Optimal Monetary Policy Rules and House Prices: The Role of Financial Frictions

A. Notarpietro[§] S. Siviero[§]

[§]Banca d'Italia¹

Housing, Stability and the Macroeconomy: International Perspectives Dallas Fed - IMF - JMCB November 14-15, 2013 Federal Reserve Bank of Dallas

▲日▼▲□▼▲□▼▲□▼ □ ののの

¹Usual disclaimers apply

Should monetary policy systematically respond to house price fluctuations?

Should monetary policy systematically respond to house price fluctuations?

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

How does the traditional monetary policy prescription (i.e. inflation targeting) modify in the presence of financial frictions?

- Should monetary policy systematically respond to house price fluctuations?
- How does the traditional monetary policy prescription (i.e. inflation targeting) modify in the presence of financial frictions?
- Housing and collateralized borrowing: should the price of collateral be part of monetary policy objectives/targets?

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- Should monetary policy systematically respond to house price fluctuations?
- How does the traditional monetary policy prescription (i.e. inflation targeting) modify in the presence of financial frictions?
- Housing and collateralized borrowing: should the price of collateral be part of monetary policy objectives/targets?
- Main result: financial frictions modify optimal policy rule, in particular the response to house prices

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- Should monetary policy systematically respond to house price fluctuations?
- How does the traditional monetary policy prescription (i.e. inflation targeting) modify in the presence of financial frictions?
- Housing and collateralized borrowing: should the price of collateral be part of monetary policy objectives/targets?
- Main result: financial frictions modify optimal policy rule, in particular the response to house prices
- Central bank's knowledge of the economy crucially affects results

Monetary policy and asset prices: where do we stand?

- Monetary policy and asset prices: where do we stand?
- Consolidated (pre-crisis) view: asset price variations should influence monetary policy only *insofar as they help forecasting inflation* (Bernanke and Gertler 2001)

- Monetary policy and asset prices: where do we stand?
- Consolidated (pre-crisis) view: asset price variations should influence monetary policy only *insofar as they help forecasting inflation* (Bernanke and Gertler 2001)
- Financial crisis tightly related to US housing market: macro-financial interactions matter; revision of models used for policy analysis

- Monetary policy and asset prices: where do we stand?
- Consolidated (pre-crisis) view: asset price variations should influence monetary policy only *insofar as they help forecasting inflation* (Bernanke and Gertler 2001)
- Financial crisis tightly related to US housing market: macro-financial interactions matter; revision of models used for policy analysis
- Role of housing-related shocks and borrowing constraints in general equilibrium models for policy analysis (lacoviello 2005, lacoviello and Neri 2010)

- Monetary policy and asset prices: where do we stand?
- Consolidated (pre-crisis) view: asset price variations should influence monetary policy only *insofar as they help forecasting inflation* (Bernanke and Gertler 2001)
- Financial crisis tightly related to US housing market: macro-financial interactions matter; revision of models used for policy analysis
- Role of housing-related shocks and borrowing constraints in general equilibrium models for policy analysis (lacoviello 2005, lacoviello and Neri 2010)

What role for house prices in monetary policy? Does a systematic reaction help stabilize business cycle?

- Monetary policy and asset prices: where do we stand?
- Consolidated (pre-crisis) view: asset price variations should influence monetary policy only *insofar as they help forecasting inflation* (Bernanke and Gertler 2001)
- Financial crisis tightly related to US housing market: macro-financial interactions matter; revision of models used for policy analysis
- Role of housing-related shocks and borrowing constraints in general equilibrium models for policy analysis (lacoviello 2005, lacoviello and Neri 2010)
- What role for house prices in monetary policy? Does a systematic reaction help stabilize business cycle?
- What about social welfare? How related to business cycle stabilization?

 lacoviello (2005): standard loss function minimization, no role for house price targeting

 lacoviello (2005): standard loss function minimization, no role for house price targeting

 Mendicino and Pescatori (2008), Rubio (2011): welfare-optimal rules, pure inflation targeting no longer optimal, redistributive issues

- lacoviello (2005): standard loss function minimization, no role for house price targeting
- Mendicino and Pescatori (2008), Rubio (2011): welfare-optimal rules, pure inflation targeting no longer optimal, redistributive issues
- Source of shocks matters: news (Lambertini et al. 2013)

