
Risk news shocks and the business cycle∗

Gabor Pinter†

Bank of England

Konstantinos Theodoridis‡

Bank of England

Tony Yates§

University of Bristol and Centre for Macroeconomics

September 19, 2013

Abstract
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1 Introduction

We use a modification of the method of Barsky and Sims (2011) (BS, hereafter) for identifying news

shocks - which they applied to the task of recovering news shocks to total factor productivity - to

identify a risk news shock, an object studied recently by Christiano, Motto, and Rostagno (2013)

(CMR). This shock captures fluctuations in the dispersion of returns to entrepreneurial activity in the

private sector. News about this cross-sectional dispersion is revelation today about its future value.

We compute the impulse responses of key macro and financial variables to this risk news shock in

a ten variable VAR estimated for the US over 1980Q1-2010Q2. The risk news shock is identified to

imply a fall in GDP growth, net worth growth, inflation and nominal interest rates. The magnitudes

estimated suggest that a revelation about future uncertainty induces substantial fluctuations in all

these variables (and in the unrestricted hours, investment and consumption series) despite a very

vigorous and protracted cut in central bank rates. Risk news shocks are shown to have depressed

consumption and investment during the early years of the recent financial crisis.

We estimate that in the US risk news shocks contributed somewhere between 2% and 12% of the total

volatility in output (depending on which of two risk proxies we use). The risk news and unanticipated

risk shocks together contribute about 20% (regardless of which risk proxy we use). This combined

contribution contrasts with a value of 60% in CMR, that comes from using full information techniques

to estimate a DSGE model with financial frictions with risk and risk news shocks.

Although risk news shocks on their own contribute modestly to fluctuations in output, they matter

a lot for the central bank policy rate, which, as we have said, fights to counter the effect of the risk

news shock, suggesting that were it not for the actions of the central bank these shocks could be

more damaging. With central bank rates pinned at their zero lower bound for some time now in the

US, UK and Japan, our results would suggest that risk news shocks may have impacted on the real

economy more recently, and could in the future, until such time as conditions allow the central bank

to raise rates to more normal levels, (that is, supposing that unconventional monetary policies are also

constrained or are at best imperfect substitutes for interest rate policy).

Finally, we take the DSGE model developed by Christiano, Eichenbaum, and Evans (2005) and Smets

and Wouters (2007) (SW), modified to incorporate Bernanke, Gertler, and Gilchrist (1999) (BGG)

financial frictions, and see whether this model can match the impulse responses to the risk news shock

identified by the VAR. We find that the model can get reasonably close to these responses if we

modify it to incorporate the possibility that some consumers are not dynamic optimizers but instead

are rule-of-thumb (ROT) consumers (following Gali, Lopez-Salido, and Valles (2007) and Cogan, Cwik,

Taylor, and Wieland (2010)). In the absence of ROT consumers the model generates an increase in

consumption following the risk news shock due to the vigorous and protracted cut in central bank

rates in responses to risk news shock, which is counter-factual, (at least in so far as the VAR impulse

responses can be taken as a ‘fact’). The modification to include ROT consumers takes the model some

way from the benchmark: our minimum distance estimation suggests that we need 75% of consumers

to live hand-to-mouth to produce the best fit. The model with ROT consumers displays far more

volatility in inflation and GDP growth in response to the risk news shock than its counterpart with

fully rational consumers. This said, the minimum distance estimates produce a model that only weakly

propagates risk news shocks relative to the VAR, and for this reason requires a standard deviation of

risk news shocks about 4 times that estimated in the VAR. This weak propagation is related to the
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estimated weakness of the financial frictions in the model, in turn related to the low cost of bankruptcy

on auditing, a key parameter in the original BGG model, and in our SW+BGG model. If we turn up

the degree of financial acceleration, so to speak, by using higher values for this cost of auditing, e.g.

the values in the BGG or CMR papers, then the number of ROT consumers falls somewhat, to 50%,

but still leaves us with a model that is drastically modified relative to the model populated entirely

by optimizing consumers.

To locate what we have done in the large body of previous work: our paper can be seen as part of the

literature that has sought to use optimizing models of dynamic macroeconomies to understand the

causes of business cycles. This literature is taken to have begun with Kydland and Prescott (1982)’s

emphasis on such cycles being adequately explained by technology shocks. Subsequent work has be-

come too numerous and diverse to summarise compactly, and we mention here just a few significant

milestones and controversies. Such milestones include: Gali (1999)’s striking VAR evidence that iden-

tified technology shocks cause hours to fall, not rise, as in the RBC model, casting doubt on the prior

inference that technology shocks were the dominant driver of business cycles; the observation that

multiple shocks are needed to explain many stochastic observeables Ingram, Kocherlakota, and Savin

(1994); the effort to isolate monetary policy shocks and deduce what they imply about nominal rigidi-

ties (culminating in Christiano, Eichenbaum, and Evans (2005)) and quantifying their contribution

to the business cycle; the analysis that investment-specific technology shocks had been an important

driver of the business cycle, (Greenwood, Hercowitz, and Krusell (2000), Justiniano, Primiceri, and

Tambalotti (2010)); and the bringing together of the implications of the sticky-price RBC Model for

the causes of business cycles Smets and Wouters (2007), which emphasized the importance of markup,

discount rate and investment adjustment cost shocks.

Within this broad sweep of work, research that relates more closely to what we have done can be

grouped into two, reflecting the two words ‘risk news’ in the title. Starting with ‘news’: the framework

of rational expectations lead naturally to the conjecture that agents may react to advance warnings of

future events, of which there are many compelling examples (e.g. policy changes that are announced

in advance). As Jaimovich and Rebelo (2009) point out, early versions of this insight go back to

Beveridge (1909), Pigou (1927) and Clark (1934). Barro and King (1984) and Cochrane (1994) were

aware that news shocks were not good candidates for explaining business cycles, since positive TFP

news caused hours to fall and consumption to rise, which was contrary to the unconditional correlation

in the data. However, Jaimovich and Rebelo (2009) showed that news shocks could generate positive

a comovement in the RBC model if the wealth effect on labour supply was neutralised (together with

other modifications). One way of isolating these news shocks is to encode them within an explicit

business cycle model and use full information methods. Schmitt-Grohe and Uribe (2012) follow this

approach, modelling news at two time horizons for seven different shocks in a DSGE/RBC model.

They found that news shocks in total accounted for about half of fluctuations in US output. CMR’s

paper adopts the same full information estimation approach, but studies revelations about future

changes in the cross-section of returns to the entrepreneurs who borrow within a DSGE model with

financial frictions.

A VAR literature on news shocks has grown up alongside this work on explicit business cycles models.

In a collection of papers (Beaudry and Portier (2006), Dupaigne, Portier, and Beaudry (2007) and

Beaudry and Lucke (2010)) Beaudry and co-authors identify news shocks to TFP in a VAR. Two

schemes are used. In one, a news shock is a shock that is uncorrelated with today’s tfp but causes a
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change in the stock price. In a second, a news shock is uncorrelated with today’s TFP but causes a

long run change in TFP.

The method we use is adapted from a subsequent contribution to this VAR literature by BS. They begin

with a TFP proxy derived from Solow residuals which they add to other variables of interest. A news

shock is an object that is uncorrelated with today’s TFP but contributes maximally to the forecast

errors variance of TFP up to some finite horizon in the future. BS show that this scheme works in a

monte carlo exercise, where news shocks are recovered using this VAR method from data generated

by a simple RBC model, modified to include news shocks. These experiments confirm (at least in

the laboratory setting) that the in-principle invertibility problem noted by Blanchard, L’Huillier, and

Lorenzoni (2009) still leaves the econometrician, in practice, with adequate information to recover the

news shocks well.

BS’s strategy derives from Francis, Owyang, Roush, and DiCecio (2010) which identifies a technology

shock as the object that contributes maximally to fluctuations in labour productivity at a long but

finite horizon. Their ‘max share’ method, as they call it, was a way to employ the logic of looking

for long run restrictions, but without falling foul of the problems of imposing restrictions that hold

at horizon infinity in a finite sample, previously noted by Sims (1972), Faust (1998) and Faust and

Leeper (1997).

