Optimal Monetary Policy Rules and House Prices: The Role of Financial Frictions

A. Notarpietro§ S. Siviero§

§Banca d’Italia

Housing, Stability and the Macroeconomy: International Perspectives
Dallas Fed - IMF - JMCB
November 14-15, 2013
Federal Reserve Bank of Dallas

1Usual disclaimers apply
Should monetary policy systematically respond to house price fluctuations?
Overview

- Should monetary policy systematically respond to house price fluctuations?
- How does the traditional monetary policy prescription (i.e. inflation targeting) modify in the presence of financial frictions?
Overview

- Should monetary policy systematically respond to house price fluctuations?
- How does the traditional monetary policy prescription (i.e. inflation targeting) modify in the presence of financial frictions?
- Housing and collateralized borrowing: should the price of collateral be part of monetary policy objectives/targets?
Overview

- Should monetary policy systematically respond to house price fluctuations?
- How does the traditional monetary policy prescription (i.e. inflation targeting) modify in the presence of financial frictions?
- Housing and collateralized borrowing: should the price of collateral be part of monetary policy objectives/targets?
- Main result: financial frictions modify optimal policy rule, in particular the response to house prices
Overview

- Should monetary policy systematically respond to house price fluctuations?
- How does the traditional monetary policy prescription (i.e. inflation targeting) modify in the presence of financial frictions?
- Housing and collateralized borrowing: should the price of collateral be part of monetary policy objectives/targets?
- Main result: financial frictions modify optimal policy rule, in particular the response to house prices
- Central bank’s knowledge of the economy crucially affects results
Motivation

- Monetary policy and asset prices: where do we stand?
Monetary policy and asset prices: where do we stand?

Consolidated (pre-crisis) view: asset price variations should influence monetary policy only *insofar as they help forecasting inflation* (Bernanke and Gertler 2001)
Motivation

- Monetary policy and asset prices: where do we stand?
- Consolidated (pre-crisis) view: asset price variations should influence monetary policy only *insofar as they help forecasting inflation* (Bernanke and Gertler 2001)
- Financial crisis tightly related to US housing market: macro-financial interactions matter; revision of models used for policy analysis
Motivation

- Monetary policy and asset prices: where do we stand?

- Consolidated (pre-crisis) view: asset price variations should influence monetary policy only *insofar as they help forecasting inflation* (Bernanke and Gertler 2001)

- Financial crisis tightly related to US housing market: macro-financial interactions matter; revision of models used for policy analysis

- Role of housing-related shocks and borrowing constraints in general equilibrium models for policy analysis (Iacoviello 2005, Iacoviello and Neri 2010)
Motivation

- Monetary policy and asset prices: where do we stand?
- Consolidated (pre-crisis) view: asset price variations should influence monetary policy only *insofar as they help forecasting inflation* (Bernanke and Gertler 2001)
- Financial crisis tightly related to US housing market: macro-financial interactions matter; revision of models used for policy analysis
- Role of housing-related shocks and borrowing constraints in general equilibrium models for policy analysis (Iacoviello 2005, Iacoviello and Neri 2010)
- What role for house prices in monetary policy? Does a systematic reaction help stabilize business cycle?
Motivation

- Monetary policy and asset prices: where do we stand?
- Consolidated (pre-crisis) view: asset price variations should influence monetary policy only *insofar as they help forecasting inflation* (Bernanke and Gertler 2001)
- Financial crisis tightly related to US housing market: macro-financial interactions matter; revision of models used for policy analysis
- Role of housing-related shocks and borrowing constraints in general equilibrium models for policy analysis (Iacoviello 2005, Iacoviello and Neri 2010)
- What role for house prices in monetary policy? Does a systematic reaction help stabilize business cycle?
- What about social welfare? How related to business cycle stabilization?
Related literature

- Iacoviello (2005): standard loss function minimization, no role for house price targeting
Related literature

- Iacoviello (2005): standard loss function minimization, no role for house price targeting
- Mendicino and Pescatori (2008), Rubio (2011): welfare-optimal rules, pure inflation targeting no longer optimal, redistributive issues
Related literature

- Iacoviello (2005): standard loss function minimization, no role for house price targeting
- Mendicino and Pescatori (2008), Rubio (2011): welfare-optimal rules, pure inflation targeting no longer optimal, redistributive issues
- Source of shocks matters: news (Lambertini et al. 2013)
Related literature

- Iacoviello (2005): standard loss function minimization, no role for house price targeting
- Mendicino and Pescatori (2008), Rubio (2011): welfare-optimal rules, pure inflation targeting no longer optimal, redistributive issues
- Source of shocks matters: news (Lambertini et al. 2013)
- Jeske and Liu (2012): no financial frictions; optimal rule should stabilize sticky rental prices
Related literature

