γ4
Taylor 0.565 0.636 0.262 0.42 4.45 0.63 0.00
Taylor + house prices 0.569 0.640 0.267 0.38 4.01 0.63 0.01
HP (ν = 0.001) 0.571 0.642 0.273 0.41 4.51 0.56 0.04
HP (ν = 0.2) 0.531 0.577 0.336 0.18 1.01 0.28 0.18
HP (ν = 0.4) 0.434 0.466 0.296 0.32 1.42 0.00 0.32
HP (ν = 0.6) 0.390 0.416 0.278 0.45 1.66 0.00 0.45
HP (ν = 0.8) 0.375 0.399 0.274 0.76 1.66 0.00 0.76
HP (ν = 1) 0.383 0.407 0.278 6.39 17.29 0.00 6.39

Table 5. Welfare cost minimization: results
Wtot Ws Wb γ1 γ2 γ3 γ4

Taylor + house prices 0.086 0.117 -0.041 2.36 1.84 0.08 -0.12
Taylor 0.091 0.118 -0.022 1.64 0.87 0.00 0.00

Table 6. Welfare cost minimization: the role of financial frictions
ω LTV ratio Wtot Ws Wb γ1 γ2 γ3 γ4

Taylor + house prices 0.3 0.9 0.104 0.127 0.049 1.77 1.15 0.00 0.03

Table 7. Welfare cost minimization: nominal price rigidity in the residential sector

θD Wtot Ws Wb γ1 γ2 γ3 γ4
0.1 0.092 0.123 -0.040 1.35 0.82 0.42 -0.06
0.2 0.097 0.128 -0.032 1.96 1.35 0.05 -0.04
0.3 0.105 0.135 -0.020 1.73 1.22 0.03 0.00
0.4 0.116 0.144 0.000 1.44 1.09 0.03 0.04
0.5 0.131 0.156 0.026 1.35 1.20 0.00 0.08
0.6 0.152 0.174 0.059 1.22 1.25 0.00 0.13
0.7 0.181 0.206 0.074 7.31 9.19 0.00 0.08
0.8 0.239 0.260 0.152 2.62 3.50 0.00 0.39
0.9 0.383 0.399 0.313 2.04 4.78 0.00 1.94

Table 8. Welfare cost minimization: nominal wage rigidity

Wtot Ws Wb γ1 γ2 γ3 γ4
Wage flexibility -0.030 -0.019 -0.076 5.14 0.00 0.68 0.01
Intermediate wage rigidity -0.008 0.007 -0.073 3.51 0.45 0.81 -0.01
High wage rigidity 0.019 0.039 -0.065 2.37 0.70 0.53 -0.02
Benchmark calibration 0.086 0.117 -0.041 2.36 1.84 0.08 -0.12
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Table 9. Welfare cost minimization: a benchmark model without borrowing

θD Wtot Ws Wb γ1 γ2 γ3 γ4
0 0.092 0.092 - 1.71 1.42 0.00 0.00
0.1 0.094 0.094 - 1.67 1.45 0.00 0.02
0.2 0.097 0.097 - 1.65 1.52 0.00 0.04
0.3 0.100 0.100 - 1.63 1.57 0.00 0.06
0.4 0.106 0.106 - 2.02 2.19 0.00 0.07
0.5 0.114 0.114 - 2.72 3.20 0.00 0.10
0.6 0.126 0.126 - 7.45 9.50 0.32 0.13
0.7 0.141 0.141 - 2.63 3.17 0.00 0.24
0.8 0.174 0.174 - 2.82 3.34 0.00 0.45
0.9 0.269 0.269 - 3.75 4.27 0.00 1.74

Table 10. Welfare cost minimization: varying the share of borrowers

ω Wtot Ws Wb γ1 γ2 γ3 γ4
0 0.092 0.092 - 1.69 1.42 0.00 0.01
0.1 0.092 0.105 -0.032 1.87 1.40 0.22 -0.08
0.2 0.087 0.118 -0.040 1.82 1.36 0.26 -0.10
0.3 0.082 0.136 -0.044 1.83 1.35 0.27 -0.10
0.4 0.081 0.162 -0.042 1.70 1.15 0.25 -0.08
0.5 0.081 0.201 -0.039 1.78 1.27 0.22 -0.07
0.6 0.085 0.259 -0.032 1.83 1.27 0.14 -0.05
0.7 0.094 0.353 -0.018 1.90 1.26 0.06 -0.01
0.8 0.111 0.523 0.008 1.94 1.28 0.11 0.00

