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Inflation’s Role in Optimal Monetary-Fiscal Policy∗

Eric M. Leeper† Xuan Zhou‡

1 Introduction

Many countries have adopted monetary and fiscal policy arrangements that erect firm walls
between the two policy authorities. There are good historical reasons for this separation:
high- or hyperinflation episodes have sprung from governments pressuring central banks to
finance spending by printing high-powered money. This policy separation is consistent with
what Kirsanova et al. (2009) call the “current consensus assignment”: task monetary policy
with controlling demand and inflation and give fiscal policy the job of stabilizing debt.

Schmitt-Grohé and Uribe (2004) and Siu (2004) buttress the case for separating monetary
and fiscal policies with the striking result that even a modicum of price stickiness implies an
optimal policy mix of nearly constant inflation, while taxes adjust to fully finance government
spending disturbances, just as in Barro (1979) and Aiyagari et al. (2002). Schmitt-Grohé
and Uribe (2007) extend their findings to show that optimal “implementable” rules also
entail the consensus assignment, an outcome later confirmed by Kirsanova and Wren-Lewis
(2012), among others. The consensus assignment takes inflation financing off the table.

Economic theory does not generally support the complete separation of policy tasks.
Phelps (1973) is the classic argument that in a second-best world, optimal policy calls for
a positive inflation rate to balance distortions among various taxes against each other. In
a stochastic world, the optimal inflation rate will vary over time. From this optimal public
finance perspective, the complete separation of monetary and fiscal policies enshrined in
the consensus is difficult to rationalize. Phelps’s argument also finds voice in neoclassical
models with flexible wages and prices, where Chari and Kehoe (1999) show that an optimal
policy generates jumps in inflation that revalue nominal government debt without requiring
changes in distorting tax rates, much as inflation behaves under the fiscal theory of the price
level [Leeper (1991), Sims (1994), Woodford (1995)].

Phelps’s policy prescription raises the practical question of whether the optimal infla-
tion rate fluctuates enough to justify considering policy arrangements that do not separate
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monetary and fiscal policy. After all, many economists believe that in advanced economies
seigniorage is such a minor source of revenues that it can be ignored in policy design.1

Missing from the work that builds on Phelps’s insights is the recognition that when the
government issues long-term nominal debt, which most countries do in overwhelming pro-
portions of total debt, surprise changes in current inflation and interest rates—even rather
modest changes—can have substantial effects on the market value of debt, to become a
sizeable source of fiscal financing. Hall and Sargent (2011) and Sims (2013) document that
these surprise changes are not at all small potatoes: Hall and Sargent compute that about
16 percentage points of the 80 percentage point decline in the U.S. debt-GDP ratio from
1945 to 1974 is attributable to negative real returns due to realized inflation; Sims estimates
the surprise capital gains and losses on federal debt to be the same order of magnitude as
fluctuations in primary surpluses, about 6 percent of outstanding debt. Even when seignior-
age revenues are small, surprise changes in current and future inflation may play a major
role in fiscal financing. This paper abstracts from seigniorage to focus on revaluations of
outstanding debt by surprise inflation and interest rates.

Sims (2001, 2013) questions whether the consensus assignment is robust when govern-
ments issue long-term nominal bonds. He lays out a theoretical argument for using nominal
debt—and surprise revaluations of that debt—as a cushion against fiscal shocks to substitute
for large movements in distorting taxes. Sims (2013) stops short of claiming that the weak
responses of taxes to fiscal disturbances, which long debt permits, is optimal policy. This
paper explores that claim.

The paper follows most closely the linear-quadratic approach that Benigno and Woodford
(2004, 2007) developed. Deviations from optimality stem from the presence of distorting
taxes, nominal price rigidities, and a distorted steady state. Policy chooses sequences of
tax rates and short-term nominal interest rates to maximize a representative agent’s utility
subject to four constraints, given a government debt maturity structure: a consumption
Euler equation, a Phillips curve, a government solvency condition, and a term structure
relation. Government issues a portfolio of nominal bonds whose average maturity is indexed
by a single parameter, as in Woodford (1998). Like Benigno and Woodford, we assume
commitment and a timeless perspective.

A major focus of the paper is the role that the maturity structure of nominal government
debt plays in the optimal policy mix. Most work in this literature, including that underly-
ing the consensus assignment, imposes that the government issues only one-period bonds.
Under this assignment, the maturity structure of government debt plays no obvious macro
stabilization goal, at least in conventional policy models.

The paper offers a theoretical rationale for the empirical fact that governments revalue
outstanding debt with surprise changes in inflation and interest rates. While this has been
hinted at in previous work by Sims (2001, 2013), the present paper is the first to show that
the revaluations are an essential component of optimal monetary and fiscal policies when
government debt has average maturities in the ranges observed.

Maturity structure plays a subtle role in determining the impacts of monetary and fiscal

1King and Plosser (1985) observe that in the United States, seigniorage is about as important a source
of revenues as excise taxes. King (1995) reports that over the 45 years between 1950 and 1994, seigniorage
averaged 0.7 percent of GDP across the G-7 countries.
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policies. Two effects arise as the average maturity of debt extends. First, longer maturity can
relieve some of the fiscal needs that arise from fluctuations in technology, wage markups, and
government purchases. Second, longer maturity permits future monetary policy choices of
short-term nominal interest rates to contribute to fiscal finance by changing bond prices and,
therefore, the market value of debt. Taken together, as maturity extends, it becomes optimal
to trade inflation stabilization off in favor of output stabilization and it is no longer optimal—
as it is under the consensus assignment—to fully stabilize inflation and allow output to bear
the brunt of fiscal solvency needs.

We calibrate the model to quantify the fiscal financing effects for a country like the United
States. With a post-war mean debt-GDP ratio of 46%, it is optimal for a country like America
to rely on surprise current and future inflation to finance about 7% of an innovation in fiscal
needs when the average maturity is 5 years. High-debt countries, though, would optimally
rely more heavily on inflation: about 11% with 5-year average maturity. Reliance on surprise
inflation and interest rates rises monotonically with average maturity.

Table 1 reports the average term to maturity of outstanding government debt in selected
advanced economies in recent years. While there is variation across countries, with Korea
at 16 quarters and the United Kingdom at 49 quarters, the median is about six years. We
show below that the presence of even moderate average maturity government bonds can
substantially alter the nature of optimal monetary and fiscal policies.

Country Quarters

Canada 26.1
France 25.6
Germany 24.0
Italy 24.3
Japan 22.1
South Korea 15.9
United Kingdom 49.3
United States 20.0

Table 1: Average maturity of outstanding government debt, 1997–2010; Japan 1997–2009;
South Korea 2001–2010. Source: OECD.

In the presence of distorting taxes, nominal rigidities, and long-term nominal government
debt, policy faces a fundamental tradeoff between smoothing inflation and output—the two
objectives in the representative agents’ loss function—and ensuring government solvency.
Government debt maturity affects how policy optimally makes this tradeoff. For both in-
flation and output, longer average maturity enhances smoothing. In terms of responding
to fiscal needs, maturity affects inflation and output differently: longer maturity makes it
optimal to allow inflation to react more strongly to shocks in fiscal needs, while the output
gap responds less strongly.

In the extreme case of only one-period debt, which underlies the work behind the con-
sensus assignment, optimal policy makes the price level a martingale—perfectly smoothes
it—and forces the output gap to absorb disturbances. When nominal government bonds
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are perpetuities, optimal outcomes are starkly different: the output gap is a martingale and
inflation adjusts permanently to exogenous shocks.

Key findings include: (1) there is always a role for current and future inflation innovations
to revalue government debt, reducing reliance on distorting taxes; (2) the role of inflation
in optimal fiscal financing increases with the average maturity of government debt; (3)
as average maturity rises, it is optimal to tradeoff inflation for output stabilization; (4)
inflation is relatively more important as a fiscal shock absorber in high-debt than in low-
debt economies; (5) in some calibrations that are relevant to U.S. data, welfare under the
fully optimal monetary and fiscal policies can be made equivalent to the welfare under the
conventional optimal monetary policy with passively adjusting lump-sum taxes by extending
the average maturity of bond.

Contacts with Literature We integrate two strands of literature. First, following
the neoclassical literature on optimal taxation, when the government has access only to
distortionary taxes, variations in tax rates generate dead-weight losses [Barro (1979)]. Max-
imization of welfare calls for smoothing tax rates. If a disturbance to the government budget
occurs, the real value of government debt should adjust with the shock. This is possible
only when (i) the government can issue state-contingent bonds [Lucas and Stokey (1983),
Chari et al. (1994)], or (ii) the government issues nominal bonds, but unexpected variations
in inflation replicate state-contingent bonds [Bohn (1990) and Chari and Kehoe (1999)].
Neoclassical work abstracts from monetary considerations by assuming flexible prices.

Another strand, the new Keynesian literature on optimal monetary policy, emphasizes
that when prices are sticky, variation in aggregate price levels creates price dispersion that
is an important source of welfare loss. A benevolent government minimizes price volatility.
This strand tends to abstract from fiscal considerations by assuming non-distorting sources
of revenue that maintain government solvency [Clarida et al. (1999) and Woodford (2003)].

We also connect to studies that focus on long-term bonds. Angeletos (2002) and Buera
and Nicolini (2004) examine the optimal maturity structure of public debt to find that state-
contingent debt can be constructed by non-contingent debt with different maturities. They
consider only the case where prices are perfectly flexible and the government issues only real
debt. Woodford (1998), Cochrane (2001) and Sims (2001, 2013) study nominal government
debt to argue that when outstanding government debt has long maturity, it can be optimal
to finance higher government spending with a little bit of inflation spread over the maturity
of the debt, effectively converting nominal debt into state-contingent real debt, as in Lucas
and Stokey (1983). Both Cochrane and Sims employ ad hoc welfare functions to illustrate
their points, so neither argues that revaluation of debt through inflation is a feature of a fully
optimal policy. More importantly, they both consider a constant or exogenous real interest
rate, downplaying intertemporal effects of monetary and fiscal policies.

2 Model

We employ a standard new Keynesian economy that consists of a representative household
with an infinite planning horizon, a collection of monopolistically competitive firms that
produce differentiated goods, and a government. A fiscal authority finances exogenous ex-
penditures with distorting taxes and debt and a monetary authority sets the short-term
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nominal interest rate.

2.1 Households The economy is populated by a continuum of identical households. Each
household has preferences defined over consumption, Ct, and hours worked, Njt. Preferences
are

E0

∞∑
t=0

βtU(Ct, Njt) = E0

∞∑
t=0

βt

[
C1−σ
t

1− σ
−
∫ 1

0

N1+φ
jt

1 + φ
dj

]

where σ−1 parameterizes the intertemporal elasticity of substitution, and φ−1 parametrizes
the Frisch elasticity of labor supply.

Consumption is a CES aggregator defined over a basket of goods of measure one and
indexed by j

Ct =

[∫ 1

0

C
ϵ−1
ϵ

jt dj

] ϵ
ϵ−1

where Cjt represents the quantity of good j consumed by the household in period t. The
parameter ϵ > 1 denotes the intratemporal elasticity of substitution across different varieties
of consumption goods.2 Each good j is produced using a type of labor that is specific to
that industry, and Njt denotes the quantity of labor supply of type j in period t. The
representative household supplies all types of labor.

The aggregate price index Pt is

Pt =

[∫ 1

0

P 1−ϵ
jt dj

] 1
1−ϵ

where Pjt is the nominal price of the final goods produced in industry j.
Households maximize expected utility subject to the budget constraint

Ct +QS
t

BS
t

Pt
+QM

t

BM
t

Pt
=
BS
t−1

Pt
+ (1 + ρQM

t )
BM
t−1

Pt
+

∫ 1

0

(
Wjt

Pt
Njt +Πjt

)
dj + Zt

where Wjt is the nominal wage rate in industry j, Πjt is the share of profits paid by the
jth industry to the households, and Zt is lump-sum government transfer payments. BS

t

is a one-period government bond with nominal price QS
t ; B

M
t is a long-term government

bond portfolio with price QM
t . The long-term bond portfolio is defined as perpetuities with

coupons that decay exponentially, as in Woodford (2001). A bond issued at date t pays ρk−1

dollars at date t + k, for k ≥ 1 and ρ ∈ [0, 1] is the coupon decay factor that parameterizes
the average maturity of the bond portfolio. A consol is the special case when ρ = 1 and
one-period bonds arise when ρ = 0. The duration of the long-term bond portfolio BM

t is
(1− βρ)−1.

2 When ϵ → ∞, goods become perfect substitutes; when ϵ → 1, goods are neither substitutes nor
complements: an increase in the price of one good has no effect on demand for other goods.
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Household optimization yields the first-order conditions

Wjt

Pt
= −µWt

Unj ,t

Uc,t
(1)

QS
t = βEt

Uc,t+1

Uc,t

Pt
Pt+1

(2)

QM
t = βEt

Uc,t+1

Uc,t

Pt
Pt+1

(1 + ρQM
t+1) (3)

where µWt is an exogenous wage markup factor.3 Combining (2) and (3) yields the no-
arbitrage condition between one-period and long-term bonds

QM
t = EtQ

S
t (1 + ρQM

t+1) (4)

2.2 Firms A continuum of monopolistically competitive firms produce differentiated goods.
Production of good j is given by

Yjt = AtNjt

where At is an exogenous aggregate technology shock, common across firms. Firm j faces
the demand schedule

Yjt =

(
Pjt
Pt

)−ϵ

Yt

With demand imperfectly price-elastic, each firm has some market power, leading to the
monopolistic competition distortion in the economy.