We study the same object articulated in CMR’s full information estimation of a business cycle model,

but instead identify it in a VAR, building on the method set out by BS. We construct a risk news

shock to be an object that is uncorrelated with a proxy for risk today but contributes maximally to it

up to some future horizon. We modify their method by confining the search for this maximum to the

space of rotations of the reduced form VAR residual variance-covariance matrix that satisfy certain

sign restrictions. This enables us to identify other shocks at the same time: shocks to monetary policy,

technology and demand. With more than one shock identified, we can then quantify the contribution

of risk news shocks to the business cycle relative to more familiar objects like technology and monetary

policy shocks.

The second strand of research that precedes us relates to the ‘risk’ in ‘risk news’, and covers work

on financial and risk or uncertainty shocks. Interest in financial shocks derives from a number of

sources. One motivation is the informal view that the crisis could be said to have ‘started’ in the

financial sector with defaults in the sub-prime mortgage market in the US. Of course, those events

may have been manifestations of other deeper, forces. But it may be considered at least a reasonable

starting point for the research process to examine models perturbed by exogenous financial drivers. A

strategy that one adopts in the same spirit as in the study of TFP shocks. A second motivation is that

it has been commented for some time that the most popular models of financial frictions only mildly

amplify conventional shocks like technology shocks. This is evident in the impulse responses plotted

in Bernanke and Gertler (1989). But it is also true of Kiyotaki and Moore (1997) and the sticky

price versions of related models built subsequently (for example, Bernanke, Gertler, and Gilchrist

(1999), Iacoviello (2005)). This mild amplification has consequences that may be troubling: it implies

financial factors cannot be predominant explanations for business cycles even during financial crises.

And it has the consequence that optimal monetary and fiscal policy is little different whether the

model has financial frictions or not.1 However, financial shocks are often shown to have large effects

1For some examples, see: Vlieghe (2010), Curdia and Woodford (2009) and Fiore and Tristani (2012).
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and are a way to allow the financial friction models themselves to explain business cycles, a point made

neatly by Hall (2011) who studies exogenous disturbances to the wedges between the return to saving,

and the users of funds in the business and household sector. Justiniano, Primiceri, and Tambalotti

(2011) estimate a DSGE model with a Hall-like shock to the transformation of savings into capital.

Fuentes-Albero (2012) considers a shock to the cost of bankruptcy in BGG; Nolan and Thoenissen

(2009) and Christiano, Motto, and Rostagno (2008) consider shocks to the entrepreneurs’ net worth

accumulation equation in BGG; Gertler and Karadi (2011) consider shocks to the net worth of private

banks, who face BGG like financial frictions in raising funds; Iacoviello (2010) examines shocks to the

repayments of households who were lent to by financially constrained banks; Jermann and Quadrini

(2012) study a model with shocks to the costs of changing the firm’s debt/equity mix. Self-evidently,

CMR’s financial shock is distinctive: to recap, it is a shock to the cross-section of returns faced by

the entrepreneurs who want to borrow. Their corresponding news shocks are revelations about future

values of the dispersion of the cross-section of returns.

A recent VAR literature on financial shocks also bears some resemblance to what we have done. Fornari

and Stracca (2012) identify a financial shock as a shock that causes the relative share price of the

financial sector to change, (with some other restrictions). A few papers identify financial shocks by

estimating a dynamic factor model, and then recovering structural shocks to the factors by imposing

restrictions on the movement of certain financial series amongst a large panel of observeables. Work

in this mould includes, amongst others: Dahlhaus (2012), Boivin, Giannoni, and Stevanovic (2013)

and Helbling, Huidrom, Kose, and Otrok (2011). Gilchrist, Yankov, and Zakrajsek (2009) differs from

papers that seek to orthogonalise credit shocks using spread series like those mentioned here by first

extracting the component of individual bond spreads that is unrelated to causes unrelated to credit

supply (eg own share price and macroeconomic conditions in general). Our work differs from these

papers in that it follows the lead of the modified BGG model in looking for the ultimate source of

financial shocks in changes in cross-sectional risk. This entails some costs, since we lose the agnosticism

embedded in these more generalised financial shock papers, but we gain interpretability by attempting

to measure cross-sectional risk and identifying the risk shock accordingly.

The closest empirical exercise to ours is contained in Sim, Zakrajsek, and Gilchrist (2010). They

identify contemporaneous risk shocks in a VAR using i) data on the cross section of individual firm

returns from the same CRSP data we exploit (filtered in ways that we do not employ) and ii) a

recursive ordering that is consistent with how we recover our contemporaneous risk shocks. Our main

point of departure is to identify also risk news shocks, and use the impulse response to these shocks to

see what they imply about the nature of the SW+BGG model. The point of their work is to explain

that the risk shocks themselves have no effect except via financial frictions. This is true also of the

SW+BGG model we subsequently estimate, and of the CMR model. Our focus is different, namely,

to scrutinise the full information results on the contribution of risk and risk news shocks to business

cycles.

Note that the focus of this paper (as in CMR) is on fluctuations in the variance of idiosyncratic

disturbances to productivity. This is to be distinguished from the interesting and complementary

work on time series fluctuations in aggregate volatility.2 Such work includes: Bansal and Yaron (2004)

(impact of changes in aggregate consumption risk on asset prices), Bloom (2009), Justiniano and

2Such fluctuations might also reasonably be described as ‘risk shocks’ but when we use this term we mean to refer
only to changes in idiosyncratic volatility.
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Primiceri (2008) (aggregate uncertainty in productivity and macro outcomes), Fernandez-Villaverde,

Guerron-Quintana, Kuester, and Rubio-Ramirez (2011) and Born and Pfeifer (2011) (aggregate fiscal

uncertainty), Mumtaz and Theodoridis (2012) (aggregate technology uncertainty in the open economy)

and many others. The linearised DSGE model that we scrutinse with the VAR, (like all linear business

cycle models), has no role for fluctuations in aggregate volatility, in this respect obeying certainty

equivalence, and we leave to future research the question of disentangling movements in idiosyncratic

and aggregate risk, and news about these objects.

2 Our strategy for identifying the risk news shock

As explained earlier, to complement the full information strategy in CMR we are going to identify

the risk news shock in a VAR. We first estimate the VARs reduced form parameters shrinking the

posteriors using Bayesian, Minnesota-style priors. We then identify our risk news shock (and monetary

policy, technology and demand shocks) using a combination of sign restrictions and a maximisation

step following BS (and their antecedents).

2.1 The Empirical Model

The first task is to lay out and estimate the reduced-form VAR, which we do using Bayesian, Minessota-

type priors. The shrinkage is necessary given that we have a ten variable VAR with 3 lags (the VAR

order is consistent with the choice made by Smets and Wouters (2007)), which implies many parameters

to be estimated relative to the degrees of freedom afforded by our 30 years of quarterly data.

To explain our method, we can take the general case of a vector autoregressive model of order K –

VAR(K)

yt =
K∑
i=1

Θiyt−i + ut, (2.1)

where ut is the N × 1 vector of reduced-form errors that is normally distributed with zero and Σ

variance-covariance matrix. The regression-equation representation of the latter system is

Y = XΨ + V,

where Y = [yh+1, .., yT ] is a N × T matrix containing all the data points in yt, X = Y−h is a (NK)×
T matrix containing the h-th lag of Y , Θ =

[
Θ1 · · · ΘK

]
is a N× (NK) matrix, and U =

[uh+1, .., uT ] is a N × T matrix of disturbances.

We deploy Minnesota-type priors (Doan, Litterman, and Sims, 1984; Litterman, 1986), and posterior

inference is obtained as follows. It is assumed that the prior distribution of the VAR parameter vector

has a Normal-Wishart conjugate form

θ|Σ ∼ N(θ0,Σ⊗ Ω0), Σ ∼ IW (v0, S0), (2.2)
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where θ is obtained by stacking the columns of Θ. The prior moments of θ are given by

E[(Θk) i, j] =

{
δi i = j, k = 1

0 otherwise
, V ar[(Θk) i, j] = λσ2

i /σ
2
j ,

and, as explained by Banbura, Giannone, and Reichlin (2010), they can be constructed using the

following dummy observations

YD =



diag(δ1σ1...δNσN )
λ

0N×(K−1)N

..............

diag (σ1...σN )

..............

