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1 Introduction

Recent work has documented strong comovement between (i) the volatility of macroeconomic

aggregates and (ii) the dispersion of micro-level variables from which the macroeconomic

aggregates are constructed. For example, clusters of large changes in aggregate employment

growth tend to go along with high dispersion of employment growth across firms. Models

of the distribution of firms often account for this fact by assuming correlated shocks to first

and second moments of fundamentals, such as productivity.

This paper shows that an endogenous link between aggregate volatility and cross sectional

dispersion emerges naturally if firms respond asymetrically to private signals about future

profits. Suppose hiring after good news is slower than firing after bad news. A bad aggregate

shock that lowers the mean of the distribution of private signals then has two effects. On

the one hand, the mean signal is lower so hiring falls on average. On the other hand, the

typical signal now brings bad news and thus generates a stronger employment response. As

a result, dispersion also increases.

Asymmetric adjustment to provate signals leads to a number of predictions beyond the

comovement of aggregate volatility and cross sectional dispersion. In particular, it should

induce negative skewness of employment growth in both the cross section and the time series.

Moreover, firms’ actions in anticipation of relevant fundamental shocks should depend on

the sign of the shock realization: for example, bad (good) productivity realizations should

be preceded, on average, by large drops (small increases) in hiring. We verify both sets of

predicitions in Census data.

The mechanism we study relies on two key elements. First, firms’ actions respond to

dispersed private signals about future profitability. For example, if total factor productivity

at the firm level is persistent, the current TFP realization serves as a signal about future TFP.

More generally, firms may receive intangible signals about future productivity or demand that

need not be correlated with current profits. Dispersion in intangible signals may then arise

simply because the signals are imperfect. For example, if every firm receives a noisy private

signal about aggregate TFP, then the dispersion of signals is driven by the dispersion of the

noise.1

The second key element of our mechanism is that firms respond more to good news than

to bad news. It does not matter exactly why this asymmetric adjustment obtains. One

posssibility is that the logistics of the hiring process directly make hiring more costly than

firing. This could be, for example, because hiring new workers is subject to costly search,

1The assumption that firms’s actions respond to private signals also requires that there is no public signal
that aggregates all dispersed information. For example, to the extent there are prices that all firms can easily
observe, those prices must be sufficiently affected by noise.
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whereas firing is free. A second candidate for asymmetric adjustment comes from information

processing: if firm decision makers are averse to Knightian uncertainty (ambiguity) and are

uncertain about the quality of signals, then it is also optimal to respond more to bad news.

Asymmetric adjustment to ambiguous signals arises even if there are no adjustment costs

and all shocks are homoskedastic. Indeed, ambiguity averse firms evaluate hiring decisions

as if taking a worst case assessment of future profits. With ambiguity about signal quality,

the worst case then depends on what the signal says: for a good signal, the worst case

interpretation is that it is noisy, whereas for a bad signal the worst case is that it is very

precise. Updating from ambiguous signals thus endogenously generates aymmetric actions.

We use confidential Census data on U.S. manufacturing establishments 1972-2009 to test

a number of predictions of our mechanism. First, the cross-sectional employment distribution

is negatively skewed, that is, there are more firms that contract employment relative to the

mean than there are that expand employment. This comes from the fact that firms with

bad signals lay off lots of workers while firms that received good signals hire only very few

workers. We find that in almost all years the distribution of employment growth rates across

firms is negatively skewed.

Second, the cross-sectional employment dispersion endogenously varies over the business

cycle. In bad times, there are more firms receiving bad signals to which they respond strongly

by decreasing employment significantly. At the same time, there are less firms receiving good

signals to which they respond only very weakly by hiring few workers, so the inter-quantile

ranges increase. In the data, the cross-sectional inter-quartile range of employment growth

rates is 30% more spread-out in recessions than in booms.

Third, the dynamic response of an individual firm to good versus bad shocks over time is

markedly different although it faces a homoskedastic time series of innovations to total factor

productivity. That is, the firm’s TFP innovations are not skewed, but the firm’s employment

response is negatively skewed. When a firm receives a standard negative technology shock,

it decreases hiring by 2.5%; after receiving a positive technology shock of the same size, the

firm increases employment only by 0.5%.

In addition to the dynamics of the employment distribution of the cross-section and

that of individual firms, this model explains a number of aggregate facts as well: Fourth,

the growth rate of aggregate employment is negatively skewed: recessions bring precipitous

aggregate employment contractions while booms are associated with slow aggregate hiring.