Another distortion stems from nominal rigidities. Prices are staggered, as in Calvo (1983),
with a fraction 1 − θ of firms permitted to choose a new price, P ∗

t , each period, while the
remaining firms cannot adjust their prices. This pricing behavior implies the aggregate price
index

Pt = [(1− θ)(P ∗
t )

1−ϵ + θ(Pt−1)
1−ϵ]

1
1−ϵ (5)

Firms that can reset their price choose P ∗
t to maximize the expected sum of discounted

future profits by solving

maxEt

∞∑
k=0

θkQt,t+k[(1− τt+k)P
∗
t Yt+k|t −Ψt+k(Yt+k|t)]

subject to the demand schedule

Yt+k|t =

(
P ∗
t

Pt+k

)−ϵ

Yt+k

3We follow Benigno and Woodford (2007) to include the time-varying exogenous wage markup in order
to include a “pure” cost-push effect.
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where Qt,t+k is the stochastic discount factor for the price at t of one unit of composite

consumption goods at t + k, defined by Qt,t+k = βk
Uc,t+k
Uc,t

Pt
Pt+k

. Sales revenues are taxed at

rate τt, Ψt is cost function, and Yt+k|t is output in period t + k for a firm that last reset its
price in period t.

The first-order condition for this maximization problem implies that the newly chosen
price in period t, P ∗

t , satisfies(
P ∗
t

Pt

)1+ϵφ

=
ϵ

ϵ− 1

Et
∑∞

k=0(βθ)
kµWt+k(

Yt+k
At+k

)φ+1(Pt+k
Pt

)ϵ(1+φ)

Et
∑∞

i=0(βθ)
k(1− τt+k)Uc,t+kYt+k(

Pt+k
Pt

)ϵ−1

=
ϵ

ϵ− 1

Kt

Jt
(6)

where Kt and Jt are aggregate variables that satisfy the recursive relations

Kt = µWt

(
Yt
At

)φ+1

+ βθEtKt+1π
ϵ(1+φ)
t+1 (7)

Jt = (1− τt)Uc,tYt + βθEtJt+1π
ϵ−1
t+1 (8)

2.3 Government The government consists of a monetary and a fiscal authority who face
the consolidated budget constraint, expressed in real terms

(1 + ρQM
t )BM

t−1

Pt
=
QM
t B

M
t

Pt
+ St (9)

where St is the real primary budget surplus defined as

St = τtYt − Zt −Gt (10)

Gt is government demand for the composite goods and Zt is government transfer payments.
We consider a fiscal regime in which both Gt and Zt are exogenous processes and only τt
adjusts endogenously to ensure government solvency. This assumption breaks Ricardian
equivalence, so the government’s budget and the dynamics of public debt matter for welfare
and monetary policy can have important fiscal consequences.

An intertemporal equilibrium—or solvency—condition links the real market value of out-
standing government bonds to the expected present value of primary surpluses4

(1 + ρQM
t )

BM
t−1

Pt
= Et

∞∑
k=0

Rt,t+kSt+k (11)

where Rt,t+k = βk
Uc,t+k
Uc,t

is the k-period real discount factor.

The left-hand side of (11) highlights a key role of long-term bonds. With only one-period
bonds, ρ = 0, the nominal value of outstanding government bonds, BM

t−1, is predetermined,
so an unexpected change to the present value of primary surpluses must be absorbed entirely

4See Appendix A for the derivation of this condition.
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by surprise inflation or deflation at time t. Long-term bonds, ρ > 0, imply that the nominal
value of government bond, (1+ρQM

t )BM
t−1, is no longer predetermined. Because the nominal

bond price QM
t , depends on expected future riskless short-term nominal interest rates5

QM
t = Et

∞∑
k=0

ρk

itit+1...it+k
(12)

solvency condition (11) may be written as[
1 + Et

∞∑
k=0

ρk

itit+1...it+k

]
︸ ︷︷ ︸
current and future monetary policy

BM
t−1

Pt
= Et

∞∑
k=0

Rt,t+kSt+k︸ ︷︷ ︸
current and future fiscal policy

(13)

Now an unexpected change to the present value of primary surpluses could be absorbed by
adjustments in current and future nominal interest rates, reducing the reliance on current
inflation.

Equilibrium condition (13) reflects a fundamental symmetry between monetary and fiscal
policies. The price level today must be consistent with expected future monetary and fiscal
policies, whether those policies are set optimally or not. Bond maturity matters: so long
as the average maturity exceeds one period, ρ > 0, expected future monetary policy in the
form of choices of the short-term nominal interest rate, it+k, plays a role in determining the
current price level.

2.4 Equilibrium Market clearing in the goods market requires

Yt = Ct +Gt (14)

and market clearing in labor market requires

∆
1

1+φ

t Yt = AtNt (15)

where ∆t =
∫ 1

0
(
Pjt
Pt
)−ϵ(1+φ)dj denotes the the measure of price dispersion across firms and

satisfies the recursive relation

∆t = (1− θ)

[
1− θπϵ−1

t

1− θ

] ϵ(1+φ)
ϵ−1

+ θπ
ϵ(1+φ)
t ∆t−1 (16)

Price dispersion is the source of welfare losses from inflation variability.

3 Fully Optimal Policy

In the fully optimal policy problem, government chooses functions for the tax rate, τt, and
the short-term nominal interest rate, it, taking exogenous processes for technology, At, the
wage markup, µWt , government purchases, Gt, and transfers, Zt, as given. We derive how the
optimal policy and welfare vary with the average maturity of government debt, as indexed
by ρ. We consider the case of a steady state distorted by distortionary tax and monopolistic
competition and focus on optimal policy commitment, adopting Woodford’s (2003) “timeless
perspective.”

5The riskless short-term nominal gross interest rate is defined by it =
[
QS

t

]−1
. See Appendix A for the

derivation of condition (12).
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3.1 Linear-Quadratic Approximation We compute a linear-quadratic approxima-
tion to the nonlinear optimal solutions, using the methods that Benigno and Woodford
(2004) develop. This allows us to characterize the optimal policy responses to fluctuations
in the exogenous disturbance processes within a neighborhood of the steady state.

In this model, distorting taxes and monopolistic competition conspire to make the deter-
ministic steady state inefficient, so an ad hoc linear-quadratic representation of the problem
does not yield an accurate approximation of the optimal policy.6 Benigno and Woodford
(2004) show that a correct linear-quadratic approximation is still possible by properly uti-
lizing information from micro-foundations. Their approach computes a second-order ap-
proximation to the model’s structural equations and uses an appropriate linear combination
of those equations to eliminate the linear terms in the second-order approximation to the
welfare measure to obtain a purely quadratic expression.

We follow Benigno and Woodford’s micro-founded linear-quadratic approach for three
reasons. First, it allows us to obtain neat analytical solutions that help us to characterize
the properties of optimal policies and separate out the channels through which long-term
bonds affect optimal allocation. Second, the framework nests conventional analyses of both
optimal inflation-smoothing and optimal tax-smoothing, providing an integrated approach
to the two literatures. Third, the quadratic welfare criterion is independent of policy, which
permits us to compare our results to alternative sub-optimal policies.

Welfare losses experienced by the representative household are, up to a second-order
approximation, proportional to7

1

2
E0

∞∑
t=0

βt
(
qππ̂

2
t + qxx̂

2
t

)
(17)

where the relative weight on output stabilization depends on model parameters

qx
qπ

≡ κ

ϵ

[
1 +

s−1
c σ

φ+ s−1
c σ

(1 + wg)(1 + wτ )− s−1
c (1 + wg + wτ )

(Φ−1 − 1)Γ + (1 + wg)(1 + φ)

]
x̂t denotes the welfare-relevant output gap, defined as the deviation between Ŷt and its
efficient level Ŷ e

t , x̂t ≡ Ŷt − Ŷ e
t . Efficient output, Ŷ e

t , depends on the four fundamental
shocks and is given by Ŷ e

t = qAÂt + qGĜt + qZẐt + qWµ
W
t .8 wg = (Z̄ + Ḡ)/S̄ is the steady-

state government outlays to surplus ratio, wτ = τ̄ /1 − τ̄ , sc = C̄/Ȳ is the steady-state
consumption to GDP ratio, and

κ =
(1− θ)(1− βθ)

θ

s−1
c σ + φ

1 + ϵφ

Γ = (s−1
c σ + φ)(1 + wg) + s−1

c σwτ − wτ (1 + wg)

Φ = 1− (1− τ̄)
ϵ− 1

ϵ
6One convenient way to eliminate the inefficiency of the steady state is to assume an employment subsidy

that offsets the distortion due to the market power of monopolistically-competitive price-setters or distorting
tax, so that the steady state with zero inflation involves an efficient level of output. We instead consider a
more realistic case, where an employment subsidy is not available. See Kim and Kim (2003) and Woodford
(2011) for more discussions.

7See Appendices C–F for detailed derivations.
8Parameters qA, qG, qZ and qW are defined in appendix F.
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Note that −Un
Uc

= (1−Φ)MPN , so Φ, which measures the inefficiency of the steady state, de-
pends on the steady state tax rate, τ̄ , and the elasticity of substitution between differentiated
goods, ϵ.

3.2 Linear Constraints Constraints on the optimization problem come from log-linear
approximations to the model equations. The first constraint comes from the aggregate supply
relation between current inflation and the output gap

π̂t = βEt[π̂t+1] + κ(x̂t + ψτ̂t) + ut (18)

where ut is a composite cost-push shock that depends on the four exogenous disturbances

ut ≡ κ

[
qA − 1 + φ

φ+ σs−1
c

]
︸ ︷︷ ︸

uA

Ât + κ

[
qG − σ

φ+ σs−1
c

sg
sc

]
︸ ︷︷ ︸

uG

Ĝt + κqZ︸︷︷︸
uZ

Ẑt + κ

[
qW +

1

φ+ σs−1
c

]
︸ ︷︷ ︸

uW

µ̂Wt

(19)

The exogenous disturbances generate cost-push effects through (19) because with a dis-
torted steady state, they generate a time-varying gap between the flexible-price equilibrium
level of output and the efficient level of output. If the steady state were not distorted, only
variations in wage markups would have cost-push effects. This is why wage markups are
regarded as “pure” cost-push disturbances.9

When τ̂t is exogenous, κψτ̂t + ut prevents complete stabilization of inflation and the
welfare-relevant output gap. Iterating forward on (18) yields

π̂t = Et

∞∑
k=0

βkκx̂t+k + Ut

where Ut ≡ Et
∑∞

k=0 β
k(κψτ̂t+k + ut+k) determines the degree to which stabilization of infla-

tion and output gap is not possible. This is the only source of tradeoff between stabilization
of inflation and output gap in conventional new Keynesian optimal monetary policy analyses
[for example, Gaĺı (1991)].

When τ̂t is chosen optimally along with monetary policy, then τ̂t can be set to fully absorb
cost-push shocks, making simultaneous stabilization of inflation and the output gap possible.
Benigno and Woodford (2004) rewrite (18) as

π̂t = βEt[π̂t+1] + κx̂t + κψ(τ̂t − τ̂ ∗t ) (20)

where τ̂ ∗t ≡ − 1
κψ
ut is the tax rate that offsets the cost-push shock. Expression (20) describes

the tradeoff between inflation and output that fiscal policy faces because tax rates can help
stabilize output and inflation by offsetting variations in cost-push distortions.

A second constraint arises from the household’s Euler equation. After imposing market
clearing it may be written as

x̂t = Et[x̂t+1]−
sc
σ

(
ît − Et[π̂t+1]

)
+ vt (21)

9See Benigno and Woodford (2004) for detailed discussions.
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where the composite aggregate demand shock, vt, is

vt ≡ qA(ρA − 1)︸ ︷︷ ︸
vA

Ât + (qG − sg)(ρG − 1)︸ ︷︷ ︸
vG

Ĝt + qZ(ρZ − 1)︸ ︷︷ ︸
vZ

Ẑt + qW (ρW − 1)︸ ︷︷ ︸
vW

µ̂Wt (22)

Alternatively, (21) can be written as

x̂t = Et[x̂t+1] +
sc
σ
Et[π̂t+1]−

sc
σ

(
ît − î∗t

)
(23)

where î∗t ≡ σ
sc
vt is the setting of the short-term nominal interest rate that exactly offsets

the composite demand-side shock.10 Expression (23) makes clear how monetary policy can
offset variations in demand-side distortions.

If (20) and (23) were the only constraints facing policy makers, it would be possible to
choose monetary and tax policies to completely stabilize inflation and output. Policy could
achieve the first-best outcome, π̂t = x̂t = 0, by setting

τ̂t = τ̂ ∗t ît = î∗t (24)

In the absence of any additional constraints on the policy problem, policy authorities who
are free to choose paths for the short-term nominal interest rate and tax rate can achieve
the unconstrained maximum of welfare. To achieve this first-best outcome, policy must have
access to a non-distorting source of revenues or state-contingent debt that can adjust to
ensure that the government’s solvency requirements do not impose additional restrictions on
achievable outcomes.

When non-distorting revenues are not available, the government can convert nominal
bonds into state-dependent real bonds. If the government issues nominal bonds with average
maturity indexed by ρ, fiscal solvency implies the additional constraint

b̂Mt−1 + ft = βb̂Mt + (1− β)
τ̄

sd
(τ̂t + x̂t) + π̂t + β(1− ρ)Q̂M

t (25)

where sd ≡ S̄/Ȳ is the steady-state surplus to output ratio and ft is a composite fiscal shock
that reflects all four exogenous disturbances to the government’s flow constraint

ft ≡ −(1− β)
τ̄

sd
qA︸ ︷︷ ︸

fA

Ât + (1− β)

(
sg
sd

− τ̄

sd
qG

)
︸ ︷︷ ︸

fG

Ĝt + (1− β)

(
sz
sd

− τ̄

sd
qZ

)
︸ ︷︷ ︸

fZ

Ẑt−(1− β)
τ̄

sd
qW︸ ︷︷ ︸

fW

µ̂Wt

(26)

In general, all disturbances have fiscal consequences through (25) and (26), because nondis-
torting taxes are not available to offset their impacts on the government’s budget.

