U.S.-Canada and U.S.-Mexico Border Crossing for Trucks: 20 Years After NAFTA

DISCLAIMER

This work represents the opinions of the authors only, and is not the position or opinion of the U.S. International Trade Commission or any of its Commissioners.

Presentation Outline

- · The Problem
- The Context
- NAFTA borders:
 - U.S.-Canada
 - U.S.-Mexico
- Security after 9/11
- Evidence of border delay costs
- Modeling institutional and security border frictions

Practical Effects of Non Tariff Barriers

NAFTA

Bilateral Trade U.S.-Mexico

Surface Exports to Mexico 2007-2009 (Shipment Value in U.S. \$ Millions)

NAFTA Border Crossing

Current Situation

Trusted Traveler Shipper Programs

- Customs-Trade Partnership Against Terrorism (C-TPAT)
- FAST
- Global Entry

The U.S.-Canada Border

- Share language, cultural heritage, legal and political systems, economic development
- Trade agreements existed before NAFTA
- Before 9-11 events the U.S-Canada border was a good example of seamless BC
- Shipper cover by a bond or insurance
- After 9-11, evidence of border delays from 30 min to 4 h and 1-3 percent extra costs, Grady (2009) concluded the costs have been underestimated, as high as 26.8 for the high tech and 14,9 for the transport sectors.

The Context U.S. - Mexican Border

Current Situation Southbound

Laredo, Texas

World Trade Bridge

Current Situation Northbound

Crossing Costs and Times

Source: Figure and Table by Haralambides, Londoño-Kent

Institutions that Benefit from Border Crossing Inefficiencies

- Mexican brokers
- The Laredo Nuevo Laredo drayage industry
- U.S. banks that finance the construction of warehouses
- State and municipal governments on both sides who receive toll payments
- The Mexican states that receive a share of Customs tax collections
- The entire regional economy that provides jobs, goods and services

Geographic Distance vs. Economic Distance

- What drives economic distance?
 - Geographic distance (~\$1.33/mile)
 - Payments at the border (\$300—\$650 per truckload)
 - Delays at the border (2—5 days)
- Result: border frictions add thousands of miles of economic distance

Modeling Border Frictions

- Frictions induced by Mexican brokerage system
 - Time lost from overly-complicated system
 - Additional fees and costs
- Frictions induced by heightened security (both borders)
 - Time lost waiting to cross
 - Increased unpredictability → increased warehousing, move from just-in-time to just-in case.

Estimating the Costs of Border Security and Delays

- Walkenhorst and Dihel (2006)
 - Additional security measures treated as frictional costs reducing productivity of traded goods (but not services) by 1 percent on average (country/sector incidence varies between 0.5-1.6% across scenarios).
 - Global trade contracts by about 0.9 percent, annual welfare declines by \$75-77 billion.

Border Security and Delays between Canada and the United States

- Nguyen and Wigle (2011):
 - Canada-only regional model (SOE)
 - Costs imposed by increasing requirements for transportation and storage services
 - Scenarios:
 - 1 percent cost goods and services
 - 2 percent cost goods, 1, percent services
 - Delays cost Canada 1.0-1.8% of welfare, reduce international trade by 3.6-6.8%

Macroeconomic Effect of Border Crossing Inefficiencies

- GTAP model appropriate framework for analysis.
 Version 9 pre-release database is used for 2011 baseline.
- Micro effect of Laredo border inefficiencies apparently minimal: 1-2 percent money to brokers
- Time is a more important factor: Hummels and Schaur (2013) estimate that each day saved in shipping is worth 0.6-2% ad valorem, with substantial variation across end-use group. We use an estimate of 0.8% per day.

Measuring the Mexican broker effect

- Time lost at the border is a deadweight loss
- Costs of Mexican brokers treated as a tariff (tms) or export tax (txs) on Mexican trade
- Policy applied to sectors where trucking dominates

Variable shocked*				
Southbound	Northbound			
Δ ams(T , US, Mex) = +3%	Δ ams(T , Mex, US) = +0.25%			
$\Delta \operatorname{tms}(T, \operatorname{US}, \operatorname{Mex}) = -2\%$	$\Delta \operatorname{txs}(T, \operatorname{Mex}, \operatorname{US}) = -0.75\%$			
	Southbound Δ ams(T , US, Mex) = +3%			

^{*}T is the set of goods shipped predominantly by truck: pdr, wht, gro, v_f, osd, c_b, pfb, ocr, ctl, oap, rmk, wol, frs, fsh, cmt, omt, vol, mil, pcr, sgr, ofd, b_t, tex, wap, lea, lum, ppp, crp, fmp, mvh, otn, ele, ome, omf

Excluded goods: coa, oil, gas, omn, p_c, nmm, i_s, nfm

Measuring the security effect

- Baseline security cost
 - Following Falkenhorst and Dihel (2006) and Nguyen and Wigle (2011), security costs represent a 1 percent ad valorem cost.
 - Applied to most goods and services trade among all NAFTA partners, excluding coal, oil, gas, electricity, and gas distribution (coa, oil, gas, ely, gdt).
- High security cost
 - Non-fossil-fuel goods barrier increased to 2 percent.
- Simulations measure the *removal* of these costs, consistent with an integrated North American security framework.

Welfare (million \$2011)

				Non-	
Sim Description	USA	Mexico	Canada	NAFTA	World
1 Broker effect, no security	2,764	4,513	-272	-2,310	4,695
2 Broker effect, baseline security	8,066	7,956	4,177	-5,663	14,537
3 Broker effect, high security	12,999	11,312	8,251	-8,837	23,725

Change in imports (percent)

Sim Description	USA	Mexico	Canada
1 Broker effect, no security	0.2	0.6	-0.1
2 Broker effect, baseline security	0.5	1.6	1.0
3 Broker effect, high security	0.8	2.6	2.0

Results and Conclusions

- Mexican brokers cost Mexico \$4.5 billion, US \$2.8 billion (2011 dollars). 2003 study found \$1.8 billion and \$1.3 billion, respectively (1997 dollars).
- Security frictions can be costly. We estimate NAFTA-wide cost \$13 billion - \$25 billion per year, excluding direct security costs.
- Reducing border frictions promotes leaner inventory management, better utilization of transport equipment, savings in capital investment, infrastructure, maintenance, and reductions in border pollution.