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Introduction

What shocks drive business cycles?
What shocks cause asset returns to fluctuate?

Recent advance in this quest: uncertainty shocks.

Many papers are exploring the effects of uncertainty shocks.
Macro: Bloom (2009), Bloom, Floetotto, Jaimovich, Sapora-Eksten, and Terry
(2012), Fernández-Villaverde, Guerrón-Quintana, and Rubio-Raḿırez (2011),
Nakamura, Sergeyev, and Steinsson (2012), Christiano, Motto and Rostagno
(2012), Arellano, Bai and Kehoe (2012), Basu and Bundick (2012), Bidder and
Smith (2012).

Finance: Di Tella (2013), Gorurio and Michaux (2012)

Where do these shocks come from? How should we measure them?
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Where Do Uncertainty Shocks Come From?

Uncertainty: Stdev of a forecast error conditional on Iit .

U
(h)
it =

√
E
[
(yt+h − E (yt+h|Iit))2 |Iit

]
Answer 1: Uncertainty shocks come from volatility shocks.
Suppose Iit = {model M, parameters θ, history y t}. Example:

If yt+1 = µ+ b1yt + b2zt + et+1 then Ut = Vt = std(et)

I Volatility shocks are shocks to std(et). Where do they come from?
I How does everyone know immediately that std(et) changed?
I If we want to understand and measure uncertainty, does rational

expectations econometrics make sense?
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Where Do Uncertainty Shocks Come From?

Uncertainty: Stdev of a forecast error conditional on Iit .

U
(h)
it =

√
E
[
(yt+h − E (yt+h|Iit))2 |Iit

]
Answer 1: Uncertainty shocks come from volatility shocks.

Answer 2: Uncertainty shocks come from model uncertainty.
as in Cogley & Sargent (2005), Johannes, Lochstoer, & Mou (2011), Hansen (2007).

Suppose Iit = model M, history y t . Volatility is constant.

2 mechanisms move Ut :
I Unexpected events → parameter revisions.
I Learning about skewness changes the probability of “black swans.”

Message: Rational expectations econometrics misses many
uncertainty shocks.
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Linear Forecasting Model with Parameter Uncertainty

A (homoskedastic) continuous hidden state model

yt = α + St + σεt

St = ρSt−1 + σSξt

where εt and ξt ∼ iid N(0, 1). Let θ = {α, ρ, σ, σS}.

At every time t, It = {M, y t}. y t = real-time GDP growth 1968-t.

A forecast is: E (yt+1|M, y t) =
∫

yt+1f (yt+1|M, y t) dyt+1 where

f
(
yt+1|M, y t) =

∫ ∫
f (yt+1|St+1, θ,M) f

(
St+1|θ,M, y t) f (θ|M, y t) dSt+1dθ

Start with priors and update with Bayes’ law.

Compute Ut ≡
√

Var(yt+1|M, y t) at each date.
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Linear Model Results
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Uncertainty shocks with contant volatility!
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Linear Model Results
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Uncertainty shocks with constant volatility!

Why? Surpriset = |yt−E(yt |y t−1)|
Ut−1

.

But results expose 3 problems: 1) Shocks are small, 2) uncertainty is not
counter-cyclical, 3) Forecasts don’t resemble professional forecasts (SPF
mean is lower than ȳt by 0.44%).
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A Nonlinear Forecasting Model

How to compute? Change of measure: Transform data to make it
normal. Example:

yt = c − b exp(−Xt)

where Xt follows same continuous hidden state model as before.

We estimate by converting our data: Xt = −log((c − yt)/b). Then,
use previous tools for normal-linear processes to form f (Xt |X t−1,M).

Use the change of measure to calculate E [yt |y t−1] and Ut .

NL model: c/b = 24.9 is known. It fits skewness of ’47-’68 data.
Learn c: Update skewness each period and re-calibrate b, c .
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Nonlinear Model Results
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Nonlinear Model Results
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Black Swan (× 50)

BlackSwant = Prob(yt < −6.8%). 1 in 100 year event if yt ∼ N(µ, σ2).

Results raise these questions

1 How does nonlinearity affect uncertainty? Why counter-cyclical?

2 Why does the model explain professional forecasters’ bias?

3 How does this interact with forecast dispersion?
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Q1: How Does Nonlinearity Affect Uncertainty?

GDP

Growth (y)

State (x)

y uncertainty

x uncertainty

Concavity is key to counter-cyclical uncertainty. When estimated, it arises
naturally because GDP growth is negatively skewed.
Also, many theories explain why bad times can be really bad.
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Q2: Why Does Nonlinearity Generate Forecast “Bias”?

Facts: Avg GDP growth =2.7%. Average SPF = 2.2%.
In the model: Average E [yt+1|It ] = 2.2%.

E[Xt+1|Xt, M, θ]

Jensen effect

E[yt+1|yt, M, θ]

GDP

Growth (y)

State (x)
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Q2: Why Does Nonlinearity Generate Forecast “Bias”?

Facts: Avg GDP growth =2.7%. Average SPF = 2.2%.
In the model: Average E [yt+1|It ] = 2.2%.

E[Xt+1|Xt]

Additional Jensen effect
from model uncertainty

E[yt+1|yt, M, θ]

E[yt+1|yt]

Forecaster believes

f(Xt+1|Xt)

GDP

Growth (y)

State (x)

13/26



Nonlinear Forecasting with Forecast Dispersion

New research in progress: Might a nonlinear model explain the
statistical relationship between forecast dispersion and uncertainty?