Fifth, downturns are not only associated with precipitous firing, but also more (time-

series) volatility in the aggregate: This countercyclical volatility clustering means the ag-

gregate employment growth that is smooth in expansionary years compared to recessionary

years when it is volatile.
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The above-described patters of cross-sectional dispersion and aggregate volatility have

been widely noted and studied, and we offer a new explanation of these facts. What sets our

approach apart from other research is that it provides a unified explanation for micro- and

macro-level facts and that this explanation is rooted in firms’ endogenous behavior. Firms

will hire and fire such that their policy endogenously generates negative skewness in em-

ployment growth, countercyclical employment growth dispersion, negative skewness in both

micro-level and aggregate employment growth rates and volatility clustering in aggregate

employment growth.
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Figure 1: Time-Varying Employment Volatility in the Aggregate and in the Cross-Section

Our paper is related to a recently growing literature studying the time-varying nature of

economic fluctuations. Some research focuses on time variation in aggregate volatility, that

is, the cyclical up- and downturns of the U.S. economy were large up to the early 1980’s – the

“Great Inflation”–, declined in size since then – the“Great Moderation”–, but may have risen

again recently in the “Great Recession.” Most research in this area – see for example Stock

and Watson (2002); Justiniano and Primiceri (2008); Fernández-Villaverde et al. (2011);

Carvalho and Gabaix (2013) – attribute the low-frequency movements in aggregate volatility

to changes in the exogenous shock processes. Sims and Zha (2006); Fernández-Villaverde

et al. (2012) consider long-run changes in monetary or fiscal policies as an alternative source

of changing exogenous shocks.

At the same time, another strand of research has studied how differences between firms

change over the business cycle: the dispersion across firms is larger in recessions than in

booms and has been found in the dispersion of productivity levels (Kehrig (2013)), pro-

ductivity innovations (Bloom et al. (2012)), employment dispersion and returns to capital

3



(Eisfeldt and Rampini (2006)).2 Arellano et al. (2010); Christiano et al. (forthcoming);

Bloom et al. (2012) consider these fluctuations in dispersion as exogenous uncertainty and

causal for business cycles.

What is common across the two strands of the literature outlined above is their focus as

time-varying volatility being exogenous and causal. We ask if time-varying volatility could be

an endogenous outcome and if the aggregate and firm-level volatility changes could be linked.

To that end, we propose a model where agents are ambiguity averse. The model generates

changes in volatility and skewness in aggregate and idiosyncratic employment growth from

symmetric and homoskedastic shocks.

2 The Model

Here we present a simple model with a continuum of firms that at the beginning of each

period get an idiosyncratic noisy signal about end-of-period productivity zit. After observing

the signal, each firm chooses employment in a competitive labor market, where the wage is

w. At the end of the period, productivity is realized. Thus the firm problem is a repetition

of static hiring decisions based on a signal-extraction problem within the period.

Firm i’s log productivity is described as

zit = at + bit −
1

2

(
σ2
a + σ2

b

)
where at is an aggregate shock, normally distributed with mean a and variance σ2

a, and bit is

an idiosyncratic, firm-specific shock, normally distributed with mean 0 and variance σ2
b . The

variances σ2
a and σ2

b , are constant over time and known to the firm. The end-of-period profit

is

exp
(
zit
) (
Lit
)α − wLit

where Lit is employment chosen by firm i. The noisy signal about firm’s i productivity is

sit = zit + σeε
i
t

where εit is a standard normal innovation, iid across time and firms.

We assume that firms are ambiguous about the information precision of the signals that

they received. In particular, similarly to the models used in Epstein and Schneider (2008)

and Ilut (2012), we assume that each firm is ambiguous about the value of σe and has a set

2A notable exception is investment dispersion which is procyclical (Bachmann and Bayer (2011); especially
across establishments within multi-establishment firms Kehrig and Vincent (2013)).
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of beliefs given by

σe ∈ [σε, σε]

The objective of the firm is choose Lit to maximize the multiple priors utility:

max
Lit

min
[σε,σε]

(
Lit
)α
Eσe

[
exp

(
zit
)
|sit
]
− wLit

where the minimization operator reflects the firm’s ambiguity-aversion. The key character-

istic of firms’ preferences is that, faced with uncertainty over the signal-to-noise ratio, they

act as if the worst-case σe characterizes the true DGP. The worst-case σe minimizes the

conditional expectation of end-of-period profits, which are only a function of the expected

zit conditional on the observed signal sit. Details and axiomatic foundations for the multiple

priors utility are provided in Gilboa and Schmeidler (1989) for the static case and in Epstein

and Schneider (2003) for the dynamic version. Ilut and Schneider (2011) provide a general

framework to solve business cycle models featuring recursive multiple priors utility.