- lacoviello (2005): standard loss function minimization, no role for house price targeting
- Mendicino and Pescatori (2008), Rubio (2011): welfare-optimal rules, pure inflation targeting no longer optimal, redistributive issues
- Source of shocks matters: news (Lambertini et al. 2013)
- Jeske and Liu (2012): no financial frictions; optimal rule should stabilize sticky rental prices

- lacoviello (2005): standard loss function minimization, no role for house price targeting
- Mendicino and Pescatori (2008), Rubio (2011): welfare-optimal rules, pure inflation targeting no longer optimal, redistributive issues
- Source of shocks matters: news (Lambertini et al. 2013)
- Jeske and Liu (2012): no financial frictions; optimal rule should stabilize sticky rental prices
- Multi-sector models: focus on relative price stickiness and consumption weight (Aoki 2001, Benigno 2004, Mankiw and Reis 2003); Erceg and Levin (2006): optimal rule should assign larger weight to durable goods than their relative share in consumption

 Quadratic loss function minimization (business cycle stabilization): no sizeable nor systematic gain from response to house prices

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

- Quadratic loss function minimization (business cycle stabilization): no sizeable nor systematic gain from response to house prices
- Social welfare loss minimization: a systematic response to house prices improves social welfare

- Quadratic loss function minimization (business cycle stabilization): no sizeable nor systematic gain from response to house prices
- Social welfare loss minimization: a systematic response to house prices improves social welfare
- Welfare gain is small: no sizeable difference if central bank does not react to house prices

- Quadratic loss function minimization (business cycle stabilization): no sizeable nor systematic gain from response to house prices
- Social welfare loss minimization: a systematic response to house prices improves social welfare
- Welfare gain is small: no sizeable difference if central bank does not react to house prices
- However, systematic response is optimal if central bank is uncertain about actual degree of financial frictions: not responding generates large welfare losses

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Closed-economy DSGE model, calibrated on euro-area data

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Closed-economy DSGE model, calibrated on euro-area data

 Two-sector (housing, non-housing), two-agent (patient, impatient) setup (lacoviello and Neri 2010)

- Closed-economy DSGE model, calibrated on euro-area data
- Two-sector (housing, non-housing), two-agent (patient, impatient) setup (lacoviello and Neri 2010)
- Households' utility:

$$E_{0}\sum_{t=0}^{\infty}(\beta)^{t}\left\{\frac{1}{1-\sigma_{X}}\left(X_{t}\right)^{1-\sigma_{X}}-\frac{\overline{L}_{C}}{1+\sigma_{L_{C}}}\left(N_{C,t}\right)^{1+\sigma_{L_{C}}}-\frac{\overline{L}_{D}}{1+\sigma_{L_{D}}}\left(N_{D,t}\right)^{1+\sigma_{L_{D}}}\right\}$$

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

- Closed-economy DSGE model, calibrated on euro-area data
- Two-sector (housing, non-housing), two-agent (patient, impatient) setup (lacoviello and Neri 2010)
- Households' utility:

$$E_{0}\sum_{t=0}^{\infty}\left(\beta\right)^{t}\left\{\frac{1}{1-\sigma_{X}}\left(X_{t}\right)^{1-\sigma_{X}}-\frac{\overline{L}_{C}}{1+\sigma_{L_{C}}}\left(N_{C,t}\right)^{1+\sigma_{L_{C}}}-\frac{\overline{L}_{D}}{1+\sigma_{L_{D}}}\left(N_{D,t}\right)^{1+\sigma_{L_{D}}}\right\}$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Consumption index:

$$X_{t} \equiv \left[\left(1 - \varepsilon_{t}^{D} \omega_{D} \right)^{\frac{1}{\eta_{D}}} \left(C_{t} - hC_{t-1} \right)^{\frac{\eta_{D}-1}{\eta}} + \varepsilon_{t}^{D} \omega_{D}^{\frac{1}{\eta_{D}}} \left(D_{t} \right)^{\frac{\eta_{D}-1}{\eta_{D}}} \right]^{\frac{\eta_{D}}{\eta_{D}-1}}$$

