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Abstract 
This paper assesses the quantitative importance of including sectoral heterogeneity in 
computing the gains from trade. Our framework draws from Caliendo and Parro (2015) and 
Alvarez and Lucas (2007) and has sectoral heterogeneity along five dimensions, including 
the elasticity of trade to trade costs, the value-added share, and the input-output structure. 
The key parameter we estimate is the sectoral trade elasticity, and we use the Simonovska 
and Waugh (2014) simulated method of moments estimator with micro price data. Our 
estimates range from 2.97 to 8.94, considerably lower than those obtained with the Eaton 
and Kortum (2002) price-based method. Our benchmark model is calibrated to 21 OECD 
countries and 20 sectors. We compute the gains from trade in our benchmark model, 
and in several re-calibrated versions of the model in which we eliminate one or more 
sources of sectoral heterogeneity. Our main result is that sectoral heterogeneity does not 
always lead to an increase in the gains from trade. There are two reasons for this. First, the 
magnitudes of our estimated sectoral trade elasticities are relatively high, while the 
magnitude of our estimated aggregate trade elasticity is low. All else equal, this will lead to 
higher gains for the aggregate, one-sector model. Second, the sectors with low trade 
elasticities (hence, implying high gains from trade) are not the sectors with low value-added 
shares and with high initial trade shares (which would magnify the gains). Hence, the sectoral 
heterogeneity in our calibrated model does not exert complementary gains from trade 
effects. 
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1 Introduction

What is the appropriate level of disaggregation and heterogeneity needed to compute

the gains from international trade across a large set of countries? A great deal, it would

seem, in order to obtain the most accurate calculation. One of the enduring contributions

of Eaton and Kortum (2002) and Melitz (2003) is that their rich models with selection,

multiple countries, and other dimensions, built on a foundation of classic trade mechanisms,

are computationally tractable. A recent literature, largely inspired by Arkolakis, Costinot,

and Rodriguez-Clare (2012), has employed such models, and other models, to examine the

importance of disaggregation and heterogeneity in computing the gains from trade. However,

no paper has done so in a systematic and comprehensive way, particularly with respect to

trade elasticities.

The goal of this paper is to comprehensively and quantitatively assess whether more

sectoral heterogeneity indeed delivers higher gains. We develop a multi-country, multi-

sectoral trade model that draws from Caliendo and Parro (2015) and Alvarez and Lucas

(2007), both of which stem from Eaton and Kortum (2002). In this class of models, as

Caliendo and Parro (2015) discuss, the gains from trade can be divided into two terms. The

first is the direct gains from increased trade. Within each sector, these gains are greater the

larger the increase in trade, the lower the trade elasticity, and the smaller the value-added

share. To the extent these three forces are positively correlated across sectors, the gains

are larger, as well. The second is from intersectoral linkages. These linkages show up as

changes in relative prices of inputs, mediated by their share in the production of the sectoral

good. The more the relative price of inputs declines, the larger the gains. Accordingly, based

on the interaction of these forces, the welfare gains from trade can be higher or lower when

sectoral heterogeneity is considered. In order to ascertain quantitatively the gains from trade

in different model settings, careful estimation and calibration of the parameters, as well as

useful counterfactual simulations, are needed.

We estimate and calibrate the parameters of our 20-sector, 21-country model to match

key features of the price, output, and trade data. A key contribution of our paper is that

we estimate the elasticity of trade with respect to trade costs for each of 19 traded sectors
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using the simulated method of moments (SMM) methodology of Simonovska and Waugh

(2015). This methodology builds on an estimation methodology with micro price-level data

introduced by Eaton and Kortum (2002), but corrects the bias from a small sample of

price observations.1 The original Eaton and Kortum (hereafter, EK) estimator exploited

a no-arbitrage condition to estimate trade costs. Essentially, with a sample of prices of

individual goods comparable across countries, the trade cost between two countries must

not be less than any of the price differences for any good across that pair of countries. In

other words, if the sample is large enough, the trade cost should equal the maximum price

difference. However, in small samples, Simonovska and Waugh (2015) show that estimating

trade costs in this way leads to upwardly biased estimates of the trade elasticity. Simonovska

and Waugh develop an SMM estimator to correct for that bias. To our knowledge, this is

the first application of the Simonovska and Waugh SMM estimator to estimate the trade

elasticity at the sector level.2 We use the Eurostat surveys of retail prices, which covers 12

OECD countries and 19 three-digit ISIC traded good sectors for 1990.3

Our sectoral trade elasticity estimates range from 2.97 to 8.94; the median is 4.38.

We also estimate the sectoral trade elasticities with the original Eaton and Kortum (EK)

method and the minimum, maximum, and median elasticities are 4.26, 35.55, and 10.29.

So, our SMM estimates are clearly lower, as SW obtained in their paper with a one-sector

framework. In addition, as in SW, the “bias” is larger the smaller the sample size. For

example, ISIC 352, Other chemicals, has a sample size of 4, while ISIC 311, Food products,

has a sample size of 343. Our SMM estimates are similar across these two industries, 3.75 and

3.57, respectively, but the EK estimates are 11.93 and 4.28, respectively. These estimates

are used in our calibrated model, which has 21 countries and 20 sectors (19 traded sectors

and one non-traded goods sector). We calibrate the other parameters to match their data

counterparts and/or to be consistent with sectoral outputs and trade flows.

With our calibrated model, we compute the gains from trade by comparing the welfare

in our benchmark equilibrium relative to welfare in a counterfactual autarky equilibrium.

1Eaton, Kortum and Kramarz (2011) also employ this type of estimator.
2Simonovska and Waugh (2014b) go further by showing that, given the data on trade flows and micro-

level prices, different models have different implied trade elasticities and welfare gains.
3See Crucini, Telmer, and Zachariadis (2005), for example.
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Our benchmark calibrated model delivers gains from trade ranging from 0.38 percent in

Japan to 9.59 percent in Ireland. The median gain in going from autarky to the calibrated

equilibrium is 4.25 percent (Finland). We decompose our “benchmark” gains by sector, and

we find that in most countries only a few sectors account for most of the welfare gains. In

addition, we find that the direct trade effect is positive and the intersectoral linkage effect

is negative in all countries. The presence of the non-traded goods sector is critical to this

result. Labor plays a key role in non-traded goods production, and non-traded goods play

a key role as inputs into traded goods. A trade cost shock will induce a response in wages

that, through this non-traded goods channel, mitigate the effects of the original shock.

We then conduct two sets of counterfactual exercises to assess the role of sectoral

heterogeneity. In the first set of exercises, we calibrate and estimate a one-sector model with

no sectoral heterogeneity in trade elasticities, value-added shares, input-output structure,

bilateral trade costs, and productivities. As part of this, we estimate the one-sector elasticity

using the same methodology as above. We compare the gains from trade in this one-sector

model with that from our benchmark model. We find that the gains from the benchmark

model are typically slightly lower than in the one-sector model. This is our main result.

When we investigate the sources of this result, we find that the relatively high estimated

sectoral elasticities and the relatively low estimated one-sector elasticity plays a key role. If

we replace our estimated one-sector elasticity with the median elasticity from the benchmark

model, then the gains from trade in the benchmark model are about twice as large as in the

one-sector model.

In the second set of exercises, we eliminate one source of sectoral heterogeneity at a

time; in its place, we employ a homogeneous parameter that is common across all sectors. For

example, we replace the estimated sectoral trade elasticities with a single elasticity common

to all sectors. As in the first set of exercises, when we “reduce” heterogeneity, we re-calibrate

the trade cost and productivities so that the model continues to be consistent with the

output and trade data. We then compute the gains from trade and compare these gains to

the benchmark model gains. When we replace our estimated sectoral trade elasticities with

the median estimate (4.38), as well as when we replace the sectoral value-added shares with

the average value, we find that the gains from trade are about the same compared to the

3



benchmark model. In other words, including for sectoral heterogeneity in these particular

cases does not lead to significantly larger gains. The primary reason for the similarities in

gains is that the sectors that provide the greatest gains also happen to have trade elasticities

that do not differ much from the median estimate, nor are they sectors associated with very

low value-added shares. If sectors with low estimated trade elasticities are also sectors with

low value-added shares, then, all else equal, sectoral heterogeneity would deliver larger gains

from trade than a model with a common elasticity and/or value-added share across sectors.

Similarly, when we impose a common input-output structure across all sectors, we find the

gains are slightly smaller than in the benchmark model. All of these quantitative exercises

imply that the interaction of the sectoral parameters and variables with each other does not

deliver additional gains from trade.

Overall, we conclude from our quantitative exercises that heterogeneity does not nec-

essarily imply larger gains from trade. This is consistent with the theory. As Caliendo and

Parro (2015) show, the gains from trade is a non-linear function of the existing sectoral

domestic expenditure shares, the sectoral trade elasticity, and the value-added shares, on

the one hand, and the input-output structure and relative prices, on the other hand. In

addition, a key reason for our main result is that we are using model-consistent estimates of

our trade elasticities in both our benchmark model and our one-sector model.

Our paper is most closely related to Costinot and Rodriguez-Clare (2014), and Ossa

(2015). Costinot and Rodriguez-Clare (2014) and Ossa (2015) compare the gains from multi-

sector models to the gains from one-sector models, similar to our first set of exercises, except

they essentially use an average sectoral elasticity as their one-sector elasticity, rather than

an estimated one-sector elasticity. But, as discussed above, when we replace our estimated

one-sector elasticity with the median of the sectoral elasticities, our results and theirs are

qualitatively similar. We go further by examining the sources of heterogeneity one at a time.

All of our results show that greater heterogeneity does not necessarily lead to greater gains,

and are behind our overall nuanced conclusion that depending on the source of heterogene-

ity and on the nature of the exercise, the gains from trade in frameworks with increased

heterogeneity can be larger or smaller.

Caliendo and Parro (2015) also evaluate the gains from trade in multi-sector versus
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one-sector models in the context of the gains from NAFTA. They find that the multi-sector

model delivers larger gains. Our paper helps address the issue of whether their results extend

to other contexts.Levchenko and Zhang (2014) is another related paper. The authors focus

on heterogeneity arising from differences in comparative advantage across sectors. However,

unlike our paper, they do not study the effects of heterogeneity in within sector comparative

advantage, as captured by sector-specific 1/θ’s. Their main exercise involves assessing the

ability of one-sector and multi-sector gains from trade formulas to capture the gains from

trade in a calibrated multi-sector model. They find that the multi-sector formulas that allow

for the most heterogeneity, and adjust for the importance of the non-traded sector, come the

closest to matching the welfare gains from the calibrated model.

The rest of the paper is organized as follows. Section 2 lays out our model, and the

following section provides our calibration and estimation methodology. Section 4 presents

our results, including our elasticity estimates, our benchmark welfare gains, and our coun-

terfactuals. Section 5 concludes.

2 Model

Our model draws from Alvarez and Lucas (2007) and Caliendo and Parro (2015), both

of which extend Eaton and Kortum (2002). There are N countries, S sectors producing

tradable goods, and one sector producing a single non-traded good.

