Fiscal Volatility Shocks and Economic Activity

Jesús Fernández-Villaverde, Pablo Guerrón Quintana,

Keith Kuester, Juan Rubio Ramírez

University of Pennsylvania

October 4, 2013

Motivation

Ben Bernanke [July 18, 2012]:

"The recovery in the United States continues to be held back by a number of other headwinds, including still-tight borrowing conditions for some businesses and households, and – as I will discuss in more detail shortly – the restraining effects of fiscal policy and fiscal uncertainty."

New York Times [September 30, 2013]:

"The Senate, which returns Monday afternoon, is expected to overwhelmingly reject a bill passed by the Republican-controlled House this weekend that would delay the full effect of President Obama's health care law as a condition for continuing to finance the government past Monday. But no one -not even House Republicans themselves- seemed to know what would happen next."

Objective

Quantify the effects of fiscal volatility shocks on economic activity.

We estimate tax and spending processes for the U.S. with time-variant volatility using a Particle filter and an McMc.

We feed the estimated rules into an equilibrium business cycle model estimated to the U.S. economy using a SMM.

► We simulate the equilibrium using a third-order perturbation.

Main Results I

- 1. We find a considerable amount of time-varying volatility in all four fiscal instruments.
- 2. After a fiscal volatility shock, output, consumption, hours, and investment drop on impact and stay low for several quarters.

Main transmission mechanism: an endogenous increase in mark-ups.

Upward pricing bias due to the shape of the profit function.

- **3**. Fiscal volatility shocks are "stagflationary": inflation goes up while output falls.
- 4. We estimate a CEE-style VAR and an ACEL-style VAR to document that, after a fiscal volatility shock, markups significantly increase.

Why the "Stagflation"?

• Steady-state profits: $(P_j/P)^{1-\epsilon} y - mc (P_j/P)^{-\epsilon} y$

Main Results II

- 5. A two-standard deviations fiscal volatility shock has an effect similar to a 30 b.p. innovation in the FFR as estimated by a SVAR.
- 6. At the ZLB, the effects are much bigger: 1.7 percent fall of output if we are at the ZLB for 8 quarters.
- 7. Most important channel: larger uncertainty about the future tax rate on capital income.
- 8. An accommodative monetary policy increases the effect of fiscal volatility shocks.

How Do We Quantify Fiscal Volatility Shocks?

- Volatility is not directly observed.
- ► No data (surveys, asset prices...) or very limited (SPF for g, but short horizon (5qtrs)).
- Instead, we estimate a stochastic volatility process as in Fernández-Villaverde et al. (2011).

Empirical Model

Fiscal instruments follow:

$$\mathbf{x}_{t} = \rho_{\mathbf{x}} \mathbf{x}_{t-1} + \phi_{\mathbf{x},\mathbf{y}} \tilde{\mathbf{y}}_{t-1} + \phi_{\mathbf{x},\mathbf{b}} \left(\frac{\mathbf{b}_{t-1}}{\mathbf{y}_{t-1}}\right) + \exp(\sigma_{\mathbf{x},t}) \varepsilon_{\mathbf{x},t}$$

$$\sigma_{\mathbf{x},t} = (1 - \rho_{\sigma_{\mathbf{x}}}) \sigma_{\mathbf{x}} + \rho_{\sigma_{\mathbf{x}}} \sigma_{\mathbf{x},t-1} + \left(1 - \rho_{\sigma_{\mathbf{x}}}^2\right)^{(1/2)} \eta_{\mathbf{x}} u_{\mathbf{x},t}$$

- ► $x \in \{g, \tau_c, \tau_l, \tau_k\}.$
- Fiscal shocks: $\varepsilon_{x,t}$.
- Volatility shock: $u_{x,t}$.
- No direct effect on taxes.

- Construct aggregate (average) effective tax rates from NIPA (Mendoza et al., 1994; Leeper et al., 2010): consumption, labor and capital income taxes.
- ► General government (= federal + state + local).
- Spending rule: ratio of government expenditures to GDP.
- ► Federal debt (held by the public) from St. Louis Fed.
- Data sample: 1970Q1 2010Q2.

Estimation of Fiscal Rules

- Instrument by instrument (easily extended).
- No correlation of shocks (easily extended).
- Particle filter+Bayesian methods.
- Flat priors.
- 20,000 draws from posterior (5,000 additional burn-in draws) using McMc.
- 10,000 particles to perform the evaluation of the likelihood.