01×N


and XD =


JK⊗diag(σ1...σN )

λ

0N×NK

..............

01×NK

 , (2.3)

where JK = diag (1, 2, ...,K) and diag denotes the diagonal matrix. The prior moments of (2.2) are just

functions of YD andXD, Θ0 = YDX
′
D (XDX

′
D)−1, Ω0 = (XDX

′
D)−1, S0 = (YD −Θ0XD) (YD −Θ0XD)′

and v0 = TD −NK. Finally, the hyper-parameter λ controls the tightness of the prior.

As is well known, and explained, for example, in (Kadiyala and Karlsson, 1997), the choice of a normal

for the prior distribution of VAR parameters conditional on variances, and the inverse-Wishart for

variances, is convenient as these distributions are conjugate, leading to an expression for the joint

posterior that can be evaluated analytically, rather than one that has to be approximated through

MCMC sampling. Since our procedure entails computational intensity in other aspects (in particular

there is going to be a maximisation step, associated with identification, for each point in our posterior),

this simplicity yields considerable practical benefits. Thus, formally, we have that:

θ|Σ, Y ∼ N(θ̄,Σ⊗ Ω̄), Σ|Y ∼ IW (v̄, S̄), (2.4)

where the bar denotes that the parameters are those of the posterior distribution. Defining Θ̂ and Û as

the OLS estimates, we have that Θ̄ = (Ω−1
0 Ψ0 +Y X ′)(Ω−1

0 +X ′X)−1, Ω̄ = (Ω−1
0 +X ′X)−1, v̄ = v0 +T ,

and S̄ = Θ̂XX ′Θ̂′ + Θ0Ω−1
0 Θ0 + S0 + Û Û ′ − Θ̄Ω̄−1Θ̄′.

δi and σi denote the mean and variance of the priors for the diagonal, autoregressive coefficients in

the VAR. These prior moments come from OLS estimates of AR(1) models estimated in each of the

10 variables separately: see, for example (Mumtaz and Zanetti, 2012) and prior work cited by them.

2.2 VAR Shock Identification

With posterior distributions for the values of the reduced form VAR coefficients in hand, we can

proceed to identify the risk news shocks. Consider moving average representation of the VAR(K)

yt = B (L)ut. (2.5)

Under the assumption that a mapping between the reduced-form errors and the structural shocks

exists, namely

ut = Aεt, (2.6)
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such that AA′ = Σ, the h step ahead forecast error can be expressed as

yt+h − Et−1yt+h =

h∑
τ=0

Bτ ÃQ (ω) εt+h−τ .

Ã is the lower triangular matrix obtained from the Cholesky decomposition of Σ; Q is an orthonormal

matrix formed from a product of 0.5 × N × (N − 1) Givens matrices, such that Q (ω)Q (ω)′ = IN ,

where IN is the N ×N identity matrix and ω is a vector of length 0.5×N × (N −1),with each element

of ω a member of
[

0 2π
]

corresponding to a ‘rotation’ angle.

The share of the forecast error variance of variable i, attributable to the structural shock j at horizon

h, is written as:

Ωi,j (h) =
e′i

(∑h
τ=0Bτ ÃQ (ω) eje

′
jQ (ω)′ Ã′Bτ

)
ei

e′i

(∑h
τ=0BτΣBτ

)
ei

, (2.7)

where ei denotes the selection vector with one in the i-th place and zeros elsewhere.

Similarly to BS, and consistently with the model discussed below, we assume that cross-sectional risk

is exogenous and driven by two random disturbances; the contemporaneous shock – εσω ,t – and the

news shock – ηnews,t−1:

lnσω,t = (1− ρσ)σω + ρσ lnσω,t−1 + εσω ,t + εnewst−1 . (2.8)

By allowing εσω ,t to be the first element of ε and εnewst−1 the second, then, by assumption we get that

Ω1,1 (h) + Ω1,2 (h) = 1. (2.9)

However, it is unlikely that condition (2.9) holds at all horizons exactly in a multivariate VAR model

with real data. Hence, as suggested by BS, we select the second column of the impact matrix – ÃQ (ω)

– that comes as close as possible to making equation (2.9) hold over a finite set of horizons.

Since we intend to identify additional, more familiar – technology, demand, monetary policy – shocks,

and also wish to be able to impose that the responses to the risk news shock satisfy certain qualitative

restrictions, we combine BS’s method with sign restrictions, following Uhlig (2005) and Canova and

De Nicolo (2002) and others.

To be precise, we find the vector of angles ω that maximizes the forecast error variance associated

with the column of the impact matrix ÃQ(ω), while satisfying the sign restrictions implied by other

structural shocks. In algebraic term the problem is stated as follows:

ω∗ = arg max
H∑
h=0

Ωi,j (h) = arg max
H∑
h=0

e′i

(∑h
τ=0Bτ ÃQ (ω) eje

′
jQ (ω)′ Ã′Bτ

)
ei

e′i

(∑h
τ=0BτΣBτ

)
ei

, (2.10)

subject to

A (1, j) = 0, (2.11)

where j > 1.

sign(SA22) = F, (2.12)
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where S is a selector matrix that has 1s in elements corresponding to restricted elements, and 0s

elsewhere, sign refers to the signum function, which maps real positive elements to 1s, and real

negatives to -1s, F is a matrix that has -1s where the IRF is restricted to be negative, 1s for elements

restricted to be positive, and 0s elsewhere, and A2.2 is a 9× 9 submatrix of A =

[
A1.1 A1.2

A2.1 A2.2

]

Q (ω)Q (ω)′ = I, (2.13)

where I is the 10 × 10 identity matrix, and Q(ω) = Q(ω1) × Q(ω2) × ... × Q(ω9), ωn refers to the

scalar members of the vector of angles, ω, and Q is a 9× 9 Givens matrix, constructed in a standard

fashion. Constraint (2.11) implies that only the contemporaneous risk shock has a contemporaneous

effect on the risk proxy. Constraint (2.12) ensures that ω∗ satisfies the sign restrictions associated

the structural shocks. By ordering the risk proxy first in the VAR, we get Ã the from the Choleski

factorisation of Σ :

Ã =

[
σσ 0

Ã2,1 Ã2,2

]
. (2.14)

Next we select ω∗ so the rotation matrix Q2,2 (ω∗) satisfies the sign restrictions for A2,2. Defining now

Q (ω∗) as follows

Q (ω∗) =

[
1 0

0 Q2,2 (ω∗)

]
, (2.15)

it is not hard to see that Q (ω∗) satisfies both (2.12) and (2.13).

Table 1 summarises the sign restrictions that we use to identify the structural shocks.

Table 1: Sign-Restrictions

t t+ 1
VAR News Supply Demand Policy News Supply Demand Policy

Uncertainty 0 0 0 0 +
Spread
GDP Growth - + + - - + + -
Consumption Growth
Investment Growth
Hours
Wage Growth
Inflation - - + - - - + -
Policy Rate - - + + - - + +
Net Worth Growth - + + - - - + -

In words, a positive technology shock increases output on impact, increases net worth, but decreases

inflation and interest rates; a positive innovation to demand (which could, perhaps, capture a change

in the degree of impatience in a DSGE model, or a shock to fiscal policy) raises output, inflation and

interest rates; a contractionary monetary policy shock raises interest rates on impact, lowering output

and inflation. The same restrictions are also imposed in t + 1. We also impose sign restrictions on

the risk news shock, that revelation about an increase in cross-sectional risk in the future lowers GDP

growth, inflation, the growth in net worth, and this despite also prompting the central bank to cut

rates. These restrictions are consistent with plausible parameterisations of the SW+BGG model, and

with CMR.