Absence of arbitrage between short-term and long-term bonds delivers the fourth con-
straint on the optimal policy program

βρEtQ̂
M
t+1 = Q̂M

t + ît (27)

10Note that î∗t = σ
sc
Et[(ŷ

e
t+1 − ŷet )− sg(Ĝt+1 − Ĝt)], giving it an interpretation as the efficient level of the

real interest rate.

11
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Iterating on (27) and applying a terminal condition yields

Q̂M
t = −Et

∞∑
k=0

(βρ)k ît+k (28)

Defining the long-term interest rate iMt as the yield to maturity, iMt ≡ 1
QMt

− (1 − ρ), we

obtain the term structure of interest rates

îMt =
1− βρ

1− β
Et

∞∑
k=0

(βρ)k ît+k (29)

When ρ = 0, all bonds are one period, îMt = 1
1−β ît, the long-term interest rate at time t

is proportional to the current short-term interest rate, so any disturbance to the long rate
will also affect the current short rate. When ρ > 0, the long-term interest rate at time t
is determined by the whole path of future short-term interest rates, making intertemporal
smoothing possible. A disturbance to the long-term interest rate can be absorbed by adjust-
ing future short-term interest rates, with no change in the current short rate. By separating
current and future monetary policies, long bonds provide policy additional leverage.

Iterating forward on the government’s budget constraint (25) and imposing transversality
and the no-arbitrage condition (28), we obtain the intertemporal equilibrium condition

b̂Mt−1 + Ft︸ ︷︷ ︸
fiscal stress

=π̂t +
σ

sc
x̂t + (1− β)Et

∞∑
k=0

βk[bτ (τ̂t+k − τ̂ ∗t+k) + bxx̂t+k]

+ Et

∞∑
k=0

(βρ)k+1(̂it+k − î∗t+k)︸ ︷︷ ︸
due to long-term bonds

(30)

where bτ =
τ̄
sd
, bx =

τ̄
sd

− σ
sc

and

Ft = Et

∞∑
k=0

βkft+k − (1− β)
τ̄

sd
Et

∞∑
k=0

βkτ̂ ∗t+k + Et

∞∑
k=0

[βk+1 − (βρ)k+1 ]̂i∗t+k (31)

The sum b̂Mt−1+Ft summarizes the fiscal stress that prevents complete stabilization of inflation
and the welfare-relevant output gap. Given the definitions of τ ∗ and i∗, Ft reflects fiscal stress
stemming from three conceptually distinct but related sources: the composite fiscal shock,
ft, the composite cost-push shock, ut (through τ ∗t ), and the composite aggregate demand
shock, vt (through i

∗
t ).

11

Contrasting (30) to the one-period bond case in Benigno and Woodford (2004), the pres-
ence of long-term bonds gives a role to expectations of future monetary policies. Monetary
and fiscal policy can be coordinated so that households’ expectations about future policies
affect long-term interest rates to offset part of the overall fiscal stress in the economy.

11Ft corresponds to the fiscal stress that Benigno and Woodford (2004) define, but here it is extended to
the case of long-term bonds.
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With Ft fluctuating exogenously, complete stabilization of inflation and output, π̂t = x̂t =
0, which implies τ̂t = τ̂ ∗t , ît = î∗t , will not generally satisfy (30) and the government would
be insolvent. The additional fiscal solvency constraint prevents the first-best allocation from
being achievable. Any feasible allocation involves a tension between stabilization of inflation
and output gap, so the optimal policy must balance this tension.

4 Optimal Policy Analytics: Flexible Prices

In this section we characterize optimal equilibrium and policy assignment for the special
case of completely flexible prices. This case serves as a baseline, since with flexible prices
the tradeoff between inflation and output gap disappears. It also connects to earlier work
by Chari et al. (1996) and Chari and Kehoe (1999), except that they considered only real
government bonds, while we consider nominal bonds. Flexible prices emerge when θ = 0,
which implies κ = ∞ and qπ = 0. Costless inflation converts the loss function from (17) to

1

2
E0

∞∑
t=0

βtqxx̂
2
t (32)

and the optimal policy problem minimizes (32) subject to the sequence of constraints

x̂t + ψ(τ̂t − τ̂ ∗t ) = 0 (33)

x̂t +
sc
σ
(̂it − î∗t )− Et[x̂t+1]−

sc
σ
Et[π̂t+1] = 0 (34)

b̂Mt−1 + Ft = π̂t+
σ

sc
x̂t + (1− β)Et

∞∑
k=0

βk[bτ (τ̂t+k − τ̂ ∗t+k) + bxx̂t+k]

+ Et

∞∑
k=0

(βρ)k+1(̂it+k − î∗t+k) (35)

The optimal solution entails x̂t = 0 at all times, which can be achieved if fiscal policy follows
τ̂t = τ̂ ∗t and monetary policy sets the short-term real interest rate as ît−Etπ̂t+1 = î∗t . In this
optimal policy assignment, fiscal policy stabilizes the output gap, monetary policy stabilizes
expected inflation and the maturity structure of debt determines the timing of inflation.
Equilibrium inflation satisfies

b̂Mt−1 + Ft = π̂t + Et

∞∑
k=1

(βρ)kπ̂t+k (36)

so increases in factors that prevent complete stabilization of the objectives b̂Mt−1 + Ft, raise
the expected present value of inflation. When ρ > 0, (36) implies that long-term bonds
allow the government to trade off inflation today for inflation in the future. The longer the
average maturity, the farther into the future inflation can be postponed. This conclusion is
reminiscent of Cochrane’s (2001) optimal inflation-smoothing result.

When ρ = 0 and all bonds are one-period, (36) collapses to

b̂Mt−1 + Ft = π̂t (37)

13
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and, as Benigno and Woodford (2007) emphasize, “optimal policy will involve highly volatile
inflation and extreme sensitivity of inflation to fiscal shocks.”

Flexible prices neglect the welfare costs of inflation. When prices are sticky and infla-
tion volatility is costly, the optimal allocation should balance variations in inflation against
variations in the output gap.

5 Optimal Policy Analytics: Sticky Prices

In the case where prices are sticky, the optimization problem finds paths for {π̂t, x̂t, τ̂t, ît, b̂Mt , Q̂M
t }

that minimize

1

2
E0

∞∑
t=0

βt[π̂2
t + λx̂2t ], λ ≡ qx

qπ
(38)

subject to the sequence of constraints

π̂t = βEt[π̂t+1] + κx̂t + κψ(τ̂t − τ̂ ∗t ) (39)

x̂t = Et[x̂t+1] +
sc
σ
Et[π̂t+1]−

sc
σ
(̂it − î∗t ) (40)

b̂Mt−1 = βb̂Mt + (1− β)
τ̄

sd
(τ̂t + x̂t) + π̂t + β(1− ρ)Q̂M

t − ft (41)

Q̂M
t = βρEtQ̂

M
t+1 − ît (42)

Taking first-order conditions with respect to π̂t, x̂t, ît, τ̂t, b̂
M
t and Q̂M

t , we obtain the fol-
lowing optimality conditions:

π̂t = −1− β

κψ

τ̄

sd
(Lbt − Lbt−1)− Lbt +

1

β
Lqt−1 (43)

λx̂t = (ψ−1 − 1)(1− β)
τ̄

sd
Lbt −

σ

sc
Lqt +

σ

sc

1

β
Lqt−1 (44)

β(1− ρ)Lbt − Lqt + ρLqt−1 = 0 (45)

EtL
b
t+1 − Lbt = 0 (46)

where Lbt and L
q
t are Lagrange multipliers corresponding to (41) and (42). We solve (39)–(46)

for state-contingent paths of {π̂t, x̂t, ît, τ̂t, b̂Mt , Q̂M
t , L

q
t , L

b
t}.

With inflation and the output gap expressed as functions of only Lbt and L
q
t , it is clear

that disturbances to the government budget or to debt maturity affect inflation and output.
The shadow price of the government budget constraint, Lbt , follows a martingale, according
to (46), a property that reflects intertemporal smoothing in fiscal financing. Lbt measures
how binding the fiscal solvency constraint is on fiscal policy. Lqt measures the tightness of
the fiscal solvency constraint on monetary policy by linking Lqt to a distributed lag of Lbt
with weights that decay with ρ, the determinant of debt’s duration

Lqt = β(1− ρ)
∞∑
k=0

ρkLbt−k (47)
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Maturity structure matters through its implications for fiscal financing. How much monetary
policy is constrained by fiscal financing depends on the entire history of shadow prices of
the government budget, Lbt−j, and the degree of history dependence rises with the average
maturity of government debt. Restricting attention to only one-period debt, so that ρ = 0,
Lqt = βLbt , eliminates the history dependence and monetary policy is almost as constrained
by fiscal solvency as fiscal policy itself is.12 At the opposite extreme, consols make ρ = 1,
so Lqt ≡ 0 and current monetary policy is not constrained, regardless of how binding the
government’s budget has been in the past, as long as future monetary policies are expected
to adjust appropriately.13

In general, the price of long bonds can adjust to relax the government’s budget constraint.
And the term structure relation, (29), connects the price of bonds today to future short-term
interest rates. Debt maturity introduces a fresh role for expected monetary policy choices
by allowing those expectations to help ensure government solvency.14

We examine some special cases that allow us to characterize the optimal equilibrium and
the consequent stabilization role of fiscal and monetary policy analytically.

5.1 Only One-Period Bonds Suppose the government issues only one-period bonds,
rolled over every period. Then ρ = 0 and (47) and (29) reduce to

Lqt = βLbt (48)

îMt =
1

1− β
ît (49)

Long-term and short-term interest rates are identical, so Lbt and L
q
t covary perfectly. In

this case, the expressions for inflation, (43), and the output gap, (44), become

π̂t = −
(
1− β

κψ

τ̄

sd
+ 1

)
(Lbt − Lbt−1) (50)

λx̂t =

[(
ψ−1 − 1

)
(1− β)

τ̄

sd
− β

σ

sc

]
Lbt +

σ

sc
Lbt−1 (51)

Condition (50) implies that inflation is proportional to the forecast error in Lbt .
15 Because

(46) requires there are no forecastable variations in Lbt , the expectation of inflation is zero,
implying perfect smoothing of the price level

Etπ̂t+1 = 0 ⇒ Etp̂t+1 = p̂t (52)

Condition (51) makes the output gap a weighted average of Lbt and L
b
t−1. Taking expec-

tations yields

λ(Etx̂t+1 − xt) =
σ

sc
(Lbt − Lbt−1) (53)

12This is precisely the exercise that finds the combination of active monetary/passive fiscal policies yields
highest welfare [Schmitt-Grohé and Uribe (2007) and Kirsanova and Wren-Lewis (2012)].

13Sims (2013) limits attention to this case.
14The new Keynesian literature emphasizes the role of expected monetary policy via its influence of the

entire future path of ex-ante real interest rates that enter the Euler equation, (21). The role we are discussing
for expected monetary policy is in addition to this conventional role.

15First-order condition (46) makes EtL
b
t+1 = Lb

t , so the surprise is Lb
t+1 − EtL

b
t+1 = ∆Lb

t+1.
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so the expected change in the output gap next period is proportional to the surprise in the
multiplier on government solvency today. The optimal degree of output-gap smoothing varies
with λ, the weight on output in the loss function. The bigger is λ, the more smoothing of
the output gap. Flexible prices are a special case with λ = ∞ and perfect smoothing of the
output gap. Under most calibrations, λ is quite small, implying little smoothing of output.
But the martingale property of Lbt implies smoothing of expected future output gaps after a
one-time jump. Taking expectations of (53) yields

x̂t ̸= Etx̂t+1 = Etx̂t+2 = ... = Etx̂t+k = ... (54)

Taken together, (52) and (54) imply that with only one-period bonds, optimal policies
smooth the price level, while using fluctuations in the output gap to absorb innovations in
fiscal conditions. The reason is apparent: with no long-term bonds, policy cannot smooth
inflation in the future and surprise inflation—and the resulting price dispersion—is far more
costly that variations in the output gap; it is optimal to minimize inflation variability and
use output as a shock absorber.

In this equilibrium, monetary and fiscal policies follow the rules

τ̂t − τ̂ ∗t =
1

κψ
(π̂t − κx̂t) (55)

ît − î∗t = − (σ/sc)
2

λ(1−β
κψ

τ̄
sd

+ 1)
π̂t (56)

so monetary policy pins down inflation by offsetting variations in demand-side disturbances
and fiscal policy stabilizes the output gap by responding to monetary policy and cost-push
disturbances.

5.2 Only Consols Suppose the government issues only consols. With ρ = 1, (47) and
(29) reduce to

Lqt = Lqt−1 = 0 (57)

îMt = Et

∞∑
k=0

βk ît+k (58)

In the case of consols, the long-term interest rate is determined by the entire path of
future short-term interest rates. Fiscal stress that moves long rates need not change short
rates contemporaneous, so long as the expected path of short rates satisfies (58). Inflation
and output are now

π̂t = −1− β

κψ

τ̄

sd

(
Lbt − Lbt−1

)
− Lbt (59)

λx̂t =
(
ψ−1 − 1

)
(1− β)

τ̄

sd
Lbt (60)

Combining (59) and (60) yields

π̂t +
λ

κ(1− ψ)
(x̂t − x̂t−1)+

λ

(ψ−1 − 1)(1− β) τ̄
sd

x̂t = 0 (61)
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an expression that generalizes the “flexible target criterion” found in conventional optimal
monetary policy exercises in new Keynesian models.16

Condition (60) makes the output gap proportional to Lbt . The martingale property of Lbt
makes the output gap also a martingale, so the gap is perfectly smoothed

Etx̂t+1 = x̂t (62)

Taking expectations of (59) and combining with (60), we have

Etπ̂t+1 − π̂t =
λ

κ(1− ψ)
(x̂t − x̂t−1) (63)

Condition (63) implies that the expected change in the inflation next period is propor-
tional to the forecasting error of x̂t. The degree of inflation smoothing changes inversely
with λ, the weight on output in the loss function, while the degree of inflation smoothing
varies proportionally with κ, the slope of the Phillips curve.