- Iacoviello (2005): standard loss function minimization, no role for house price targeting
- Mendicino and Pescatori (2008), Rubio (2011): welfare-optimal rules, pure inflation targeting no longer optimal, redistributive issues
- Source of shocks matters: news (Lambertini et al. 2013)
- Jeske and Liu (2012): no financial frictions; optimal rule should stabilize sticky rental prices
- Multi-sector models: focus on relative price stickiness and consumption weight (Aoki 2001, Benigno 2004, Mankiw and Reis 2003); Erceg and Levin (2006): optimal rule should assign larger weight to durable goods than their relative share in consumption
Results preview

- Quadratic loss function minimization (business cycle stabilization): no sizeable nor systematic gain from response to house prices
Results preview

- Quadratic loss function minimization (business cycle stabilization): no sizeable nor systematic gain from response to house prices
- Social welfare loss minimization: a systematic response to house prices improves social welfare
Results preview

- Quadratic loss function minimization (business cycle stabilization): no sizeable nor systematic gain from response to house prices
- Social welfare loss minimization: a systematic response to house prices improves social welfare
- Welfare gain is small: no sizeable difference if central bank does not react to house prices
Results preview

- Quadratic loss function minimization (business cycle stabilization): no sizeable nor systematic gain from response to house prices
- Social welfare loss minimization: a systematic response to house prices improves social welfare
- Welfare gain is small: no sizeable difference if central bank does not react to house prices
- However, systematic response is optimal if central bank is uncertain about actual degree of financial frictions: not responding generates large welfare losses
Model

- Closed-economy DSGE model, calibrated on euro-area data
Model

- Closed-economy DSGE model, calibrated on euro-area data
- Two-sector (housing, non-housing), two-agent (patient, impatient) setup (Iacoviello and Neri 2010)
Model

- Closed-economy DSGE model, calibrated on euro-area data
- Two-sector (housing, non-housing), two-agent (patient, impatient) setup (Iacoviello and Neri 2010)
- Households’ utility:

$$E_0 \sum_{t=0}^{\infty} (\beta)^t \left\{ \frac{1}{1 - \sigma_X} (X_t)^{1-\sigma_X} - \frac{L_C}{1 + \sigma_{L_C}} (N_{C,t})^{1+\sigma_{L_C}} - \frac{L_D}{1 + \sigma_{L_D}} (N_{D,t})^{1+\sigma_{L_D}} \right\}$$
Model

- Closed-economy DSGE model, calibrated on euro-area data
- Two-sector (housing, non-housing), two-agent (patient, impatient) setup (Iacoviello and Neri 2010)
- Households’ utility:

 \[E_0 \sum_{t=0}^{\infty} (\beta)^t \left\{ \frac{1}{1 - \sigma_X} (X_t)^{1 - \sigma_X} - \frac{\bar{L}_C}{1 + \sigma_{L_C}} (N_{C,t})^{1 + \sigma_{L_C}} - \frac{\bar{L}_D}{1 + \sigma_{L_D}} (N_{D,t})^{1 + \sigma_{L_D}} \right\} \]

- Consumption index:

 \[X_t \equiv \left[\left(1 - \varepsilon^D_t \omega_D \right)^{\frac{1}{\eta_D}} \left(C_t - hC_{t-1} \right)^{\frac{\eta_{D-1}}{\eta}} + \varepsilon^D_t \omega^D \left(\frac{1}{\eta_D} \right) \left(D_t \right)^{\frac{\eta_{D-1}}{\eta_D}} \right]^{\frac{\eta_D}{\eta_{D-1}}} \]
Model

- Closed-economy DSGE model, calibrated on euro-area data
- Two-sector (housing, non-housing), two-agent (patient, impatient) setup (Iacoviello and Neri 2010)
- Households’ utility:

\[
E_0 \sum_{t=0}^{\infty} (\beta)^t \left\{ \frac{1}{1-\sigma_X} (X_t)^{1-\sigma_X} - \frac{L_C}{1+\sigma_{L_C}} (N_{C,t})^{1+\sigma_{L_C}} - \frac{L_D}{1+\sigma_{L_D}} (N_{D,t})^{1+\sigma_{L_D}} \right\}
\]

- Consumption index:

\[
X_t \equiv \left[\left(1 - \epsilon_t^{D} \omega_D \right)^{\frac{1}{\eta_D}} (C_t - hC_{t-1})^{\frac{\eta_D-1}{\eta}} + \epsilon_t^{D} \omega_D^{\frac{1}{\eta_D}} (D_t)^{\frac{\eta_D-1}{\eta_D}} \right]^{\frac{\eta_D}{\eta_D-1}}
\]

- \(\epsilon_t^{D} \): housing preference shock, following AR(1) process
Model

- Financial frictions: a fraction ω of households face collateral constraint:

$$b_t^b = \varepsilon_t^{LTV} (1 - \chi) E_t \left\{ T_{D,t+1} D_t^b \frac{\pi_{t+1}}{R_t} \right\}$$
Model

- Financial frictions: a fraction ω of households face collateral constraint:

 \[b_t^b = \varepsilon_t^{LTV} (1 - \chi) E_t \left\{ T_{D,t+1} D_t^b \frac{\pi_{t+1}}{R_t} \right\} \]