Because of the normality of innovations, the problem above is equivalent to

max
Lit

min
[σε,σε]

exp

[
Eσe

(
zit|sit

)
+

1

2
varσe

(
zit|sit

)] (
Lit
)α − wLit (1)

2.1 Asymmetric responses

To characterize the optimal solution, it is analytically helpful to define the relative precision

of signal γt as a function of a given σ2
e,t:

γt =
var(zit)

var(zit) + σ2
e,t

After observing the signal, the posterior conditional mean and variance of zit are given by

E
(
zit|sit

)
= γt

[
sit +

1

2
var(zit)

]
− 1

2
var(zit)

var
(
zit|sit

)
= (1− γt) var(zit)

The firm problem in (1) then simplifies to

max
Lit

min
[σε,σε]

exp
(
γts

i
t

) (
Lit
)α − wLit

The solution to this problem results in a hiring policy that is based on the worst case
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precision γ∗t characterized by:

Lit =
[α
w

exp
(
γ∗t s

i
t

)] 1
1−α

; γ∗t =

{
γ if sit < 0

γ if sit ≥ 0
(2)

The interpretation of the optimal solution is that the firm acts as if the signal precision is

high for bad news and low for good news.

The labor decision is then to maximize expected profits under the worst-case precision

γ∗t . This results in an asymmetric hiring decision rule such that the firm receives a negative

signal sit = −x, then employment contracts by more than it would expands if the firm

receives a positive signal of the same magnitude sit = x. Figure 2 plots in the top panel

such an asymmetric response to signals together with a normal distribution for signals in the

bottom panel.
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Figure 2: Firms respond asymmetrically to symmetric shocks

2.2 Implications for employment distribution across firms

2.2.1 Negative Skewness

To be added.
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2.2.2 Countercyclical Dispersion

What are the implications of this firm behavior for the overall economy? We first focus on

the implications of the cross-sectional dispersion of employment growth rates. The literature

has noted that the cross-sectional dispersion is more spread out in recessions than booms

(see among others Bloom et al. (2012)) and has interpreted this as a result of (firm-level)

uncertainty shocks. Since firms respond to their signals in a nonlinear fashion and firms

receive different signals, our model has the potential to address cross-sectional distribution

dynamics. We illustrate the point by examining the inter-quartile range. As one can see from

(2), cross-sectional dispersion will be driven by the variance of signals (which we assume to

be constant) and parameters that involve the distribution of γ, i.e. the measure of firms with

negative signals (which changes endogenously).

From the decision rule in (2), it follows that the cross-sectional quantiles of logLit are

monotonic in those of TFP signals. In particular, the top and bottom quartiles are given by

QL
3 = cγ∗(Qs

3)Q
s
3; QL

1 = cγ∗(Qs
1)Q

s
1

where QL
3 and Qs

3 denote the top quartile and QL
1 and Qs

1 the bottom quartiles for the logLit

and sit cross-sectional distributions. The logLit quartiles are a function of the signal quantiles

where the proportionality factor has two parts: the first one is a constant part, denoted above

by c, capturing the terms α,w in (2). The second is given by the worst-case signal precision

used to evaluate the signal in forming the conditional probability. This factor endogenously

changes as the sign of the observed signal changes. In particular this weight is larger if the

corresponding signal quantile Qs
m is negative:

γ∗t (Q
s
m) =

{
γ if Qs

m < 0

γ if Qs
m ≥ 0.

Moreover, because of the normality of the signal distribution we know that

Qs
3 = E(si) + 0.67

√
V ar(si); Qs

1 = E(si)− 0.67
√
V ar(si)

so we can analytically compute the interquartile range IQRL ≡ QL
3 − QL

1 . In Figure 3 we

graphically present the implied IQR by varying the mean of the signal. There we represent

E(si) conveniently as a multiple of the form x
√
V ar(si) and the horizontal axis varies the

factor x.
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Very good average signals When the mean signal is larger than 0.67
√
V ar(si), then

both quartiles are positive and the hiring at both quartiles is based on the low precision

interpretation of the signals

IQRL = cγ(Qs
3 −Qs

1) = cγ
(

1.34
√
V ar(si)

)
.