2.1 Production

In each tradable goods sector s ∈ S of country i ∈ N , there is a continuum of goods

xsi ∈ [0, 1]. Each good is produced by combining labor and tradable and non-tradable

intermediate inputs with a Cobb-Douglas technology:

qsi (xs) = zi (x
s)−θ

s

[li (x
s)]β

s

[
S+1∏
m=1

Qm
i (xs)ξ

s,m

]1−βs

where zi (x
s) is a random cost draw for good xsi from an exponential distribution - exp (λsi ).

λsi is a sector and country-specific productivity parameter. The zi (x
s)’s are assumed to be
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independent across goods, sectors and countries. θs controls the impact of zi (x
s). li (x

s)

is the amount of labor used to produce good x of sector s in country i, and the amount

of sector m composite good used as an intermediate input is denoted by Qm
i (xs). The

shares ξs,m capture the input-output structure of production across sectors, and they satisfy∑S+1
m=1 ξ

s,m = 1 for every sector s.

The individual goods in each sector are traded across countries. For a particular

country-sector pair i,s, each of the continuum of individual goods is procured at the lowest

price, and all of them are then combined via a constant elasticity of substitution (CES)

aggregator to make a sectoral composite good Cs
i :

Cs
i =

[∫
qsi (xs)

ηs−1
ηs f s (xs) dxs

] ηs

ηs−1

where qsi (xs) is the amount of good x of sector s used to produce the composite good. The

elasticity of substitution between the individual tradable goods of sector s is ηs. Given

that the cost draws - zi (x
s)’s -, characterizing goods in the continuum, are assumed to be

independent across goods, sectors and countries, the joint density function of the shocks

across countries is: (
N∏
i=1

λsi

)
exp

(
−

N∑
i=1

λsiz
s
i

)
The non-traded sector’s composite good is produced as follows:

CS+1
i = CN

i = ANi
[
lNi
]γ [S+1∏

m=1

(
QN,m
i

)φN,m]1−γ

,

where lNi is the labor used in the production of the non-traded composite good, QN,m
i is the

amount of sector m composite used as intermediate input, and the shares of φN,m satisfy∑S+1
m=1 φ

N,m = 1. ANi represents the TFP in non-traded sector.

2.2 Prices

We make the standard iceberg assumption - in order for country i to receive one unit of a

good of sector s, country j must ship τ sij > 1 units. Given that the individual goods can be
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bought from domestic or foreign producers, the price of good x of sector s in country i is

psi (xs) = min
j

{
BsV s

j z
s
j

(
xsj
)θs

τ sij

}
(2.1)

where V s
i is an input bundle cost given by:

V s
i = [wi]

βs

[
S+1∏
m=1

(Pm
i )ξ

s,m

]1−βs

, (2.2)

where wi denotes wages, Pm
i denotes the price of Qm

i , and Bs denotes a sector-specific

constant.4

Properties of the exponential distribution imply that

psi (xs)
1
θs ∼ exp

{
(Bs)

−1
θs

N∑
j=1

ψsij

}

where

ψsij =
(
V s
j τ

s
ij

)−1
θs λsj . (2.3)

Since sector s composite good is produced using CES technology, the price of the sector s

composite is

P s
i =

[∫ 1

0

psi (xs)1−ηs dxs
] 1

1−ηs

,

which, given the distribution of psi (xs)
1
θs , can be written as (see the Appendix for details)

P s
i = AsBs

(
N∑
j=1

ψsij

)−θs
, (2.4)

where As is a sector-specific constant.5

4 Bs = (βs)
−βs

(1− βs)−(1−β
s)
[∏S+1

m=1 (ξs,m)
−ξs,m

](1−βs)
5As =

(∞∫
0

uθ
s(1−ηs) exp (−u) du

) 1
1−ηs

is a Gamma function.
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The price of the non-traded composite good is:

PN
i = E

[wi]
γ
[∏S+1

m=1 (Pm
i )φ

N,m
]1−γ

ANi
,

which implies,

PN
i =

E [wi]
γ
[∏S

m=1 (Pm
i )φ

N,m
]1−γ

ANi


1

1−φN,N (1−γ)

, (2.5)

where

E = γ−γ (1− γ)−(1−γ)

(
S+1∏
m=1

(
φN,m

)−φN,m)(1−γ)

.

2.3 Consumption

In each country there is a representative household that derives utility from a final consump-

tion good (Yi).

Ui = Yi .

The final consumption good is a Cobb-Douglas aggregator of the sectoral composite goods.

Yi =
S+1∏
m=1

(
Y f,m
i

)δf,m
, (2.6)

where Y f,m
i is the final consumption of sector m composite, and

∑S+1
m=1 δ

f,m = 1 . The price

of the final good, therefore, is given by

Pi =
S+1∏
m=1

(
δf,m

)−δf,m
(Pm

i )δ
f,m

. (2.7)
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2.4 Market Clearing

We normalize labor in each country to 1. Then, the market clearing conditions for labor and

sectoral composite goods are given by:

S∑
s=1

∫ 1

0

lsi (xs) dxs︸ ︷︷ ︸
lsi

+lNi ≤ 1 , i = 1, . . . , N ,

S∑
m=1

∫ 1

0

Qm,s
i (xs) dxs︸ ︷︷ ︸
Qm,si

+QN,s
i + Y f,s

i ≤ Cs
i , i = 1, . . . , N , s = i = 1, . . . , S + 1 .

2.5 Trade Flows

We now derive an expression for trade shares that will be important for our quantitative

work. Owing to properties of the exponential function, the probability that good x of sector

s is exported by country j to country i is the same across all goods in that sector:6

πsij (xs) = πsij =
ψsij

ψsij +
∑

n6=j ψ
s
in

=
ψsij∑N
n=1 ψ

s
in

. (2.8)

Hence, the expenditure of country i on sector s goods of country j is

Xs
ij = πsijX

s
i ,

where Xs
i is the total per capita expenditure of country i on sector s goods. We use Ds

ij to

denote the share of country j in country i’s expenditure on sector s goods:

Ds
ij =

Xs
ij

Xs
i

= πsij =
ψsij∑N
n=1 ψ

s
in

.

Using (2.4), we can rewrite this expression as:

Ds
ij = (AsBs)−

1
θs

(
V s
j τ

s
ij

P s
i

)−1
θs

λsj (2.9)

6See EK for the derivation
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which is decreasing in source country input bundle cost V s
j and trade costs τ sij and increasing

in the productivity parameter λsj .

2.6 Expenditure on Sectoral Goods, Wages and Labor Allocations

How is the per capita expenditure on a sector’s goods determined? To see this, start with

the market clearing condition for composite good of sector s and multiply both sides by its

price. This yields

Xs
i = P s

i C
s
i =

S∑
m=1

P s
i Q

m,s
i + P s

i Q
N,s
i + P s

i Y
f,s
i , (2.10)

where the first term on the right hand side is the expenditure of all traded good sectors

on sector s composite, the second term is the expenditure of the non-traded good sector

on sector s composite, while the last term is final consumption expenditure on sector s

composite. Due to Cobb-Douglas production technologies, these components of expenditure

of sector s composite (s = 1, . . . , S + 1) are given by

P s
i Y

f,s
i = δf,sPiYi = δf,swiLi ,

P s
i Q

m,s
i = (1− βm) ξm,s

N∑
j=1

LjX
m
j D

m
ji , m = 1, . . . , S ,

P s
i Q

N,s
i = (1− γ)φN,sLiX

N
i ,

where XN
i = PN

i C
N
i . Thus, the total expenditure on sector s = 1, . . . , S + 1 composite is

given by

LiX
s
i = δf,swiLi + (1− γ)φN,sLiX

N
i +

S∑
m=1

(1− βm) ξm,s
N∑
j=1

LjX
m
j D

m
ji . (2.11)

Wages are determined by using the balanced trade condition.

S∑
s=1

N∑
j=1

LjX
s
jD

s
ji =

S∑
s=1

LiX
s
i . (2.12)

Once we have the per capita expenditure on a sector’s goods and the wage, labor
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allocation is derived from

Liwil
s
i = βs

N∑
j=1

LjX
s
jD

s
ji , (2.13)

Liwil
N
i = γLiX

N
i . (2.14)

2.7 Equilibrium

The competitive equilibrium is the sectoral composite good price indices ({P s
i }Ss=1, P

N
i ), per

capita expenditures on each sector’s goods ({Xs
i }Ss=1, X

N
i ), wages (wi), and labor allocations

({lsi }Ss=1, l
N
i ) that provide a solution to the system of equations - (2.4), (2.5), (2.9), (2.11),

(2.12), (2.13), and (2.14).

2.8 Sources of Gains from Trade

What are the sources of gains from trade in our model with inter-sectoral linkages?

Using (2.7) for the price of the final consumption good yields the following expression for

real GDP per capita:

Wi =
1

H

S+1∏
s=1

(
wi
P s
i

)δf,s
, (2.15)

where

H =
S+1∏
s=1

(
δf,s
)−δf,s

.

Thus, real income is a geometric average of the real wage expressed relative to the price

of sector s composite, with the weight being each sector’s weight in the final consumption

good. Combining (2.9) with the expression for unit cost of the input bundle (V s
i ) yields the

following expression for wi/P
s
i for the tradable goods sectors:

wi
P s
i

=

(
1

AsBs

) 1
βs
(
Ds
ii

λsi

)−θs
βs

S+1∏
m=1

(
Pm
i

P s
i

)−ξs,m(1−βs)
βs

, s = 1, . . . , S
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For the non-traded sector, the analogous expression is given by

wi
PN
i

=

[
ANi
E

S∏
s=1

(
wi
P s
i

)φN,s(1−γ)
] 1

1−φN,N (1−γ)

.

Substituting the last two expressions in the expression for real wage gives us

Wi =
(
δf,N

)δf,N (ANi
E

) δf,N

1−φN,N (1−γ)

S∏
s=1

(
δf,s
)δf,s ( 1

AsBs

) 1
βs
(
Ds
ii

λsi

)−θs
βs

S+1∏
m=1

(
Pm
i

P s
i

)−ξs,m(1−βs)
βs


δf,NφN,s(1−γ)
1−φN,N (1−γ)

+δf,s

. (2.16)

Then the logarithm of the change in real GDP per capita is given by

ln Ŵi =
S∑
s=1

 δf,NφN,s(1− γ)

1− φN,N(1− γ)︸ ︷︷ ︸
non-traded sector effect

+δf,s


− θ

s

βs
ln D̂s

ii︸ ︷︷ ︸
trade effect

− (1− βs)
βs

S+1∑
m=1

ξs,m ln

(
P̂m
i

P̂ s
i

)
︸ ︷︷ ︸

inter-sector linkage effect

 .

(2.17)

As discussed in Caliendo and Parro (2015), there are two main sources of gains from

trade.7 When there is reduction in trade barriers, trade increases, i.e., sectoral home expen-

diture shares, Ds
ii, will tend to decline (ln D̂s

ii < 0). This leads to an increase in welfare.

The “trade effect”represents the standard gains driven by increased specialization and trade.

A given decline in the sectoral home expenditures share, Ds
ii, leads to a larger increase in

welfare if θs/βs is high. A higher θs, which corresponds to a smaller trade elasticity for sector

s, implies larger welfare gains essentially because goods are less substitutable. In addition, a

lower βs, or a higher intermediate input share in sector s leads to greater gains from trade.