Finding: relationship between dispersion and macro uncertainty exists,
even after controlling for recessions or GDP growth.

A potential explanation:
GDP

Growth (y)

State (x)

forecast dispersion

information dispersion

I Helps us think about this link between micro and macro uncertainty.
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Conclusions

If agents know the data generating process, Ut = VOLt .
Uncertainty shocks come from volatility shocks.

But if an econometrician can’t determine the true model, how do
agents know it?

When we allow agents to learn about models, two new sources of
uncertainty shocks arise:

I Parameter revisions after unusual events.

I Learning about higher moments of distribution.

Rational expectations econometrics has produced many insights. But
assuming that agents know the true model of the economy ignores
important sources of economic uncertainty.
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Conclusion
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Results for 5 Models

Same model as before except, at each date t, agents re-compute c to
match the skewness of GDP data 1947:Q4-t.

Moments Data θ known L Model NL Model learn c

Mean forecast 2.24% 2.68% 3.06% 2.24% 2.21%
Mean |FErr | 2.20% 2.38% 2.31% 2.35% 2.40%

Mean Ut – 2.91% 3.40% 5.79% 7.66%
Stdev Ut – 0 0.20% 0.71% 1.60%

Correl(Ũt ,GDP) – 0 13% -90% -34%

Uncertainty shocks are more than twice as large!

But they are also much less counter-cyclical.
Counteracting force: High growth raises the mean, increases negative
skewness, reduces ĉ and increases uncertainty.
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Full Results: Uncertainty and Volatility

model linear nonlinear learn c signals
(1) (2) (3) (4)

Mean Ut 3.38% 5.79% 7.65% 2.11%
Vt 2.91% 6.82% 6.82% 2.73%

Std deviation Ut 0.21% 0.71% 1.60% 0.05%
Vt 0% 0.37% 0.37% 0.21%

Autocorrelation Ut 0.95 0.95 0.95 0.95
Vt 0 0.47 0.47 0

detrended data moments

Std deviation Ũt 2.14% 3.18% 7.18% 0.82%

Ṽt 0% 5.11% 5.11% 0%

Corr(Ũt , yt) 0.28 -0.90 -0.34 0.27

Corr(Ṽt , yt) 0 -0.92 -0.92 0

Corr(Ũt , yt+1) 0.24 -0.22 -0.10 0.24

Corr(Ṽt , yt+1) 0 -0.23 -0.23 0
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RGDP growth and forecasted growth
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Parameter Estimates from Normal Shocks Model
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How Does Ut Compare with Common Measures?

Uncertainty Proxy Variables
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Corr Ut : GARCH 7%, MSE -3%, Disp 20%, VIX 36%, BBD 21%.
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Are uncertainty shocks volatility shocks?

VOLit =

√
E
[
(yt+1 − E (yt+1|y t

i , θ,M))2 |y t
i , θ,M

]
U

(h)
it =

√
E
[
(yt+h − E (yt+h|Iit))2 |Iit

]
MSEt+1 =

√
1

N

∑
i

[yt+1 − E (yt+1|Iit)]2

If many forecasters, with indep errors, then MSEt+1 = Ut .

Proxy Mean Coeff Var Autocorrel Correl w/GDP

MSE 2.64 0.58 0.48 0.04
GARCH vol 3.65 0.37 0.9 0.06

Series differ greatly! Small sample and error correlation do not fully
explain the difference (see paper).

Uncertainty shocks do not seem to be fully explained by volatility shocks.
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Comparison with proxies (detrended) uncertainty

Uncertainty Proxy Variables, Detrended
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Considering Policy Uncertainty

Could GDP growth uncertainty come from uncertainty about future
fiscal or monetary policy?

Maybe, but policy uncertainty may also come from model uncertainty.

If many forecasters, with indep errors, then MSEt+1 = Ut . If {θ, M}
known, then Ut = VOLt .

U
(h)
it =

√
E
[
(yt+h − E (yt+h|Iit))2 |Iit

]
MSEt+1 =

√
1

N

∑
i

[yt+1 − E (yt+1|Iit)]2

VOLit =

√
E
[
(yt+1 − E (yt+1|y t

i , θ,M))2 |y t
i , θ,M

]
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Considering Policy Uncertainty (2)

If policy models and parameters are known, then we should see
MSEt+1 ≈ VOLt .

Do these two series look similar? No.

mean coeff var
Fed Gov’t Spending forecast MSE 6.36 0.53

volatility 5.9 0.01
Interest Rate forecast MSE 1 0.82

volatility 0.47 0.65

Small sample and error correlation do not fully explain the difference
(see paper for simulation experiments).

If policy volatility does not fluctuate much, perhaps policy uncertainty also
comes from model uncertainty.
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Isn’t Forecast Dispersion a ”Model-free” Uncertainty
Measure?

A general orthogonal decomposition:

yt+1 = E (yt+1|Iit) + ηt + εit

Then, uncertainty and forecast dispersion are

U2
it = E

[
(ηt + εit)

2 |Iit
]

= Var (ηt |Iit) + Var (εit |Iit)

D2
t =

1

N

∑
i

(
E (yt+1|Iit)− E t

)2
=

1

N

∑
i

Var (εit |Iit)

Dispersion measures uncertainty with the following model assumptions:

1 Var (ηt |Iit) = 0

2 Var (εit |Iit) = Var (εjt |Ijt) for all i , j , t.
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