- ε_t^{LTV}: loan-to-value ratio shock, following AR(1) process
Model

- Financial frictions: a fraction ω of households face collateral constraint:

$$b_t^b = \varepsilon_t^{LTV} (1 - \chi) E_t \left\{ T_{D,t+1} D_t^b \frac{\pi_{t+1}}{R_t} \right\}$$

- ε_t^{LTV}: loan-to-value ratio shock, following AR(1) process

- Amplification effect: $\uparrow T_{D,t} \implies \uparrow$ collateral value $\implies \uparrow b_t^b \implies \uparrow C_t, D_t \implies \uparrow T_{D,t+1}, \ldots$
Model

- Financial frictions: a fraction ω of households face collateral constraint:
 \[b_t^b = \varepsilon_t^{LTV} (1 - \chi) E_t \left\{ T_{D,t+1} D_t^b \frac{\pi_{t+1}}{R_t} \right\} \]

- ε_t^{LTV}: loan-to-value ratio shock, following AR(1) process

- Amplification effect: $\uparrow T_{D,t} \implies \uparrow$ collateral value $\implies \uparrow b_t^b \implies \uparrow C_t, D_t \implies \uparrow T_{D,t+1}, ...$

- Financial accelerator: fluctuations in collateral price $\implies \uparrow$ volatility of real variables
Model

- Financial frictions: a fraction ω of households face collateral constraint:

$$b^b_t = \varepsilon^LTV_t (1 - \chi) E_t \left\{ T_{D,t+1} D^b_t \frac{\pi_{t+1}}{R_t} \right\}$$

- ε^LTV_t: loan-to-value ratio shock, following AR(1) process

- Amplification effect: $\uparrow T_{D,t} \implies \uparrow$ collateral value $\implies \uparrow b^b_t \implies \uparrow C_t, D_t \implies \uparrow T_{D,t+1}, ...$

- Financial accelerator: fluctuations in collateral price $\implies \uparrow$ volatility of real variables

- Asymmetric transmission of monetary policy due to (i) agents' heterogeneity and (ii) nominal debt contracts: \uparrow in real interest rate (debt repayment) detrimental to borrowers but beneficial to savers
Study optimal monetary policy in the class of *simple* and *operational* interest-rate rules (Schmitt-Grohe and Uribe 2007):

\[
\frac{R_t}{\bar{R}} = \left(\frac{\pi_t}{\bar{\pi}} \right)^{(1-\rho)\phi_\pi} \left(\frac{Y_t}{Y_{t-1}} \right)^{(1-\rho)\phi_\Delta y} \left(\frac{\pi_{D,t}}{\bar{\pi}_D} \right)^{(1-\rho)\phi_{\pi D}} \left(\frac{R_{t-1}}{\bar{R}} \right)^{\rho}
\]
Study optimal monetary policy in the class of *simple* and *operational* interest-rate rules (Schmitt-Grohe and Uribe 2007):

\[
\frac{R_t}{R} = \left(\frac{\pi_t}{\pi} \right)^{(1-\rho)\phi_\pi} \left(\frac{Y_t}{Y_{t-1}} \right)^{(1-\rho)\phi_{\Delta y}} \left(\frac{\pi_{D,t}}{\pi_D} \right)^{(1-\rho)\phi_{\pi D}} \left(\frac{R_{t-1}}{R} \right)^\rho
\]

Choose \(\phi_\pi, \phi_{\Delta y}, \phi_{\pi D} \) and \(\rho \) to maximize some objective function.
Analysis

- Study optimal monetary policy in the class of *simple* and *operational* interest-rate rules (Schmitt-Grohe and Uribe 2007):

\[
\frac{R_t}{R} = \left(\frac{\pi_t}{\pi} \right)^{1-\rho} \phi_\pi \left(\frac{Y_t}{Y_{t-1}} \right)^{(1-\rho)\phi_{\Delta y}} \left(\frac{\pi_{D,t}}{\pi_D} \right)^{(1-\rho)\phi_{\pi_D}} \left(\frac{R_{t-1}}{R} \right)^\rho
\]

- Choose \(\phi_\pi, \phi_{\Delta y}, \phi_{\pi_D}\) and \(\rho\) to maximize some objective function
- Quadratic loss function (business cycle stabilization)
Study optimal monetary policy in the class of simple and operational interest-rate rules (Schmitt-Grohe and Uribe 2007):

\[
\frac{R_t}{\bar{R}} = \left(\frac{\pi_t}{\bar{\pi}} \right)^{(1-\rho)\phi_{\pi}} \left(\frac{Y_t}{Y_{t-1}} \right)^{(1-\rho)\phi_{\Delta y}} \left(\frac{\pi_{D,t}}{\bar{\pi}_{D}} \right)^{(1-\rho)\phi_{\pi_D}} \left(\frac{R_{t-1}}{\bar{R}} \right)^{\rho}
\]