Combining (62) and (63), we draw opposite conclusions about the assignment between
inflation and output gap to the case of only one-period bonds. With only consols, intertem-
poral smoothing in the shadow price of the government budget constraint, Lbt , smoothes the
output gap, relying on fluctuations in inflation to absorb innovations in fiscal conditions. To
understand this, refer to the government solvency condition

b̂Mt−1 + βρQ̂M
t − π̂t = (1− β)Et

∞∑
k=0

βk(r̂t,t+k + ŝt+k) (64)

where r̂t,t+k is the log-linearized real discount rate. Consols introduce the possibility that

the bond price Q̂M
t can behave as a fiscal shock absorber: bad news about future surpluses

can reduce the value of outstanding bonds, leaving the real discount rate unaffected. A con-
stant real discount rate smoothes the output gap, which explains the absence of forecastable
variations in the output gap. Variations in the bond price Q̂M

t correspond to adjustments in
future inflation. The longer the duration of debt—higher ρ—the less is the required change
in bond prices and future inflation for a given change in the present-value of surpluses. Al-
though with consols it is optimal to allow surprise inflation and deflation to absorb shocks,
the expectation of inflation is stabilized after a one-time jump

π̂t ̸= Etπ̂t+1 = Etπ̂t+2 = ... = Etπ̂t+k = ... (65)

Optimal monetary and fiscal policy obey

τ̂t − τ̂ ∗t =
1

κψ
(π̂t − βEtπ̂t+1 − κx̂t) (66)

ît − î∗t = Etπ̂t+1 = − λ

(1/ψ − 1)(1− β) τ̄
sd

x̂t (67)

16Notice that as ψ → 0, which occurs as the steady state distorting tax rate approaches 0, Lb
t → 0 and

(61) approaches the conventional flexible target criterion with lump-sum taxes π̂t+
λ
κ (x̂t− x̂t−1) = 0 so that

the optimal inflation rate should vary with both the the rate of change in the output gap and the level of
the gap [see Woodford (2011) and references therein].

17



Leeper & Zhou: Inflation’s Role in Optimal Policy Mix

Monetary policy pins down expected inflation, but not actual inflation. Expected inflation
determines how much fiscal stress is absorbed through changes in long-term bond prices
and with more adjustment occurring through inflation, the output gap is better stabilized.
Fiscal policy determines inflation by responding to monetary policy and cost-push side dis-
turbances.

5.3 General Case We briefly consider intermediate value for the average duration of
debt, 0 < ρ < 1. Rewrite (43) and (44) using the lag-operator notation, Ljxt ≡ xt−j

π̂t = −
(1− β) τ̄

sd

κψ
(1− L)Lbt − (1− L)(1− ρL)−1Lbt (68)

λx̂t = (ψ−1 − 1)(1− β)
τ̄

sd
Lbt −

σβ

sc
(1− ρ)(1− β−1L)(1− ρL)−1Lbt (69)

The optimality condition for debt that requires Lbt to be a martingale may be written as

(1− B)Et−1L
b
t = 0 (70)

where B is the backshift operator, defined as B−jEtξt ≡ Etξt+j.
Taking expectations of (68) and (69), and applying (70), we obtain a general expression

of k-step ahead expectations of inflation and output gap

Etπ̂t+k = ρkπ̂t + ρkαπ(L
b
t − Lbt−1) (71)

Etx̂t+k = ρkx̂t + (1− ρk)αxL
b
t (72)

Equations (71) and (72) neatly encapsulate the policy problem. The first terms on the
right stem from the welfare improvements that arise from smoothing. That both terms
involve ρk means that longer maturity debt helps to smooth both inflation and output.
The second terms bring in the government solvency dimension of optimal policy through
the Lagrange multipliers. It captures the tradeoff between relying on variations in inflation
to hedge against fiscal stress versus variations in output to absorb shocks. The average
maturity has opposite effect on the two variables. As maturity extends, changes in the state
of government solvency are permitted to affect future inflation more strongly, whereas the
output gap becomes less responsive. In other words, as maturity extend, it is optimal to
tradeoff inflation for output stabilization. For any maturities short of perpetuities, 0 ≤ ρ < 1,
as the forecast horizon extends, k → ∞, expected inflation converges to zero whereas the
expected output gap converges to αxL

b
t . In these cases, inflation is well anchored on zero,

but the output gap’s “anchor” varies with the state at t.

6 Calibration

We turn to numerical results from the model calibrated to U.S. data in order to focus on a
set of implications that may apply to an actual economy.

Table 2 reports a calibration to U.S. time series. We take the model’s frequency to be
quarterly and adopt some parameter values from Benigno and Woodford (2004), including
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β = 0.99, θ = 0.66 and ϵ = 10; we set φ = σ = 0.5, implying a Frisch elasticity and an
intertemporal elasticity of substitution of 2.0, both reasonable empirical values. Quarterly
U.S. data from 1948Q1 to 2013Q1 underlie the values of sb, sg, sz and are used to estimate
autoregressive processes for At, Gt, τt, Zt shocks.

17 Following Gaĺı et al. (2007), the wage
markup shock is calibrated as an AR(1) process with persistence of 0.95 and standard de-
viation of 0.054. Table 2’s calibration makes the relative weight on output-gap stabilization
equal to λ = 0.0033, slightly higher than the value used in Benigno and Woodford (2007)
(λ = 0.0024).18

Parameter Definition Value
β discount rate 0.99
σ the inverse of intertemporal elasticity of substitution 0.50
φ the inverse of Frisch elasticity of labor supply 0.50
θ the fraction of firms cannot adjust their prices 0.66
ϵ intratemporal elasticity of substitution across consumption goods 10
sc steady state consumption to gdp ratio 0.87
sz steady state government transfer payment to gdp ratio 0.09
sg steady state government spending-gdp ratio 0.13
sb steady state debt-gdp ratio 0.49× 4
τ̄ steady state tax rate 0.24
ρa autoregressive coefficient of tech shock 0.786
ρg autoregressive coefficient of government spending shock 0.886
ρτ autoregressive coefficient of tax rate shock 0.782
ρz autoregressive coefficient of transfer payment shock 0.56
ρw autoregressive coefficient of wage markup shock 0.95
σae standard deviation of innovation to tech shock 0.008
σge standard deviation of innovation to government spending shock 0.027
στe standard deviation of innovation to tax rate shock 0.029
σze standard deviation of innovation to transfer payment shock 0.047
σwe standard deviation of innovation to wage markup shock 0.054

Table 2: Calibration to U.S. Data

7 Separating the Impacts of Maturity

To fully understand the impacts of debt maturity on the tradeoffs between inflation and
output stabilization, we rewrite the government intertemporal equilibrium condition (30) in

17Appendix H provides details.
18Benigno and Woodford’s calibration of σ = 0.16 largely explains the difference in the values of λ.
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terms of only inflation and the output gap

b̂Mt−1 + Ft = π̂t + (1− β)
bτ
κψ

π̂t︸ ︷︷ ︸
surprise inflation

+Et

∞∑
k=1

(βρ)kπ̂t+k︸ ︷︷ ︸
future inflation

− (1− β)bτ (
1

ψ
− 1)Et

∞∑
k=0

βkx̂t+k︸ ︷︷ ︸
future output

−Et

∞∑
k=0

[(1− β)βk − (1− βρ)(βρ)k]
σ

sc
(x̂t+k − x̂t)︸ ︷︷ ︸

real interest rate

(73)

Given the fiscal stress, b̂Mt−1 + Ft, (73) completely summarizes feasible paths of current
and expected inflation and output gaps. To absorb exogenous disturbances to Ft, some
combination of paths of inflation and output must adjust. This equation underscores the
inherent symmetry between monetary and fiscal policy: interactions between the two policies
determine the reliance on variations in output gaps versus inflation rates.

Average duration of government bonds affects the optimal equilibrium through three
channels. First, it affects overall fiscal stress, Ft, given the processes of exogenous distur-
bances. Second, it affects the allocation of inflation rates over time. Third, it affects real
allocations through changing real discount rates.

7.1 ρ’s Impact on Ft Ft, a composite measure of fiscal stress, summarizes the factors in
our model that prevent complete stabilization of inflation and the welfare-relevant output
gap. Ft may be expressed in terms of the four fundamental shocks

Ft = FAÂt + FGĜt + FZẐt + FW µ̂
W
t (74)

where

Fx = (1− βρx)
−1[fx + (1− β)

τ̄

sd

1

κψ
ux + β

σ

sc
vx]− βρ(1− βρρx)

−1 σ

sc
vx, x = A,G,Z,W

(75)

The average maturity of bonds affects the amount of fiscal stress imposed on equilibrium
through the weights attached to each fundamental shock. Figure 1 plots the feedback coef-
ficients for each of the fundamental shocks, as defined in (74). FA is negative for all average
bond durations, while FG, FZ , FW are positive. A positive innovation to technology helps
relieve fiscal stress by raising tax revenues, improving the tension between inflation and the
output gap. Positive innovations to wage markups, government spending or transfer pay-
ments, in contrast, aggravate fiscal stress and make it more difficult to stabilize inflation and
the output gap contemporaneously. The impacts of technology, wage markups and govern-
ment spending shocks abate as the average maturity of bonds grows longer, while the impact
of government transfers becomes stronger with longer-term bonds. Finally, the impact of
each fundamental shock on fiscal stress is ranked |FW | > |FA| > |FG| > |FZ |. Wage markups
and technology shocks affect Ft more strongly than do government spending and transfers
shocks. The complicated heterogeneity among different shocks in affecting the overall fiscal
stress makes some of our results sensitive to the calibration of the four fundamental shocks.
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Figure 1: The mapping from fundamental shocks Ât (technology), µ̂
W
t (wage markup), Ĝt

(government purchases), Ẑt (government transfers) to fiscal stress, Ft, in (74).

We turn now to study how the changes in average maturity of government bonds affects
the tradeoff between stabilizing inflation and the output gap. To distinguish the average
maturity structure’s impact on inflation and the output gap, we consider two polar sub-
optimal cases: (i) complete stabilization of the output gap, depending only on inflation as
a shock absorber and (ii) complete stabilization of inflation, using only the output gap as a
shock absorber.

7.2 Inflation Smoothing Complete output stabilization sets x̂t ≡ 0 and uses current

and future inflation to fully absorb innovations to b̂Mt−1 + Ft. This polar case eliminates the
effect of maturity on tax smoothing and to focus on how alternative maturity structures
dynamically allocate inflation. Constraint (73) becomes

b̂Mt−1 + Ft = π̂t + (1− β)
bτ
κψ

π̂t︸ ︷︷ ︸
surprise inflation

+Et

∞∑
k=1

(βρ)kπ̂t+k︸ ︷︷ ︸
bond prices

(76)

The term (1− β) bτ
κψ
π̂t stems from the effects of distorting taxes on inflation at time t. The

Phillips curve

π̂t = Et

∞∑
k=0

βk[κx̂t+k + κψ(τ̂t+k − τ̂ ∗t+k)]

implies that increasing future tax rates decreases the path of output or increases current
inflation. When output is fully stabilized, inflation must rise. This inflationary effect of fiscal
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policy is absent from Cochrane (2001) and Sims (2013) and arises here from distortionary
taxes.

Figure 2 plots responses to a unit innovation in fiscal stress, Ft, under the two sub-optimal
cases and under fully optimal policies. Panel I imposes output stabilization, xt ≡ 0. With
only one-period bonds (solid lines), inflation jumps immediately and then returns to zero,
since intertemporal smoothing of inflation is unavailable. Lqt and Lbt deviate substantially
from zero, implying monetary and fiscal policy is constrained most tightly. With 5-year
bonds (dashed lines), inflation reacts less aggressively in the first period, and then gradu-
ally goes back to zero. The presence of long-term bonds allows the government to tradeoff
inflation today for inflation in the future. Lqt doesn’t deviate in the first period but dis-
plays a pattern of gradual deviations, implying that monetary policy today could be freed
from the fiscal constraint if future monetary policies adjust appropriately. Finally, with con-
sols (dotted-dashed lines), the immediate response of inflation is the smallest, with future
inflation permanently, but only slightly, higher.19

The pattern of impulse responses could be illustrated by considering the following optimal
problem

min
1

2
E0

∞∑
t=0

βtqππ̂
2
t

s.t. b̂M−1 + F0 = bππ̂0 + E0

∞∑
t=1

(βρ)tπ̂t

where bπ = 1 + (1− β) bτ
κψ
. The first-order condition yields

E0π̂1 = ρ
π̂0
bπ

and E0π̂t+1 = ρE0π̂t, t ≥ 1

If ρ = 0, we have E0π̂t = 0 (t ≥ 1), inflation is expected to remain at zero after period 0. If
ρ = 1, we have E0π̂t =

π̂0
bπ

(t ≥ 1), inflation is expected to deviate permanently by a constant
amount after period 0. If 0 < ρ < 1, inflation is expected to deviate by ρ

bπ
π̂0 at period 1 and

then decay at rate of ρ afterwards. The immediate response of inflation at period 0 is given
by

π̂0 =
b̂M−1 + F0

bπ + b−1
π [(1− βρ2)−1 − 1]

(77)

π̂0 is decreasing in ρ. The longer the average maturity, the milder and more persistent the
inflation.