- Closed-economy DSGE model, calibrated on euro-area data
- Two-sector (housing, non-housing), two-agent (patient, impatient) setup (lacoviello and Neri 2010)
- Households' utility:

$$E_{0}\sum_{t=0}^{\infty}\left(\beta\right)^{t}\left\{\frac{1}{1-\sigma_{X}}\left(X_{t}\right)^{1-\sigma_{X}}-\frac{\overline{L}_{C}}{1+\sigma_{L_{C}}}\left(N_{C,t}\right)^{1+\sigma_{L_{C}}}-\frac{\overline{L}_{D}}{1+\sigma_{L_{D}}}\left(N_{D,t}\right)^{1+\sigma_{L_{D}}}\right\}$$

Consumption index:

$$X_{t} \equiv \left[\left(1 - \varepsilon_{t}^{D} \omega_{D} \right)^{\frac{1}{\eta_{D}}} \left(C_{t} - hC_{t-1} \right)^{\frac{\eta_{D}-1}{\eta}} + \varepsilon_{t}^{D} \omega_{D}^{\frac{1}{\eta_{D}}} \left(D_{t} \right)^{\frac{\eta_{D}-1}{\eta_{D}}} \right]^{\frac{\eta_{D}}{\eta_{D}-1}}$$

▶ ε_t^D : housing preference shock, following AR(1) process

Financial frictions: a fraction ω of households face collateral constraint:

$$b_t^b = \varepsilon_t^{LTV} (1 - \chi) E_t \left\{ T_{D,t+1} D_t^b \frac{\pi_{t+1}}{R_t} \right\}$$

Financial frictions: a fraction ω of households face collateral constraint:

$$b_t^b = \varepsilon_t^{LTV} (1 - \chi) E_t \left\{ T_{D,t+1} D_t^b \frac{\pi_{t+1}}{R_t} \right\}$$

(ロ)、(型)、(E)、(E)、 E、 の(の)

• ε_t^{LTV} : loan-to-value ratio shock, following AR(1) process

Financial frictions: a fraction ω of households face collateral constraint:

$$b_t^b = \varepsilon_t^{LTV} (1 - \chi) E_t \left\{ T_{D,t+1} D_t^b \frac{\pi_{t+1}}{R_t} \right\}$$

- ▶ ε_t^{LTV} : loan-to-value ratio shock, following AR(1) process
- ▶ Amplification effect: $\uparrow T_{D,t} \implies \uparrow$ collateral value $\implies \uparrow b_t^b \implies \uparrow C_t, D_t \implies \uparrow T_{D,t+1}, ...$

Financial frictions: a fraction ω of households face collateral constraint:

$$b_t^b = \varepsilon_t^{LTV} (1 - \chi) E_t \left\{ T_{D,t+1} D_t^b \frac{\pi_{t+1}}{R_t} \right\}$$

- ▶ ε_t^{LTV} : loan-to-value ratio shock, following AR(1) process
- ▶ Amplification effect: $\uparrow T_{D,t} \implies \uparrow$ collateral value $\implies \uparrow b_t^b \implies \uparrow C_t, D_t \implies \uparrow T_{D,t+1}, ...$
- ▶ Financial accelerator: fluctuations in collateral price ⇒ ↑
 volatility of real variables

Financial frictions: a fraction ω of households face collateral constraint:

$$b_t^b = \varepsilon_t^{LTV} (1 - \chi) E_t \left\{ T_{D,t+1} D_t^b \frac{\pi_{t+1}}{R_t} \right\}$$

- ε_t^{LTV} : loan-to-value ratio shock, following AR(1) process
- ▶ Amplification effect: $\uparrow T_{D,t} \implies \uparrow$ collateral value $\implies \uparrow b_t^b \implies \uparrow C_t, D_t \implies \uparrow T_{D,t+1}, ...$
- ► Financial accelerator: fluctuations in collateral price ⇒ ↑ volatility of real variables
- Asymmetric transmission of monetary policy due to (i) agents' heterogeneity and (ii) nominal debt contracts:
 ↑ in real interest rate (debt repayment) detrimental to borrowers but beneficial to savers