This owes to the “round-trip” effect discussed in Jones (2011).

The second source of gains stems from the change in relative prices of intermediates;

we call it the “inter-sectoral linkages effect”.8 As trade barriers decline, the costs of imports

7There is also a third source of gains from trade - change in sectoral productivities, λsi . However, as in
Caliendo and Parro (2015) , we assume that sectoral productivities do not change.

8Caliendo and Parro (2015) call this the “sectoral linkages effect”.
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decline, which shows up as lower prices of sectoral intermediate goods. To the extent these

prices decline relative to the price of the sector s output good that is being produced from

these intermediates, there are gains from trade. A given relative price decline has a larger

impact on welfare, the larger the share of the intermediate good in the output good’s pro-

duction process, i.e., the larger is ξs,m. In addition, the welfare gains are larger, the greater

the intermediate input share in the sector s good 1− βs.

For both sources of gains, there is an additional effect coming from the weight of sector

s goods in final consumption, which is captured by δf,s. Finally, the non-traded final good

has two partially offsetting effects. On the one hand, the presence of the non-traded good

dampens the gains from trade coming from the inter-sector linkages. This negative effect

of the non-traded sector on welfare is partially offset, because increased trade reduces the

cost of the traded intermediate goods that are used to produce the non-traded good. The

overall effect depends on the relative importance of intermediate composite of sector s in

production of non-traded good, and the weight on the non-traded good in final consumption

good. This effect is captured by the term δf,NφN,s(1−γ)
1−φN,N (1−γ)

.

It is worth noting that it cannot be immediately inferred from (2.17) that more het-

erogeneity automatically implies greater gains from trade. It depends on the details of the

sectoral heterogeneity.

3 Calibration and Estimation Methodology

We now describe how we calibrate the model. The key parameters and variables to be cal-

ibrated are the θs, the trade costs, τ sij, and the productivity parameters, λsi .
9 Of these, the

most important is calibrating the sector-specific parameter of θs that represents trade elastic-

ities with respect to trade costs. We employ the simulated method of moments methodology

introduced by Simonovska and Waugh (2014a) (hereafter, SW), for estimating these elas-

ticities, θs, at the sectoral level. The estimation procedure employs micro-level price data,

categorized into sectors, and sectoral trade flow data, with the latter captured by a ‘gravity’

9We solve our model in ‘levels’. Using a ‘changes’ methodology, as popularized by Dekle, Eaton, and
Kortum (2008), would preclude the need to calibrate the productivity parameters and trade cost parameters,
but that approach does not allow us to evaluate the fit of the benchmark model.
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equation linking sectoral trade shares to source and destination fixed effects and to trade

costs. We also describe our data sources, as well as the calibration of the other parameters.

Finally, a number of our counterfactuals involve a one-sector model, and we describe how

we calibrate and estimate that.

3.1 Sector-Level Trade Elasticity

To estimate the trade elasticity - 1/θs - for each sector s, we use the simulated method of

moments (SMM) estimation methodology developed by SW. A summary of the methodology

is provided here; a detailed description is provided in Appendix B.

To obtain the equation to be estimated, according to (2.9), we can write:

Ds
ij

Ds
jj

=
(AsBs)−

1
θs

(
V sj τ

s
ij

P si

)− 1
θs

λsj

(AsBs)−
1
θs

(
V sj τ

s
jj

P sj

)− 1
θs

λsj

=

(
P s
j τ

s
ij

P s
i

)− 1
θs

.

The log version of this expression can be written as:

log

(
Ds
ij

Ds
jj

)
= − 1

θs
log

(
P s
j τ

s
ij

P s
i

)
, (3.1)

Note that if we had only one sector, we would have 1
θs

= θEK where θEK represents θ in EK.

Similar to EK and SW, we construct the sectoral prices, inclusive of trade costs, using micro

price data:

log

(
P s
j τ

s
ij

P s
i

)
= max

x
{rij (xs)} −

Hs∑
x=1

[rij (xs)] /Hs , (3.2)

where rij (xs) = log psi (xs)− log psj (xs), maxx means the highest value across goods, and Hs

is the number of goods in sector s of which prices are observed in the data.

For each sector s, we employ the SMM estimator as follows:

1. Estimate θs using trade and price data in (3.1) and (3.2) by the method of moments

(MM) estimator as in EK. Call this θsEK .

2. Estimate gravity equation given by (3.3) and (3.4) below. Since the data include zero-

trade observations, we use poisson pseudo maximum likelihood (PPML) estimation
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as advocated in Silva and Tenreyro (2006). The gravity equation estimates provide

measures of sector-source-destination trade costs subject to the determination of θs.

3. For a given θs, say, θsG, use source dummies in the gravity equation to estimate source

marginal costs.

4. Use the trade cost and marginal cost estimates to compute the set of all possible

destination prices and select the minimum price for each destination. These prices are

the simulated prices. We allow for 50, 000 goods in each sector; we randomly draw

goods prices from each of these pools.10

5. Using the simulated prices, calculate the model-implied trade shares, and call them as

the simulated trade shares.

6. Using the simulated trade shares and simulated prices, estimate θs with the MM esti-

mator. Call the estimate θsS. Repeat this exercise 1, 000 times.

7. Find the θsG that minimizes the weighted distance between θsEK and the mean θsS.

The selected θsG is the SMM estimate of θs. (See Appendix B for the exact moment

conditions and objective function.) Call this θsSMM .

Following Eaton, Kortum, and Kramarz (2011) and SW, we calculate standard errors

using a bootstrap technique, taking into account both sampling error and simulation error.

In particular, we proceed as follows:

1. Using the fitted values and residuals in the gravity equation of (3.3), resample residuals

with replacement and generate a new set of data using the fitted values. This is very

similar to Step 5 in SMM estimation, above.

2. For each resampling b, with the generated data set, estimate θs using MM estimator

(as in EK) together with trade and price data in (3.1). Call this θsb .

3. To account for simulation error, set a new seed to generate a new set of model-generated

moments; i.e., follow Steps 2-7 for SMM estimation above to estimate θsb,SMM for each

bootstrap b.

10In SW, the total number of goods in the one-sector model is 100,000.
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4. Repeat this exercise 25 times and compute the estimated standard error of the estimate

of θsSMM as follows:

S.E. (θsSMM) =

[
1

25

25∑
b=1

(
θsb,SMM − θsSMM

)′ (
θsb,SMM − θsSMM

)] 1
2

where θsb,SMM is a vector with the size of (25× 1).

3.2 Sector-Level Bilateral Trade Costs: Gravity Equation Estima-

tion

Given estimates of the trade elasticities, 1/θs, we can compute bilateral trade costs for every

sector by estimating (3.3) below. A gravity-type expression for trade at the sector-level can

be obtained using (2.9):

Ds
ij

Ds
ii

=

(
V s
j τ

s
ij

V s
i

)− 1
θs λsj
λsi

Let Ωs
i = (V s

i )−
1
θs λsi and T si = ln (Ωs

i ). Then

ln

(
Ds
ij

Ds
ii

)
= T sj − T si −

1

θs
ln
(
τ sij
)

(3.3)

We estimate (3.3), where, as in Waugh (2010), we specify trade costs as follows:

ln τ sij = distI︸︷︷︸
distance

+ brdr︸︷︷︸
border

+ lang︸︷︷︸
language

+ tblkG︸ ︷︷ ︸
trade block

+ srcsi︸︷︷︸
source effect

+ εsij , (3.4)

where distI (I = 1, . . . , 6) is the effect of distance between i and j lying in the Ith interval,

brdr is the effect of i and j sharing a border, lang is the effect of i and j sharing a language,

tblkG (G = 1, 2) is the effect of i and j belonging to a free trade area G, and srci (i = 1, . . . , n)

is a source effect. The error term εsij captures trade barriers due to all other factors, and

is assumed to be orthogonal to the regressors. The errors are assumed to be normally

distributed with mean zero and variance, σε. The six distance intervals (in miles) are:

[0, 375); [375, 750); [750, 1500); [1500, 3000); [3000, 6000) and [6000,maximum]. The two

free trade areas are the European Union (EU) and the North-American Free Trade Agreement
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(NAFTA). T si is captured as the coefficient on source-country dummies for each sector s.

3.3 Sector-Level Technology Parameters

To infer the technology parameters of the traded goods sectors, λsi , we use the full information

from the gravity equation, as done in Waugh (2010). The technology parameter of the non-

traded goods sector, ANi , is chosen to match the GDP per capita in the data. The procedure

is outlined below:

Step 1 - Estimate trade costs, τ sij, and country dummies, T si , using the gravity equation -

(3.3) and (3.4).

Step 2 - Since Ωs
i = (V s

i )−
1
θs λsi and T si = ln (Ωs

i ), compute price of sector s composite good

as

P s
i = AsBs

(
N∑
j=1

eT
s
j τ sij

− 1
θs

)−θs
. (3.5)

Step 3 - Start with a guess of ANi . Taking Li and Ds
ij from the data, solve for price of

non-traded sector’s composite good, per capita expenditures, wages, and labor allocations

using (2.5), (2.11), (2.12), (2.13), and (2.14).

Step 4 - Then update ANi using the expression for GDP per capita (data comes from Penn

World Tables (PWT))

Wi =
1

H

S+1∏
s=1

(
wi
P s
i

)δf,s
,

where

H =
S+1∏
s=1

(
δf,s
)−δf,s

.

If distance between starting guess and updated values of ANi is smaller then a threshold then

move to the next step, else replace the guess in step 3 by the updated values and repeat

steps 3 and 4.

Step 5 - Lastly, the productivity parameter for sector s in country i, λsi , is obtained using

the relationship

Ωs
i = (V s

i )−
1
θs λsi = eT

s
i , (3.6)

where V s
i is the factor cost, given by (2.2).
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3.4 Data for Estimating Sectoral Trade Elasticities, Trade Costs,

and Productivities

The data on prices of goods, needed for the estimation of sectoral θ’s, come from Eurostat

surveys of retail prices in the capital cities of EU countries for the year 1990. The data

set has been compiled by Crucini, Telmer, and Zachariadis (2005) and used by Giri (2012),

Inanc and Zachariadis (2012), and Yorukoglu (2000).11 We use price data for 12 countries

included in the surveys - Austria, Belgium, Denmark, France, Germany, Greece, Ireland,

Italy, Netherlands, Portugal, Spain and United Kingdom. The goods maintain a high degree

of comparability across locations; typical examples of item descriptions are “500 grams of

long-grained rice in carton”, or “racing bicycle selected brand”. The level of detail is for

some cases at the level of the same brand sampled across locations. This enables exact

comparisons across space at a given point in time. The retail price of a good in a given

country is the average of surveyed prices across different sales points within the capital city

of that country. Furthermore, the effect of different value added tax (VAT) rates across

countries has been removed from the retail prices. The price data cover 1896 goods for the

year 1990; we use 1410 of these goods prices. Each good is then assigned to one of our 19

ISIC sectors. For example, long-grained rice is assigned to sector 311 (Food products), and

racing bicycle to sector 384 (Transport equipment). The sample size of prices in each sector

(Hs) is given in Table 4.