In this region, IQRL is independent of E(si) and it is proportional to
√
V ar(si). As shown

further below, this proportionality factor is lower than in the case in which hiring at both

quartiles responds based on the high precision of signals.

Neutral average signals As E(si) decreases below 0.67
√
V ar(si), but it is still larger

than −0.67
√
V ar(si), then the response of QL

3 to Qs
3 is lower than that of QL

1 to Qs
1:

IQRL = cγQs
3 − cγQs

1

= c
(
γ − γ

)
E(si) + c

(
γ + γ

)
0.67

√
V ar(si)

Since γ < γ, we see that the IQRL increases as E(si) decreases.

Very bad average signals Finally, when the mean signal is worse enough so that it is

lower than −0.67
√
V ar(si), then the response of both QL

3 and QL
1 are strong:

IQRL = cγ(Qs
3 −Qs

1) = cγ
(

1.34
√
V ar(si)

)
In this region, IQRL is higher by a factor of γ/γ than in the region whenE(si) ≥ 0.67

√
V ar(si).

The asymmetric decision rule implied by the ambiguity-averse behavior of individual

firms will endogenously lead to countercyclical employment dispersion.

Similar arguments can be made by any inter-quantile ranges, the inter-decile range for

example is flat if |E(si)| > 1.28
√
V ar(si) while it decreases in E(si) as long as |E(si)| <

1.28
√
V ar(si).

2.3 Implications for aggregate employment

What kind of behavior does an aggregate economy display when its firms are ambiguity

averse? It is well known that aggregate employment – like most other time series – exhibits

time-varying volatility, i.e. periods of small fluctuations alternate with periods of large fluc-

tuations, and negative skewness, i.e. employment contractions are sharper and deeper than

employment expansions. We will aggregate employment and study the effects of aggregate
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Figure 3: Cross-sectional employment growth dispersion is countercyclical

technology shocks at. A fluctuating at will influence the signals and the share of firms that

receive good versus bad signals. The fundamental asymmetry how individual firms treat

good versus bad signals is at work here, too.

The average employment integrates individual firms’ strong negative and weak positive

responses to their observed signals:

Lt =

∫
Litdi = c

(∫ 0

−∞
exp

(
γsit
)
f(sit)ds

i
t +

∫ ∞
0

exp
(
γsit
)
f(sit)ds

i
t

)
(3)

Equation (3) shows the main effect of changes in the aggregate component of TFP. On the

one hand, consider the case in which at falls by some amount x. Then more firms will receive

negative signals, and since these firms respond strongly to such signals, the aggregate Lt falls

a lot. On other hand, if at increases by x, then more firms will receive good signals and these

firms will endogenously respond less to their observed signals. Importantly, this means that

aggregate Lt responds proportionally less to increases than to similar decreases in at. This

aggregate differential proportionality factor means that asymmetric individual decision rules

will generate two important properties of the higher moments of Lt: First, as Lt responds

stronger to negative at realizations, there will be countercyclical aggregate volatility

clustering. Second, due to the same mechanism, given symmetric shocks to at there will be

negative skewness in time-series of the aggregate Lt.

Figure 4 shows visually the three main implications of the model: countercyclical disper-

sion in the cross section, countercyclical aggregate volatility and negative skewness in the

aggregate. We feed in a particular sequence of innovations to at, the aggregate TFP, marked

by the red dotted line. Note how the dotted red line is a homoskedastic time series. We then
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compute the model implied aggregate Lt (solid blue line) and cross-sectional IQRL,t (solid

red line). The top panel shows the countercyclical nature of IQR. The flat parts of IQR on

the downside (period 12/13) or upside (period 17/18) reflect the flatness for large shifts in

the mean signal evident in Figure 3. The middle panel shows how two periods (marked by

the two-blue circles) that are characterized by symmetric TFP shocks are marked by coun-

tercyclical aggregate volatility. The bottom panel highlights that for symmetric increases

and decreases in aggregate TFP, the resulting aggregate hiring is negatively skewed in the

time-series, with sharper contractions than booms.
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Figure 4: Time-Varying Volatility and Negative Skewness in Simulated Data

Note: This figure displays aggregate employment growth and the cross-sectional inter-quartile of employment
growth in simulated data. As highlighted in the middle panel, recessions are times when aggregate volatility
is high and cross-sectional dispersion wide. As the bottom panels shows downturns in aggregate employment
are deep while upturns are mild thus creating negative time-series skewness.
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3 Empirics

3.1 Data sources

Building on the main idea how higher moments of firm-level and aggregate employment may

be a consequence of asymmetric decision rules, we use micro-level and aggregate data to

establish an array of empirical facts and test the main implications of our model.