Smoothed Volatility

Capital Tax

Consumption Tax

Forecast Dispersion

Key Ingredients

- Representative household.
- Labor supply flexible, but wages with quadratic adjustment cost.
- Investment adjustment costs, but flexible utilization margin of capital.

- Prices with quadratic adjustment cost.
- ► Fiscal rules as discussed above+Taylor rule for monetary policy.

Details of the Model

Estimation

- ► General point: problems for calibration in non-linear models.
- The Pruned State-Space System for Non-Linear DSGE Models: Theory and Empirical Applications.
- We use a SMM to estimate most parameters.
- Parameters for fiscal instruments laws of motion: median of our posteriors.
- Third-order perturbation solution. Why?

Details of the Estimation

Experiment to Understand Fiscal Volatility Shocks

$$\begin{aligned} \mathbf{x}_{t} &= \rho_{\mathbf{x}} \mathbf{x}_{t-1} + \phi_{\mathbf{x},\mathbf{y}} \tilde{\mathbf{y}}_{t-1} + \phi_{\mathbf{x},\mathbf{b}} \left(\frac{\mathbf{b}_{t-1}}{\mathbf{y}_{t-1}}\right) + \exp(\sigma_{\mathbf{x},t}) \varepsilon_{\mathbf{x},t} \\ \sigma_{\mathbf{x},t} &= (1 - \rho_{\sigma_{\mathbf{x}}}) \sigma_{\mathbf{x}} + \rho_{\sigma_{\mathbf{x}}} \sigma_{\mathbf{x},t-1} + \left(1 - \rho_{\sigma_{\mathbf{x}}}^{2}\right)^{(1/2)} \eta_{\mathbf{x}} \mathbf{u}_{\mathbf{x},t} \end{aligned}$$

- At time 0, the economy is hit by a fiscal volatility shock to capital income tax.
- Taxes are constant today.
- Two-standard deviation shocks to u_{x,t}'s.
 Meant to capture current fiscal outlook.
 Perotti (2007), Bloom (2009).

Fiscal Volatility Shocks

VAR Evidence: IRFs

FV-G-K-R Fiscal Volatility

The Effect of the ZLB

Role for Monetary Policy

Degree of Nominal Rigidities

- blue: (Calvo) $\phi_p = 0.1$
- red: (Calvo) $\phi_w = 0.1$
- magenta: (Calvo) $\phi_p = 0.1$ and $\phi_w = 0.1$

Agenda

- Additional ingredients?
 - Financial frictions.
 - Non-convexities.
 - "Investment" into labor relationships.
 - Human capital.
- Feedback from higher levels of debt to tax volatility?

Conclusion

- ► High fiscal volatility is a concern for policymakers.
- But, how big are the effects of fiscal volatility shocks?
- Our simulations indicate that the effect can be important.
- Key role for monetary policy in propagation.
- Modeling of political-economic equilibrium that leads to these shocks remains an open issue.

Estimated Parameters

	Tax rate on			Government	
	Labor	Consumption	Capital	Spending	
ρ_X	0.99	0.99	0.97	0.97	
	[0.975,0.999]	[0.981,0.999]	[0.93,0.996]	[0.948,0.992]	
σ_{x}	- 6.01	- 7.09	- 4.96	- 6.13	
	[-6.27,-5.75]	[-7.34,-6.78]	[-5.29,-4.66]	[-6.49,-5.39]	
$\phi_{\pmb{x},\pmb{y}}$	0.031	0.001	0.044	-0.004	
	[0.011,0.055]	[0.000,0.005]	[0.004,0.109]	[-0.02,0.00]	
$\phi_{\pmb{x},\pmb{b}}$	0.003	0.0006	0.004	- 0.008	
	[0.00,0.007]	[0.00,0.002]	[0.00,0.016]	[-0.012,-0.003]	
$ ho_{\sigma_x}$	0.31	0.65	0.76	0.93	
	[0.06,0.57]	[0.08,0.91]	[0.47,0.92]	[0.43,0.99]	
η_{x}	0.94	0.60	0.57	0.43	
	[0.73,1.18]	[0.31,0.93]	[0.33,0.88]	[0.13,1.15]	

Notes: The posterior median and a 95% probability interval.