 Study optimal monetary policy in the class of *simple* and operational interest-rate rules (Schmitt-Grohe and Uribe 2007):

$$\frac{R_t}{\overline{R}} = \left(\frac{\pi_t}{\overline{\pi}}\right)^{(1-\rho)\phi_{\pi}} \left(\frac{Y_t}{Y_{t-1}}\right)^{(1-\rho)\phi_{\Delta y}} \left(\frac{\pi_{D,t}}{\overline{\pi_D}}\right)^{(1-\rho)\phi_{\pi_D}} \left(\frac{R_{t-1}}{\overline{R}}\right)^{\rho}$$

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

Study optimal monetary policy in the class of *simple* and *operational* interest-rate rules (Schmitt-Grohe and Uribe 2007):

$$\frac{R_t}{\overline{R}} = \left(\frac{\pi_t}{\overline{\pi}}\right)^{(1-\rho)\phi_{\pi}} \left(\frac{Y_t}{Y_{t-1}}\right)^{(1-\rho)\phi_{\Delta y}} \left(\frac{\pi_{D,t}}{\overline{\pi_D}}\right)^{(1-\rho)\phi_{\pi_D}} \left(\frac{R_{t-1}}{\overline{R}}\right)^{\rho}$$

▶ Choose ϕ_{π} , $\phi_{\Delta y}$, ϕ_{π_D} and ρ to maximize some objective function

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

Study optimal monetary policy in the class of *simple* and *operational* interest-rate rules (Schmitt-Grohe and Uribe 2007):

$$\frac{R_t}{\overline{R}} = \left(\frac{\pi_t}{\overline{\pi}}\right)^{(1-\rho)\phi_{\pi}} \left(\frac{Y_t}{Y_{t-1}}\right)^{(1-\rho)\phi_{\Delta y}} \left(\frac{\pi_{D,t}}{\overline{\pi_D}}\right)^{(1-\rho)\phi_{\pi_D}} \left(\frac{R_{t-1}}{\overline{R}}\right)^{\rho}$$

► Choose ϕ_{π} , $\phi_{\Delta y}$, ϕ_{π_D} and ρ to maximize some objective function

Quadratic loss function (business cycle stabilization)

Study optimal monetary policy in the class of *simple* and *operational* interest-rate rules (Schmitt-Grohe and Uribe 2007):

$$\frac{R_t}{\overline{R}} = \left(\frac{\pi_t}{\overline{\pi}}\right)^{(1-\rho)\phi_{\pi}} \left(\frac{Y_t}{Y_{t-1}}\right)^{(1-\rho)\phi_{\Delta y}} \left(\frac{\pi_{D,t}}{\overline{\pi_D}}\right)^{(1-\rho)\phi_{\pi_D}} \left(\frac{R_{t-1}}{\overline{R}}\right)^{\rho}$$

- ▶ Choose ϕ_{π} , $\phi_{\Delta y}$, ϕ_{π_D} and ρ to maximize some objective function
- Quadratic loss function (business cycle stabilization)
- Ex-ante social welfare (second-order approximation to household utility)

Study optimal monetary policy in the class of *simple* and *operational* interest-rate rules (Schmitt-Grohe and Uribe 2007):

$$\frac{R_t}{\overline{R}} = \left(\frac{\pi_t}{\overline{\pi}}\right)^{(1-\rho)\phi_{\pi}} \left(\frac{Y_t}{Y_{t-1}}\right)^{(1-\rho)\phi_{\Delta y}} \left(\frac{\pi_{D,t}}{\overline{\pi_D}}\right)^{(1-\rho)\phi_{\pi_D}} \left(\frac{R_{t-1}}{\overline{R}}\right)^{\rho}$$

- ▶ Choose ϕ_{π} , $\phi_{\Delta y}$, ϕ_{π_D} and ρ to maximize some objective function
- Quadratic loss function (business cycle stabilization)
- Ex-ante social welfare (second-order approximation to household utility)
- Shocks: housing demand, LTV ratio, productivity
Calibration