We use confidential data on manufacturing establishments collected by the Census Bu-

reau which comprise the Annual Survey of Manufactures (ASM), the Census of Manufac-

tures (CMF), the Plant Capacity Utilization Survey (PCU) and the Longitudinal Business

Database (LBD). Following the literature, we identify an establishment as an individual de-

cision maker. We combine the Census data with industry-level data from several publicly

available sources: price deflators from the NBER-CES Manufacturing Industry Database

(NBER-CES)3, various asset data from the the Capital Tables published by the Bureau of

Labor Statistics (BLS)4 and the Fixed Asset Tables published by the Bureau of Economic

Analysis (BEA)5. Unless otherwise noted, all datasets are at annual frequency.

From the Census of Manufactures (CMF) and the Annual Survey of Manufactures (ASM)

we construct a large dataset of plants in the U.S. manufacturing sector. This panel spans the

years 1972-2009, which allows us to study business cycle properties. Every year, there are

about 55k observations for a total of 2.1 million. For more details, see the data description

in Kehrig (2013).

We focus on the changes in a firm’s total employment (the sum of production and non-

production workers): nit ≡ d log(Lit). This choice is helpful empirically as it free of any

specific metric, eliminates any ‘fixed effects’ specific to the the firm or the industry and it

is motivated by a dynamic version of the model presented above. The structure of that

dynamic model is similar to the static model, except that we make the stock of employment

a state variable. There, the firm enters the period with some stock of labor, it first observes

an idiosyncratic signal about next period’s TFP innovation and then chooses net hiring.

3.2 Asymmetric responses

We test our main prediction by regressing employment growth on innovations in total factor

productivity. We focus on TFP innovations rather than TFP levels because we think of the

3The NBER-CES Manufacturing Industry Database is a joint program of the National Bureau of Economic
Research and the Census Bureau; http://www.nber.org/nberces/.

41987-2011 Capital Data for Manufacturing Industries http://www.bls.gov/mfp/mprdload.htm.
5Tables 3.1S, 3.1E, 3.3S, 3.3E, 3.7S, 3.7E, 3.8S and 3.8E at

http://www.bea.gov/national/FA2004/SelectTable.asp .
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former as being responsible for changes in employment which should manifest themselves

in employment growth rates. The main mechanism of the model relies fundamentally on

whether an establishment’s employment growth responds asymmetrically to signals about

future productivity innovations. To test this we first require a measure of innovations.

Following the literature (see for example Kehrig (2013)), we first estimate establishment-

level TFP, and then estimate a random walk process for it to recover innovations, denoted

here by ωit.

Although we, as econometricians, do not observe the idiosyncratic signals received by

firms, we can use the fact that these unobserved signals show up on average in future inno-

vations. Thus we run the following regression:

nit = α + βposω
i
t+1 + βnegω

i
t+11{ωit+1 < 0}+ θX i

t + ci + yt + εit (4)

where we allow for firm fixed effects, a time trend, other industry characteristics, the lagged

TFP level and the log-employment level log(Lit). The regression allows for a piece-wise linear

differential effect of negative versus positive innovations on hiring. In data generated from

the model above where firms respond weakly to positive technology shocks but strongly to

negative ones the asymmetry should manifest itself in positive estimates of both βpos and

βneg. That is, firms do respond to technology shocks in general, but when they are negative

they respond very strongly. Table 1 reports the main results for this regression. We find

significant evidence of asymmetry. In our preferred specification, in which TFP follows a

random walk, a typical positive TFP shock increases employment by 0.5%, while a typical

negative TFP shock decreases employment by 2.5%.

Could this asymmetry in employment result from asymmetric shocks in the first place?

That is, are negative TFP innovations just larger than positive ones? As detailed in the next

subsection we find that the cross-sectional dispersion of TFP innovations is not negatively

skewed.