9



2.3 Data

The information set consists of seven macroeconomic and three financial quarterly US data series over

a sample period running from 1980Q1 to 2010Q2. The seven macroeconomic variables are those used

by Smets and Wouters (2007): the log difference of real GDP, real consumption, real gross investment,

real wage and the GDP deflator; the log of hours worked; and the federal funds rate. The financial

series comprise: the difference between BBA and AAA corporate bond yields (a measure for the

external finance premium in BGG), the per capita Dow Jones Wilshire index deflated by the GDP

deflator as in CMR (a proxy for entrepreneurial net worth) and a proxy for risk. We experiment

with two proxies for the time series of idiosyncratic uncertainty faced by entrepreneurs in the private

sector. In our benchmark results, we use the VIX - is a popular measure of the implied volatility of

S&P 500 index options.3 To check for the robustness of our results, we use, as an alternative measure,

the interquartile range of the cross section of stock returns in the US produced by Bloom, Floetotto,

Jaimovich, Saporta-Eksten, and Terry (2012).4

2.4 VAR Results

Chart 2 presents the impulse responses to the identified risk news shock where our chosen value for

h, the horizon up to which the risk news shock is constructed to explain the maximum proportion

of forecast error variance in the risk proxy is 4 quarters (we discuss robustness to alternative choices

later). Note that all the shocks have been scaled to deliver a 0.25pp fall in GDP growth (per quarter)

on impact. The VAR has 3 lags, following Smets and Wouters (2007). Results are little changed,

however, for models with 1,2 and 4 lags.5 The black lines and shaded areas in the chart require

some explanation, and this will serve to reveal the details of the algorithm used to carry out the

identification. The chart plots a distribution formed by the following: i) we take 1000 draws from

the estimated posterior distribution for the reduced form VAR estimates, ii) for each, we find 1000

rotations of the VAR’s residual variance-covariance matrix that satisfy our sign and zero restrictions,

iii) we search across them to find the rotation that maximises the forecast error variance criterion

(expression (2.10)), giving us 1000 preliminary estimates of ‘maxima’ corresponding to the 1000 VARs

in the posterior, iv) we use this as an input to MATLAB’s fminsearch to find a better estimate of the

maximum in each case (i.e. we get 1000 refined estimates of the maximum). Then the black line in

chart 2 below is constructed from the pointwise median of these 1000 maxima and the 32nd and 68th

percentiles formed analogously.6

Our volatility proxy (in this benchmark case, the VIX), peaks somewhat after the first period, by

construction (the risk news shock, since it is news about future risk, has to be orthogonal to risk in

3Recent papers show (along with us here) that there is a close empirical and theoretical relationship between the
volatility of various asset classes and the cross sectional dispersion within given asset classes. See for example, Bloom,
Floetotto, Jaimovich, Saporta-Eksten, and Terry (2012) and Cesa-Bianchi, Pesaran, and Rebucci (2013). Moreover, in
the structural model presented in the next section option implied volatility is constant so any variations must be caused
by exogenous perturbations.

4This measure is downloadable from Nick Bloom’s website.
5These results are available upon request.
6By ‘pointwise’ we mean that at each horizon h we find the median of the impulse responses, and display a black dot,

and the black line is constructed by joining the black dots corresponding to each h; analogously for other percentiles,
a usage of ‘pointwise’ that conforms to others in the VAR literature. To re-emphasize, the medians and bands do not
correspond to the objects reported by researchers who use sign restrictions only in VARs. The sets of rotations that
satisfy those restrictions and are plotted by those researchers are here reduced to single lines by the maximising step in
the BS identification scheme.
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the initial period). The VIX risk proxy remains above steady state for almost 3 years.7 A risk news

shock large enough to cause the VIX risk proxy to rise by almost 4.5pp (compared to the 40pp rise seen

at the start of the financial crisis), causes spreads to rise by 5 basis points (compared to 50bp rise seen

at the start of the financial crisis), and this in turn leads to a persistent fall in investment (maximum

impact −2%) and to a relatively transitory drop in consumption ( of about −0.4pp). As a consequence

GDP contracts (−0.25pp, in this case both sign and scale are by construction) and weak demand is

translated into low hours (which fall by 1%) and inflation (which falls (by consruction) by 0.4pp).

Consistent with the rise in spreads and lower investment, net worth drops (sign by consruction) by

4pp. These falls are despite the monetary authority cutting rates aggressively and for a protracted

period (the cut is by construction, the scale freely estimated).

Chart 8 compares the impulse responses to the contemporaneous risk and risk news shocks. The two

are compared by taking the profile for VIX that is induced by a risk news shock, replicating this with

a matching sequence of contemporaneous risk shocks. From this chart we can see that the one of risk

news shock induces a larger shift in spreads, output, consumption, investment, inflation and policy

rates.8

Charts 3, 4 and 5 plot the impulse responses to the technology, demand and monetary policy shocks.

The magnitude and shape of these look reasonable (remember many of the signs are restricted in

identification). Noteworthy is that spreads move very little (in so far as the VAR can tell - all are

somewhat ill-determined) in response to these shocks. One can take this as echoing the result from

other work that the financial accelerator does not amplify traditional shocks that much; if it did,

such amplification would show up (the BGG model and others like it would suggest) first via large

movements in spreads.

The first headline of our analysis can be seen in Chart 7 which shows the forecast error variance

decomposition [FEVD] (for the 9 ‘endogenous’ series, i.e. excluding the risk proxy; recall that we

are identifying the risk news shocks by maximising the contribution to future movements of the risk

proxy). Looking at the panel for output, we can see that the risk news shock explains about 10%

of long run fluctuations. Taken together with the contemporaneous risk shock, the contribution is

about 20%. CMR, by contrast, find that the contribution of the risk news shock alone is 38%, and

the combined contribution of this shock and the contemporaneous risk shock is 60%. We should not

deduce from this that the shocks are not a significant part of the story of the US, however. Note

first that they contribute about 20% of the volatility in spreads, 30% of the volatility in inflation.

Interestingly, the ‘policy rates’ panel in Chart 7 shows that the risk news shock contributes almost

40% to fluctuations in the central bank instrument. So risk news shocks contribute little to output

growth, but partly because the central bank acts to respond to them vigorously and insulate the

macroeconomy from their effects. We might conjecture that with interest rates pinned to the zero

bound, revelations about future changes in uncertainty would therefore be contributing more, at least

to the extent that unconventional policy instruments fail to substitute adequately for the missing

interest rate stimulus.

Before we go on, our punchline chart showing the forecast error variance decomposition requires some

7Note that the peak of the impulse of the volatility proxy to the news shock does not have to coincide with the h = 4
chosen for the maximisation of the forecast variance contribution.

8The differences in the magnitude of the responses relative to Chart 2 are because we do not scale the shock to deliver
0.25% drop in GDP.
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explanation. Since there are actually many VARs estimated and reported earlier, which FEVD have

we chosen? Recapping on the text above, we have 1000 posterior draws for the VAR parameters, and

each one generates a maximum corresponding to the output of the BS part of the procedure. For each of

these 1000 VARs, we can report a FEVD at each horizon, call this, say, Ht which will have 2 dimensions,

corresponding to shocks and observables. What we report is the single H corresponding to the single

VAR whose H lies closest to the median Ht at each t, where the distance is calculating using the

Euclidian norm (the dimension of the corresponding space given by the 10(shocks)× 10(observeables)).

Chart 6 provides the historical decomposition of the VAR series over the recent past, 2006Q1-2010Q2,

using an analogous procedure to that for the construction of Figure 7. This chart measures what

the VAR estimates to be the contribution to the values of the time series from each of the identified

shocks.

In the reported decomposition, the contributions of the shocks that have not been identified (recall we

identify just risk, risk news, monetary policy, technology, demand, leaving 5 unidentified) are added

together in one (yellow) bar labelled ‘residuals’. It is clear from Chart 6 that the VAR deduces that

risk news shocks had quite a role to play in the crisis, pushing up on spreads, and accounting for

about a third of the fall in consumption and investment growth relative to trend. These shocks do not

appear to contribute much to the fall in output, however, suggesting perhaps that systematic fiscal

policy was at work (G is obviously part of the gap between Y and C+I).

Notwithstanding the role our VAR infers that central banks had, our alternative method for isolating

the contribution of risk news shocks indicates that this shock winds up contributing much less to

business cycle volatility in output than in CMR. It is incumbent on us to show that this result does

not depend overly on the VIX as our risk proxy.