Choose \(\phi_{\pi}, \phi_{\Delta y}, \phi_{\pi_D} \) and \(\rho \) to maximize some objective function

- Quadratic loss function (business cycle stabilization)
- Ex-ante social welfare (second-order approximation to household utility)
Analysis

- Study optimal monetary policy in the class of *simple* and *operational* interest-rate rules (Schmitt-Grohe and Uribe 2007):

\[
\frac{R_t}{\bar{R}} = \left(\frac{\pi_t}{\bar{\pi}} \right)^{(1-\rho)\phi_\pi} \left(\frac{Y_t}{Y_{t-1}} \right)^{(1-\rho)\phi_{\Delta y}} \left(\frac{\pi_{D,t}}{\bar{\pi}_D} \right)^{(1-\rho)\phi_{\pi D}} \left(\frac{R_{t-1}}{\bar{R}} \right)^{\rho}
\]

- Choose \(\phi_\pi, \phi_{\Delta y}, \phi_{\pi D} \) and \(\rho \) to maximize some objective function

- Quadratic loss function (business cycle stabilization)

- Ex-ante social welfare (second-order approximation to household utility)

- Shocks: housing demand, LTV ratio, productivity
Calibration

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preferences</td>
<td></td>
<td></td>
</tr>
<tr>
<td>β^B</td>
<td>Discount factor (patient)</td>
<td>0.99</td>
</tr>
<tr>
<td>β^S</td>
<td>Discount factor (impatient)</td>
<td>0.96</td>
</tr>
<tr>
<td>σ_X</td>
<td>Intertemporal elasticity of substitution</td>
<td>1.00</td>
</tr>
<tr>
<td>σ_{LC}</td>
<td>Labor supply elasticity (non-housing)</td>
<td>2.00</td>
</tr>
<tr>
<td>σ_{LD}</td>
<td>Labor supply elasticity (housing)</td>
<td>2.00</td>
</tr>
<tr>
<td>ω</td>
<td>Share of impatient agents</td>
<td>0.20</td>
</tr>
<tr>
<td>Final consumption</td>
<td></td>
<td></td>
</tr>
<tr>
<td>h_s</td>
<td>Habit persistence (patient)</td>
<td>0.82</td>
</tr>
<tr>
<td>h_b</td>
<td>Habit persistence (impatient)</td>
<td>0.28</td>
</tr>
<tr>
<td>ω_D</td>
<td>Share of housing services in consumption</td>
<td>0.10</td>
</tr>
<tr>
<td>η_D</td>
<td>Nondurable consumption–housing substitution</td>
<td>1.00</td>
</tr>
<tr>
<td>δ</td>
<td>Housing depreciation rate</td>
<td>0.01</td>
</tr>
<tr>
<td>χ</td>
<td>Downpayment ratio</td>
<td>0.20</td>
</tr>
<tr>
<td>Investment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>δ_K</td>
<td>Capital depreciation rate</td>
<td>0.03</td>
</tr>
<tr>
<td>ϕ</td>
<td>Investment adjustment cost (non-residential)</td>
<td>0.10</td>
</tr>
<tr>
<td>ψ</td>
<td>Capital utilization adjustment cost (non-residential)</td>
<td>3</td>
</tr>
<tr>
<td>ϕ_D</td>
<td>Investment adjustment cost (residential)</td>
<td>0.005</td>
</tr>
<tr>
<td>ψ_D</td>
<td>Capital utilization adjustment cost (residential)</td>
<td>10</td>
</tr>
<tr>
<td>Firms</td>
<td></td>
<td></td>
</tr>
<tr>
<td>α_C</td>
<td>Share of capital (non-residential)</td>
<td>0.30</td>
</tr>
<tr>
<td>α_D</td>
<td>Share of capital (residential)</td>
<td>0.30</td>
</tr>
<tr>
<td>α_L</td>
<td>Share of land (residential)</td>
<td>0.15</td>
</tr>
<tr>
<td>μ_C</td>
<td>Intermediate non-residential goods substitution</td>
<td>4.33</td>
</tr>
<tr>
<td>μ_D</td>
<td>Intermediate residential goods substitution</td>
<td>4.33</td>
</tr>
<tr>
<td>μ_w</td>
<td>Labor varieties substitution (residential)</td>
<td>4.33</td>
</tr>
<tr>
<td>μ_{wc}</td>
<td>Labor varieties substitution (non-residential)</td>
<td>4.33</td>
</tr>
<tr>
<td>Nominal rigidities</td>
<td></td>
<td></td>
</tr>
<tr>
<td>θ_C</td>
<td>Calvo non-residential (goods)</td>
<td>0.92</td>
</tr>
<tr>
<td>γ_C</td>
<td>Indexation non-residential (goods)</td>
<td>0.50</td>
</tr>
<tr>
<td>θ_D</td>
<td>Calvo residential (goods)</td>
<td>0.00</td>
</tr>
<tr>
<td>γ_D</td>
<td>Indexation residential (goods)</td>
<td>0.00</td>
</tr>
<tr>
<td>θ_{wc}</td>
<td>Calvo non-residential (labor)</td>
<td>0.92</td>
</tr>
<tr>
<td>γ_{wc}</td>
<td>Indexation non-residential (labor)</td>
<td>0.23</td>
</tr>
<tr>
<td>θ_{wd}</td>
<td>Calvo residential (labor)</td>
<td>0.93</td>
</tr>
<tr>
<td>γ_{wd}</td>
<td>Indexation residential (labor)</td>
<td>0.44</td>
</tr>
</tbody>
</table>
Calibration