Could this result follow from a labor adjustment cost? If firms have a hard time finding

workers after a positive technology shock, but can easily fire workers, a similar asymmetry

might arise. Although we do not have detailed information about the establishment’s costs

that are associated with hiring efforts and firing problems, we do utilise information reported

in the Plant Capacity Survey (PCU). This subset of the ASM sample reports data on capacity

utilisation and reasons why the establishment is not producing at full capacity. Among

several options (too little demand, lack of materials, weather disruptions, ...) establishments

can also report “lack of sufficient/sufficiently skilled labor” as a reason for producing less at

full capacity. We interpret a positive answer to that question as indication of hiring obstacles
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when the firm wants to hire. We thus modify regression (4) as follows

nit = α + βposω
i
t+1 + βcstrω

i
t+11{ωit+1 > 0}+ βnegω

i
t+11{ωit+1 < 0}+ θX i

t + ci + yt + εit (5)

If constraints in labor markets were entirely responsible for the asymmetric employment

response, then we would expect βpos to increase such that βpos ≈ βneg and βcstr < 0. Then,

only the constrained firms would be the ones responsible for the asymmetric employment

response. The results of this modified regression are displayed in columns (2) and (4).

Although βpos is slightly higher than before, βpos and βneg are significantly different from

each other and the asymmetry persists. As expected, βcstr < 0, so that constrained firms

do hire less after positive technology shocks; in fact, their employment stagnates and is

indistinguishable from zero.

Table 1: Asymmetric employment responses

Specification FE FE FE FE
Sample ASM ASM PCU PCU
A. Unweighted regressions

Firms w/ pos. shock +0.8%∗∗∗ +0.8%∗∗∗ +0.8%∗∗∗ +0.8%∗∗∗

(0.1%) (0.1%) (0.2%) (0.2%)

Firms w/ pos. shock +0.3% +0.1%
& hiring constraint (0.4%) (0.3%)

Firms w/ neg. shock −2.0%∗∗∗ −2.0%∗∗∗ −2.3%∗∗∗ −2.8%∗∗∗

(0.1%) (0.2%) (0.4%) (0.4%)

B. Employment-weighted regressions

Firms w/ pos. shock +0.4%∗∗∗ +0.5%∗∗∗ +0.7%∗∗∗ +0.8%∗∗∗

(0.1%) (0.1%) (0.2%) (0.2%)

Firms w/ pos. shock −0.4% −0.2%
& hiring constraint (0.3%) (0.4%)

Firms w/ neg. shock −2.5%∗∗∗ −2.5%∗∗∗ −2.7%∗∗∗ −2.8%∗∗∗

(0.3%) (0.3%) (0.7%) (0.8%)

N 1,416k 1,416k 116k 116k
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Asymmetric shocks or asymmetric responses? In addition to the evidence above,

we present statistical moments of a firm’s TFP innovations, TFP growth rates and employ-

ment growth rates. If the firm displays asymmetric employment growth and it results from

asymmetric TFP innovations, then one should see negatively skewed TFP innovations and

employment growth for each firm (on average). For each firm we construct its time-series

skewness and then average over all firms.

V olatility =
1

N

N∑
i=1

V oli =
1

N

N∑
i=1

1

τ i

τ i∑
t=1

(xit − xi)2

Skewness =
1

N

N∑
i=1

Skewi =
1

N

N∑
i=1

1

τ i

τ i∑
t=1

(xit − xi)3

(V oli)3/2

where τ i is the number of periods firm i is observed. As reported in Table 2, an important

property is that for a typical firm its employment growth skewness is much larger than for

the TFP innovations. In fact, the TFP innovations do not appear to be significantly skewed

at all while the employment growth rates are negatively skewed. This is consistent with the

direct evidence presented in Table 1 above.

Table 2: Time-series volatility and skewness of a typical firm

Skewness Variable
d log(TFP i

t ) ωit nit
Unweighted −0.05 −0.02 −0.18
Employment-weighted −0.12 −0.04 −0.50

3.3 Implications for the employment distributions across firms

3.3.1 Negative Skewness

The asymmetric decision characterizing our model predicts that in a given year, firms with

negative signals respond a lot, but firms with positive signals respond little. Thus we should

see that the cross-sectional distribution of employment growth is negatively skewed. To

15



compute the third moments we use:

3rdMomentt =
1

N

N∑
i=1

(nit − nt)3

Skewnesst =
1
N

∑N
i=1(n

i
t − nt)3[

1
N

∑N
i=1(n

i
t − nt)2

]3/2 .
Figure 5 reports the historical evolution of these measures. We see that skewness is almost

always negative with a sample average of −0.4.6
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Figure 5: Skewness of cross-sectional distribution of employment growth

3.3.2 Countercyclical Dispersion

The other important moment of the cross-sectional distribution of employment growth is its

dispersion. For this we compute the interquartile range, with a sample average of 13%, and

find strong evidence of countercyclicality. In particular, being one quarter of the year in a

NBER recession increases IQR to 17%. In fully recessionary years, IQR doubles. Figure 6

reports the historical evolution of the IQR and the standard deviation of the cross-sectional

distribution of employment growth.