- Persistent mean-dynamics.
- Stochastic volatility is significant and moderately persistent.

Relation with Other Measures of Uncertainty

- How much do we believe our empirical results?
- Bloom et al. (2011) measure uncertainty using news media coverage, tax provisions set to expire, and disagreement among forecasters.
- Surprisingly high correlation of their uncertainty measure with our smoothed volatilities.
- For instance, correlation of uncertainty with volatility of capital taxes: 0.56.

Households I

Household maximizes:

$$\mathbb{E}_{0}\sum_{t=0}^{\infty}\beta^{t}d_{t}\left\{\frac{(c_{t}-b_{h}c_{t-1})^{1-\omega}}{1-\omega}-\psi\int_{0}^{1}\frac{l_{j,t}^{1+\vartheta}}{1+\vartheta}dj\right\}$$

Intertemporal shock dt:

$$\log d_t = \rho_d \log d_{t-1} + \sigma_d \varepsilon_{dt}, \, \varepsilon_{dt} \sim \mathcal{N}(0, 1)$$

- Savings:
 - 1. Invest, i_t .
 - 2. Hold government bonds, B_t , with nominal gross interest rate R_t .

Households II

Budget constraint:

$$(1 + \tau_{c,t})c_t + i_t + b_t + \Omega_t + \int_0^1 AC_{j,t}^w dj = (1 - \tau_{l,t}) \int_0^1 w_{j,t} l_{j,t} dj + (1 - \tau_{k,t}) r_{k,t} u_t k_{t-1} + \tau_{k,t} \delta k_{t-1}^b + b_{t-1} \frac{R_{t-1}}{\Pi_t} + F_t.$$

Real wage adjustment costs for labor type j:

$$AC_{j,t}^{w} = \frac{\phi_{w}}{2} \left(\frac{w_{j,t}}{w_{j,t-1}} - 1\right)^{2} y_{t}$$

- ▶ Quadratic cost ≠ Calvo. Remember: non-linear solution!
- ► We also computed the model with Calvo pricing.

Households III

► Labor packer:

$$I_t = \left(\int_0^1 I_{j,t}^{\frac{\epsilon_W-1}{\epsilon_W}} dj\right)^{\frac{\epsilon_W}{\epsilon_W-1}}$$

Demand for each type of type of labor:

$$I_{j,t} = \left(\frac{w_{j,t}}{w_t}\right)^{-\epsilon_w} I_t$$

By a zero-profit condition:

$$\boldsymbol{w}_t = \left(\int_0^1 \boldsymbol{w}_{j,t}^{1-\epsilon_w}\right)^{\frac{1}{1-\epsilon_w}}$$

Households IV

Capital accumulation:

$$k_t = (1 - \delta(u_t)) k_{t-1} + \left(1 - S\left[\frac{i_t}{i_{t-1}}\right]\right) i_t$$
$$\delta(u_t) = \delta + \Phi_1(u_t - 1) + \frac{1}{2} \Phi_2(u_t - 1)^2$$

where:

Quadratic adjustment cost:

$$S\left[\frac{i_t}{i_{t-1}}\right] = \frac{\kappa}{2} \left(\frac{i_t}{i_{t-1}} - 1\right)^2$$

which implies S(1) = S'(1) = 0 and $S''(1) = \kappa$.

Book value of capital:

$$k_t^b = (1-\delta)k_{t-1}^b + i_t$$

Firms I

Competitive producer of a final good:

$$y_t = \left(\int_0^1 y_{it}^{\frac{\varepsilon-1}{\varepsilon}} di\right)^{\frac{\varepsilon}{\varepsilon-1}}$$

- ▶ Buys intermediate goods at price *P_{i,t}* and charges *P_t*.
- Demand:

$$\mathbf{y}_{it} = \left(\frac{P_{it}}{P_t}\right)^{-\varepsilon} \mathbf{y}_t$$

Price index:

$$P_t = \left(\int_0^1 P_{it}^{1-\varepsilon} di\right)^{\frac{1}{1-\varepsilon}}$$

Firms II

Intermediate good producer with market power:

 $\mathbf{y}_{it} = \mathbf{A}_t \mathbf{k}_{it}^{\alpha} \mathbf{I}_{it}^{1-\alpha} - \phi$

► *A_t* is neutral productivity:

 $\log A_t = \rho_A \log A_{t-1} + \sigma_A \varepsilon_{At}, \, \varepsilon_{At} \sim \mathcal{N}(0, 1) \text{ and } \rho_A \in [0, 1)$

Intermediate producer sets prices at cost:

$$AC_{i,t}^{p} = \frac{\phi_{p}}{2} \left(\frac{P_{i,t}}{P_{i,t-1}} - \Pi\right)^{2} y_{i,t}$$

Government

Monetary authority follows Taylor rule:

$$\frac{R_t}{R} = \left(\frac{R_{t-1}}{R}\right)^{1-\phi_R} \left(\frac{\Pi_t}{\Pi}\right)^{(1-\phi_R)\gamma_{\Pi}} \left(\frac{y_t}{y}\right)^{(1-\phi_R)\gamma_y} e^{\sigma_m\xi_t}$$

Fiscal authority's budget constraint:

$$b_{t} = b_{t-1} \frac{R_{t-1}}{\Pi_{t}} + g_{t} - (c_{t}\tau_{c,t} + w_{t}I_{t}\tau_{l,t} + r_{k,t}u_{t}k_{t-1}\tau_{k,t} - \delta k_{t-1}^{b}\tau_{k,t} + \Omega_{t})$$

Transfers:

$$\Omega_t = \Omega + \phi_{\Omega,b} \left(b_{t-1} - b \right)$$

where $\phi_{\Omega,b} > 0$.

Aggregation and Solution

Aggregate demand:

$$y_{t} = c_{t} + i_{t} + g_{t} + \frac{\phi_{p}}{2} (\Pi_{t} - \Pi)^{2} y_{t} + \frac{\phi_{w}}{2} \left(\frac{w_{t}}{w_{t-1}} - 1\right)^{2} y_{t}$$

Aggregate supply:

$$y_t = A_t \left(u_t k_{t-1} \right)^{\alpha} l_t^{1-\alpha} - \phi$$

- Market clearing.
- Definition of equilibrium is standard.

Return

Estimation I

Preferences and consumer				
eta	0.9945	Estimated.		
ω	2	Standard choice.		
ϑ	2	Chetty (2011).		
ψ	75.66	Estimated.		
b _h	0.75	CEE (JPE, 2005).		
ϕ_{w}	4889	ACEL (RED, 2011).		
ϵ	21	ACEL (RED, 2011).		
Cost of utilization and investment				
Φ ₁	0.0165	From utilization FOC.		
Φ2	0.0001	Estimated.		
κ	3	Estimated.		

Estimation II

<u>Firms</u>		
Α	1	Normalization
α	0.36	Standard choice.
δ	0.011	Estimated.
ϕ_{p}	236.10	Gali and Gertler (JME, 1999).
ϵ_{W}	21	ACEL (RED, 2011).
Moneta	ary policy	and lump-sum taxes
П	1.0045	Estimated.
ϕ_{R}	0.6	Estimated.
γ_{Π}	1.25	FGR (2010).
γ_y	1/4	FGR (2010).
Ω	-4.3e-2	Follows from gov. budget constraint.
$\phi_{\Omega, \textit{b}}$	0.0005	Small number to stabilize debt.
b	2.64	Estimated.

Estimated III

Shocks				
$ ho_{A}$	0.95	King and Rebelo (1999).		
σ_{A}	0.001	Estimated.		
$ ho_{d}$	0.18	Smets and Wouters (AER, 2007).		
σ_d	0.078	Estimated.		
σ_m	0.0001	Estimated.		

 Parameters for fiscal instruments laws of motion: median of our posteriors.

Return

The Role of Precautionary Price Setting

Without Automatic Responses

$$\mathbf{x}_{t} = \rho_{\mathbf{x}} \mathbf{x}_{t-1} + \phi_{\mathbf{x},\mathbf{y}} \tilde{\mathbf{y}}_{t-1} + \phi_{\mathbf{x},\mathbf{b}} \left(\frac{\mathbf{b}_{t-1}}{\mathbf{y}_{t-1}}\right) + \exp(\sigma_{\mathbf{x},t}) \varepsilon_{\mathbf{x},t}$$

- black: benchmark.
- red: no response to output.
- blue: no response to output or debt.

Decomposing Fiscal Volatility Shocks

black: benchmark.

red: volatility shock only on capital income taxes.