Parameter	Description	Value
Preferences		
β^B	Discount factor (patient)	0.99
β ^S	Discount factor (impatient)	0.96
σχ	Intertemporal elasticity of substitution	1.00
σ_{L_c}	Labor supply elasticity (non-housing)	2.00
σ_{L_D}	Labor supply elasticity (housing)	2.00
ω	Share of impatient agents	0.20
Final consumptio	n	
hs	Habit persistence (patient)	0.82
hb	Habit persistence (impatient)	0.28
ωD	Share of housing services in consumption	0.10
η_D	Nondurable consumption-housing substitution	1.00
δ	Housing depreciation rate	0.01
χ	Downpayment ratio	0.20
Investment		
δ_K	Capital depreciation rate	0.03
φ	Investment adjustment cost (non-residential)	0.10
ψ	Capital utilization adjustment cost (non-residential)	3
ΦD	Investment adjustment cost (residential)	0.005
ΨD	Capital utilization adjustment cost (residential)	10
Firms		
α _C	Share of capital (non-residential)	0.30
αD	Share of capital (residential)	0.30
α _L	Share of land (residential)	0.15
μ _C	Intermediate non-residential goods substitution	4.33
μD	Intermediate residential goods substitution	4.33
μ_w	Labor varieties substitution (residential)	4.33
μ_w	Labor varieties substitution (non-residential)	4.33
Nominal rigidities	ŝ	
θ_C	Calvo non-residential (goods)	0.92
γς	Indexation non-residential (goods)	0.50
θ_D	Calvo residential (goods)	0.00
γρ	Indexation residential (goods)	0.00
θ_{w_c}	Calvo non-residential (labor)	0.92
γ_{w_c}	Indexation non-residential (labor)	0.23
θ_{w_D}	Calvo residential (labor)	0.93
γ_{wp}	Indexation residential (labor)	0.44

Calibration

Demonstration	Description	14.1
Parameter	Description	value
Monetary policy rule		
Interest-rate persistence	ρ	0.85
Response to inflation	ϕ_{π}	1.25
Response to GDP growth	$\phi_{\Delta y}$	0.015
Exogenous shocks: persistence		
Technology (non-residential)	ρ^A	0.90
Technology (residential)	ρ^{A_D}	0.90
Housing demand	ρ^{D}	0.95
Financial (loan-to-value)	ρ^{LTV}	0.95
Exogenous shocks: standard deviation		
Technology (non-residential)	σ^{A}	1.50
Technology (residential)	σ^{A_D}	1.10
Housing demand	σ^{D}	2.85
Financial (loan-to-value)	σ^{LTV}	0.01

◆□ → ◆□ → ▲目 → ▲目 → ● ● ● ●

Calibration

Steady state ratios:

Variable	Description	Value
R	Nominal interest rate (annualized)	4.00
C/Y	Consumption-to-output ratio	0.58
$T_D Z_D / Y$	Residential investment-to-output ratio	0.03
I/Y	Investment-to-output ratio	0.21
B/(4Y)	Private debt-to-annual-output ratio	0.50
P_HG/Y	Public expenditure-to-output ratio	0.18

Second moments:

	Model	Data
GDP	2.54	2.21
Consumption	2.35	2.20
Investment	6.23	6.18
Residential investment	6.51	5.70
Household debt	8.07	5.84
Nominal interest rate	0.32	0.39
CPI inflation	0.32	0.46
House price inflation	0.99	1.03

Business cycle stabilization

- Does a systematic response to house prices help achieve business cycle stabilization?
- Quadratic loss function:

$$\mathcal{L}^{\mathcal{A}} = \sigma_{\pi}^2 + \lambda \sigma_{\Delta y}^2 + \mu \sigma_{\Delta r}^2$$

- Result: optimal response to house prices is virtually zero. Reacting is irrelevant Figure
- What if central bank has a preference over stabilizing house prices?

Business cycle stabilization

- Does a systematic response to house prices help achieve business cycle stabilization?
- Quadratic loss function:

$$\mathcal{L}^{\mathcal{A}} = \sigma_{\pi}^{2} + \lambda \sigma_{\Delta y}^{2} + \mu \sigma_{\Delta r}^{2} + \nu \sigma_{\pi_{D}}^{2}$$

- Result: optimal response to house prices is virtually zero. Reacting is irrelevant Figure
- What if central bank has a preference over stabilizing house prices? (Augmented loss)
- Systematic (non-zero) response may be optimal, but results heavily depend on central bank's preferences
- Overall best performance: inflation targeting and no response to house prices Figure