19This result differs slightly from Sims (2013), who finds complete smoothing of inflation with only consols.
Differences stem from Sims’s use of lump-sum taxes, which do not have the direct inflationary effects that
distortionary taxes produce.
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Figure 2: Responses to a one unit innovation in fiscal stress, Ft
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7.3 Output Smoothing Suppose now that π̂t ≡ 0 so that adjustments in current and

future output gaps must absorb innovations to b̂Mt−1 + Ft. Then (73) becomes

b̂Mt−1 + Ft = −(1− β)

(
bτ
ψ

− bx

)
Et

∞∑
k=0

βkx̂t+k︸ ︷︷ ︸
tax revenues

+
σ

sc
(1− βρ)Et

∞∑
k=0

(βρ)kx̂t+k︸ ︷︷ ︸
bond price

(78)

Changes in output help to satisfy the solvency condition by directly affecting tax revenues
and by the impacts of output on real returns to the bond portfolio. These two parts produce
opposite effects. Consider an exogenous increase in fiscal stress. Relying on tax revenues to
fully offset this disturbance requires increasing the tax rate. But by the Phillips curve

π̂t = Et

∞∑
k=0

βk[κx̂t+k + κψ(τ̂t+k − τ̂ ∗t+k)]

when πt ≡ 0, a higher tax rate must reduce output. This is the negative effect in the first
term. Lower output generates a second effect by increasing real returns on long-term bonds.
This positive effect is captured by the second term. The second effect is usually omitted by
assuming a constant or exogenous real discount rate as in Cochrane (2001) and Sims (2013).
In our model, if we set σ = 0, then utility is linear and the real rate is constant. This mutes
the second channel and we obtain a smoothing of the output gap E0x̂t+1 = Ê0xt as in Sims
(2013).

Panel II plots responses to higher fiscal stress when inflation is completely stable. With
only one-period bonds, the output gap first deviates by a small amount at time 0 and then
continues to jump to a constant level. Lqt and Lbt both deviate from zero, but by a much
smaller number than in panel I, implying that adjusting output gaps is less costly than
adjusting inflation. With 5-year bonds, output drops sharply in the first period and then
gradually converges to the same level as with one-period bonds. With consols, the output gap
is perfectly smoothed after a one-time jump in the first period. Long-term bonds allow the
government to smooth the output gap. To better understand this, we consider the following
optimal problem:

min
1

2
E0

∞∑
t=0

βtqxx̂
2
t

s.t. b̂M−1 + F0 =− (1− β)

(
bτ
ψ

− bx

)
E0

∞∑
t=0

βtx̂t +
σ

sc
(1− βρ)E0

∞∑
t=0

(βρ)tx̂t

The first-order condition yields

E0x̂t = lxt x̂0, t ≥ 1, where lxt ≡
σ
sc
(1− βρ)ρt − (1− β)( bτ

ψ
− bx)

σ
sc
(1− βρ)− (1− β)( bτ

ψ
− bx)

Unlike inflation, which is expected to decay at a constant rate ρ, the output gap is expected

to deviate at a time-varying rate lxt . When ρ = 0, E0x̂t =
−(1−β)( bτ

ψ
−bx)

σ
sc

−(1−β)( bτ
ψ
−bx)

x̂0 (t ≥ 1), there is a
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permanent constant deviation of the output gap; when ρ = 1, E0x̂t = x0 (t ≥ 1), the output
gap is expected to be perfectly smoothed. When 0 < ρ < 1, lxt is generally time-varying.
Figure 3 plots lxt for t = 1, 3, 10 at all maturities. We observe that when the average maturity
is relatively short (under 5 years), lxt is time-varying and the output gap is expected to deviate
further and further as time grows. The output gap is expected to deviate the most when the
average maturity is about 2 quarters. However, when the average maturity is long enough
(over 5 years), lxt is almost 1 for all periods, implying perfect smoothing of the output gap.
Short-to-medium maturities increase fluctuations in the output gap and long-term bonds
help to smooth the output gap only when the average maturity is relatively long.
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Figure 3: The rate of deviation lxt

8 Optimal Choice Between Inflation and Output Stabilization

This section brings inflation smoothing together with output-gap smoothing to examine
the joint determination of output and inflation in the presence of distortionary taxes and
sticky prices. With distortionary taxes, variations in tax rates lead to distortions in real
allocations and generates welfare loss; with sticky prices, unexpected variations in inflation
create distortions in the allocation of resources and reduces welfare. If there is a disturbance
to the government budget, monetary and fiscal policy face a tradeoff between stabilizing
inflation and stabilizing the output gap. Panel III in figure 2 plots the impulse responses
under the fully optimal solution to a unit increase in fiscal stress. Responses are much like
a combination of responses in panels I and II. Both inflation and output adjust to absorb
disturbances to Ft.

The optimum problem minimizes the loss function

L =
1

2
E0

∞∑
t=0

βt(qππ̂
2
t + qxx̂

2
t ) (79)
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subject to the constraint given by (73)

b̂Mt−1 + Ft =π̂t + (1− β)
bτ
κψ

π̂t + Et

∞∑
k=1

(βρ)kπ̂t+k

− (1− β)bτ (
1

ψ
− 1)Et

∞∑
k=0

βkx̂t+k − Et

∞∑
k=0

[(1− β)βk − (1− βρ)(βρ)k]
σ

sc
(x̂t+k − x̂t)

Solving this problem yields the optimal equilibrium paths of inflation and the output gap.
Defining Lπ = 1

2
E0

∑∞
t=0 β

tqππ
2
t and Lx = 1

2
E0

∑∞
t=0 β

tqxx
2
t , we can decompose the loss

function into two parts

L = Lπ + Lx (80)

where Lπ measures the welfare loss from fluctuations in inflation (expected present value of
welfare losses associated with inflation variability) and Lx measures the welfare loss from
fluctuations in output (expected present value of welfare losses associated with output-gap
variation).20 For each value of average maturity ρ, we compute the value of loss function L
and the optimal mix of Lπ and Lx, which we plot in the two upper panels of figure 4.

The loss function is hump-shaped in ρ: when the average maturity increases from 1
to 2 quarters, the loss L, expressed in terms of the equivalent permanent output decline,
increases by 1 percentage point; after 2 quarters, the loss L decreases monotonically in ρ. To
see why the loss function is hump-shaped, return to figure 3. When the average maturity is
relatively short, the output gap tends to be volatile, increasing welfare losses. Our conclusion
is consistent with Eusepi and Preston (2013), who find that medium average maturity is most
harmful for stability.

In the right panel of figure 4, the present value of welfare losses for inflation variation, Lπ,
is plotted along the horizontal axis and the losses from output fluctuations, Lx, is plotted
along the vertical axis. L = Lπ + Lx represents negatively sloped isoloss lines. Isoloss lines
closer to the origin correspond to lower loss. The optimal mix of Lπ and Lx is plotted as
shaded circles as ρ varies. For all maturities, Lx is almost 10 times larger than Lπ, implying
that inflation is better stabilized than is the output gap. Other dynamic patterns emerge.
As the average maturity of bonds moves from 1 to 2 quarters, both Lπ and Lx increase,
consistent with the increase in the overall loss function. As average maturity moves from 2
quarters toward consols, Lx decreases and Lπ generally increases: stabilization of the output
gap becomes more desirable from a welfare perspective as the average maturity of debt
extends.

To shed light on the relative importance of inflation versus output variation as sources
of welfare losses, the lower panel of figure 4 plots the ratios Lπ

L
and Lx

L
for different average

maturities. When the average maturity is 1 quarter, Lπ accounts for 6.7% of overall loss while
Lx accounts for 93.3% of overall loss. As the average maturity gets longer, Lπ accounts for a
larger fraction of the welfare losses. In the case of consols, Lπ accounts for 10% of overall loss
while Lx accounts for 90%. There is a strictly increasing trend in depending on fluctuations

20We define Lx and Lπ using second moment of π̂t and x̂t intead of computing uncontional variance of
π̂t and x̂t, because with ρ > 0, x̂t and π̂t might have unit root, and the variances are time-varying. This is
analogous to Taylor’s (1979) policy tradeoff curves.
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Figure 4: Welfare losses—total and due to inflation and output variability—as a function of
average duration of government debt, expressed as percentages of steady state consumption

in inflation to hedge against exogenous shocks when average maturity of government debt
extends.

9 Fiscal Financing

Sims (2013) emphasizes the role of surprise inflation as a “fiscal cushion” that can reduce the
reliance on distorting sources of revenues. One way to quantify the fiscal cushion is to use
the government’s solvency condition to account for the sources of fiscal financing—including
current and future inflation—following an innovation in the present value of fiscal stress Ft.
The government solvency condition may be written as
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b̂Mt−1 + Ft = π̂t + (1− β)
bτ
κψ

π̂t︸ ︷︷ ︸
surprise inflation

+Et

∞∑
k=1

(βρ)kπ̂t+k︸ ︷︷ ︸
future inflation

− (1− β)bτ (ψ
−1 − 1)Et

∞∑
k=0

βkx̂t+k︸ ︷︷ ︸
future output

−Et

∞∑
k=0

[(1− β)βk − (1− βρ)(βρ)k]
σ

sc
(x̂t+k − x̂t)︸ ︷︷ ︸

real interest rate

(81)

Fiscal financing underscores the inherent symmetry between monetary and fiscal policy:
interactions between the two policies determine the reliance on tax revenues, which decreases
output, versus current and future inflation.

Fiscal Financing Decomposition
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Figure 5: Fraction of fiscal stress innovation financed by each of the four components in (81),
as a function of average duration of government debt

Figure 5 plots the financing decomposition for one unit increase of fundamental shock as
a function of the average duration of government bonds for the calibration to U.S. data in
table 2. The pattern of this decomposition is robust in that it does not depend on the nature
of shocks. In figure 5 the vast majority of financing comes from a decrease in output. As the
average duration increases, ρ→ 1, the importance of real interest rate adjustments dissipates.
In the new Keynesian model, real interest rates transmit immediately into movements in the
output gap, so at short durations, distortions in output are relatively big. As duration
rises, it is optimal to smooth output more, so real interest rate movements diminish. In the
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limit, when ρ = 1, the present value of real interest rates is zero and it is optimal to make
Etx̂t+1 = x̂t and rely instead on inflation as a fiscal cushion.

Sources of fiscal financing are particularly sensitive to the level of debt in the economy.
Figure 6 reports fiscal financing decompositions under three steady state debt-GDP levels:
the calibration to U.S. data (49 percent), “low debt” (20 percent), “high debt” (100 percent).
As the level of debt rises, the reliance on tax financing declines. With very short debt
duration, changes in real interest rates account for a substantial fraction of financing in
high-debt economies. Reliance on real rates declines rapidly as duration rises, with future
inflation becoming increasingly important. With long-duration debt, high-debt economies
would finance over 20 percent of a fiscal stress innovation with current and future inflation.

Fiscal Financing Decomposition for different debt levels
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Figure 6: Fraction of fiscal stress innovation financed by each of the four components (81),
as a function of average duration of government debt, for three steady state debt-output
ratios

10 Contrast to Conventional Optimal Monetary Policy

The conventional optimal monetary policy problem, as Woodford (2011) describes, typically
assumes a nondistorting source of revenue exists, so that stabilization policy abstracts from
fiscal policy distortions.21 To place the conventional optimal problem on an equal footing

21Key earlier expositions of the conventional optimal monetary policy problem include Clarida et al. (1999)
and Woodford (2003).
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with the fully optimal problem, we have the government optimally choose the interest rate
function, taking as given exogenous processes for technology, government spending, the dis-
torting tax rate and wage markup; lump-sum transfers (or taxes) adjust passively to ensure
the government’s solvency condition never binds. In the conventional problem, the maturity
structure of debt is irrelevant. In this section we contrast fully optimal policy to the con-
ventional optimal monetary policy. In both cases, we examine the case of a distorted steady
state.

Figure 10 plots the value of the loss function under the conventional optimal monetary
policy—straight yellow line—and under the fully optimal monetary and fiscal policies—red
line—as a function of the average duration of government debt. These calculations employ
the calibration in table 2 for U.S. data. The value of loss objective function under fully
optimal polices is hump-shaped in ρ, and even though fully optimal policies do not use
lump-sum taxes to make the government solvency condition non-binding, welfare is higher
under fully optimal policies if the average maturity is long enough (longer than 21 years).
The figure shows that welfare under the two optimal policy regimes can be made equivalent
by extending the average maturity of bond. However, this welfare-equivalence result and the
level of average maturity that achieves the the welfare-equivalence might be sensitive to our
calibration.

Figure 10 reports the implications of average debt levels for the threshold value of average
maturity that achieves equivalent welfares between fully optimal policies and conventional
optimal monetary policy. We consider the range of [20%, 100%], which covers most countries’
debt-to-GDP ratios in the world. We see that when the debt-to-GDP ratio is at low level
(below 40%), no average maturity exists that achieves equivalent welfares: welfare under
fully optimal polices is always inferior to the conventional optimal monetary policy with
lump-sum taxes, no matter how long the average maturity. It is possible to achieve welfare
equivalence only in medium- to high- debt economies, that is, only when debt-to-GDP ratio
is higher than 40%. Moreover, the higher the debt levels, the shorter the threshold value of
average maturity to achieve welfare equivalence.