In our framework, as is standard in EK-type multi-country models, we assume that

within country trade and distribution costs are zero. To square this assumption with the

reality of distribution costs, mark-ups, and other costs that make retail prices different from

at-the-importing-dock prices, we assume, as do SW, that such costs have the same propor-

tional effect on at-the-importing-dock prices across all goods.12 Under this assumption, the

solution of the model is identical to the one in which within country costs are zero.

Data on output and bilateral trade by sectors for 1990 come from the Trade, Production

and Protection database of the World Bank. They provide a broad set of data covering

measures of trade, production and protection for 21 OECD countries and 28 manufacturing

11The data can be downloaded from http://www.aeaweb.org/articles.php?doi=10.1257/0002828054201332.
12An alternative approach is to explicitly model such costs, as in Giri (2012)
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sectors corresponding to the 3-digit level International Standard Industrial Classification

(ISIC), Revision 2.13 Out of the 28 manufacturing sectors, we use data for 21 sectors,

because, for the other sectors, there are many missing observations on trade volumes. For

the same reason, we also combine sectors 313 (Beverages) and 314 (Tobacco) into one single

sector and sectors 341 (Paper and paper products) and 342 (Printing and Publishing) into

another single sector. The description of the 19 sectors is provided in the appendix in Table

6.14 The data on trade barriers - distance, border and language - come from Centre D’Etudes

Prospectives Et D’Informations Internationales15.

To compute the trade shares for a sector s - share of country j in country i’s total

expenditure on sector s goods - total exports of a country are subtracted from its gross

output. This gives each country’s home purchases for a sector (Xs
ii). Adding home purchases

and total imports of a country gives the country’s total expenditure on sector s goods (Xs
i ).

Normalizing home purchases and imports of an importing country from its trading partners

by the importer’s total expenditure creates the expenditure shares - Ds
ij - that are used in

the gravity equation estimation.

3.5 Calibration of Other Parameters

In this section, we explain how the other parameters of the model are calibrated. βs is

computed as the, average across countries, share of value added in gross output of a sector.

The data on value added and gross output by sector come from the World Bank Trade,

Production and Protection database. γ is computed as the, average across countries, share

of value added in the gross output of non-traded goods’ sector. The non-traded sector

includes everything except manufacturing. To compute γ we use data from the OECD

STAN Structural Analysis database (STAN Industry, ISIC Rev. 2 Vol 1998 release 01). We

find γ to be 0.61.

13The countries include Australia, Austria, Belgium, Canada, Denmark, Finland, France, Germany,
Greece, Ireland, Italy, Japan, Mexico, Netherlands, New Zealand, Norway, Portugal, Spain, Sweden, United
Kingdom, and United States.

14Sectors dropped due to missing data on trade volumes are Industrial chemicals, Petroleum refineries,
Miscellaneous petroleum and coal products, Non-ferrous metals, Machinery, except electrical, Professional
and scientific equipment, and Other manufactured products.

15http://www.cepii.fr
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ξs,m, which represents the share of sector m = 1, . . . , S+1 in the expenditure of traded

goods sectors s = 1, . . . , S on intermediate inputs is computed using the input-output table

of the United States for the year 1990. The same data and computations are also used to

get φN,m - the share of sector m = 1, . . . , S+1 in the expenditure of non-traded goods sector

on intermediate inputs. Lastly, we use the same data to compute δf,s as the share of sector

s = 1, . . . , S + 1 in final domestic expenditure.

ηs is the elasticity of substitution between goods of a sector. Anderson and Wincoop

(2004) find that elasticity of demand for imports at sector level is between 5 and 10. However,

as in EK, this parameter does not have any implications for the results of the model. We

choose ηs = 2 for all sectors. This is the highest value that ensures that the Gamma function

determining As is well defined for all sectors.

Table 1 summarizes the calibration of all the parameters of the model and Table 2

provides more detail on the sector level value added shares in production, and shares in final

domestic expenditure.

Table 1: Summary of Parameters

Parameter Description Value Source

τsij trade cost estimated (section 3.2)

1/θs trade elasticity of sector Table 4 estimated (section 3.1)
λsi Frechet parameter for traded goods sectors computed (section 3.3)
ANi productivity in non-traded goods sector GDP per capita (PWT) (sec-

tion 3.3)
γ value added share in gross output for non-traded good sector 0.61 OECD STAN data
βs value added share in gross output for traded goods sectors Table 2 World Bank data
ξs,m expenditure on intermediates by traded goods sectors Table 7 US IO table 1990
φN,m expenditure on intermediates by non-traded goods sector Table 7 US IO table 1990
δf,s share of sector in final domestic expenditure Table 2 US IO table 1990
ηs elasticity of substitution within traded goods sectors 2 EK

Table 2: βs and δf,s

ISIC Code βs δf,s

311 0.2603 0.0232

313,314 0.4911 0.0232

321 0.3878 0.0049

322 0.4269 0.0049

323 0.3296 0.0049

324 0.3925 0.0049

331 0.3565 0.0036

332 0.4150 0.0036
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Table 2: (continued)

ISIC Code βs δf,s

341,342 0.4285 0.0139

352 0.4421 0.0135

355 0.4380 0.0014

356 0.4085 0.0014

361 0.5829 0.0003

362 0.5003 0.0003

369 0.4512 0.0003

371 0.3391 0.0000

381 0.4180 0.0003

383 0.4176 0.0171

384 0.3469 0.0493

400 0.6090 0.8288

3.6 Calibration of One-sector Model

One set of counterfactual exercises that we perform involve an aggregated version of our

model that collapses the 19 traded goods sectors of our benchmark model into a single

traded good sector. There continues to be a non-traded good sector.16 We first estimate the

single 1/θ for this model, and then we estimate the trade costs and technology parameters

following the same procedure as in our benchmark model, except we now use aggregated

trade data and we view all the micro-prices as coming from a single traded sector. (We

present the 1/θ estimate in the next section.) With this model, we examine the gains from

trade, and compare it to the benchmark model. Table 3 shows the key parameters in this

version of the model.

Table 3: Parameters for One Sector Model

β δ γ

0.37 0.17 0.61

Note: δ =
∑S

1 δ
f,s = 1− δf,N .

Note: β is computed as average across
countries of the ratio of sum of value added
of all traded goods sectors to the sum of
gross output of all traded goods sectors.

16We continue to have an input-output structure, but now it is just a 2 x 2 matrix.
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4 Results

We first present our estimated trade elasticities and then turn to the welfare gains from our

benchmark model, as well as from our two sets of exercises.

4.1 Estimated Trade Elasticities

Table 4 presents the results of the estimation of trade elasticites - 1/θs. The column labeled

”SMM-PPML” shows the estimates coming from our application of the SW SMM methodol-

ogy with PPML estimation of the gravity equation.17 Standard errors for each estimate are

in parentheses. For comparison, we also estimate the sectoral elasticities with the original

Eaton and Kortum (EK) methodology. The column labeled “EK” provides the estimates

resulting from the EK estimator. The last column shows the number of goods in each sector

(after mapping the individual goods into the 3 digit ISIC sector categories).

Our sectoral trade elasticity estimates range from 2.97 (ISIC 341 and 342, Paper and

products; printing and publishing) to 8.94 (ISIC 371, Iron and steel); and the median is 4.38

(ISIC 355, Rubber products). Using the EK method, the trade elasticity estimates range

from 4.26 to 35.55 with a median of 10.29. As Table 4 shows, for each sector, our SMM

estimate of the trade elasticity is smaller than the estimate obtained by the EK methodology.

Hence, our sectoral SMM estimates mirror the results obtained by SW in their one-

sector framework. As SW found, we also find that the “bias” is larger the smaller the sample

size. For example, ISIC 352, Other chemicals, has a sample size of only 4, while ISIC 311,

Food products, has a sample size of 343. Our SMM estimate for Other chemicals is 3.75, as

opposed to 11.93 with the EK methodology, while our estimate for Food products is 3.57, as

opposed to 4.28 with the EK methodology.

Caliendo and Parro (2015) also estimate structurally consistent estimates of sectoral

trade elasticities using a triple-difference approach. However, they utilize sector-level data

– sector-level tariff rates – to estimate their trade elasticities. Our estimates overall show

a smaller range than the manufacturing sectors estimates in Caliendo and Parro (2015),

17We also estimated the elasticity by OLS. The estimates are very similar to the PPML estimates. This
suggests that the issue of zeros in trade-flow data is not significant with our data.
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although the median estimates are similar. The highest estimated elasticity in Caliendo and

Parro (2015) is 65 (99 percent sample; petroleum), and the lowest is 0.39 (99 percent sample,

other transport). Note that their lowest elasticity, as well as the lowest estimated elasticity

in Ossa (2015), 0.54, are both considerably smaller than our lowest estimated elasticity,

2.97. This will be important for our interpretation of our welfare results vis-a-vis these other

papers later.

It is worth pointing that using the EK methodology it would be difficult to get such low

estimates, even when the sample size is large. The reason is the following. From (3.1) and

(3.2), we can see that the estimate for 1/θs is essentially the mean across country-pairs of the

ratio of the log bilateral trade share and the maximum log bilateral price difference minus

the average log bilateral price difference. It turns out that the average log bilateral price

difference is very close to 0 in the data for most country-pair-sector combinations. Hence,

given the log bilateral trade share in the data, the maximum log bilateral price difference is

what determines the estimate for 1/θs. Consider the Food products sector; as Table 4 shows,

the EK estimate of 1/θs for this sector is 4.28. The maximum log price difference is 1.2,

which translates to a factor of 3.3 difference in prices. In other words, if the lowest price is 1,

then the highest price is 3.3. Consider the following question: given the log bilateral trade

share in the data, what would the maximum price difference need to be if the EK estimate

of 1/θs was 1.5? The maximum log price difference would be 3.4, which translate to a factor

30.4 difference in prices. In other words, if the lowest price is 1, the highest price would be

30.4. This seems unlikely for our sample of countries.

Our SW estimates of 1/θs are lower than the EK estimates, but our point from the pre-

ceding paragraph is that using a model-consistent price approach to estimating 1/θs will not

yield low elasticities unless the maximum price differences are – we argue – counterfactually

large.

Table 4: Estimates of Trade Elasticities by Sector (1/θs)

ISIC Code Sector Description SMM-PPML EK Sample Size

of Prices

311 Food products 3.57 (0.31) 4.28 343

313,314 Beverages and Tobacco 3.57 (0.22) 5.36 93

321 Textiles 3.27 (0.2) 5.21 36

322 Wearing apparel, except footwear 4.41 (0.33) 5.17 143

323 Leather products 5.28 (0.3) 8.14 20
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Table 4: (continued)

ISIC Code Sector Description SMM-PPML EK Sample Size

of Prices

324 Footwear, except rubber or plast 4.77 (0.49) 10.29 20

331 Wood products, except furniture 4.17 (1.26) 15.45 8

332 Furniture, except metal 4.47 (0.31) 15.37 5

341,342 Paper and products and printing and publishing 2.97 (0.18) 6.57 14

352 Other chemicals 3.75 (0.22) 11.93 4

355 Rubber products 4.38 (0.54) 8.02 14

356 Plastic products 3.87 (1.41) 16.00 8

361 Pottery, china, earthenware 5.94 (0.59) 19.79 14

362 Glass and products 5.61 (0.67) 19.08 6

369 Other non-metallic mineral products 3.87 (0.47) 14.10 7

371 Iron and steel 8.94 (1.55) 35.55 16

381 Fabricated metal products 5.07 (1.42) 18.50 11

383 Machinery, electric 3.27 (0.21) 4.26 416

384 Transport equipment 4.47 (0.8) 6.50 232

Minimum 2.97 4.26 4.00

Maximum 8.94 35.55 416.00

Average 4.51 12.08 74.21

Median 4.38 10.29 14.00

4.1.1 Estimated Trade Elasticity for One-Sector Model

Our estimate of 1/θ = 2.37. While the estimate is close to what SW obtain with EIU price

data, 2.82, the estimate is lower than even the minimum of our sectoral elasticity estimates.