2.4.1 Robustness to using an alternative measure of cross-sectional risk

To this end, we redo the entire analysis up to this point using a measure of the interquartile range

of the cross section of stock returns from US firms derived by Bloom, Floetotto, Jaimovich, Saporta-

Eksten, and Terry (2012).9 Chart 9 plots this new risk proxy against the VIX and illustrates that the

two measure are very similar with the correlation coefficient being 0.75.

Chart 12 compares the impulse responses in the VAR with the cross section of returns measure to the

VAR estimated with the VIX. The results suggest that the risk news shock in the cross section returns

VAR induces very similar impulses to our observeables, with the exception that the risk proxy itself

rises a lot more in the future.

Chart 10 reports the forecast error variance decomposition using the cross-section measure. In this

case we see that the contribution of the risk news shock (and also the technology shock and the

monetary policy shock) are very small, around 2%. Though the contribution of the contemporaneous

risk shock amounts to about 20% (roughly the same contribution as demand shocks). If we sum the

contributions of the risk and the risk news shocks, then for both VARs (ie for the 2 risk proxies) the

9This measure is downloadable from Nick Bloom’s website. The interquartile range is thought to be a more robust
estimator of dispersion than the standard deviation when data (particularly in the tails of the distribution of returns)
are measured with error. In the absence of measurement error, and if the distribution of returns were normal, the
interquartile range will equal the standard deviation.
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sum is in the region of 20%. In this sense the VARs give reasonably similar answers, although they

divide up that 20% between the two shocks quite differently.

2.4.2 Robustness to using alternative values for h, the horizon in the ’max share’ crite-

rion

Recall that one dimension of the identification procedure is the horizon h; this refers to the horizon

in quarters up to which we try to maximise the contribution of the risk news shock to fluctuations in

the risk proxy. Chart 11 shows what happens when we choose alternative values for h, recalling that

our benchmark value was 4 quarters. The chart plots the contributions at various horizons of both

the contemporaneous and risk news shocks, for h = 12, 40 as well as our initial base case of h = 4.

In either case, the combined contributions of the two shocks to the long horizon volatility in output

growth are no more than 20%, and in fact substantially less.

3 DSGE Model with financial frictions

We move on now to see whether a suitably specified DSGE model can fit the impulse responses to

the risk news shock estimated in the VAR. We focus on this shock because this is the novel object

extracted from the data by the identification, and it is interesting to ask what light this new shock

sheds on the kind of DSGE model one needs to explain the data.

The next subsection briefly discusses the linearised first order conditions that results from agents’

decision problems. The model is essentially Smets and Wouters (2007) (which in turn was a close

relative of CEE) modified to include financial frictions as in BGG. The model features risk-averse

consumers who supply labour to differentiated and sticky wage labour unions. There are risk-neutral

entrepreneurs who borrow from perfectly competitive banks, build capital goods that they rent to

the imperfectly competitive (sticky price) producers of intermediate goods producers. And there are

the familiar perfectly competitive retailers selling the aggregated intermediate goods as a composite

final good to the consumers. There is a government (following a simple debt-targeting rule) and a

central bank (setting monetary policy according to a Taylor-like rule). The model features many

frictions: habits in consumption, price and wage stickiness as in Calvo (1983) and also price and

wage indexation as in Smets and Wouters (2007) and CEE. As in BGG, there is an informational

friction between banks and entrepreneurs who construct capital goods for use by the intermediate

goods producers. Following the literature, the optimal debt contract implies that banks charging a

spread over the policy rate (also their retail deposit rate) to the entrepreneurs which is a function of

entrepreneurs’ net worth. Finally, (following Gali, Lopez-Salido, and Valles (2007) and Cogan, Cwik,

Taylor, and Wieland (2010)), we allow for there to be a certain portion of households who do not

have access to financial markets and cannot therefore smooth consumption. These rule-of-thumb

(ROT) households simply consume all their labour income (and a transfer that equates the steady-

state consumption between non-optimising and optimising agents). As we shall see, we can get the

DSGE model to fit the VARs impulse responses to the risk news shock, but only by allowing for 75%

of consumers to to of ROT type.
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3.1 Linearised First Order Conditions of the DSGE model

All the variables are expressed as log deviations from their steady-state values. Et denotes expectation

formed at time t, ‘−’ denotes the steady state values, and all the shocks (ηit) are assumed to be normally

distributed with zero mean and unit standard deviation.

The demand side of the economy consists of consumption (ct), investment (it), capital utilisation

(zt) and government spending
(
εgt = ρgε

g
t−1 + σgη

g
t

)
, which is assumed to be exogenous. The market

clearing condition is given by

yt = cyct + iyit + zyzt + εgt (3.1)

+
µ

π̄γ
G (ω̄, σω) R̄k

K̄

Ȳ

(
Rkt + qt−1 + kt−1 +

∂G(ω̄,σω)
∂ω

G (ω̄, σω)
ω̄ωt +

∂G(ω̄,σω)
∂σω

G (ω̄, σω)
σωσω,t

)
,

where yt denotes the total output and Table (2) provides a full description of the model’s parameters.

The last term in equation (3.1) captures the cost of financial frictions in the the economy, where Rkt

stands for the return on capital, qt is the real value of existing capital stock (Tobin’s Q), kt is the

stock of physical capital, ωt is the cutoff value that divides bankrupt from non bankrupt entrepreneurs

and σω,t denotes the standard deviation of the entrepreneur’s idiosyncratic productivity shock.10 We

follow the literature (CMR) and we refer to this process as the ‘risk’ shock’, which captures the idea

that the riskiness of the entrepreneurs varies over time. The law of motion for σω,t is specified as

follows

σω,t = ρ1,σσω,t−1 + ρ2,σσω,t−2 + ρ3,σσω,t−3 + σσωη
ω
t + κt−1, (3.2)

and the news term, κt, evolves according to

κt = σκη
κ
t . (3.3)

It can be easily seen that by setting the auditing cost parameter (µ) equal to zero (no asymmetry

between lenders and borrowers and, consequently, no financial frictions), the latter expression collapses

to the standard market clearing condition. Finally, it should be noted that aggregated consumption

is the weighted sum of consumption of the optimizing
(
coptt

)
and ROT

(
cRoTt

)
households

ct = φRoT c
RoT
t + (1− φRoT ) coptt . (3.4)

The consumption Euler equation for optimising consumers is given by

coptt =
λ/γ

1 + λ/γ
coptt−1 +

(
1− λ/γ

1 + λ/γ

)
Etcoptt+1 +

(σC − 1)
(
W̄ hL̄/C̄

)
σC (1 + λ/γ)

(lt − Etlt+1)

− 1− λ/γ
σC (1 + λ/γ)

(rt − Etπt+1) + εbt , (3.5)

where lt is the hours worked, rt is the nominal interest rate, πt is the rate of inflation and εbt =

ρbε
b
t−1 +σbη

b
t is a consumption preference shock. If the degree of habits is zero (λ = 0), equation (3.5)

reduces to the standard, forward-looking consumption Euler equation. The linearised investment

10G (ω̄, σω) = 1 − Φ
(

0.5σω−logω̄
σω

)
, where Φ is the CDF of a normal distribution and ∂G(ω̄,σω)

∂σω
denotes the partial

derivative of G (ω̄, σω) with respect to σω.
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equation is given by

it =
1

1 + βγ1−σC
it−1 +

(
1− 1

1 + βγ1−σC

)
Etit+1 +

1

(1 + βγ1−σC ) γ2ϕ
qt + εit, (3.6)

where it denotes investment and εit = ρiε
i
t−1 +σiη

i
t is an investment efficiency shock. The sensitivity of

investment to the real value of the existing capital stock depends on the parameter ϕ (see, Christiano,

Eichenbaum, and Evans, 2005). The demand curve for new capital is given by

Rkt = πt +
π̄r̄k

R̄k

(
rkt + zt

)
+

(1− δ) π̄
R̄k

qt − qt−1, (3.7)

where rkt = − (kt − lt) + wt denotes the real rental rate of capital which is negatively related to

the capital-labour ratio and positively to the real wage. Capital utilization, on the other hand, is

proportional to the real rental rate of capital, zt = 1−ψ
ψ rkt .