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monetary policy rule</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interest-rate persistence</td>
<td>ρ</td>
<td>0.85</td>
</tr>
<tr>
<td>Response to inflation</td>
<td>ϕ_π</td>
<td>1.25</td>
</tr>
<tr>
<td>Response to GDP growth</td>
<td>$\phi_\Delta y$</td>
<td>0.015</td>
</tr>
<tr>
<td>Exogenous shocks: persistence</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Technology (non-residential)</td>
<td>ρ^A</td>
<td>0.90</td>
</tr>
<tr>
<td>Technology (residential)</td>
<td>ρ^{AD}</td>
<td>0.90</td>
</tr>
<tr>
<td>Housing demand</td>
<td>ρ^D</td>
<td>0.95</td>
</tr>
<tr>
<td>Financial (loan-to-value)</td>
<td>ρ^{LTV}</td>
<td>0.95</td>
</tr>
<tr>
<td>Exogenous shocks: standard deviation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Technology (non-residential)</td>
<td>σ^A</td>
<td>1.50</td>
</tr>
<tr>
<td>Technology (residential)</td>
<td>σ^{AD}</td>
<td>1.10</td>
</tr>
<tr>
<td>Housing demand</td>
<td>σ^D</td>
<td>2.85</td>
</tr>
<tr>
<td>Financial (loan-to-value)</td>
<td>σ^{LTV}</td>
<td>0.01</td>
</tr>
</tbody>
</table>
Calibration

- **Steady state ratios:**

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>Nominal interest rate (annualized)</td>
<td>4.00</td>
</tr>
<tr>
<td>C/Y</td>
<td>Consumption-to-output ratio</td>
<td>0.58</td>
</tr>
<tr>
<td>T_DZ_D/Y</td>
<td>Residential investment-to-output ratio</td>
<td>0.03</td>
</tr>
<tr>
<td>I/Y</td>
<td>Investment-to-output ratio</td>
<td>0.21</td>
</tr>
<tr>
<td>$B/(4Y)$</td>
<td>Private debt-to-annual-output ratio</td>
<td>0.50</td>
</tr>
<tr>
<td>P_HG/Y</td>
<td>Public expenditure-to-output ratio</td>
<td>0.18</td>
</tr>
</tbody>
</table>

- **Second moments:**

<table>
<thead>
<tr>
<th>Model/Variable</th>
<th>Model</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>GDP</td>
<td>2.54</td>
<td>2.21</td>
</tr>
<tr>
<td>Consumption</td>
<td>2.35</td>
<td>2.20</td>
</tr>
<tr>
<td>Investment</td>
<td>6.23</td>
<td>6.18</td>
</tr>
<tr>
<td>Residential investment</td>
<td>6.51</td>
<td>5.70</td>
</tr>
<tr>
<td>Household debt</td>
<td>8.07</td>
<td>5.84</td>
</tr>
<tr>
<td>Nominal interest rate</td>
<td>0.32</td>
<td>0.39</td>
</tr>
<tr>
<td>CPI inflation</td>
<td>0.32</td>
<td>0.46</td>
</tr>
<tr>
<td>House price inflation</td>
<td>0.99</td>
<td>1.03</td>
</tr>
</tbody>
</table>
Business cycle stabilization

- Does a systematic response to house prices help achieve business cycle stabilization?
- Quadratic loss function:

\[\mathcal{L}^A = \sigma_\pi^2 + \lambda \sigma_{\Delta y}^2 + \mu \sigma_{\Delta r}^2 \]

- Result: optimal response to house prices is virtually zero. Reacting is irrelevant.
- What if central bank has a preference over stabilizing house prices?
Business cycle stabilization

- Does a systematic response to house prices help achieve business cycle stabilization?
- Quadratic loss function:

\[L^A = \sigma_\pi^2 + \lambda \sigma_{\Delta y}^2 + \mu \sigma_{\Delta r}^2 + \nu \sigma_{\pi D}^2 \]

- Result: optimal response to house prices is virtually zero. Reacting is irrelevant
- What if central bank has a preference over stabilizing house prices?
 - Systematic (non-zero) response may be optimal, but results heavily depend on central bank’s preferences
- Overall best performance: inflation targeting and no response to house prices
Welfare maximization