Figure 10 reports the implications of standard deviations of wage markup shock for the
threshold value of average maturity that achieves equivalent welfares between fully optimal
policies and conventional optimal monetary policy. We consider the range of [0.02, 0.06],
which covers most calibrations of standard deviation of wage markup in the literatures.

11 Concluding Remarks

This paper examines the joint determination of optimal monetary and fiscal policy in the
presence of distorting tax and sticky prices. We study how the presence of long-term bonds
affects optimal allocations between inflation and output gap, and the consequent stabilization
role for monetary and fiscal policy.

We identified three channels for long-term bonds to have effect on optimal allocations
between inflation and output gap. First, long-term bonds affect the aggregate fiscal stress
imposed on the intertemporal solvency condition that prevents complete stabilization of
inflation and welfare-relevant output gap. Second, long-term bonds facilitate intertemporal
smoothing for inflation. Third, which is new in our paper, long-term bond also smoothes
welfare-relevant output gap by smoothing real interest rates.
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Figure 8: Threshold level of average maturity that equates welfare under fully optimal
monetary and fiscal policies and welfare under conventional optimal monetary policy with
passively adjusting lump-sum taxes, as a function of debt-output ratio

To study inflation’s role as a “fiscal cushion,” we use the government’s solvency condition
to account for the sources of fiscal financing. As the duration of government debt rises, it
is optimal to smooth output more and to rely on current and future inflation innovations
to revalue government bond. In the limit, with only consol debt, it is optimal to perfectly
smooth real interest rates and rely instead on inflation as a fiscal cushion. Sources of fiscal
financing are also sensitive to the level of debt in the economy. As the level of bonds rises,
the reliance on tax financing declines. With long-duration bond, high-debt economies (100%
debt to GDP ratio) would finance over 20 percent of a fiscal stress innovation with current
and future inflation.
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Figure 9: Threshold level of average maturity that equates welfare under fully optimal
monetary and fiscal policies and welfare under conventional optimal monetary policy with
passively adjusting lump-sum taxes, as a function of the standard deviation of wage markup
shock

Finally, we contrast the welfare under fully optimal policy to the conventional optimal
monetary policy case where lump-sum taxes are available to always guarantee government
solvency. We show that welfare under the two optimal policy regimes can be made equivalent
by extending the average maturity of bond.
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A Derivation of Long-term Bond Price and IEC

Define

Qt,t+k = βk
Uc,t+k
Uc,t

Pt
Pt+k

(A.1)

as the stochastic discount factor for the price at t of one unit of composite consumption goods at
t+ k. Then (2) and (3) in the text can be written as

QSt =EtQt,t+1 (A.2)

QMt =EtQt,t+1(1 + ρQMt+1) (A.3)

Iterating on (A.3) and imposing a terminal condition yields

QMt =Et[Qt,t+1 + ρQt,t+1Q
M
t+1]

=Et{Qt,t+1 + ρQt,t+1Et+1Qt+1,t+2 + ρ2Qt,t+1Et+1[Qt+1,t+2Et+2Qt+2,t+3] + ...}
=QSt + ρEt[Qt,t+1Q

S
t+1] + ρ2Et[Qt,t+1Et+1(Qt+1,t+2Q

S
t+2)] + ...

=QSt + ρEt[Qt,t+1Q
S
t+1] + ρ2Et[Qt,t+2Q

S
t+2] + ...+ ρkEt[Qt,t+kQ

S
t+k] + ...

=QSt + Et

∞∑
k=1

ρkEt[Qt,t+kQ
S
t+k] (A.4)

Equation (A.4) implies that the long-term bond’s price is determined by weighted average of ex-
pectations of future short-term bond’s prices.

Substitute (A.1) into (A.4)

QMt = Et [β
Uc,t+1

Uc,t

Pt
Pt+1

+ ρβ2
Uc,t+2

Uc,t

Pt
Pt+2

+ ...+ ρk−1βk
Uc,t+k
Uc,t

Pt
Pt+k

+ ...]

= Et

∞∑
k=1

ρk−1βk
Uc,t+k
Uc,t

Pt
Pt+k

(A.5)

Condition (A.5) implies that the long-term bond price is determined by the whole path of expected
future price level, discounted by consumption growth rate. The long-term bond price is negatively
correlated with expected future inflation rate and consumption growth rate.

Rewrite (A.3) as

QMt =EtQt,t+1(1 + ρQMt+1)

=EtQt,t+1Et(1 + ρQMt+1) + ρ cov(Qt,t+1, Q
M
t+1)

=EtQ
S
t (1 + ρQMt+1) + ρ cov(Qt,t+1, Q

M
t+1) (A.6)

Recall from (A.5) that

QMt+1 = Et

∞∑
k=1

ρk−1Qt+1,t+1+k

QMt+1 is determined by weighted average of expected future discounted value of future stochastic
discount factors. Therefore, without loss of generality, we assume cov(Qt,t+1, Q

M
t+1) = 0, and (A.6)

can be expressed as

QMt = EtQ
S
t (1 + ρQMt+1) (A.7)
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To derive intertemporal equilibrium condition, we iterate on government’s period budget con-
straint, (9), and impose asset-pricing relations and the household’s transversality condition:

(1 + ρQMt )
BM
t−1

Pt
= QMt

BM
t

Pt
+ St

= Et[
QMt Q

M
t+1πt+1

1 + ρQMt+1

BM
t

Pt
+

QMt πt+1

1 + ρQMt+1

St+1 + St]

= Et[St +
QMt πt+1

1 + ρQMt+1

St+1 +
QMt Q

M
t+1πt+1πt+2

(1 + ρQMt+1)(1 + ρQMt+2)
St+2 + ...] (A.8)

Substituting (A.1) and (A.3) into (A.8) yields

(1 + ρQMt )
BM
t−1

Pt
= Et

∞∑
i=0

βi
Uc,t+i
Uc,t

St+i (A.9)

To derive (11) in the text, combine (A.5) and (A.9)

Et

( ∞∑
k=0

ρkβk
Uc,t+k
Uc,t

1

Pt+k

)
BM
t−1 = Et

∞∑
i=0

βi
Uc,t+i
Uc,t

St+i (A.10)

B Derivation of Nonlinear First Order Conditions

The full nonlinear optimal policy problem maximizes

E0

∞∑
t=0

βtU(Yt,∆t, ξt)

subject to

[
1− θπϵ−1

t

1− θ
]
1+ϵφ
1−ϵ =

ϵ

ϵ− 1

Kt

Jt
(B.1)

Kt = (
Yt
At

)φ+1 + βθEtKt+1π
ϵ(1+φ)
t+1 (B.2)

Jt = (1− τt)Uc,tYt + βθEtJt+1π
ϵ−1
t+1 (B.3)

(1 + ρQMt )
bMt−1

πt
= QMt b

M
t + τtYt − Zt −Gt (B.4)

QMt = βEt
Uc,t+1

Uc,t

1

πt+1
(1 + ρQMt+1) (B.5)

∆t = (1− θ)[
1− θπϵ−1

t

1− θ
]
ϵ(1+φ)
ϵ−1 + θπ

ϵ(1+φ)
t ∆t−1 (B.6)
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The first-order conditions are

Yt : UY,t − λ2t (φ+ 1)A
−(φ+1)
t Y φ

t − λ3t (1− τt)(Uc,t + Ucc,tYt)− λ4t τt

− βσλ5t
1 + ρQt+1

πt+1
C−σ
t+1C

σ−1
t + σλ5t−1

1 + ρQt
πt

Cσt−1C
−σ−1
t = 0

πt : λ1t
1 + ϵφ

1− ϵ
p(πt)

1+ϵφ
1−ϵ −1p′(πt)− λ2t−1θϵ(1 + φ)Ktπ

ϵ(1+φ)−1
t − λ3t−1θ(ϵ− 1)Jtπ

ϵ−2
t

− λ4t (1 + ρQMt )bt−1π
−2
t + λ5t−1

Uc,t
Uc,t−1

(1 + ρQMt )π−2
t

− λ6t [(1− θ)
ϵ(1 + φ)

ϵ− 1
p(πt)

1+ϵφ
ϵ−1 p′(πt) + θϵ(1 + φ)∆t−1π

ϵ(1+φ)−1
t ] = 0

∆t : U∆,t + λ6t − Etλ
6
t+1βθπ

ϵ(1+φ)
t+1 = 0

Kt : − λ1t
ϵ

ϵ− 1

1

Jt
+ λ2t − λ2t−1θπ

ϵ(1+φ)
t = 0

Jt : λ1t
ϵ

ϵ− 1

Kt

J2
t

+ λ3t − λ3t−1θπ
ϵ−1
t = 0

τt : λ3tUc,t − λ4t = 0

bt : λ4t − Etλ
4
t+1

Uc,t
Uc,t+1

= 0

QMt : λ4t (ρ
bt−1

πt
− bt) + λ5t − λ5t−1

ρ

πt

Uc,t
Uc,t−1

= 0

If we redefine λ̃1t =
λ1t
Jt
, λ̃2t = λ2t , λ̃

3
t = λ3t , λ̃

4
t =

λ4t
Uc,t

, λ̃5t =
λ5t

Uc,tbt
, λ̃6t = λ6t , then the first-order

conditions can be simplified as

Yt : UY,t − λ̃2t (φ+ 1)A
−(φ+1)
t Y φ

t − λ̃3t (1− τt)(Uc,t + Ucc,tYt)− λ̃4t τtUc,t

− βσλ̃5t
(1 + ρQt+1)bt

πt+1
C−σ
t+1C

−1
t + σλ̃5t−1

(1 + ρQt)bt−1

πt
C−σ−1
t = 0 (B.7)

πt : λ̃1tJt
1 + ϵφ

1− ϵ
p(πt)

1+ϵφ
1−ϵ −1p′(πt)− λ̃2t−1θϵ(1 + φ)Ktπ

ϵ(1+φ)−1
t − λ̃3t−1θ(ϵ− 1)Jtπ

ϵ−2
t

− λ̃4tUc,t(1 + ρQMt )bt−1π
−2
t + λ̃5t−1Uc,t(1 + ρQMt )bt−1π

−2
t

− λ̃6t [(1− θ)
ϵ(1 + φ)

ϵ− 1
p(πt)

1+ϵφ
ϵ−1 p′(πt) + θϵ(1 + φ)∆t−1π

ϵ(1+φ)−1
t ] = 0 (B.8)

∆t : U∆,t + λ̃6t − Etλ̃
6
t+1βθπ

ϵ(1+φ)
t+1 = 0 (B.9)

Kt : − ϵ

ϵ− 1
λ̃1t + λ̃2t − λ̃2t−1θπ

ϵ(1+φ)
t = 0 (B.10)

Jt : λ̃1t + λ̃3t − λ̃3t−1θπ
ϵ−1
t = 0 (B.11)

τt : λ̃3t − λ̃4t = 0 (B.12)

bt : λ̃4t − Etλ̃
4
t+1 = 0 (B.13)

QMt : λ̃4t (ρ
bt−1

πt
− bt) + λ̃5t bt − λ̃5t−1ρ

bt−1

πt
= 0 (B.14)

where λ̃1t through λ̃6t are the Lagrange multipliers. Condition (B.13) implies that the evolution
of the Lagrange multiplier corresponding to the government budget λ̃4t obeys a martingale. Con-
dition (B.14) connects λ̃4t to the Lagrange multiplier corresponding to the maturity structure λ̃5t .
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Conditions (B.10) – (B.12) relate λ̃4t to the Lagrange multiplier corresponding to the aggregate
supply relations λ̃1t , λ̃

2
t , λ̃

3
t . Conditions (B.7) and (B.9) implicitly determine the shadow price of

the each constraint. Notice that (B.9) determines the marginal utility loss from inflation, while
(B.7) determines the marginal utility loss from variations in output-gap.

B.1 Deterministic steady state Using the optimal allocation that appendix B describes, in
a steady state with zero net inflation, π̄ = 1, we have

∆̄ = 1,
K̄

J̄
=
ϵ− 1

ϵ
, Q̄s = β

b̄

S̄
=

1− βρ

1− β

The associated steady-state price of long-term bond is given by

Q̄M =
β

1− βρ

which is increasing in average maturity ρ. The intuition is very straightforward, long-term debt
yields more coupon payments and therefore demands higher price.

The steady-state government budget constraint implies

τ̄ − sg − sz =
(
β−1 − 1

)
sb

where sb ≡ Q̄M B̄/Ȳ is the steady-state debt to GDP ratio, sg ≡ Ḡ/Ȳ is the steady state government
purchases to GDP ratio, sz ≡ Z̄/Ȳ is the steady-state government transfers to GDP ratio.

Steady-state Lagrangian multipliers satisfy

¯̃
λ1 = (θ − 1)

¯̃
λ3 (B.15)

¯̃
λ2 =

ϵ

1− ϵ
¯̃
λ3 (B.16)

¯̃
λ3 =

¯̃
λ4 (B.17)

¯̃
λ5 =

¯̃
λ4 (B.18)

(1− βθ)
¯̃
λ6 = −U∆(Ȳ , 1) (B.19)

[
ϵ(φ+ 1)

1− ϵ
Ȳ φ + Ūc + (1− τ̄)ŪccȲ − (1− β)σ

1− βρ

sb
sc
Ūc]

¯̃
λ4 = UY (Ȳ , 1) (B.20)

Note that
¯̃
λ4 and

¯̃
λ6 can be solved from (B.19) and (B.20), and at steady state the other

multipliers are proportional to
¯̃
λ4. At steady state, the Lagrange multiplier associated with gov-

ernment budget therefore completely summarizes the distortions from output; the price dispersion
summarizes the distortions from inflation.