On the supply side of the economy, the aggregate production function is defined as

yt = φp (αkst + (1− α) lt + εat ) , (3.8)

where kst represents capital services which is a linear function of lagged installed capital (kt−1) and

the degree of capital utilisation, kst = kt−1 + zt, and εat = ρaε
a
t−1 + σaη

a
t is a stationary productivity

shock. The accumulation process of installed capital is simply described as

kt =
1− δ
γ

kt−1 +
γ − 1 + δ

γ

(
it + γ2ϕεit

)
. (3.9)

Monopolistic competition within the production sector and Calvo-pricing constraints gives the follow-

ing New-Keynesian Phillips curve for inflation (when combined with the definition of the aggregate

price index):

πt =
ip

1 + βγ1−σC ip
πt−1 +

βγ1−σC

1 + βγ1−σC ip
Etπt+1

− 1

(1 + βγ1−σC ip)

(
1− βγ1−σCξp

)
(1− ξp)

(ξp ((φp − 1) εp + 1))
µpt + εpt , (3.10)

where µpt = α (kst − lt)+εat −wt is the marginal cost of production and εpt = ρpε
p
t−1 +σpη

p
t −µpσpη

p
t−1 is

a price mark-up shock, which is assumed to follow an ARMA(1,1) process. Monopolistic competition

in the labour market gives rise to a similar New-Keynesian Phillips curve for nominal wages

wt =
1

1 + βγ1−σC
wt−1 +

βγ1−σC

1 + βγ1−σC
(Etwt+1 + Etπt+1)− 1 + βγ1−σC iw

1 + βγ1−σC
πt

+
iw

1 + βγ1−σC
πt−1 −

1

1 + βγ1−σC

(
1− βγ1−σCξw

)
(1− ξw)

(ξw ((φw − 1) εw + 1))
µwt + εwt , (3.11)

where µwt = wt −
(
σllt + 1

1−λ/γ (ct − λ/γct−1)
)

is the households’ marginal benefit of supplying an

extra unit of labour service and the wage mark-up shock εwt = ρwε
w
t−1 + σwη

w
t − µwσwηwt−1 is also

assumed to be an ARMA(1,1) process.
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Loans (Bt) to entrepreneurs are defined as

Bt =
K̄

B̄
(qt + kt)−

K̄ − B̄
B̄

nt, (3.12)

where nt stands for the entrepreneurs’ net worth. The following two equations are the linearised

entrepreneurs’ first order conditions with respect to the Lagrange multiplier and leverage, respectively:

Bt = Rkt − rt−1 + qt−1 + kt−1

+
1

Γ (ω̄, σ̄ω)− µG (ω̄, σω)

(
∂[Γ(ω̄,σω)−µG(ω̄,σω)]

∂ω ω̄ωt

+∂[Γ(ω̄,σ̄ω)−µG(ω̄,σω)]
∂σω

σωσω,t

)
, (3.13)

EtR
k
t+1 = rt +

(
∂%(ω̄,σω)

∂ω

% (ω̄, σω)
+

∂Γ(ω̄,σω)
∂ω

1− Γ (ω̄, σω)

)
ω̄ωt+1

+

(
∂%(ω̄,σ̄ω)
∂σω

% (ω̄, σ̄ω)
+

∂Γ(ω̄,σω)
∂σω

1− Γ (ω̄, σω)

)
σωσω,t+1 + nt − qt − kt, (3.14)

where rt is the nominal interest rate and

Γ (ω̄, σ̄ω) = ω̄ (1− F (ω̄, σω)) +G (ω̄, σω) , (3.15)

% (ω̄, σ̄ω) =
1− F (ω̄, σω)

1− F (ω̄, σω)− µω̄ ∂F (ω̄,σω)
∂ω

, (3.16)

where F (ω̄, σω) denotes the probability of default. The evolution the net worth is given by:

nt =
ς̄

γπ̄

(
(1− µG (ω̄, σω)) R̄k

1− B̄
K̄

−
r̄ B̄
K̄

1− B̄
K̄

)
ςt +

ς̄

γπ̄

(1− µG (ω̄, σω)) R̄k

1− B̄
K̄

(
Rkt + qt−1 + kt−1

)
− ς̄

γπ̄

R̄ B̄
K̄

1− B̄
K̄

(rt−1 +Bt−1)− ς̄

γπ̄

µR̄k

1− B̄
K̄

(
∂G (ω̄, σω)

∂ω
ωωt +

∂G (ω̄, σω)

∂σω
σωσω,t

)
, (3.17)

where ςt = ρςςt−1 + σςη
ς
t is the fraction of the entrepreneurs that die each period. The consumption

of non-optimizing, ROT agents is given by:

cRoTt =
W̄ hL̄

C̄
(wt + lt)−

Ȳ

C̄
transt. (3.18)

The following equation describes the evolution of government debt:

dt = R̄

(
1

π̄
dt−1 + εgt − transt

)
. (3.19)

Transfers are set to follow a simple debt-targeting rule given by:

transt = φddt−1 + φgε
g
t . (3.20)

Finally, the monetary policy maker is assumed to set the nominal interest rate according to the
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following Taylor-type rule

rt = ρrt−1 + (1− ρ) [rππt + ry (yt − ypt )] + r∆y

[
(yt − ypt ) +

(
yt−1 − ypt−1

)]
+ εrt , (3.21)

where ypt is the flexible price level of output, and εrt = ρrε
r
t−1 + σrη

r
t is a monetary policy shock.11

3.2 Minimum Distance Estimation (MDE)

Our next step is to estimate the DSGE model using limited-information methods. We started by

seeking evidence - independent of any particular DSGE model - on the consequences and contribution

of risk news shocks, and were led by that focus to identify such shocks in a VAR.12 Having done that,

it seems natural to see what this shock implies for a DSGE model of interest. As we shall see, the

VAR impulse responses have some striking things to say about the model.

In brief, we find the vector of DSGE parameters that minimises the distance between the VAR-implied

and the DSGE estimates of the responses to the risk news shock. Such techniques have been used

in DSGE estimation widely, for example by Rotemberg and Woodford (1998), Smets and Wouters

(2002), Christiano, Eichenbaum, and Evans (2005) and Altig, Christiano, Eichenbaum, and Linde

(2011). These methods have well documented costs and benefits relative to full information methods,

which we summarise very briefly. The costs of partial information methods are the aggravation of

identification issues already problematic in DSGE models, as documented in Canova and Sala (2009),

and the burden of finding a convincing way to identify the shocks. As we have noted above, conditional

on us having found a useful proxy for the time series of idiosyncratic risk (note that CMR use this

time series to check, ex post, that their full information recovered series is a good one), the validity

of the method is justified in part by the Monte Carlo exercises which show that at least in a relevant

DSGE model the modified BS procedure does recover the news shocks successfully, results which

we will report later in the paper. The benefits of using MDE include: robustness to problems of

misspecification in the DSGE model where MDE estimates will be consistent regardless, while full

information estimates will not; plus good small sample properties (see, for example, (Ruge-Murcia,

2007; Theodoridis, 2011))-relative to classical full information methods.13

Collecting all the VAR variable responses after a risk news shock for all periods in one vector, R̂ and

doing the same for the DSGE ones, denoted R (θ), where θ of course collects the DSGE parameters

themselves, then we can select the structural parameter vector θ that minimises the following norm:

θ = arg min
(
R̂ − R (θ)

)′
W
(
R̂ − R (θ)

)
, (3.22)

where R̂ corresponds to the median of the posterior distribution of the VAR identified responses and

W is the inverse of the diagonal matrix of the variance-covariance matrix of the posterior distribution

of the VAR identified responses.

11The flexible price level of output is defined as the level of output that would prevail under flexible prices and wages
in the absence of the two mark-up shocks.

12Our VARs are independent of particular parameterised DSGE models, but the identification of course rests on certain
properties of classes of them, through the use of sign restrictions.

13Note that in our context MDE gives us robustness in particular against mis-specifying the shocks other than the
risk/risk news shocks. This would provide some comfort to RBC modellers who felt that those other shocks were spurious
additions to the model.