- Central bank’s objective: social welfare loss function
- Computed as second order approximation to households’ utility

\[\mathcal{W}_{t}^{social} \equiv \omega \mathcal{W}_{t}^{b} + (1 - \omega) \mathcal{W}_{t}^{s} \]

- Largely used in the literature since Rotemberg and Woodford (1997) to rank performance of alternative monetary policy rules
- Allows to account for heterogeneous consumption choices and capture sectoral dynamics, relative price movements
A systematic response to house prices improves social welfare:

<table>
<thead>
<tr>
<th></th>
<th>W^{tot}</th>
<th>ϕ_π</th>
<th>$\phi_{\Delta y}$</th>
<th>ρ</th>
<th>ϕ_{π_D}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Response to house prices</td>
<td>0.086</td>
<td>2.36</td>
<td>1.84</td>
<td>0.08</td>
<td>-0.12</td>
</tr>
<tr>
<td>No response to house prices</td>
<td>0.091</td>
<td>1.64</td>
<td>0.87</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>
Welfare maximization

- A systematic response to house prices improves social welfare:

<table>
<thead>
<tr>
<th></th>
<th>W^tot</th>
<th>ϕ_π</th>
<th>$\phi_{\Delta y}$</th>
<th>ρ</th>
<th>ϕ_{π_D}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Response to house prices</td>
<td>0.086</td>
<td>2.36</td>
<td>1.84</td>
<td>0.08</td>
<td>-0.12</td>
</tr>
<tr>
<td>No response to house prices</td>
<td>0.091</td>
<td>1.64</td>
<td>0.87</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

- Welfare gain is small: no sizeable difference if central bank does not react to house prices
Welfare maximization

- A systematic response to house prices improves social welfare:

<table>
<thead>
<tr>
<th></th>
<th>W_{tot}</th>
<th>ϕ_{π}</th>
<th>$\phi_{\Delta y}$</th>
<th>ρ</th>
<th>ϕ_{π_D}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Response to house prices</td>
<td>0.086</td>
<td>2.36</td>
<td>1.84</td>
<td>0.08</td>
<td>-0.12</td>
</tr>
<tr>
<td>No response to house prices</td>
<td>0.091</td>
<td>1.64</td>
<td>0.87</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

- Welfare gain is small: no sizeable difference if central bank does not react to house prices

- Response to house prices is *negative*: optimal rule strikes balance between opposite forces, due to (i) agents’ heterogeneity and (ii) nominal debt contracts
Welfare maximization

- A systematic response to house prices improves social welfare:

<table>
<thead>
<tr>
<th></th>
<th>\mathcal{W}^{tot}</th>
<th>ϕ_π</th>
<th>$\phi_{\Delta y}$</th>
<th>ρ</th>
<th>ϕ_{π_D}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Response to house prices</td>
<td>0.086</td>
<td>2.36</td>
<td>1.84</td>
<td>0.08</td>
<td>-0.12</td>
</tr>
<tr>
<td>No response to house prices</td>
<td>0.091</td>
<td>1.64</td>
<td>0.87</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

- Welfare gain is small: no sizeable difference if central bank does not react to house prices
- Response to house prices is negative: optimal rule strikes balance between opposite forces, due to (i) agents’ heterogeneity and (ii) nominal debt contracts
- Overall response of R also depends on GDP and inflation (never ↓ after demand shock)
Welfare maximization

- A systematic response to house prices improves social welfare:

<table>
<thead>
<tr>
<th></th>
<th>\mathcal{W}^{tot}</th>
<th>ϕ_π</th>
<th>$\phi_{\Delta y}$</th>
<th>ρ</th>
<th>ϕ_{π_D}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Response to house prices</td>
<td>0.086</td>
<td>2.36</td>
<td>1.84</td>
<td>0.08</td>
<td>-0.12</td>
</tr>
<tr>
<td>No response to house prices</td>
<td>0.091</td>
<td>1.64</td>
<td>0.87</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

- Welfare gain is small: no sizeable difference if central bank does not react to house prices

- Response to house prices is *negative*: optimal rule strikes balance between opposite forces, due to (i) agents’ heterogeneity and (ii) nominal debt contracts

- Overall response of R also depends on GDP and inflation (never ↓ after demand shock) IRFs

- Conclusion: no substantial welfare improvement from responding to house prices
Welfare maximization

- A systematic response to house prices improves social welfare:

<table>
<thead>
<tr>
<th></th>
<th>W^{tot}</th>
<th>ϕ_π</th>
<th>$\phi_{\Delta y}$</th>
<th>ρ</th>
<th>$\phi_{\pi D}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Response to house prices</td>
<td>0.086</td>
<td>2.36</td>
<td>1.84</td>
<td>0.08</td>
<td>-0.12</td>
</tr>
<tr>
<td>No response to house prices</td>
<td>0.091</td>
<td>1.64</td>
<td>0.87</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

- Welfare gain is small: no sizeable difference if central bank does not react to house prices