- Central bank's objective: social welfare loss function
- Computed as second order approximation to households' utility

$$\mathcal{W}_t^{\textit{social}} \equiv \omega \mathcal{W}_t^b + (1-\omega) \mathcal{W}_t^s$$
 Definitions

- Largely used in the literature since Rotemberg and Woodford (1997) to rank performance of alternative monetary policy rules
- Allows to account for heterogeneous consumption choices and capture sectoral dynamics, relative price movements

► A systematic response to house prices improves social welfare:

	\mathcal{W}^{tot}	ϕ_{π}	$\phi_{\Delta y}$	ρ	ϕ_{π_D}
Response to house prices	0.086	2.36	1.84	0.08	-0.12
No response to house prices	0.091	1.64	0.87	0.00	0.00

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

► A systematic response to house prices improves social welfare:

	\mathcal{W}^{tot}	ϕ_{π}	$\phi_{\Delta y}$	ρ	ϕ_{π_D}	
Response to house prices	0.086	2.36	1.84	0.08	-0.12	
No response to house prices	0.091	1.64	0.87	0.00	0.00	

 Welfare gain is small: no sizeable difference if central bank does not react to house prices

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● ○○

► A systematic response to house prices improves social welfare:

	\mathcal{W}^{tot}	ϕ_{π}	$\phi_{\Delta y}$	ρ	ϕ_{π_D}
Response to house prices	0.086	2.36	1.84	0.08	-0.12
No response to house prices	0.091	1.64	0.87	0.00	0.00

- Welfare gain is small: no sizeable difference if central bank does not react to house prices
- Response to house prices is *negative*: optimal rule strikes balance between opposite forces, due to (i) agents' heterogeneity and (ii) nominal debt contracts

► A systematic response to house prices improves social welfare:

	\mathcal{W}^{tot}	ϕ_{π}	$\phi_{\Delta y}$	ρ	ϕ_{π_D}
Response to house prices	0.086	2.36	1.84	0.08	-0.12
No response to house prices	0.091	1.64	0.87	0.00	0.00

- Welfare gain is small: no sizeable difference if central bank does not react to house prices
- Response to house prices is *negative*: optimal rule strikes balance between opposite forces, due to (i) agents' heterogeneity and (ii) nominal debt contracts
- ► Overall response of R also depends on GDP and inflation (never ↓ after demand shock) (RFs)

► A systematic response to house prices improves social welfare:

	\mathcal{W}^{tot}	ϕ_{π}	$\phi_{\Delta y}$	ρ	ϕ_{π_D}
Response to house prices	0.086	2.36	1.84	0.08	-0.12
No response to house prices	0.091	1.64	0.87	0.00	0.00

- Welfare gain is small: no sizeable difference if central bank does not react to house prices
- Response to house prices is *negative*: optimal rule strikes balance between opposite forces, due to (i) agents' heterogeneity and (ii) nominal debt contracts
- ► Overall response of R also depends on GDP and inflation (never ↓ after demand shock) (RFS)

 Conclusion: no substantial welfare improvement from responding to house prices

► A systematic response to house prices improves social welfare:

	\mathcal{W}^{tot}	ϕ_{π}	$\phi_{\Delta y}$	ρ	ϕ_{π_D}
Response to house prices	0.086	2.36	1.84	0.08	-0.12
No response to house prices	0.091	1.64	0.87	0.00	0.00

- Welfare gain is small: no sizeable difference if central bank does not react to house prices
- Response to house prices is *negative*: optimal rule strikes balance between opposite forces, due to (i) agents' heterogeneity and (ii) nominal debt contracts
- ► Overall response of R also depends on GDP and inflation (never ↓ after demand shock) (RES)
- Conclusion: no substantial welfare improvement from responding to house prices
- However, financial frictions play a key role. Central bank information is also crucial Sensitivity

The role of financial frictions

- Financial frictions measured by share of borrowers (ω) and average loan-to-value ratio (LTV)
- Suppose the actual measures are:
 - $\omega = 30\%$ (instead of 20%)
 - LTV = 90% (instead of 80%)
- Economy is expected to display larger fluctuations in prices and quantities in response to shocks
- Result: slightly positive response to house prices is optimal