C Second-Order Approximation to Utility

The life-time welfare of household is defined by

U0 = E0

∞∑
t=0

βtU(Yt,∆t, ξt) (C.1)

where

U(Yt,∆t, ξt) =
(Yt −Gt)

1−σ

1− σ
−

( YtAt )
1+φ

1 + φ
∆t

= u(Yt, Gt)− v(Yt,∆t, At) (C.2)
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We use a second-order Taylor expansion for a variable Xt:

Xt/X̄ = elnXt/X̄ = eX̂t = 1 + X̂t +
1

2
X̂2
t (C.3)

and

X̃t = Xt − X̄ = X̄(X̂t +
1

2
X̂2
t ) (C.4)

The derivation of second-order approximation closely follows Benigno and Woodford (2004).

The first term in (C.2) can be approximated to second order as

u(Yt, Gt)− ū = ūY Ỹt + ūGG̃t + ūY GỸtG̃t +
1

2
ūY Y Ỹt

2
+

1

2
ūGGG̃t

2
+O(∥ξt∥3)

= ūY Ȳ (Ŷt +
1

2
Ŷt

2
) + ūGG̃t + ūY GȲ ḠŶtĜt +

1

2
ūY Y Ȳ

2Ŷt
2
+

1

2
ūGGG̃t

2
+O(∥ξt∥3)

= ūY Ȳ (Ŷt +
1

2
Ŷt

2
) + ūY GȲ ḠŶtĜt +

1

2
ūY Y Ȳ

2Ŷt
2
+O(∥ξt∥3) + t.i.p.

= ūY Ȳ [Ŷt +
1

2
(1 +

ūY Y
ūY

Ȳ )Ŷt
2 − ūY Y

ūY
ḠĜtŶt] +O(∥ξt∥3) + t.i.p.

= ūY Ȳ [Ŷt +
1

2
(1− s−1

c σ)Ŷt
2
+ sgsc

−1σĜtŶt] +O(∥ξt∥3) + t.i.p. (C.5)

“t.i.p.” represents the terms that are independent of policy. The second term in (C.2) can be
approximated by

v(Yt,∆t, At)− v̄ =v̄Y Ỹt + v̄AÃt + v̄∆∆̃t + v̄Y AỸtÃt + v̄Y∆Ỹt∆̃t + v̄∆A∆̃tÃt

+
1

2
v̄Y Y Ỹt

2
+

1

2
v̄AAÃ

2
t +

1

2
v̄∆∆∆̃

2
t +O(∥ξt∥3)

=v̄Y Ỹt + v̄∆∆̃t + v̄Y AỸtÃt + v̄Y∆Ỹt∆̃t + v̄∆A∆̃tÃt

+
1

2
v̄Y Y Ỹt

2
+

1

2
v̄∆∆∆̃

2
t +O(∥ξt∥3) + t.i.p.

=v̄Y Ȳ (Ŷt +
1

2
Ŷt

2
) + v̄∆∆̃t + v̄Y AȲ ŶtÃt + v̄Y∆Ȳ Ŷt∆̃t + v̄∆A∆̃tÃt

+
1

2
v̄Y Y Ȳ

2Ŷt
2
+

1

2
v̄∆∆∆̃

2
t +O(∥ξt∥3) + t.i.p.

=v̄Y Ȳ [Ŷt +
1

2
(1 +

v̄Y Y Ȳ

v̄Y
)Ŷt

2
+

v̄∆
v̄Y Ȳ

∆̃t +
v̄Y∆

v̄Y
∆̃tŶt +

v̄Y A
v̄Y

ÃtŶt +
v̄∆A
v̄Y Ȳ

∆̃tÃt +
1

2

v̄∆∆

v̄Y Ȳ
∆̃2
t ]

+O(∥ξt∥3) + t.i.p.

=v̄Y Ȳ [Ŷt +
1

2
(1 + φ)Ŷt

2
+

1

1 + φ
∆̃t + ∆̃tŶt − (1 + φ)ŶtÃt − ∆̃tÃt] +O(∥ξt∥3) + t.i.p.

(C.6)

From Benigno and Woodford (2004) we know that a second order approximation to (B.6) yields

∆̃t = θ∆̃t−1 +
θϵ

1− θ
(1 + φ)(1 + ϵφ)

π̂2t
2

+O(∥ξt∥3) + t.i.p. (C.7)

which implies that ∆̃t = O(π2t ).
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Therefore (C.6) can be simplified as

v(Yt,∆t, At)− v̄ = v̄Y Ȳ [Ŷt +
1

2
(1 + φ)Ŷt

2
+

1

1 + φ
∆̃t − (1 + φ)ŶtÂt] +O(∥ξt∥3) + t.i.p. (C.8)

Combine (C.5) and (C.8) and apply the relation v̄Y = (1−Φ)ūY , we approximate the life-time
utility (C.1) as

U0 − Ū0 =ūY Ȳ E0

∞∑
t=0

βt{ΦŶt +
1

2
[(1− σ

sc
)− (1− Φ)(1 + φ)]Ŷ 2

t + [sgsc
−1σĜt + (1− Φ)(1 + φ)Ât]Ŷt −

1− Φ

1 + φ
∆̂t}

+O(∥ξt∥3) + t.i.p. (C.9)

From Benigno and Woodford (2004) we observe

E0

∞∑
t=0

βt∆̂t =
θϵ

(1− θ)(1− βθ)
(1 + φ)(1 + ϵφ)

∞∑
t=0

βt
π̂2t
2

(C.10)

Therefore, the second-order approximation to the life-time utility (C.1) can be further expressed
as

U0 − Ū0 = ūY Ȳ E0

∞∑
t=0

βt{AyŶt +
1

2
AyyŶ

2
t +A′

ξ ξ̂tŶt −
Aπ
2
π̂2t }+O(∥ξt∥3) + t.i.p. (C.11)

where

Ay = Φ

Ayy = (1− σsc
−1)− (1− Φ)(1 + φ)

A′
ξ ξ̂t = σsc

−1sgĜt + (1− Φ)(1 + φ)Ât

Aπ = (1− Φ)
θϵ(1 + ϵφ)

(1− θ)(1− βθ)

Φ = 1 − (1 − τ) ϵ−1
ϵ measures the inefficiency of steady state of output. sc = C̄

Ȳ
is steady state

consumption to GDP ratio; sg =
Ḡ
Ȳ

is steady state government spending to GDP ratio.

D Second-Order Approximation to Government’s IEC

Recall the government budget constraint

QMt b
M
t + St = (1 + ρQMt )

bMt−1

πt
(D.1)

and no-arbitrage condition

QMt = βEt
Uc,t+1

Uc,t

1

πt+1
(1 + ρQMt+1) (D.2)

Define

Wt = Uc,t(1 + ρQMt )
bMt−1

πt
(D.3)
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By applying (D.2) and (D.3), (D.1) can be rewritten as

Wt = Uc,tSt + βEtWt+1 (D.4)

and

Wt = Et

∞∑
k=0

Uc,t+kSt+k (D.5)

A second-order approximation to Uc,tSt yields

Uc,tSt = ŪcS̄ + ŪccS̄C̃t + ŪcS̃t +
1

2
S̄ŪcccC̃

2
t + ŪccS̃tC̃t (D.6)

We express C̃t in terms of Ŷt and Ĝt through the second order approximation to the identity
Ct = Yt −Gt,

C̃t = Ȳ (Ŷt +
1

2
Ŷ 2
t )− Ḡ(Ĝt +

1

2
Ĝ2
t ) (D.7)

Since St = τtYt −Gt − Zt, a second-order approximation to the primary surplus can be written as

S̃t = τ̄ Ȳ (τ̂t + Ŷt) +
1

2
τ̄ Ȳ (τ̂2t + Ŷ 2

t ) + τ̄ Ȳ Ŷtτ̂t − Ḡ(Ĝt +
1

2
Ĝ2
t )− Z̄(Ẑt +

1

2
Ẑ2
t ) (D.8)

Substituting (D.7) and (D.8) into (D.6), we obtain

Uc,tSt − ŪcS̄ =ŪccS̄[Ȳ (Ŷt +
1

2
Ŷ 2
t )− Ḡ(Ĝt +

1

2
Ĝ2
t )]

+ Ūc[τ̄ Ȳ (τ̂t + Ŷt) +
1

2
τ̄ Ȳ (τ̂2t + Ŷ 2

t ) + τ̄ Ȳ Ŷtτ̂t − Ḡ(Ĝt +
1

2
Ĝ2
t )− Z̄(Ẑt +

1

2
Ẑ2
t )]

+
1

2
S̄Ūccc(Ȳ

2Ŷ 2
t + Ḡ2Ĝ2

t − 2Ȳ ḠŶtĜt)

+ Ūcc[τ̄ Ȳ
2Ŷ 2
t + τ̄ Ȳ 2Ŷtτ̂t − (τ̄ + 1)Ȳ ḠŶtĜt − Ȳ Z̄ŶtẐt − τ̄ Ȳ Ḡτ̂tĜt + Ḡ2Ĝ2

t + ḠZ̄ĜtẐt]

+O(∥ξt∥3)

= ŪcS̄[−σs−1
c (Ŷt +

1

2
Ŷ 2
t ) + σs−1

c sg(Ĝt +
1

2
Ĝ2
t ) +

τ̄ Ȳ

S̄
(τ̂t + Ŷt) +

1

2

τ̄ Ȳ

S̄
(τ̂2t + Ŷ 2

t ) +
τ̄ Ȳ

S̄
Ŷtτ̂t −

Ḡ

S̄
Ĝt −

Z̄

S̄
Ẑt

+
1

2
σ(1 + σ)(s−2

c Ŷ 2
t + s2gs

−2
c Ĝ2

t − 2sgs
−2
c ŶtĜt)

− σs−1
c

τ̄ Ȳ

S̄
(Ŷ 2
t + Ŷtτ̂t) + σs−1

c sg(
τ̄ Ȳ

S̄
+
Ȳ

S̄
)ŶtĜt + σs−1

c sz
Ȳ

S̄
ŶtẐt + σs−1

c sg
τ̄ Ȳ

S̄
τ̂tĜt]

+O(∥ξt∥3)

= ŪcS̄{(−
σ

sc
+
τ̄ Ȳ

S̄
)Ŷt +

τ̄ Ȳ

S̄
τ̂t +

1

2

τ̄ Ȳ

S̄
τ̂2t +

1

2
[
τ̄ Ȳ

S̄
(1− 2σ

sc
)− σ

sc
+
σ2

s2c
+
σ

s2c
]Ŷ 2
t +

τ̄ Ȳ

S̄
(1− σs−1

c )Ŷtτ̂t

+ σ
sg
sc

τ̄ Ȳ

S̄
Ĝtτ̂t + σ

sz
sc

Ȳ

S̄
ŶtẐt − σ

sg
sc
(
σ + 1

sc
− τ̄ Ȳ

S̄
− Ȳ

S̄
)ŶtĜt −

Z̄

S̄
Ẑt + (σs−1

c sg −
Ḡ

S̄
)Ĝt}+O(∥ξt∥3)

(D.9)

Therefore, by substituting (D.9) into (D.5), we express the second-order approximation to govern-
ment lEC as

W0 − W̄

W̄
=(1− β)E0

∞∑
t=0

βt[{ByŶt +Bτ τ̂t +Byτ Ŷtτ̂t +
1

2
ByyŶ

2
t +

1

2
Bττ τ̂

2
t +B′

ξy ξ̂tŶt +B′
ξτ ξ̂tτ̂t +Bξ

′ξ̂t}

+O(∥ξt∥3) + t.i.p. (D.10)
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where

By = − σ

sc
+
τ̄ Ȳ

S̄
Bτ =

τ̄ Ȳ

S̄
Bξ

′ξ̂t = −sz
sd
Ẑt + (σ

sc
sg

− sg
sd

)Ĝt

Byτ =
τ̄ Ȳ

S̄
(1− σs−1

c ) Bττ =
τ̄ Ȳ

S̄
Byy =

τ̄ Ȳ

S̄
(1− 2σ

sc
)− σ

sc
+
σ2

s2c
+
σ

s2c

B′
ξy ξ̂t = σ

sz
sc

1

sd
Ẑt − σ

sg
sc
(
σ + 1

sc
− τ̄ Ȳ

S̄
− 1

sd
)Ĝt B′

ξτ ξ̂t = σ
sg
sc

τ̄ Ȳ

S̄
Ĝt

sz = Z̄
Ȳ

is steady state government transfer payment to GDP ratio; sd = S̄
Ȳ

is steady state
surplus to GDP ratio.