- Response to house prices is *negative*: optimal rule strikes balance between opposite forces, due to (i) agents’ heterogeneity and (ii) nominal debt contracts

- Overall response of R also depends on GDP and inflation (never ↓ after demand shock)

- Conclusion: no substantial welfare improvement from responding to house prices

- However, financial frictions play a key role. Central bank information is also crucial
The role of financial frictions

- Financial frictions measured by share of borrowers (ω) and average loan-to-value ratio (LTV)
- Suppose the actual measures are:
 - $\omega = 30\%$ (instead of 20\%)
 - $LTV = 90\%$ (instead of 80\%)
- Economy is expected to display larger fluctuations in prices and quantities in response to shocks
- Result: slightly positive response to house prices is optimal

<table>
<thead>
<tr>
<th></th>
<th>ω</th>
<th>LTV</th>
<th>\mathcal{W}_{tot}</th>
<th>ϕ_π</th>
<th>$\phi_{\Delta y}$</th>
<th>ρ</th>
<th>$\phi_{\pi;D}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Response to house prices</td>
<td>0.3</td>
<td>0.9</td>
<td>0.1038</td>
<td>1.69</td>
<td>1.04</td>
<td>0.00</td>
<td>0.03</td>
</tr>
<tr>
<td>No response to house prices</td>
<td>0.2</td>
<td>0.8</td>
<td>0.1041</td>
<td>2.00</td>
<td>1.51</td>
<td>0.08</td>
<td>0.00</td>
</tr>
</tbody>
</table>

- Compute implicit weight assigned to housing in optimal price index that CB targets: $\pi_t^O = \pi_{\alpha;D,t}^{1-\alpha} \pi_t^1$: $\alpha = 0.02$
- Smaller than share in consumption (0.1), closer to weight in GDP
The role of financial frictions: fault-tolerance analysis

- Fault tolerance (Levin and Williams 2003): evaluate increase in welfare loss as one single parameter of optimized interest-rate rule varies, holding others at optimal values.
The role of financial frictions: fault-tolerance analysis

- Fault tolerance (Levin and Williams 2003): evaluate increase in welfare loss as one single parameter of optimized interest-rate rule varies, holding others at optimal values
- Flat curves: policy is fault tolerant, i.e. model misspecification does not lead to large increase in loss
The role of financial frictions: fault-tolerance analysis

- Fault tolerance (Levin and Williams 2003): evaluate increase in welfare loss as one single parameter of optimized interest-rate rule varies, holding others at optimal values
- Flat curves: policy is fault tolerant, i.e. model misspecification does not lead to large increase in loss
- Aim: assess scope for deviations from optimal rule, particularly interested in ϕ_{π_D}
The role of financial frictions: fault-tolerance analysis

- Fault tolerance (Levin and Williams 2003): evaluate increase in welfare loss as one single parameter of optimized interest-rate rule varies, holding others at optimal values
- Flat curves: policy is fault tolerant, i.e. model misspecification does not lead to large increase in loss
- Aim: assess scope for deviations from optimal rule, particularly interested in ϕ_{π_D}
- Thought experiment: what if CB does not know exactly the degree of financial frictions in the economy?
The role of financial frictions: fault-tolerance analysis

- Fault tolerance (Levin and Williams 2003): evaluate increase in welfare loss as one single parameter of optimized interest-rate rule varies, holding others at optimal values.

- Flat curves: policy is fault tolerant, i.e. model misspecification does not lead to large increase in loss.

- Aim: assess scope for deviations from optimal rule, particularly interested in ϕ_{π_D}.

- Thought experiment: what if CB does not know exactly the degree of financial frictions in the economy?

- Suppose CB enacts rule that is optimal for benchmark economy ($\omega = 0.2$, $LTV = 0.8$), but true degree of financial frictions is instead $\omega = 0.3$, $LTV = 0.9$: any additional welfare cost?
The role of financial frictions: fault-tolerance analysis

- Response to CPI inflation, GDP and lagged interest rate: no sizeable additional loss
The role of financial frictions: fault-tolerance analysis

- Response to CPI inflation, GDP and lagged interest rate: no sizeable additional loss
- Response to house prices: large additional loss
The role of financial frictions: fault-tolerance analysis

- Response to CPI inflation, GDP and lagged interest rate: no sizeable additional loss

- Response to house prices: large additional loss

- However: if CB implements rule that is optimal in the ”high FF” case when the true degree of FF is the benchmark one, additional cost is much smaller
The role of financial frictions: fault-tolerance analysis

- Response to CPI inflation, GDP and lagged interest rate: no sizeable additional loss

- Response to house prices: large additional loss

- However: if CB implements rule that is optimal in the "high FF" case when the true degree of FF is the benchmark one, additional cost is much smaller

- Borrowers’ behavior drives the result:
The role of financial frictions: fault-tolerance analysis