17



The model defines 34 parameters (recall that since we are fitting just the risk news shock, we are

not estimating any of the other shocks defined in Smets and Wouters (2007) or BGG). Of these we

calibrate 9, setting those equal to the values reported in Smets and Wouters (2007). Table 2 reports

the values of those parameters estimated, and reports those that have been calibrated. Chart 13

plots the impulse response to a risk news shock comparing the VAR with the DSGE model at the

minimum distance estimates. As we see, the DSGE model can be made to fit many of the VAR

responses reasonably well, including output, consumption, investment, hours, inflation, net worth and

the central bank rate.

However, there are two other points to take away from the results. First, our MDE results suggest

that the portion of ROT consumers amounts to 75%. Without this, we cannot match the fall in

consumption that the VAR estimates follows the risk news shock. In the DSGE model, a vigorous and

protracted fall in the policy rate causes rational consumers to bring consumption forward. As explained

in CMR the wealth-like effect of the revelation of higher future risk that depresses consumption is

relatively weak, and not sufficient to offset the substitution effect generated by the looser monetary

policy. The MDE results imply a high proportion of ROT consumers to turn off a good deal of this

intertemporal consumption substitution by rational consumers, thus dampening the transmission of

the loose monetary policy. The contrasting responses of the model with and without ROT consumers

are illustrated by Charts 15 and 16. Here we plot the responses to a risk news shock for two versions

of the DSGE model: one with the estimated 75% of ROT consumers, and one with 100% ‘rational’

or unconstrained, with all other parameters at the calibrated/minimum distance estimated values

reported in Table 2. The charts show how different having a large portion of ROT consumers makes

the responses of the DSGE model, and confirm that only with the 75% hand to mouth consumers

does the risk news shock lead to a fall in output and consumption. In addition, the model with ROT

agents generates much larger falls in hours worked and inflation. This is despite the much larger cut

in the central bank interest rate. All this said, it is important to recognise that the linearised DSGE

model we work with here rules out factors like precautionary saving. What the MDE interprets as

ROT behaviour could point to this and other omitted features of the model.

The second point to bring out of the DSGE estimation is that the model cannot get near the implied

subsequent response of the risk proxy itself or the spread to the risk news shock. This is a manifestation

of the fact that the estimated standard deviation of the risk news shock is some 4 times greater than

that in the VAR. Put another way, the comparison of the DSGE and VAR responses reveals that

we really need a much larger shift in risk (or rather revelation of such a shift in the future) in the

DSGE model to generate the same effects in the real economy as estimated in the VAR. The DSGE

model propagates risk news shocks more weakly than does the VAR, and the MDE algorithm therefore

achieves a match to the impulse responses by assigning large values to the standard deviation of these

shocks.

We judge a key factor behind this weak propagation to be the estimated value for µ, the cost of auditing

on bankruptcy, which, as can be seen from 2 is 0.05 (i.e. 5%). The lower this cost, the more we weaken

the financial accelerator mechanism in the model, and the closer the model becomes to one without

financial frictions, in which fluctuations in risk, and revelations about future such fluctuations, have

no effect on anything else (recall that we are using a linearized DSGE model). In chart 17, we report

the results of re-estimating the model by instead calibrating µ to two other values. Other parameters

that were previously estimated are estimated again; parameters that were previously calibrated are
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calibrated again at the same values. µ = 0.12 is the value calibrated by BGG for the auditing cost.

Estimates for the remaining (free) parameters shrink the estimated variance of the shocks, as can be

seen by the fact that the impulse response of the risk series (labelled ‘volatility’ in the Chart) shrinks

towards the VAR estimated response, leaving the performance of the other impulse responses (how far

they lie from the VAR responses) virtually unchanged. Calibrating at µ = 0.215, the value estimated

by CMR, shrinks the variance of the estimated risk news shocks further.

Readers who are sceptical that our MDE procedure could deliver estimates of µ better than those

calibrated from micro-data might wonder what calibrating would do to the implied estimates of the

proportion of ROT consumers. Using the CMR value for µ we get that this proportion is still 0.75. The

BGG calibration for µ delivers a value of 0.5. So the qualitative result that we need a large proportion

of hand-to-mouth consumers survives this experimentation. Qualitatively, at least, therefore, our

conclusions about the type of DSGE model suggested by the estimated VAR impulse responses to the

identified risk news shock are robust to dropping the µ that results from our MDE procedure, and

using instead other calibrated values that suggest a stronger financial accelerator.

4 Monte Carlo test of the VAR identification strategy

The force of our results about the contribution of risk and risk news shocks to the business cycle, and

what the impulse responses to these shocks say about candidate DSGE models that can explain them

rests on how well the modified BS identification scheme manages to recover risk news shocks in the

first place.

In this final section we report the results of a Monte Carlo exercise to test the ability of the VAR

identification strategy to recover the news shock and the estimated impulse responses. We take the

DSGE model at the minimum distance estimated/calibrated values of parameters reported in Table

2 as the data generating process. We simulate 1000 different data sets with 120 observations each,

corresponding to the sample size in our estimation on real data.

Figure 14 shows the impulse responses of the key macroeconomic variables following an anticipated

risk news shock. Impulse responses from both the empirical VAR and the simulated VAR are shown.

The performance of the VAR looks to be very good indeed. All the estimated impulses responses

are within the simulation bands of the theoretical impulse responses. We interpret these results as a

confirmation that our empirical approach is successful in identifying a risk news shock in the laboratory

setting. These corroborate the finding of BS that their original scheme was able to recover news shocks

to TFP in data generated from an RBC model.14 That our modified scheme works well in our context

seems to be very robust to different choices of h. Of course, at risk of stating the obvious, how much

this evidence bears on the success or otherwise of our identification scheme in recovering the risk news

shock in real data depends on how closely the real DGP resembles the DSGE laboratory we chose.

14In the NBER working paper version BS use a sticky price RBC model and find that their method also succeeds in
recovering the news shocks.
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5 Conclusion

This paper takes as its starting point recent work by Christiano, Motto, and Rostagno (2013) (CMR).

They used a DSGE model with financial frictions that articulated a risk news shock (revelations

today about changes in the variance of idiosyncratic returns that would take place in the future) and

full information methods to deduce that contemporaneous and risk news shocks together contributed

around 60% to business cycle fluctuations in output in the US. The shocks they back out correlate

well with a measure of the time series of the dispersion in US corporate stock returns.

We take a different but complementary approach. We identify risk and risk news shocks in a VAR.

To do this, we take two proxies for the time series of idiosyncratic private sector risk (the VIX, and

the interquartile range of US corporate stock returns). The identification strategy we use combines

Barsky and Sims (2011)’s (BS) method for identifying news shocks together with sign restrictions which

enable us to identify monetary policy, technology and demand shocks at the same time. In monte

carlo tests in a laboratory constructed to resemble precisely the DSGE model that we subsequently fit

to these identified VAR responses, we find that the scheme works very well in recovering the shocks

and responses.

We find that revelations about future increases in risk cause the growth of output, consumption,

investment and the level of hours worked and inflation all to fall substantially, despite a vigorous and

protracted cut in central bank interest rates, and is associated with a rise in spreads. We find that the

contribution of risk news shocks to business cycle fluctuations in US output is somewhere between 2

and 12%, depending on which proxy we use. The contribution of risk and risk news shocks combined

is in the region of 20% regardless of which proxy we use, and never more than this (in fact notably

less) if we vary the horizon at which the ‘max share’ criterion is applied. Behind the scenes, we

estimate that the risk news shock is contributing a lot to fluctuations in the central bank instrument,

responsible for about 40% of the volatility of the policy rate, which the VAR impulse responses show

fights vigorously and protractedly against its effects. We can conjecture therefore that, to the extent

that unconventional monetary policy instruments are imperfect substitutes for interest rate policy, the

recent protracted period at the zero bound could expose the economy to greater volatility from risk

news shocks.