E Second-Order Approximation to Aggregate Supply Relation

The aggregate supply relation is defined by the equations

Jt[
1− θπϵ−1

t

1− θ
]
1+ϵφ
1−ϵ =

ϵ

ϵ− 1
Kt (E.1)

Kt = µWt (
Yt
At

)φ+1 + βθEtKt+1π
ϵ(1+φ)
t+1 (E.2)

Jt = (1− τt)Uc,tYt + βθEtJt+1π
ϵ−1
t+1 (E.3)

A second-order approximation to (E.1) can be written as

ϵ

ϵ− 1
K̃t − J̃t = J̄

θ

1− θ
(1 + ϵφ){π̃t +

1

2
[
θ

1− θ
ϵ(φ+ 1) + (ϵ− 2)]π̃2t }+

θ

1− θ
(1 + ϵφ)J̃tπ̃t +O(∥ξt∥3)

(E.4)

A second-order approximation to (E.2) can be written as

K̃t =βθEtK̃t+1 + βθϵ(1 + φ)K̄{Etπ̃t+1 +
1

2
[ϵ(1 + φ)− 1]Etπ̃

2
t+1}+ βθϵ(1 + φ)K̃t+1π̃t+1

+ µ̄W (1 + φ)Ȳ φỸt − µ̄W (1 + φ)2Ȳ φỸtÃt + (φ+ 1)Ȳ φµ̃Wt Ỹt +
1

2
µ̄Wφ(1 + φ)Ȳ φ−1Ỹ 2

t

− µ̄W (φ+ 1)Ȳ φ+1Ãt + Ȳ φ+1µ̃Wt +O(∥ξt∥3) + t.i.p. (E.5)

A second-order approximation to (E.3) can be written as

J̃t =βθEtJ̃t+1 + βθ(ϵ− 1)J̄ [Etπ̃t+1 +
1

2
(ϵ− 2)Etπ̃

2
t+1] + βθ(ϵ− 1)J̃t+1π̃t+1

+ (1− τ̄)(Ūc + ŪccȲ )Ỹt − ŪcȲ τ̃t +
1

2
(1− τ̄)(2Ūcc + ŪcccȲ )Ỹ 2

t − (Ūc + ŪccȲ )Ỹtτ̃t

+ ŪccȲ τ̃tG̃t − (1− τ̄)(Ūcc + ŪcccȲ )ỸtG̃t − (1− τ̄)Ȳ ŪccG̃t +O(∥ξt∥3) + t.i.p. (E.6)
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Therefore, ϵ
ϵ−1(E.5)-(E.6) can be expressed as

ϵ

ϵ− 1
K̃t − J̃t =βθEt(

ϵ

ϵ− 1
K̃t+1 − J̃t+1)

+
ϵ

ϵ− 1
βθϵ(1 + φ)K̄{Etπ̃t+1 +

1

2
[ϵ(1 + φ)− 1]Etπ̃

2
t+1} − βθ(ϵ− 1)J̄ [Etπ̃t+1 +

1

2
(ϵ− 2)Etπ̃

2
t+1]

+
ϵ

ϵ− 1
βθϵ(1 + φ)K̃t+1π̃t+1 − βθ(ϵ− 1)J̃t+1π̃t+1

+
ϵ

ϵ− 1
[µ̄W (1 + φ)Ȳ φỸt − µ̄W (1 + φ)2Ȳ φỸtÃt + (φ+ 1)Ȳ φµ̃Wt Ỹt +

1

2
µ̄Wφ(1 + φ)Ȳ φ−1Ỹ 2

t

− µ̄W (φ+ 1)Ȳ φ+1Ãt + Ȳ φ+1µ̃Wt ]

−[(1− τ̄)(Ūc + ŪccȲ )Ỹt − ŪcȲ τ̃t +
1

2
(1− τ̄)(2Ūcc + ŪcccȲ )Ỹ 2

t − (Ūc + ŪccȲ )Ỹtτ̃t]

−[ŪccȲ τ̃tG̃t − (1− τ̄)(Ūcc + ŪcccȲ )ỸtG̃t − (1− τ̄)Ȳ ŪccG̃t] +O(∥ξt∥3) + t.i.p. (E.7)

Then we plug (E.4) into (E.7) and obtain

J̄
θ

1− θ
(1 + ϵφ){π̃t +

1

2
[
θ

1− θ
ϵ(φ+ 1) + (ϵ− 2)]π̃2t }+

θ

1− θ
(1 + ϵφ)J̃tπ̃t

=βθJ̄
θ

1− θ
(1 + ϵφ){Etπ̃t+1 +

1

2
[
θ

1− θ
ϵ(φ+ 1) + (ϵ− 2)]Etπ̃

2
t+1}+ βθ

θ

1− θ
(1 + ϵφ)J̃t+1π̃t+1

+
ϵ

ϵ− 1
βθϵ(1 + φ)K̄{Etπ̃t+1 +

1

2
[ϵ(1 + φ)− 1]Etπ̃

2
t+1} − βθ(ϵ− 1)J̄ [Etπ̃t+1 +

1

2
(ϵ− 2)Etπ̃

2
t+1]

+ βθϵ(1 + φ)[J̃t+1π̃t+1 + J̄
θ

1− θ
(1 + ϵφ)π̃2t+1]− βθ(ϵ− 1)J̃t+1π̃t+1

+
ϵ

ϵ− 1
[µ̄W (1 + φ)Ȳ φỸt − µ̄W (1 + φ)2Ȳ φỸtÃt + (φ+ 1)Ȳ φµ̃Wt Ỹt +

1

2
µ̄Wφ(1 + φ)Ȳ φ−1Ỹ 2

t

− µ̄W (φ+ 1)Ȳ φ+1Ãt + Ȳ φ+1µ̃Wt ]

− [(1− τ̄)(Ūc + ŪccȲ )Ỹt − ŪcȲ τ̃t +
1

2
(1− τ̄)(2Ūcc + ŪcccȲ )Ỹ 2

t − (Ūc + ŪccȲ )Ỹtτ̃t]

− [ŪccȲ τ̃tG̃t − (1− τ̄)(Ūcc + ŪcccȲ )ỸtG̃t − (1− τ̄)Ȳ ŪccG̃t] +O(∥ξt∥3) + t.i.p. (E.8)

Note that at steady state we have the relations K̄
J̄
= ϵ−1

ϵ , (1− βθ)K̄ = Ȳ φ+1 and (1− βθ)J̄ =
(1− τ̄)ŪcȲ , therefore (E.8) can be simplified as

θ

1− θ
(1 + ϵφ)π̂t +

1

2

θ

1− θ
(1 + ϵφ)[

θ

1− θ
ϵ(φ+ 1) + (ϵ− 1)]π̂2t +

θ

1− θ
(1 + ϵφ)J̄−1Ĵtπ̂t

=
θ

1− θ
(1 + ϵφ)βEtπ̂t+1 +

1

2

θ

1− θ
(1 + ϵφ)β[

1

1− θ
ϵ(φ+ 1) + (ϵ− 1)]π̂2t+1 + β

θ

1− θ
(1 + ϵφ)J̄−1Ĵt+1π̂t+1

+ (1− βθ)[(1 + φ)Ŷt − (1 + φ)2ŶtÂt + (1 + φ)Ŷtµ̂
W
t +

1

2
(1 + φ)2Ŷ 2

t − (1 + φ)Ât + µ̂Wt ]

− (1− βθ){(1− σs−1
c )Ŷt − wτ τ̂t − wτ (1− σs−1

c )Ŷtτ̂t −
1

2
wτ τ̂

2
t +

1

2
[1− 3σs−1

c + σ(1 + σ)s−2
c ]Ŷ 2

t

− σ
sg
sc
wτ τ̂tĜt − [σ(1 + σ)s−2

c − σs−1
c ]sgŶtĜt + σ

sg
sc
Ĝt}+O(∥ξt∥3) + t.i.p. (E.9)

Define Vt = π̂t +
1
2 [

1
1−θ ϵ(φ + 1) + (ϵ − 1)]π̂2t + J̄−1Ĵtπ̂t, and substitue into (E.9), we obtain a

recursive relation

Vt =κ{CyŶt + Cτ τ̂t + Cyτ Ŷtτ̂t +
1

2
CyyŶ

2
t +

1

2
Cττ τ̂

2
t + C ′

ξy ξ̂tŶt + C ′
ξτ ξ̂tτ̂t +

Cπ
2
π2t + Cξ

′ξ̂t}}+ βEtVt+1

+O(∥ξt∥3) + t.i.p. (E.10)
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where

Cy = 1 Cτ = ψ Cπ =
ϵ(1 + φ)

κ
Cyτ = (1− σs−1

c )ψ Cττ = ψ Cyy = (2 + φ− σs−1
c ) + σ(s−1

c − s−2
c )(φ+ σs−1

c )−1

C ′
ξy ξ̂t =

σ2s−2
c + σs−2

c − σs−1
c

φ+ σs−1
c

sgĜt −
(1 + φ)2

φ+ σs−1
c
Ât +

1 + φ

φ+ σs−1
c
µ̂Wt C ′

ξτ ξ̂t = σsc
−1sgψĜt

Cξ
′ξ̂t = − φ+ 1

φ+ σs−1
c
Ât −

sg
sc

σ

φ+ σs−1
c
Ĝt

and

κ =
1− θ

θ

(1− βθ)(φ+ σs−1
c )

1 + ϵφ

wτ =
τ̄

1− τ̄

ψ =
wτ

φ+ σs−1
c

Integrate (E.10) forward from t = 0, we have

V0 =E0

∞∑
t=0

βtκ{CyŶt + Cτ τ̂t + Cyτ Ŷtτ̂t +
1

2
CyyŶ

2
t +

1

2
Cττ τ̂

2
t + C ′

ξy ξ̂tŶt + C ′
ξτ ξ̂tτ̂t +

Cπ
2
π̂2t + Cξ

′ξ̂t}

+O(∥ξt∥3) + t.i.p. (E.11)

F Quadratic Approximation to Objective Function

Now we use a linear combination of (D.10) and (E.11) to eliminate the linear term in the second
order approximation to the welfare measure. The coefficients µB, µC should satisfy

µBBy + µCCy = −Φ

µBBτ + µCCτ = 0

The solution is

µB =
Φwτ
Γ

µC = −Φ(1 + wg)(φ+ σs−1
c )

Γ

where wg =
Ḡ+Z̄
S̄

is steady-state government outlays to surplus ratio, and satisfies 1+wg =
τ̄ Ȳ
S̄
.

Γ = σs−1
c wτ + (1 + wg)(φ+ σs−1

c − wτ ).

Therefore, we can finally express the objective function in the linear quadratic form of

(ūY Ȳ )−1(U0 − Ū0) + µB(1− β)−1W0 − W̄

W̄
+ µCκ

−1V0 = −E0

∞∑
t=0

βt[
1

2
qY (Ŷt − Ŷ e

t )
2 +

1

2
qππ̂

2
t ] +O(∥ξt∥3) + t.i.p.

(F.1)
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with

qY = (1− Φ)(φ+ σs−1
c ) + Φ(φ+ σs−1

c )
(1 + wg)(1 + φ)

Γ
+ Φσs−1

c

(1 + wg)(1 + wτ )

Γ
− Φσs−2

c

(1 + wg + wτ )

Γ

qπ =
Φ(1 + wg)ϵ(1 + φ)(φ+ σs−1

c )

κΓ
+

(1− Φ)ϵ(φ+ σs−1
c )

κ

and Ŷ e
t denotes the efficient level of output, which is exogenous and depends on the vector of

exogenous shocks ξt,

Ŷ e
t =q−1

Y (A′
ξ ξ̂t + µBB

′
ξy ξ̂t + µCC

′
ξy ξ̂t)

=qAÂt + qGĜt + qZẐt + qW µ̂
W
t

where

qA = q−1
Y [(1− Φ)(1 + φ) +

Φ(1 + wg)(1 + φ)2

Γ
]

qG = q−1
Y [σ

sg
sc

− σ
sg
sc

Φwτ
Γ

(
σ + 1

sc
− 1

sd
) + σ

sg
sc

Φ(1 + wg)

Γ
(wτ + 1− σ + 1

sc
)]

qZ = q−1
Y σ

Φwτ
Γ

sz
sc

1

sd

qW = −q−1
Y σ

Φ(1 + wg)(1 + φ)

Γ

G U.S. Data

Unless otherwise noted, the following data are from the National Income and Product Accounts
Tables released by the Bureau of Economic Analysis. All NIPA data are nominal and in levels.

Consumption, C. Total personal consumption expenditures (Table 1.1.5, line 2).
Government spending, G. Federal government consumption expenditures and gross invest-

ment (Table 1.1.5, line 22).
GDP, Y . Y = C +G.
Total tax revenues, τY . Federal current tax receipts (Table 3.2, line 2) plus contributions

for government social insurance (Table 3.2, line 11) plus Federal income receipts on assets (Table
3.2, line 12).

Total government transfers, Z. Federal current transfer payments (Table 3.2, line 22) minus
Federal current transfer receipts (Table 3.2, line 16) plus Federal capital transfers payments (Table
3.2, line 43) minus Federal capital transfer receipts (Table 3.2, line 39) plus Federal subsidies (Table
3.2, line 32).

Federal government debt, QMBM . Market value of privately held gross Federal debt,
Federal Reserve Bank of Dallas, http://www.dallasfed.org/research/econdata/govdebt.cfm.

Total factor productivity, A. Business sector total factor productivity, produced on 03-
May-2013 by John Fernald/Kuni Natsuki, http://www.frbsf.org/economic-research/total-factor-
productivity-tfp/. All published variables are log-differenced and annualized. To be consistent
with model with fixed capital, we compute dA = dY − (dhours+dLQ), where dhours and dLQ are
business sector hours and labor composition/quality actually used. Given dAt = 400 ∗ log(At) −
log(At−1), we compute the annualized level of TFP, normalizing A1947Q1 = 1.
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Variable Mean
G/Y 0.129
τ 0.240
B/Y 0.489

We use data from 1948Q1 to 2013Q1 to calibrate the model to U.S. data. For steady states,
we use the sample means reported below. For the quarterly calibration, we multiply B/Y by
4. Lump-sum transfers as a share of GDP adjust to satisfy the steady state government budget
constraint.

To calibrate the exogenous processes, we apply a Hodrick and Prescott (1997) filter to time
series on Gt, τt, Zt, and At and estimate AR(1) processes using the cyclical components of the
filtered data, denoting those components by ĝt, τ̂t, ẑt, ât. Let the AR(1) be x̂t = ρxx̂t−1 + εxt with
standard error of estimate σε. Estimates appear below with standard errors in parentheses.

Variable, x ρx σε
ĝt 0.886 0.027

(0.029)
τ̂t 0.782 0.029

(0.038)
ẑt 0.549 0.045

(0.051)
ât 0.786 0.008

(0.038)
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