This estimate can be understood via the following logic. First, the estimate using the EK

methodology is 2.97 – which is also lower than the minimum of the sectoral estimates using

the EK methodology. However, this is straightforward to understand, because the sample

size is larger; we are using the full sample of 1410 goods prices. SW showed that the upward

bias in the EK estimator is larger with smaller samples; thus, when a large sample is used,

typically smaller estimates of 1/θ will arise. Hence, a smaller aggregate estimate than the

minimum sectoral estimate should not be surprising. Second, we know that the SW estimate

will be less than the EK estimate, i.e., 1/θsw ≤ 1/θek. We will see later that this low estimate

plays a key role in our assessment of the gains from trade in our benchmark model vs. the

one-sector model.
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4.2 Welfare Gains of Benchmark Multi-Sector Model

In order to assess the welfare gains from trade, we use real GDP per capita as the measure

of welfare. We use our estimates of 1/θs, and the values of λsi , A
N
i , and τ sij calibrated

from the methodology described above, and solve for baseline equilibrium wages, per capita

expenditures, labor allocations, prices of sectoral intermediate composites, and trade shares.

Using the same λsi and ANi we solve for an autarky equilibrium by setting trade costs to 100

times their baseline level. Then, using real GDP per capita, Wi = wi/Pi, as the measure

of welfare, we compute the change in welfare as ln
(
W a
i /W

b
i

)
× 100, where W a

i denotes the

autarky value and W b
i denotes the baseline value. Pi is the price of the final consumption

good, given by (2.7).

We now study the gains from trade in our benchmark model. We compute the gains

from trade in the same way as done recently in ACR, Levchenko and Zhang (2014), Costinot

and Rodriguez-Clare (2014), Ossa (2015), and other papers, with one slight difference.

Rather than computing the welfare change in going from the actual 1990 data to autarky,

we compute the welfare change from the model’s representation of 1990 to autarky. We do

this so that we can assess the fit of the benchmark model.

Hereafter, we will represent the welfare change as the gains in going from autarky to

the baseline (model-implied) trade share. The gains from trade are given in column (1) in

Table 5 and in Figure 1 below for each country. The welfare gain ranges from 0.38% for

Japan to and 9.59% for Netherlands with a median (mean) gain of 4.25% (4.60%). The gains

for small countries are about an order of magnitude larger than for the largest countries.

These gains are of the same magnitude, roughly, as those found in EK, for example.

Figure 2 illustrates the contribution of each sector to the welfare gain of each country.

In most countries, only a few sectors account for most of the welfare gains from trade. For

example, in Japan, sectors 383 (machinery, electric) and 384 (transport equipment) account

for almost 90% of the gains. These two sectors, along with sectors 341 (paper products and

publishing) and 311 (food products) account for the majority of the gains from trade in most

countries. By and large, these are the sectors which are experiencing the highest trade flows,

as captured by −D̂ii. That said, the figure shows there is considerable heterogeneity across
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Figure 1: Welfare Gains from Trade (relative to Autarky)

countries in the importance of particular sectors to the gains from trade. Thus, comparative

advantage at the sector-level is an important factor determining the welfare gains from trade.

Our results here are consistent with Ossa (2015), who finds with more disaggregated data

that the top 10 percent of the his industries account for 90 percent of the gains.

We also decompose our results into a the direct trade owing to changes in home expen-

diture shares Dii and an intersectoral linkage effect owing to changes in intersectoral prices,

as discussed above. From equation (2.17), the direct trade effect is captured by the first

term in brackets, and the intersectoral linkage effect is captured by the second term. Figure

3 shows the results. For every country, the direct trade effect in going from autarky to the

baseline equilibrium is positive, while the intersectoral price effect is negative. Also, the

absolute magnitude of the direct effect is larger; hence, the overall effect is positive. Why

does the intersectoral price effect work in the opposite direction from the direct trade effect?

as noted above, the direct trade effect is positive as domestic sectoral expenditures shares

decrease. The intersectoral linkage effect is driven by changes in the prices of the sectoral

inputs relative to the output price of a sectoral good. Owing to the reduction of trade costs,

the traded sectoral prices fall, some more than others. However, the non-traded sectoral
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Figure 2: Contribution of Sectors to Welfare Gains - Benchmark Case (sector-specific θ’s)

good is different for two reasons. First, the importance of the wage (the value-added share

γ) in the non-traded good is considerably higher than in traded goods, and second, the non-

traded good is the dominant input in traded goods (as captured by a large ξs,N coefficient).

Because the real wage increases in going from autarky to our baseline equilibrium, nominal

wages must rise by more than the appropriate geometric-weighted average of prices. Hence,

the non-traded good price will rise by more than the traded goods prices, which implies that,

on average, input prices relative to the sectoral output price rise when the economy moves

closer to free trade. Thus, the inter-sectoral linkage effect will be welfare reducing, all else

equal.

To summarize our two main results in this section, we find first that only a few sectors

account for most of the gains from trade, and that these sectors tend to vary across the

countries. Second, owing to the large share of wages in non-traded goods prices, and the

large share of non-traded goods as an intermediate input into traded goods, the intersectoral

price welfare effect partially offsets the trade linkages welfare effect.
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Figure 3: Role of Intersectoral Linkages
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4.3 Role of Sectoral Heterogeneity

Our framework has five sources of sectoral heterogeneity – trade elasticities, input-output

structure, value-added shares, trade costs, and productivities – and they all influence the

gains from trade, as captured by (2.17). To assess the importance of this heterogeneity in

the gains from trade calculations, we conduct two sets of counterfactuals. The first set of

counterfactuals compares our benchmark model to a calibrated one-sector model in which

each of the five sources of sectoral heterogeneity is replaced with a single, aggregate value

(covering all the tradable sectors). This provides a comprehensive look at the importance

of sectoral heterogeneity. The second set of counterfactuals addresses the importance of

individual sources of heterogeneity: the trade elasticities, value-added shares, and input-

output structure, one at a time. We start from the benchmark model, and then replace the

sector-level parameter vector with a single parameter common to all sectors. For example, to

assess the importance of heterogeneity in the sectoral trade elasticities 1/θs, we replace the

sector level 1/θs with a single aggregate θ. All other sources of heterogeneity are unchanged.

For both sets of counterfactuals, to maintain consistency with the sector-level trade and

28



output data, the trade costs and productivities are re-calibrated following the steps discussed

in sections 3.3 and 3.4. We then raise trade costs to autarky levels and compute the gains

from trade.18

4.3.1 Benchmark Model vs. One-Sector Model

Figure 4: Benchmark Model vs. One-Sector Model
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This section presents the first set of counterfactuals. We calibrate and estimate a one

(tradable) sector model, i.e., each of the five sources of sectoral heterogeneity is replaced by

a single parameter. The red line in Figure 4 shows the gains from trade from the one-sector

model. The gains from the benchmark model are plotted in blue. The countries in this

and ensuing figures are ordered left to right in descending order of gains in the benchmark

model. It can be seen that with the exception of Belgium-Luxembourg and New Zealand, the

gains are typically slightly larger with the one-sector model. This is one of the main results

of the paper: when the benchmark model, with its model-consistent estimates of sectoral

18Note that this exercise will alter both the baseline level of welfare and the autarky level of welfare.
Because of this, we focus on the difference between the baseline and autarky levels of welfare.
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trade elasticities and its five sources of sectoral heterogeneity, is compared to the one-sector

model, with its model-consistent estimate of the aggregate trade elasticity, and no sources of

sectoral heterogeneity, the benchmark model does not yield substantially greater gains from

trade. In fact, for most countries it produces lower gains from trade.

How can this surprising result be explained and how is it consistent with the results

of Costinot and Rodriguez-Clare (CRC, 2014) and Ossa (2015), who find that their multi-

sector models deliver much larger gains than their one-sector models? Even though there are

five sources of heterogeneity, our interpretation is that just one source, the trade elasticities,

plays a key role. A central factor is the elasticities of trade in the multi-sector benchmark

model relative to the elasticity of trade in the one-sector model. Comparing the elasticities

in our paper to those in CRC and Ossa, our sectoral trade elasticity estimates are somewhat

higher, and our one-sector elasticity is lower. These elasticities push the gains from trade

in our multi-sector model relatively lower and the gains from trade in our one-sector model

relatively higher. Regarding the multi-sector model, in Ossa’s multi-sector model, a number

of elasticities are close to and even less than 1. All else equal, an elasticity of 1 delivers 10

times the gains from trade as an elasticity of 10. Put differently, the gains in a world with

two sectors with elasticities of 1 and 10 will be several times larger than the gains in a world

with two sectors with elasticities both equal to 5. Indeed, Ossa shows that just 10 percent

of the industries account for 90 percent of the gains.19 Regarding the one-sector model, we

conduct an exercise in which we replace our estimated one-sector elasticity, 2.37 with the

median of our sectoral elasticities, 4.38, and we then compute the gains from trade in our

one-sector model. This exercise is similar to that in CRC and in Ossa. The green line in

Figure 4 provides the results. The figure shows that the gains from the benchmark model

are about twice as large as in the one-sector model. This result is qualitatively similar to

that in CRC and Ossa.

What about the other four sources of sectoral heterogeneity? Does heterogeneity in

these sources imply greater gains from trade? To address this question, we adjust both the

benchmark and one-sector models so that they have the same trade elasticity (we use the

19In private correspondence, Ossa indicated that these industries were largely the industries with the
lowest elasticities. We thank Ossa for this correspondence.

30



median 1/θ from the benchmark model). We then compute the gains from trade in each

model.20 The results are shown in columns (3) and (9), respectively, in Table 5. The welfare

gains for the benchmark model, with its additional heterogeneity in value-added shares,

input-output structure, trade costs, and productivities, are roughly fifty percent higher than

in the one-sector model. Hence, but for the trade elasticity estimates, the increase in sectoral

heterogeneity produces greater welfare gains. Similar results are shown for different values

of 1/θ in columns (2) and (8), and also in columns (4) and (7).21

We draw three conclusions from the first set of counterfactuals. First, and most impor-

tant, when we use the elasticities that we estimate, i.e., the model-consistent elasticities, we

find that the benchmark multi-sector model delivers slightly lower gains from trade than the

one-sector model. In other words, more sectoral heterogeneity does not deliver greater gains

from trade. Second, when we modify our exercise to make it similar to what CRC, as well

as Ossa, do, then, we get qualitatively similar results to them – the benchmark model yields

higher gains from trade than the one-sector model. Third, if we control for the trade elastic-

ities, i.e., focus only on the other sources of sectoral heterogeneity, we find that, collectively,

they do imply greater gains from trade compared to a one-sector model.