	ω	LTV	W^{tot}	ϕ_{π}	$\phi_{\Lambda v}$	ρ	$\phi_{\pi_{D}}$
Response to house prices	0.3	0.9	0.1038	1.69	1.04	0.00	0.03
No response to house prices	0.2	0.8	0.1041	2.00	1.51	0.08	0.00

- Compute implicit weight assigned to housing in optimal price index that CB targets: π^O_t = π^α_{D,t}π^{1-α}: α = 0.02
- Smaller than share in consumption (0.1), closer to weight in GDP

► Fault tolerance (Levin and Williams 2003): evaluate increase in welfare loss as one single parameter of optimized interest-rate rule varies, holding others at optimal values

Fault tolerance (Levin and Williams 2003): evaluate increase in welfare loss as one single parameter of optimized interest-rate rule varies, holding others at optimal values

Flat curves: policy is fault tolerant, i.e. model misspecification does not lead to large increase in loss

Fault tolerance (Levin and Williams 2003): evaluate increase in welfare loss as one single parameter of optimized interest-rate rule varies, holding others at optimal values

- Flat curves: policy is fault tolerant, i.e. model misspecification does not lead to large increase in loss
- Aim: assess scope for deviations from optimal rule, particularly interested in φ_{πD}

- ► Fault tolerance (Levin and Williams 2003): evaluate increase in welfare loss as one single parameter of optimized interest-rate rule varies, holding others at optimal values
- Flat curves: policy is fault tolerant, i.e. model misspecification does not lead to large increase in loss
- Aim: assess scope for deviations from optimal rule, particularly interested in φ_{πD}
- Thought experiment: what if CB does not know exactly the degree of financial frictions in the economy?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

- Fault tolerance (Levin and Williams 2003): evaluate increase in welfare loss as one single parameter of optimized interest-rate rule varies, holding others at optimal values
- Flat curves: policy is fault tolerant, i.e. model misspecification does not lead to large increase in loss
- Aim: assess scope for deviations from optimal rule, particularly interested in φ_{πD}
- Thought experiment: what if CB does not know exactly the degree of financial frictions in the economy?
- Suppose CB enacts rule that is optimal for benchmark economy ($\omega = 0.2, LTV = 0.8$), but *true* degree of financial frictions is instead $\omega = 0.3, LTV = 0.9$: any additional welfare cost?

 Response to CPI inflation, GDP and lagged interest rate: no sizeable additional loss Figure

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

 Response to CPI inflation, GDP and lagged interest rate: no sizeable additional loss Figure

Response to house prices: large additional loss

- Response to CPI inflation, GDP and lagged interest rate: no sizeable additional loss Figure
- Response to house prices: large additional loss
- However: if CB implements rule that is optimal in the "high FF" case when the *true* degree of FF is the benchmark one, additional cost is much smaller

- Response to CPI inflation, GDP and lagged interest rate: no sizeable additional loss Figure
- Response to house prices: large additional loss
- However: if CB implements rule that is optimal in the "high FF" case when the *true* degree of FF is the benchmark one, additional cost is much smaller

Borrowers' behavior drives the result: Figure

- Response to CPI inflation, GDP and lagged interest rate: no sizeable additional loss Figure
- Response to house prices: large additional loss
- However: if CB implements rule that is optimal in the "high FF" case when the *true* degree of FF is the benchmark one, additional cost is much smaller
- Borrowers' behavior drives the result: Figure
- Conclusion: systematic positive response to house prices is optimal if CB is uncertain about true degree of FF

- Response to CPI inflation, GDP and lagged interest rate: no sizeable additional loss Figure
- Response to house prices: large additional loss
- However: if CB implements rule that is optimal in the "high FF" case when the *true* degree of FF is the benchmark one, additional cost is much smaller
- Borrowers' behavior drives the result: Figure
- Conclusion: systematic positive response to house prices is optimal if CB is uncertain about true degree of FF
- Rationale: inefficiencies associated to house price volatility outweigh those related to consumer price inflation.
 Contrasting house price movements reduces volatility in consumption induced by financial accelerator

Conclusions

 Welfare maximization: a systematic response to house prices improves social welfare, but gain is small