- Response to CPI inflation, GDP and lagged interest rate: no sizeable additional loss
- Response to house prices: large additional loss
- However: if CB implements rule that is optimal in the "high FF" case when the true degree of FF is the benchmark one, additional cost is much smaller
- Borrowers’ behavior drives the result:
- Conclusion: systematic positive response to house prices is optimal if CB is uncertain about true degree of FF
The role of financial frictions: fault-tolerance analysis

- Response to CPI inflation, GDP and lagged interest rate: no sizeable additional loss
- Response to house prices: large additional loss
- However: if CB implements rule that is optimal in the "high FF" case when the true degree of FF is the benchmark one, additional cost is much smaller
- Borrowers’ behavior drives the result:
- Conclusion: systematic positive response to house prices is optimal if CB is uncertain about true degree of FF
- Rationale: inefficiencies associated to house price volatility outweigh those related to consumer price inflation. Contrasting house price movements reduces volatility in consumption induced by financial accelerator
Conclusions

- Welfare maximization: a systematic response to house prices improves social welfare, but gain is small
Conclusions

- Welfare maximization: a systematic response to house prices improves social welfare, but gain is small
- Systematic response to house prices is optimal if central bank is uncertain about actual degree of financial frictions: not responding generates large welfare losses
Conclusions

- Welfare maximization: a systematic response to house prices improves social welfare, but gain is small
- Systematic response to house prices is optimal if central bank is uncertain about actual degree of financial frictions: not responding generates large welfare losses
- Next: role of financial intermediation, model uncertainty
Thanks
Sensitivity analysis

- **House price stickiness**: response to house prices *increasing* in sectoral price stickiness; positive for $\theta_D > 0.3$
 - Presence of financial frictions does not alter traditional policy prescriptions (Aoki 2001, Benigno 2004)

- **Wage stickiness**: \uparrow wage flexibility \implies \uparrow stronger response to CPI inflation and \downarrow relevance of FF-distortions \implies optimal response to house prices $\to 0$

- **Financial frictions**:
 - Varying share of borrowers: without borrowers, no incentive to accommodate \uparrow in house prices \implies response to h.p. positive and large
 - Varying LTV ratio: response to house prices \uparrow with LTV (more leveraged economy)

- **Persistence of housing demand shocks**: no role
Optimal policy frontiers

![Graph showing optimal policy frontiers with two lines representing "no response to house prices" and "response to house prices".](image)
Welfare cost under alternative policy objectives
Augmented loss function:

$$\mathcal{L}^A = \sigma^2 + \lambda \sigma^2 + \nu \sigma^2_D + \mu \sigma^2_r$$

- with $\lambda \in [0, 1]$, $\nu \in [0.001, 1]$, $\mu = 0.001$
- Note: cannot compare minimum values of \mathcal{L}^A and \mathcal{L}^S, since arguments are different
- Compute second-order approximation of individual (and aggregate) utility functions under the two optimal rules and compare
Welfare loss calculations

- Consumption equivalent: fraction of consumption from given policy regime (ψ) to be given to each agent to achieve steady-state welfare level. Solve:

$$\bar{W}^b = E_0 \sum_{t=0}^{\infty} (\beta^b)^t \left\{ \frac{1}{1-\sigma_X} \left(X_t,^b (1 + \psi^b) \right)^{1-\sigma_X} - \Delta^w_{C,b,t} \frac{T_{C,b}}{1 + \sigma_{L_C,b}} \left(N_{b,c}^{b,a} \right)^{1+\sigma_{L_C,b}} - \Delta^w_{D,s,t} \frac{T_{D,b}}{1 + \sigma_{L_D,b}} \left(N_{d,c}^{b,a} \right)^{1+\sigma_{L_D,b}} \right\}$$

$$\bar{W}^s = E_0 \sum_{t=0}^{\infty} (\beta^s)^t \left\{ \frac{1}{1-\sigma_X} \left(X_t,^s (1 + \psi^s) \right)^{1-\sigma_X} - \Delta^w_{C,s,t} \frac{T_{C,s}}{1 + \sigma_{L_C,s}} \left(N_{s,c}^{s,a} \right)^{1+\sigma_{L_C,s}} - \Delta^w_{D,s,t} \frac{T_{D,s}}{1 + \sigma_{L_D,s}} \left(N_{d,c}^{s,a} \right)^{1+\sigma_{L_D,s}} \right\}$$

- Aggregate welfare cost: $\psi \equiv \omega \psi^b + (1 - \omega) \psi^s$
Housing demand shock

GDP

- **Cons. (savers)**
- **Cons. (borrowers)**
- **Investment**

Household debt

- **Nominal int. rate (Annualized)**
- **Inflation rate (Ann.)**
- **Real house price**

Welfare-max. rule

Standard Taylor rule
LTV ratio shock
Productivity shock (non-housing)
Productivity shock (housing)
Fault-tolerance analysis

Response to non-durable inflation

Response to GDP growth

Response to lagged interest rate

Response to house prices
Fault-tolerance analysis

Response to house prices, savers welfare loss

Baseline
High FF

Response to house prices, borrowers welfare loss

Baseline
High FF