4.3.2 Importance of Individual Sources of Sectoral Heterogeneity

We now turn to the second set of counterfactuals, which involve individual sources of sectoral

heterogeneity. We start by examining the role of heterogeneity in the elasticity of trade 1/θs

– does sectoral heterogeneity in 1/θs alone delivers additional gains from trade? We compare

our benchmark model to a version of that model in which the sectoral elasticities are replaced

by a single elasticity common to all sectors. Note that this exercise differs from our exercise

in the previous sub-section in which we compared our benchmark model to a one-sector

model. The key issue in this exercise is the value of the single elasticity. We use three values

of the elasticity: our estimate from the one-sector model, 1/θ = 2.37; the median of our

20This exercise is similar to that in Levchenko and Zhang (2014).
21We conducted one more set of counterfactuals. We compare the one-sector model with a simplified

version of the one-sector model in which the 2 x 2 input-output structure is replaced by a 2 x 2 diagonal
matrix. Comparing columns (7) to (12), (8) to (11), and (9) to (10), all show that the diagonal matrix
delivers slightly greater gains from trade. This indicates that not including for linkages between the tradable
and non-tradable sector leads to slightly larger GFT.
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sectoral theta estimates, 1/θ = 4.38; and the main estimate from EK, 1/θ = 8.28. Figure 5

illustrates the welfare gains from the benchmark model compared to the benchmark model

with the sectoral elasticities replaced by each of these single elasticities.

The blue and green lines in the figure show that when the sector-specific 1/θ’s are

replaced by the median of the sector-specific 1/θ’s, the welfare gains are about the same or

slightly lower, relative to the benchmark model, across all the countries. In other words, in

this comparison, sectoral heterogeneity in 1/θs provides about the same, or slightly greater,

welfare gains. We can see why the effect is so small by focusing on the first term in brackets

from (2.17), i.e., − θs

βs
lnD̂s

ii. This is the key term in the ‘trade effect’ discussed above. Because

we re-calibrate the model for each exercise so that sectoral trade flows are consistent with

those in the data, the sectoral home expenditure share changes little across exercises. Hence,

heterogeneity in 1/θs will lead to larger gains from trade to the extent that 1/θs is small

when βs is small and when lnD̂s
ii is large. It turns out that the two sectors in which lnD̂s

ii is

large are ISIC 383 and 384 (electric machinery and transport equipment), and both sectors

have a 1/θs that is close to the median value. Moreover, their value-added share, βs, are

close to the average value of βs. Hence, for these two sectors, which are the major sources

of the gains from trade for most of the countries, replacing the sector-specific 1/θs with the

median 1/θs changes the gains from trade by very little. This is the main reason why the

gains from trade in this case is so similar to the gains from trade (GFT) in the benchmark

model.

On the other hand, if we replace the sector-specific 1/θ’s with the actual estimate of

1/θ from our one-sector model, 2.37, we can see that the GFT with the lower 1/θ are close

to twice as large as in our benchmark model. The importance of the value of 1/θ that is

used in this counterfactual can also be seen when we compute the welfare gains from using

the estimated 1/θ from EK: 8.28. In this case, the gains from trade are only about one-half

as large as in the benchmark model. Hence, it is clear that the value of 1/θ that is used

in the comparison matters. But, our main conclusion is from the counterfactual with the

median 1/θ – in this case, including sector-specific 1/θ’s leads to little change in the gains

from trade.

We now study the effects of heterogeneity in sector-level value-added shares of gross
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Figure 5: Role of Sectoral Heterogeneity in Trade Elasticity (1/θ) in Benchmark Model
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Figure 6: Role of Value-Added, and Input-Output Structure, Heterogeneity in Benchmark Model
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output in tradable sectors, βs’s. The benchmark welfare gains illustrated in Figure 1 and

shown in column (1) in Table 5 involve sector-specific βs’s. Column (5) in Table 5 depicts the

welfare gains for a common value of β = 0.37 across sectors. Comparing these two columns –

also illustrated in Figure 6 – shows that the welfare gains in the common β case are about the

same or slightly larger than in the benchmark case. Therefore, the sectoral heterogeneity

through sector-specific β’s does not result in higher welfare gains. The reason for this is

similar to the reason given for the median 1/θs case above. Sectors 383 and 384 have value-

added shares that are similar to the median βs. Hence, replacing the sector-specific βs with

the median one will not yield large changes in the GFT.

Finally, we show the effects of heterogeneity in the input-output structure across sec-

tors. We impose a common input-output structure (common φ’s and ξ’s) for all sectors, and

then compute the welfare gains relative to autarky. The results can be seen by comparing the

benchmark case in column (1) with column (6) in Table 5, and also in Figure 6. The table

and figure show that the welfare gains from a common input-output structure are slightly

lower than in the benchmark case. Hence, heterogeneity in sectoral input-output structures

does not deliver significantly larger gains from trade.

Our main conclusion from this set of counterfactuals is that removing one source of

sectoral heterogeneity will yield larger or smaller gains from trade, depending on the source

of heterogeneity, relative to the benchmark model. In the exercise involving sectoral trade

elasticities, it turns out that the sectoral elasticities interact with the sectoral value-added

shares and sectoral home expenditure shares in a way that does not lead to significant gains

from trade relative to a framework with a common trade elasticity equal to the median of the

sectoral elasticities. We obtain similar results when we replace sector-specific value-added

shares and input-output linkages with an average value-added share, or input-output linkage,

across sectors.

5 Conclusion

The goal of our paper is to quantitatively assess the role of sectoral heterogeneity in comput-

ing the gains from trade. To do so, we employ a 20-sector, 21-country Eaton-Kortum-type
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Ricardian trade model that draws from Caliendo and Parro (2015) and Alvarez and Lucas

(2007). We estimate the sectoral trade elasticities using micro-price data and the method de-

veloped by Simonovska and Waugh (2014). We calibrate the other parameters of the model

following Waugh (2010). With our calibrated benchmark model, we first compute the gains

from trade relative to autarky. We then conduct a series of counterfactuals by shutting down

one or more sources of sectoral heterogeneity. With each counterfactual, we re-calibrate the

model so that it is consistent with the trade and output data, and compute the re-calibrated

model’s gains from trade. A key part of the re-calibration is estimating the trade elasticity.

Hence, in each counterfactual we employ model-consistent elasticity estimates. Finally, we

compare these gains from trade with that of the benchmark model.

Our primary conclusion from these counterfactuals is that including for more het-

erogeneity does not necessarily imply higher gains from trade. It depends. In our main

comparison of our benchmark multi-sector model with five sources of sectoral heterogeneity

against a one-sector model, we find that for most countries, the gains from trade in the

benchmark model are slightly lower than in the one-sector model. In this comparison, a key

role is played by the sectoral trade elasticities vis-a-vis the one-sector elasticity. When we

eliminate the difference in trade elasticities, so that there are only four sources of sectoral

heterogeneity, we find that the benchmark model does deliver greater gains from trade than

the one-sector model.

In addition, in our simulations in which only the sectoral heterogeneity in the trade

elasticities was removed, we find that the gains from trade in the benchmark model were

about the same as in the model with no heterogeneity in the trade elasticities. We obtained a

similar result when we removed sectoral heterogeneity in the value-added sharers. The main

reason for these two results is that for the key sectors, the trade elasticities and value-added

shares are similar to the median or average values across all the tradable sectors. All of our

results are consistent with the theory – that there should be no presumption that increased

heterogeneity leads to increased gains.

We are also able to demonstrate how our results can be consistent with those of Costinot

and Rodriguez-Clare (2014) and Ossa (2015). In particular, if we replace our estimated one-

sector elasticity with the median of the sectoral elasticity estimates, we obtain results similar
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to them.

Along the way, we uncovered at least one interesting decomposition from our bench-

mark model. When the sources of the gains from trade are decomposed into the traditional

trade linkages effect, and the intersectoral price effect, we find that the latter is a partial

offset to the former, and that non-traded goods play a key role in that. This points to the

importance of using frameworks in which non-traded goods are explicitly modeled.

At the end of the day, there is the wisdom that the level of disaggregation and hetero-

geneity in a quantitative model should depend on the question. However, the nature of the

question of the gains from trade suggests that the most disaggregated model with the most

heterogeneity should be employed. Our results simply indicate that the increased disaggre-

gation and heterogeneity will not necessarily lead to higher gains from trade calculations.

While our Eaton-Kortum (2002) type framework permits a great deal of heterogeneity,

it does not allow for heterogeneity of entry into production as in Melitz (2003), Melitz and

Redding (2015), and Simonovska and Waugh (2014b), for example. In addition, modeling

the distribution sector, as in Giri (2012), for example, would be useful to more closely map

the price data with the model counterparts. These are two avenues for future research.
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Table 5: Welfare Gains from Trade

Multi-Sector Model One Sector Model
(S = 19 Traded Goods Sectors, 1 Non-traded Goods Sector) (1 Traded Goods Sector (T ), 1 Non-traded Goods Sector (N))

Parameterization (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)
θ Sectoral 8.28 4.38 2.37 Sectoral Sectoral 2.37 8.28 4.38 4.38 8.28 2.37
β Sectoral Sectoral Sectoral Sectoral 0.37 Sectoral 0.37 0.37 0.37 0.37 0.37
γ 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61
δ Sectoral Sectoral Sectoral Sectoral Sectoral Sectoral T,N T,N T,N T,N T,N T,N
I-O 20× 20 20× 20 20× 20 20× 20 20× 20 20× 20 2× 2 2× 2 2× 2 2× 2 2× 2 2× 2