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

Conclusions

- Welfare maximization: a systematic response to house prices improves social welfare, but gain is small
- Systematic response to house prices is optimal if central bank is uncertain about actual degree of financial frictions: not responding generates large welfare losses

◆□▶ ◆□▶ ◆三▶ ◆三▶ → 三 • • • • • •

Conclusions

- Welfare maximization: a systematic response to house prices improves social welfare, but gain is small
- Systematic response to house prices is optimal if central bank is uncertain about actual degree of financial frictions: not responding generates large welfare losses

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

► Next: role of financial intermediation, model uncertainty

Thanks

▲日 → ▲園 → ▲目 → ▲目 → ▲日 →

Sensitivity analysis

- House price stickiness: response to house prices increasing in sectoral price stickiness; positive for θ_D > 0.3
 - Presence of financial frictions does not alter traditional policy prescriptions (Aoki 2001, Benigno 2004)
- ► Wage stickiness: ↑ wage flexibility ⇒ ↑ stronger response to CPI inflation and ↓ relevance of FF-distortions ⇒ optimal response to house prices → 0
- Financial frictions:
 - ► Varying share of borrowers: without borrowers, no incentive to accommodate ↑ in house prices ⇒ response to h.p. positive and large
- > Persistence of housing demand shocks: no role

Optimal policy frontiers

- < ロ > < 団 > < 臣 > < 臣 > 三 の Q (

Welfare cost under alternative policy objectives

weight house prices

<ロ> (日) (日) (日) (日) (日)

æ

Business cycle stabilization (2)

Augmented loss function:

$$\mathcal{L}^{\mathcal{A}} = \sigma_{\pi}^{2} + \lambda \sigma_{y}^{2} + \nu \sigma_{\pi_{D}}^{2} + \mu \sigma_{\Delta r}^{2}$$

- \blacktriangleright with $\lambda \in [\texttt{0},\texttt{1}], \ \nu \in [\texttt{0.001},\texttt{1}], \ \mu = \texttt{0.001}$
- ► Note: cannot compare minimum values of L^A and L^S, since arguments are different
- Compute second-order approximation of individual (and aggregate) utility functions under the two optimal rules and compare

Back

Welfare loss calculations

Consumption equivalent: fraction of consumption from given policy regime (ψ) to be given to each agent to achieve steady-state welfare level. Solve:

$$\overline{\mathcal{W}^{b}} = E_{0} \sum_{t=0}^{\infty} \left(\beta^{b}\right)^{t} \left\{ \frac{1}{1 - \sigma_{X}} \left(X_{t}^{b,a}(1 + \psi^{b})\right)^{1 - \sigma_{X}} - \Delta_{C,b,t}^{w} \frac{\overline{\mathcal{L}}_{C,b}}{1 + \sigma_{\mathcal{L}}_{C,b}} \left(N_{C,t}^{b,a}\right)^{1 + \sigma_{\mathcal{L}}} C_{,b} - \Delta_{D,s,t}^{w} \frac{\overline{\mathcal{L}}_{D,b}}{1 + \sigma_{\mathcal{L}}_{D,b}} \left(N_{D,t}^{b,a}\right)^{1 + \sigma_{\mathcal{L}}} \right\}$$

$$\overline{\mathcal{W}^{s}} = E_{0} \sum_{t=0}^{\infty} \left(\beta^{s}\right)^{t} \left\{ \frac{1}{1-\sigma_{\chi}} \left(X_{t}^{s,a}(1+\psi^{s})\right)\right)^{1-\sigma_{\chi}} - \Delta_{C,b,t}^{w} \frac{\overline{L}_{C,s}}{1+\sigma_{L_{C,s}}} \left(N_{C,t}^{s,a}\right)^{1+\sigma_{L}} C_{,s} - \Delta_{D,b,t}^{w} \frac{\overline{L}_{D,s}}{1+\sigma_{L_{D,s}}} \left(N_{D,t}^{s,a}\right)^{1+\sigma_{L}} \right\}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

• Aggregate welfare cost: $\psi \equiv \omega \psi^b + (1 - \omega) \psi^s$

Back

Housing demand shock

LTV ratio shock

Productivity shock (non-housing)

Productivity shock (housing)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

▶ Back

Fault-tolerance analysis

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Back

Fault-tolerance analysis

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Back