Finally, we try to fit a DSGE model to the VAR identified impulse responses to a risk news shock. We

use a DSGE model comprising the features of Smets and Wouters (2007) with Bernanke, Gertler, and

Gilchrist (1999) financial frictions and rule-of-thumb consumers as in Gali, Lopez-Salido, and Valles

(2007). We find that we can get this model to fit the shape of the impulse responses reasonably well, i.e.

matching the conditional correlation of consumption, spreads, hours, investment, output generated

by the risk news shock, but only if we allow that 75% of consumers are of ROT type. Without

ROT consumers (holding other parameters constant at their MDE values) the model generates a rise

in consumption in response to the risk news shock, which, from the point of view of the VAR, is

counter-factual. A rise which is the corollary of a vigorous and protracted cut in the policy rate by

the central bank to fight the fall in consumption that would otherwise ensue. Despite these successes,

the estimation produces a value for the standard deviation of the risk news shocks 4 times that in

the data, and even then the DSGE model struggles to track the dynamics of the risk proxy. These

results are to some extent bound up with the weak financial accelerator mechanisms that the estimation

computes, revealed by experiments where we strengthened the financial accelerator through calibration
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by increasing the cost of auditing on bankruptcy to values calibrated by BGG or CMR. Despite doing

this, we still get large values for the number of ROT consumers, for example 50% using the BGG

calibration.
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A Charts

Figure 1: Contemporaneous risk shock
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Notes: The solid line represents the pointwise median impulse response function, and the shaded area is the

corresponding 32nd and 68th percentiles of the posterior distribution. The horizontal axes are in quarters, the

vertical axes are in percentage points.
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Figure 2: Risk news shock
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Notes: The solid line represents the pointwise median impulse response function, and the shaded area is the

corresponding 32nd and 68th percentiles of the posterior distribution. The horizontal axes are in quarters, the

vertical axes are in percentage points.
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Figure 3: Supply shock
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Notes: The solid line represents the pointwise median impulse response function, and the shaded area is the

corresponding 32nd and 68th percentiles of the posterior distribution. The horizontal axes are in quarters, the

vertical axes are in percentage points.
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Figure 4: Demand shock
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Notes: The solid line represents the pointwise median impulse response function, and the shaded area is the

corresponding 32nd and 68th percentiles of the posterior distribution. The horizontal axes are in quarters, the

vertical axes are in percentage points.
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Figure 5: Monetary policy shock
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Notes: The solid line represents the pointwise median impulse response function, and the shaded area is the

corresponding 32nd and 68th percentiles of the posterior distribution. The horizontal axes are in quarters, the

vertical axes are in percentage points.
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Figure 6: Historical Decomposition Between 2007Q1− 2010Q2
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Figure 7: Forecast Variance Decomposition: VIX Measure
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Figure 8: Risk versus Risk News Shock
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vertical axes are in percentage points.
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Figure 9: VIX versus Bloom, Floetotto, Jaimovich, Saporta-Eksten, and Terry (2012) Measure

 

7.0000

9.0000

11.0000

13.0000

15.0000

17.0000

19.0000

10.0000

15.0000

20.0000

25.0000

30.0000

35.0000

40.0000

45.0000

50.0000
1
9
8
0
‐0
1

1
9
8
1
‐0
5

1
9
8
2
‐0
9

1
9
8
4
‐0
1

1
9
8
5
‐0
5

1
9
8
6
‐0
9

1
9
8
8
‐0
1

1
9
8
9
‐0
5

1
9
9
0
‐0
9

1
9
9
2
‐0
1

1
9
9
3
‐0
5

1
9
9
4
‐0
9

1
9
9
6
‐0
1

1
9
9
7
‐0
5

1
9
9
8
‐0
9

2
0
0
0
‐0
1

2
0
0
1
‐0
5

2
0
0
2
‐0
9

2
0
0
4
‐0
1

2
0
0
5
‐0
5

2
0
0
6
‐0
9

2
0
0
8
‐0
1

2
0
0
9
‐0
5

VIX Bloom et al.

Notes: The Bloom, Floetotto, Jaimovich, Saporta-Eksten, and Terry (2012) measure (right-hand side vertical

axis) is the quarterly average of the interquartile range of firms’ monthly stock returns for all public firms.
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Figure 10: Forecast Variance Decomposition: Bloom, Floetotto, Jaimovich, Saporta-Eksten, and Terry
(2012) Measure
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Notes: The horizontal axes represent the quarters at which the forecast error variance decomposition is calcu-

lated, the vertical axes are in percentages.
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Figure 11: Forecast Variance Decomposition: H Sensitivity
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Notes: The horizontal axes represent the quarters at which the forecast error variance decomposition is calcu-

lated, the vertical axes are in percentages.
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Figure 12: VIX versus Bloom, Floetotto, Jaimovich, Saporta-Eksten, and Terry (2012) Measure: Risk
News Responses
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Notes: The solid line represents the pointwise median impulse response function, and the shaded area is the

corresponding 32nd and 68th percentiles of the posterior distribution. The horizontal axes are in quarters, the

vertical axes are in percentage points.
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Figure 13: DSGE Model Fit
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Notes: The solid line represents the pointwise median impulse response function, and the shaded area is the

corresponding 32nd and 68th percentiles of the posterior distribution. The horizontal axes are in quarters, the

vertical axes are in percentage points.
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Figure 14: Monte Carlo Simulations
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Notes: The solid line represents the pointwise median impulse response function, and the shaded area is the

corresponding 32nd and 68th percentiles of the posterior distribution. The horizontal axes are in quarters, the

vertical axes are in percentage points.
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Figure 15: HtM versu No HtM Consumers: Risk Shock
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Notes: The horizontal axes are in quarters, the vertical axes are in percentage points.
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Figure 16: HtM versu No HtM Consumers: Risk News Shock
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Notes: The horizontal axes are in quarters, the vertical axes are in percentage points.
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Figure 17: The relationship between the size of financial frictions and the magnitude of the shock
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Notes: The horizontal axes are in quarters, the vertical axes are in percentage points.
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B Tables

Table 2: Description of Parameters & Values

Symbols Description Calibrated Values Status
Structural Parameters

γ Steady State Growth Rate 1.004 Estimated
π Steady State Inflation 1.018 Estimated
φp Fixed Cost 1.003 Estimated
ϕ Steady State Capital Adjustment Cost Elasticity 12.04 Estimated
α Capital Production Share 0.278 Estimated
σ Intertemporal Substitution 2.887 Estimated
λ Habit Persistence 0.133 Estimated
ξw Wages Calvo Parameter 0.905 Estimated
σl Labour Supply Elasticity 9.949 Estimated
ξp Prices Calvo Parameter 0.573 Estimated
iw Wage Indexation 0.011 Estimated
ip Price Indexation 0.716 Estimated
z Capital Utilisation Adjustment Cost 0.407 Estimated
β Time Preference Parameter 0.996 Estimated
εp Goods Market Curvature of the Kimball Aggregator 10 Calibrated
εw Labour Market Curvature of the Kimball Aggregator 10 Calibrated
τ Capital Depreciation 0.025 Calibrated
λw Steady State Labour Markup 1.500 Calibrated
G
Y Steady State Government to GDP Ratio 0.180 Calibrated

Financial Contract Parameters

ω̄ Steady State Value of ωt 0.118 Estimated
σω Steady State Standard Deviation of ωt 0.727 Estimated
γe Entrepreneur’s Death Probability 0.965 Estimated
µ Financial Friction Auditing Cost 0.050 Estimated

Policy Parameters

φπ Taylor Inflation Parameter 1.799 Calibrated
φr Taylor Inertia Parameter 0.826 Calibrated
φy Taylor Output Gap Parameter 0.089 Calibrated
φdy Taylor Output Gap Change Parameter 0.224 Calibrated
φRoT Share of RoT Consumers 0.750 Estimated
φd Transfers Debt Coefficient 0.014 Estimated
φg Transfers Government Spending Coefficient 0.117 Estimated

Shock Parameters

ρ1,σω
Risk Shock Persistence 1.608 Estimated

ρ2,σω Risk Shock Persistence -0.989 Estimated
ρ3,σω Risk Shock Persistence 0.271 Estimated
σκ Risk News Shock Uncertainty 13.637 Estimated

* The values of the calibrated parameters are those used by Smets and Wouters (2007)
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