Table 11. Welfare cost minimization: varying the share of borrowers (θD = 0.4)

ω Wtot Ws Wb γ1 γ2 γ3 γ4
0 0.106 0.106 0.039 1.96 2.12 0.00 0.07
0.1 0.114 0.124 0.018 1.97 1.92 0.00 0.04
0.2 0.116 0.146 -0.007 1.74 1.39 0.00 0.02
0.3 0.111 0.178 -0.044 1.83 1.49 0.00 -0.04
0.4 0.103 0.225 -0.081 0.07 1.55 0.00 -0.10
0.5 0.095 0.274 -0.085 1.64 1.67 0.00 -0.13
0.6 0.092 0.324 -0.062 1.55 1.49 0.00 -0.10
0.7 0.096 0.416 -0.040 0.06 1.48 0.00 -0.10
0.8 0.111 0.609 -0.014 1.80 0.00 0.00 -0.12
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Table 12. Welfare cost minimization: varying the loan-to-value ratio

LTV ratio Wtot Ws Wb γ1 γ2 γ3 γ4
0.99 0.157 0.161 0.142 9.06 0.87 0.00 0.40
0.98 0.135 0.126 0.174 3.51 3.71 0.00 0.07
0.96 0.122 0.114 0.155 1.84 1.50 0.00 0.07
0.94 0.111 0.111 0.110 1.96 1.60 0.00 0.04
0.92 0.103 0.109 0.077 1.61 1.08 0.03 0.03
0.9 0.098 0.110 0.046 1.81 1.25 0.01 0.00
0.8 0.087 0.117 -0.040 1.74 1.31 0.29 -0.10
0.7 0.089 0.125 -0.064 1.90 1.11 0.18 -0.11
0.6 0.092 0.128 -0.062 2.82 2.43 0.16 -0.19

Table 13. Welfare cost minimization: persistence of housing demand shock

ρD Wtot Ws Wb γ1 γ2 γ3 γ4
0.1 0.205 0.248 0.026 1.61 1.76 0.66 -0.16
0.2 0.205 0.247 0.026 1.71 1.88 0.64 -0.17
0.3 0.204 0.246 0.026 1.80 1.95 0.60 -0.17
0.4 0.202 0.245 0.023 1.48 1.63 0.68 -0.15
0.5 0.200 0.242 0.021 1.61 0.17 0.64 -0.16
0.6 0.197 0.239 0.019 1.69 1.79 0.61 -0.16
0.7 0.191 0.232 0.014 1.65 1.77 0.63 -0.16
0.8 0.179 0.220 0.006 1.66 1.77 0.62 -0.16
0.9 0.146 0.184 -0.014 1.58 1.40 0.49 -0.12
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Figure 1: Optimal policy frontiers (loss function minimization)
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Figure 2: Welfare cost under alternative policy objectives. Vertical axis: total welfare loss.
Horizontal axes: relative weight of output growth (left) and house price inflation (right) in the
loss function
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Figure 3: Impulse responses to a positive housing demand shock: optimal rule (solid blue line) and standard Taylor rule (dashed red
line)
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Figure 4: Impulse responses to a positive financial shock: optimal rule (solid blue line) and standard Taylor rule (dashed red line)
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Figure 5: Impulse responses to a positive technology shock in the non-residential sector: optimal rule (solid blue line) and standard
Taylor rule (dashed red line)
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Figure 6: Impulse responses to a positive technology shock in the residential sector: optimal rule (solid blue line) and standard Taylor
rule (dashed red line)
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Figure 7: Fault tolerance: social welfare loss under optimal monetary policy rule, baseline cali-
bration (solid blue line) and high degree of financial frictions (dashed red line)
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