6We drop the data in the year 2002 because Census’s sampling design changed that year making statistics
based on growth rates prone to error.
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Figure 6: Dispersion of cross-sectional distribution of employment growth

3.4 Implications for Aggregate Employment
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Figure 7: Aggregate Employment growth and volatility

Note: Aggregate employment growth (detrended) and volatility of aggregate employment (computed as
4-year rolling windows of the detrended growth rate)

The model predicted negative skewness in the growth rate of aggregate employment

growth and countercyclical volatility in aggregate employment growth. Both are verified in
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the data:

Skewness = −1.21

Corr(Volatility,Aggr employment growth) = −0.23

The average growth rate in contractionary years is −3.1% whereas the average growth rate

in expansionary years is +2.3%.

3.5 Robustness

3.5.1 Sectoral Specificities and Sampling

Is this all an artefact of manufacturing? After all, this is a declining sector, so negative

skewness of establishments, negative skewness in the cross-section and volatility clustering

in recessions could all be features of a sector in decline rather than the outcome of asymmetric

decision rules. We can check most of the model’s prediction in the Longitudinal Business

Database (LBD) which covers essentially all active establishments in the U.S. economy. We

will now check this much larger dataset (≈ 160 million observations 1976-2011) for the

following features:

1. Negative skew of employment growth at the establishment level.

2. Negative skew on average in the year-by-year cross-section.

3. Year-by-year cross-sectional employment dispersion should be countercyclical.

4. Aggregate employment should exhibit negative skew and countercyclical volatility.

5. How do the above data facts look like for entrants/exiters?

We will check for these moments once for the entire LBD (≈4.5m obs/year) to check whether

the above data features are specific to manufacturing. We will then check for these moments

again for all manufacturing establishments in the LBD (≈300k obs/year) to check whether

these moments are specific to the continually sampled establishments in the ASM (only ≈50k

obs/year). It turns out, points 1., 3., 4. and 5. do not pose any concerns and point 2. poses

only little concern.
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1. Negative time-series skewness at the firm level

Table 3: Firm-level skewness in the U.S. economy and manufacturing

LBD all LBD mfg only ASM
Unweighted Skew −0.10 −0.19 −0.29
Empl.-weighted Skew −0.04 −0.31 −0.53

Note: The average establishment has negative skew over time that is significantly different from zero. We
ran a Kolmogorov-Smirnov test to test for a mean-zero distribution which gets safely rejected.

2. Negative skewness across firms

Things look consistent with our story, but due to the government shutdown the results

could not be disclosed in time.

3. Countercyclical employment dispersion across firms

Things look consistent with our story, but due to the government shutdown the results

could not be disclosed in time.

4. Aggregate employment skewness and volatility clustering

Things look consistent with our story, but due to the government shutdown the results

could not be disclosed in time.

5. Attrition Bias We focus on establishments that are older than 2 years in order to avoid

picking up strong growth at the beginning of their life. Furthermore, there is a lot of

selection going on in an establishments first life year. How do results look like if we

were to extend our analysis to include entrants and exiters? We follow Bloom (2009);

Davis et al. (1998) and define a growth rate as

ñit ≡
Lit − Lit−1

(Lit + Lit−1)/2

This growth rate is bounded between 2 (an entrant) and −2 (an exiter). When we

carry out our analysis, we basically find the same patterns; so we omit the results here.

3.5.2 Endogenous Quits

When workers quit firms that did not get a profitability shock and firms do not replace

these workers (say, because of labor market frictions), then we would measure a declining

employment growth while there were no shocks. So we might think that dispersion is larger
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than it actually is and skewness to be more negative than it actually is. Since quit rates are

procyclical, this bias would be procyclical too. Our measured dispersion in booms would be

hence too wide and skewness too negative which means that our measurements are a lower

bound on actual dispersion and skewness caused by productivity shocks.