- - - - - rows same - - - diagonal diagonal diagonal

Countries
AUS 2.73% 1.32% 2.46% 4.45% 2.79% 2.56% 3.07% 0.89% 1.68% 1.82% 0.97% 3.34%
AUT 5.52% 2.78% 5.25% 9.72% 5.61% 5.04% 6.71% 1.92% 3.63% 3.95% 2.08% 7.31%
BLX 7.05% 3.62% 6.80% 12.43% 7.17% 6.55% 2.07% 0.60% 1.13% 1.23% 0.65% 2.24%
CAN 3.09% 1.50% 2.86% 5.34% 3.14% 2.83% 4.97% 1.40% 2.67% 2.91% 1.53% 5.43%
DEU 1.82% 0.92% 1.74% 3.23% 1.86% 1.68% 2.81% 0.81% 1.52% 1.65% 0.88% 3.05%
DNK 8.40% 4.39% 8.18% 14.81% 8.60% 7.79% 9.35% 2.76% 5.16% 5.56% 2.99% 10.05%
ESP 2.01% 0.96% 1.83% 3.40% 2.05% 1.88% 3.15% 0.89% 1.69% 1.84% 0.97% 3.43%
FIN 4.25% 2.13% 4.00% 7.34% 4.34% 3.85% 4.66% 1.34% 2.53% 2.75% 1.46% 5.07%
FRA 2.44% 1.19% 2.26% 4.19% 2.49% 2.25% 3.81% 1.09% 2.06% 2.24% 1.18% 4.15%
GBR 2.85% 1.39% 2.61% 4.78% 2.91% 2.63% 4.57% 1.34% 2.50% 2.71% 1.45% 4.95%
GRC 7.23% 3.71% 6.98% 12.69% 7.34% 6.70% 6.97% 1.98% 3.76% 4.10% 2.16% 7.61%
IRL 9.59% 4.94% 9.31% 17.10% 9.79% 8.80% 9.32% 2.68% 5.06% 5.50% 2.91% 10.14%
ITA 2.44% 1.15% 2.19% 4.10% 2.50% 2.27% 3.75% 1.06% 2.01% 2.19% 1.15% 4.09%
JPN 0.38% 0.18% 0.35% 0.65% 0.39% 0.36% 0.47% 0.13% 0.25% 0.27% 0.14% 0.51%
MEX 3.02% 1.42% 2.73% 5.14% 3.10% 2.75% 3.49% 0.98% 1.86% 2.03% 1.06% 3.82%
NLD 8.87% 4.46% 8.41% 15.47% 9.05% 8.24% 11.40% 3.29% 6.20% 6.72% 3.57% 12.37%
NOR 7.01% 3.67% 6.84% 12.40% 7.17% 6.46% 7.81% 2.31% 4.31% 4.65% 2.50% 8.42%
NZL 5.33% 2.72% 5.13% 9.42% 5.44% 5.02% 4.54% 1.30% 2.46% 2.67% 1.42% 4.93%
PRT 5.71% 2.90% 5.46% 10.02% 5.78% 5.23% 6.35% 1.84% 3.46% 3.75% 1.99% 6.88%
SWE 5.81% 2.93% 5.49% 10.04% 5.93% 5.33% 6.89% 2.00% 3.76% 4.08% 2.17% 7.46%
USA 1.00% 0.50% 0.94% 1.75% 1.01% 0.93% 1.58% 0.45% 0.85% 0.92% 0.49% 1.72%

Average 4.60% 2.32% 4.37% 8.02% 4.69% 4.24% 5.13% 1.48% 2.79% 3.03% 1.61% 5.57%
Median 4.25% 2.13% 4.00% 7.34% 4.34% 3.85% 4.57% 1.34% 2.50% 2.71% 1.45% 4.95%
Max 9.59% 4.94% 9.31% 17.10% 9.79% 8.80% 11.40% 3.29% 6.20% 6.72% 3.57% 12.37%
Min 0.38% 0.18% 0.35% 0.65% 0.39% 0.36% 0.47% 0.13% 0.25% 0.27% 0.14% 0.51%

Benchmark model trade costs are increased by a factor of 100 to achieve numerical approximation of autarky (Dsii < 1e − 6 ∀ i, s). For sectoral values of β and δ refer to

Table 2 . For sectoral values of θ refer to the SMM-PPML column of Table 4. δN , of the one sector model, is taken to be equal to δf,S+1 of the multi-sector model. δT , of

the one sector model is simply equal to (1− δN ).
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6 Appendix

6.1 Appendix A: Price of Sector s Intermediate Composite

The price of sector s composite is given by

P s
i =

[∫ 1

0

psi (xs)1−ηs dxs
] 1

1−ηs

.

Let

R = psi (xs)
1
θs ∼ exp

{
(Bs)

−1
θs

N∑
j=1

ψsij

}

and

M = psi (xs)1−ηs .

Then, R can be written as a function of M :

R = R (M) = M
1

θs(1−ηs) .

Using

f (M) = f (R (M))× |R′ (M)|

we can write

f (M) = exp

{
− (Bs)

−1
θs

N∑
j=1

ψsijM
1

θs(1−ηs)

}
M

1
θs(1−ηs)−1

θs (1− ηs)
.

Define

u = (Bs)
−1
θs

(
N∑
j=1

ψsij

)
M

1
θs(1−ηs) ,

and hence

du = (Bs)
−1
θs

(
N∑
j=1

ψsij

)
M

1
θs(1−ηs)−1

θs (1− ηs)
dM .
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Since

(P s
i )1−ηs =

∫ ∞
0

Mf (M) dM

=

∫ ∞
0

M exp

{
− (Bs)

−1
θs

(
N∑
j=1

ψsij

)
M

1
θs(1−ηs)

}
M

1
θs(1−ηs)−1

θs (1− ηs)
dM

=

{∫ ∞
0

uθ
s(1−ηs) exp (−u) du

}{
(Bs)

−1
θs

N∑
j=1

ψsij

}−θs(1−ηs)−1

,

it gives us

P s
i = AsBs

(
N∑
j=1

ψsij

)−θs
= AsBs

(
N∑
j=1

(
V s
j τ

s
ij

)−1
θs λsj

)−θs
, (6.1)

where As =
(
Ãs (θs, ηs)

) 1
1−ηs

and

Ãs (θs, ηs) =


∞∫

0

uθ
s(1−ηs) exp (−u) du


is a Gamma function.

6.2 Appendix B: Methodology for Estimating Sector-Level θ’s and

τij’s

Recall that

Ds
ij = (AsBs)−

1
θs

(
V s
j τ

s
ij

P s
i

)−1
θs

λsj

which implies that

Ds
ij

Ds
jj

=
(AsBs)−

1
θs

(
V sj τ

s
ij

P si

)−1
θs

λsj

(AsBs)−
1
θs

(
V sj τ

s
jj

P sj

)−1
θs

λsj

=

(
P s
j τ

s
ij

P s
i

)−1
θs

.

This corresponds to equation (12) in EK. The log version of this expression can be estimated

for each sector individually to obtain 1
θs

’s that correspond to θ in EK (i.e., if we had only

one sector, we would have 1
θs

= θEK where θEK represents θ in EK). The log version can be
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written as

log

(
Ds
ij

Ds
jj

)
= − 1

θs
log

(
P s
j τ

s
ij

P s
i

)
, (6.2)

and similar to EK and SW, we use

log

(
P s
j τ

s
ij

P s
i

)
=

max {rij (xs)}
Hs∑
j=1

[rij (xs)] /Hs

,

where rij (xs) = log psi (xs)− log psj (xs), maxx means the highest value across goods, and Hs

is the number of goods in sector s of which prices are observed in the data. This corresponds

to equation (13) in EK.

Using (3.1), we employ two methods to estimate sector-level θ’s: (i) method-of-moments

(MM) estimator used by EK; (ii) simulated-method-of-moments (SMM) estimator used by

SW. While the former is the mean of the left-hand-side variable over the mean of the right-

hand-side variable in (3.1), the latter is much more detailed. The SMM estimator can be

obtained as follows for each sector s:

1. Estimate θs using MM estimator (as in EK) together with trade and price data in

(3.1). Call this θsEK .

• Note: this is done for only the EU countries for which we have price data.

2. Estimate gravity equation using the specification employed in SW:

Ds
ij

Ds
ii

=
(AsBs)−

1
θs

(
V sj τ

s
ij

P si

)−1
θs

λsj

(AsBs)−
1
θs

(
V si τ

s
ii

P si

)−1
θs

λsi

=

(
V s
j τ

s
ij

V s
i

)−1
θs λsj
λsi

Hence, the log version can be written as:

ln

(
Ds
ij

Ds
ii

)
= ln

((
V s
j

)−1
θs λsj

)
− ln

(
(V s

i )
−1
θs λsi

)
− 1

θs
ln
(
τ sij
)
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and can be estimated with fixed effects as follows:

ln

(
Ds
ij

Ds
ii

)
= T sj − T si −

1

θs
ln
(
τ sij
)

, (6.3)

where

T sj = ln
((
V s
j

)−1
θs λsj

)
and

T si = ln
(

(V s
i )
−1
θs λsi

)
and

ln τ sij = distI︸︷︷︸
distance

+ brdr︸︷︷︸
border

+ lang︸︷︷︸
language

+ tblkG︸ ︷︷ ︸
trade block

+ srcsi︸︷︷︸
source effect

+ εsij .

Since there are zero-trade observations in trade data, we use poisson pseudo maximum

likelihood (PPML) estimation as advocated in Silva-Tenreyo (2006).

3. SW show that the inverse of the marginal cost of production (multiplied by Bs) in

sector s of country i, which is

usi =
1

zsi (xs)θ
s

V s
i

is distributed according to:

M s
i (usi ) = exp

(
− (exp (T si )) (usi )

−1/θsG

)
where T si = ln

(
(V s

i )
−1
θs λsi

)
is the country-fixed effect estimated above.

• This can also be done by using the “inverse transform method”. The idea is

that probability draws from the Frechet (exp (T si ) , 1/θs) can be transformed into

random draws from a standard uniform distribution. If u has standard uniform

distribution then the inverse of the marginal cost is given by

(
log(u)

− exp (T si )

)−θs
.

We adopt this method in the code. This is in line with SW.
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4. Therefore, for a given θ, say, θsG, we can use source dummies (T si ’s) in the gravity

equation to estimate source marginal costs.

5. Using trade cost
(
i.e., τ sij

)
and the inverse of the marginal cost of production multiplied

by Bs (i.e., usi ), we can figure out “possible” destination prices and select the minimum

price for each destination:

psi (xs) = Bsmin
j

{
V s
j z

s
j (xs)θ

s

τ sij

}
These are the simulated equilibrium prices. We allow for 50, 000 possible total goods

in each sector and think ourselves as randomly drawing good prices from these pools.

6. Given the simulated equilibrium prices of psi (xs)’s, the price P s
i of the sector-level

composite index Cs
i can be simulated as follows:

P s
i =

[∫ 1

0

psi (xs)1−ηs dxs
] 1

1−ηs

,

where we use ηs = 2 following SW. The expenditure of country i on good x imported

from country j is simply given by:

psi (x
s)qsi (x

s) =

(
psi (x

s)

P s
i

)1−ηs

Xs
i ,

where Xs
i is the total expenditure by country i on sector s goods, i.e., Xs

i = P s
i C

s
i .

Adding this expenditure across all goods imported by i from j, and then dividing both

sides by Xs
i gives us the simulated trade share:

D̂s
ij =

Xs
ij

Xs
i

=

∫
Ωij

(
psi (x

s)

P s
i

)1−ηs

dxs ,

where Ωij is the set of goods imported by country i from country j, and we use ηs = 2

as in SW.

7. We calculate the trade shares normalized by importing country’s own trade share, i.e.,

D̂s
ij/D̂

s
ii. We take the logarithm of these normalized trade shares and add the residuals
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from the gravity equation (with replacement in each simulation). This, thus, gives us

the log normalized trade shares with errors. Denote these by log
(
Ds
ij/D

s
ii

)
. Take the

exponential of this to get Ds
ij/D

s
ii. These are the normalized simulated equilibrium

trade shares. Finally, we unwind these normalized trade shares into levels to get Ds
ij.

To do that, we use that fact that for an importing country i, the sum of its trade

shares across all suppliers j = i, . . . , N is one, i.e.,
∑N

j=1Dij = 1. So, it is implied that∑N
j=1

(
Ds
ij/D

s
ii

)
= 1/Ds

ii. Accordingly, we simply divide the normalized trade shares

Ds
ij/D

s
ii by 1/Ds

ii, and that gives us the level trade share Ds
ij which, importantly,

incorporates the residuals from the gravity equation.