As for the aggregate time series though, quits are high in a boom when we measure slow

growth and low in a recession when we measure strongly negative growth. This could mean

that the time-varying volatility and negative skewness we measure in the aggregate time

series could well be unmeasured quits firms do not make up for. If we make the extreme

assumption that with unchanged technology the economy does not replace workers that leave

employment and that no quitting workers take another job in the manufacturing sector, then

we could recompute the time-varying volatility and skewness of aggregate employment growth

that is corrected for quits. The skewness increases from −1.97 to −1.88, so even the worst

possible case does not overturn our results.

-- put picture of aggr empl growth w/ and w/o quits here --

4 Conclusion

To be done.
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Rüdiger Bachmann, Steffen Elstner, and Eric Sims. Uncertainty and economic activity:
Evidence from business survey data. American Economic Journal: Macroeconomics, 5(2):
217–249, April 2013.

Nicholas Bloom. The impact of uncertainty shocks. Econometrica, 77(3):623–685, May 2009.

Nicholas Bloom, Max Floetotto, Nir Jaimovich, Itay Saporta-Eksten, and Stephen Terry.
Really uncertain business cycles. NBER Working Paper No. 18245, July 2012.

Vasco M. Carvalho and Xavier Gabaix. The great diversification and its undoing. American
Economic Review, 103(5):1697–1727, August 2013.

Lawrence J. Christiano, Roberto Motto, and Massimo Rostagno. Risk shocks. American
Economic Review, forthcoming.

Steven J. Davis, John C. Haltiwanger, and Scott Schuh. Job Creation and Destruction. MIT
Press, 1998.

Andrea L. Eisfeldt and Adriano A. Rampini. Capital reallocation and liquidity. Journal of
Monetary Economics, 53(3):369–399, April 2006.

Larry G. Epstein and Martin Schneider. Recursive multiple-priors. Journal of Economic
Theory, 113(1):1–31, November 2003.

Larry G. Epstein and Martin Schneider. Ambiguity, information quality, and asset pricing.
Journal of Finance, 63(1):197–228, February 2008.

Jésus Fernández-Villaverde, Pablo Guerrón-Quintana, Juan F. Rubio-Ramı́rez, and Mart́ın
Uribe. Risk matters: The real effects of volatility shocks. American Economic Review,
101(6):2530–2561, October 2011.

Jésus Fernández-Villaverde, Pablo Guerrón-Quintana, Keith Kuester, and Juan F. Rubio-
Ramı́rez. Fiscal volatility shocks and economic activity. Working Paper, 2012.

Domenico Ferraro. Asymmetric unemployment dynamics. Working Paper, 2013.

Itzhak Gilboa and David Schmeidler. Maxmin expected utility with non-unique prior. Jour-
nal of Mathematical Economics, 18(2):141–153, 1989.

Cosmin Ilut. Ambiguity aversion: Implications for the uncovered interest rate parity puzzle.
American Economic Journal: Macroeconomics, 4(3):33–65, July 2012.

21



Cosmin Ilut and Martin Schneider. Ambiguous business cycles. Working Paper, 2011.

Alejandro Justiniano and Giorgio E. Primiceri. The time varying volatility of macroeconomic
fluctuations. American Economic Review, 98(3):604–641, June 2008.

Matthias Kehrig. The cyclicality of productivity dispersion. Working Paper, 2013.

Matthias Kehrig and Nicolas Vincent. Financial frictions and investment dynamics in multi-
plant firms. Working Paper, 2013.

Christopher A. Sims and Tao Zha. Were there regime switches in U.S. monetary policy?
American Economic Review, 96(1):54–81, March 2006.

James H. Stock and Mark W. Watson. Has the business cycle changed and why? NBER
Macroeconomics Annual, 17:159–218, 2002.

Stijn van Nieuwerburgh and Laura Veldkamp. Learning asymmetries in real business cycles.
Journal of Monetary Economics, 53(4):753–772, 2006.

Laura L. Veldkamp. Slow boom, sudden crash. Journal of Economic Theory, 124(2):230–257,
2005. Learning and Bounded Rationality.

22


	Introduction
	The Model
	Asymmetric responses
	Implications for employment distribution across firms
	Negative Skewness
	Countercyclical Dispersion

	Implications for aggregate employment

	Empirics
	Data sources
	Asymmetric responses
	Implications for the employment distributions across firms
	Negative Skewness
	Countercyclical Dispersion

	Implications for Aggregate Employment
	Robustness
	Sectoral Specificities and Sampling
	Endogenous Quits


	Conclusion