8. Using simulated trade (incorporating the residuals) and simulated prices, estimate θs

using MM estimator (as in EK) according to:

log

(
Ds
ij

Ds
jj

)
︸ ︷︷ ︸

Simulated Trade Data

= − 1

θsS
log

(
P s
j τ

s
ij

P s
i

)
︸ ︷︷ ︸

Simulated Price Data

which we call as θsS. We repeat this exercise for 1, 000 times.22

• This is done for only the EU countries for which we have price data.

9. Within 1, 000 simulated θsS’s, we search for θsG, that minimizes the weighted distance

between θsEK and the average θsS:

θsSMM = arg min
θsG

[(
θsEK −

1

1000

1000∑
s=1

θsS

)
W

(
θsEK −

1

1000

1000∑
s=1

θsS

)]

22Note that according to

log

(
P sj τ

s
ij

P si

)
=

max {rij (xs)}
Hs∑
j=1

[rij (xs)] /Hs

,

where Bs’s

(
as in psi (xs) = Bsmin

j

{
V sj z

s
j (xs)

θs
τsij

})
cancel each other out while calculating log

(
P sj τ

s
ij

P si

)
;

therefore, we don’t need to know Bs’s while estimating θs’s.
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where W is the continuously updated weighting matrix defined as:

W =
1

1000

1000∑
s=1

θsS

[(
θsEK −

1

1000

1000∑
s=1

θsS

)(
θsEK −

1

1000

1000∑
s=1

θsS

)]

We also used an alternative W definitions such as (i) the one used by EKK based on

bootstrapping, (ii) an alternative version of W above which is

WA=
1

1000

1000∑
s=1

θsS


((

θsEK − 1
1000

1000∑
s=1

θsS

)
− 1

1000

1000∑
s=1

(
θsEK − 1

1000

1000∑
s=1

θsS

))
×
((

θsEK − 1
1000

1000∑
s=1

θsS

)
− 1

1000

1000∑
s=1

(
θsEK − 1

1000

1000∑
s=1

θsS

))


and (iii) the identity matrix; however, the results were very close to each other. Cur-

rently, we are using the benchmark W defined above. The selected θsG is the SMM

estimate of θs, which we denote by θsSMM .

Following Eaton, Kortum, and Kramarz (2011) and SW, we calculate standard errors

using a bootstrap technique, taking into account both sampling error and simulation error.

In particular, we proceed as follows:

1. Using the fitted values and residuals in the gravity equation of (3.3), resample residuals

with replacement and generate a new set of data using the fitted values. This is very

similar to Step 5 in SMM estimation, above.

2. For each resampling b, with the generated data set, estimate θs using MM estimator

(as in EK) together with trade and price data in (3.1). Call this θsb .

3. To account for simulation error, set a new seed to generate a new set of model-generated

moments; i.e., follow Steps 2-7 for SMM estimation above to estimate θsb,SMM for each

bootstrap b.

4. Repeat this exercise 25 times and compute the estimated standard error of the estimate

of θsSMM as follows:

S.E. (θsSMM) =

[
1

25

25∑
b=1

(
θsb,SMM − θsSMM

)′ (
θsb,SMM − θsSMM

)] 1
2
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where θsb,SMM is a vector with the size of (25× 1).

6.3 One Sector Eaton-Kortum Model

Here we present the version of our model with one traded goods sector (T ). There is contin-

uum of tradable goods xi ∈ [0, 1] in the traded goods sector of country i, and each good is

produced by combining labor and intermediate inputs through a Cobb-Douglas production

technology.

qi (xi) = zi (x)−θ [li (x)]β

 ∏
m={T,N}

Cm
i (x)ξ

T,m

1−β

The traded goods sector’s composite good is given by

CT
i =

[∫
qi (x)

η−1
η f (x) dx

] η
η−1

,

where

f (x) = f (z) =

(
N∏
i=1

λi

)
exp

(
−

N∑
i=1

λizi

)
Given that the individual goods can be bought from domestic or foreign producers, the price

of good x in country i is

pi (x) = min
j

{
BVjzj (xj)

θ τij

}
(6.4)

where Vi, the unit cost of production, is given by

Vi = [wi]
β

 ∏
m={T,N}

(Pm
i )ξ

T,m

1−β

, (6.5)

and

B = (β)−β (1− β)−(1−β)

 ∏
m={T,N}

(
ξT,m

)−ξT,m(1−β)

.
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Following the steps as outlined in the multi-sector model, the expression for price of traded

goods sector composite is given by

P T
i =

[∫ 1

0

pi (x)1−η dx

] 1
1−η

= AB

(
N∑
j=1

ψij

)−θ
(6.6)

where

ψij = (Vjτij)
−1
θ λj , (6.7)

and A =

(∞∫
0

uθ(1−η) exp (−u) du

) 1
1−η

is a Gamma function.

The non-traded sector’s homogenous good is produced as follows:

CN
i = ANi

[
lNi
]γ  ∏

m={T,N}

(
CN,m
i

)φN,m1−γ

,

The price of the non-traded good is

PN
i = E

[wi]
γ
[∏

m={T,N} (Pm
i )φ

N,m
]1−γ

ANi
, (6.8)

where

E = γ−γ (1− γ)−(1−γ)

 ∏
m={T,N}

(
φN,m

)−φN,m(1−γ)

.

The utility of the representative household in each country is given by

Ui = Yi

where Yi, the final consumption good, is a Cobb-Douglas aggregator of the sectoral composite

goods.

Yi =
∏

m={T,N}

(
Cf,m
i

)δf,m
,
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The price of the final good, therefore, is given by

Pi =
∏

m={T,N}

(
δf,m

)−δf,m
(Pm

i )δ
f,m

. (6.9)

The market clearing conditions are as follows:

∫ 1

0

lsi (xs) dxs︸ ︷︷ ︸
lTi

+lNi ≤ 1 , i = 1, . . . , N ,

∫ 1

0

CT,s
i (xs) dxs︸ ︷︷ ︸
CT,si

+CN,s
i + Cf,s

i ≤ Cs
i , i = 1, . . . , N , s = {T,N} .

Finally, the share of country j in country i’s total expenditure on traded goods is:

Dij =
XT
ij

XT
i

= πij =
ψij∑N
n=1 ψin

.

Using (6.6), we can rewrite this expression as:

Dij = (AB)−
1
θ

(
Vjτij
P T
i

)−1
θ

λj . (6.10)

To estimate the gravity equation we sum up the trade flows for a country pair across

all sectors to arrive at the aggregate trade flows for the single traded goods sector. Thus,

now the gravity equation is estimated as follows:

ln

(
Dij

Dii

)
= Tj − Ti −

1

θ
ln (τij) (6.11)

where trade cost specification is unchanged, except that the source country effect is not

sector-specific:

ln τij = distI︸︷︷︸
distance

+ brdr︸︷︷︸
border

+ lang︸︷︷︸
language

+ tblkG︸ ︷︷ ︸
trade block

+ srci︸︷︷︸
source effect

+ εij , (6.12)
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To estimate θ, we pool good of different sectors together to belong to the single traded goods

sector, and then employ the bilateral aggregate trade flows with these pooled prices to carry

out the SMM estimation as explained in the multi-sector model. The key equations are:

log

(
Dij

Djj

)
= −1

θ
log

(
P T
j τij

P T
i

)
, (6.13)

where

log

(
P T
j τij

P T
i

)
=

max {rij (x)}
H∑
j=1

[rij (x)] /H

. (6.14)

The solution methodology works in the same manner as for the multi-sector model

Step 1 - Estimate trade costs, τij, and country dummies, Ti, using the gravity equation -

(6.11) and (6.12).

Step 2 - Compute price of traded goods sector composite using

P T
i = AB

(
N∑
j=1

eTjτij
− 1
θ

)−θ
.

Step 3 - Taking Li and Dij from the data, solve for per capita expenditures, Xs
i for s ∈

{T,N}, as a function of wage, wi, and use the balanced trade condition to solve for wi.

LiX
s
i = δf,swiLi + (1− γ)φN,sLiX

N
i + (1− β) ξT,s

N∑
j=1

LjX
T
j Dji ,

N∑
j=1

LjX
T
j Dji = LiX

T
i .

To solve for labor allocations - lTi and lNi - use

Liwil
T
i = β

N∑
j=1

LjX
T
j Dji ,

Liwil
N
i = γLiX

N
i .
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Step 4 - Lastly, the productivity parameter for country i, λi, is obtained using the relationship

Ωi = (Vi)
− 1
θ λi = eTi , (6.15)

where Vi is the factor cost, given by (6.5).

Vi = [wi]
β

 ∏
m={T,N}

(Pm
i )ξ

T,m

1−β

.
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6.4 Appendix D: Other

Table 6: List of Sectors: ISIC Revision 2

ISIC Code Sector Description

311 Food products

313,314 Beverages and Tobacco

321 Textiles

322 Wearing apparel, except footwear

323 Leather products

324 Footwear, except rubber or plast

331 Wood products, except furniture

332 Furniture, except metal

341,342 Paper and products and printing and publishing

352 Other chemicals

355 Rubber products

356 Plastic products

361 Pottery, china, earthenware

362 Glass and products

369 Other non-metallic mineral products

371 Iron and steel

381 Fabricated metal products

383 Machinery, electric

384 Transport equipment

400 Non-traded sector
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Table 7: Input-Output Structure

Share of Column Sector in Row Sector’s Expenditure on Intermediates

For Traded Goods Sectors Expenditure on Intermediates - ξs,m

311 313,314 321 322 323 324 331 332 341,342 352 355 356 361 362 369 371 381 383 384 400

311 0.1092 0.0062 0.0062 0.0062 0.0062 0.0005 0.0005 0.0017 0.0065 0.0009 0.0009 0.0004 0.0004 0.0004 0.0004 0.0002 0.0002 0.0001 0.0133 0.0207
313,314 0.1092 0.0062 0.0062 0.0062 0.0062 0.0005 0.0005 0.0017 0.0065 0.0009 0.0009 0.0004 0.0004 0.0004 0.0004 0.0002 0.0002 0.0001 0.0133 0.0207

321 0.0002 0.1272 0.1272 0.1272 0.1272 0.0105 0.0105 0.0029 0.0012 0.0096 0.0096 0.0020 0.0020 0.0020 0.0003 0.0002 0.0004 0.0056 0.0013 0.0037
322 0.0002 0.1272 0.1272 0.1272 0.1272 0.0105 0.0105 0.0029 0.0012 0.0096 0.0096 0.0020 0.0020 0.0020 0.0003 0.0002 0.0004 0.0056 0.0013 0.0037
323 0.0002 0.1272 0.1272 0.1272 0.1272 0.0105 0.0105 0.0029 0.0012 0.0096 0.0096 0.0020 0.0020 0.0020 0.0003 0.0002 0.0004 0.0056 0.0013 0.0037
324 0.0002 0.1272 0.1272 0.1272 0.1272 0.0105 0.0105 0.0029 0.0012 0.0096 0.0096 0.0020 0.0020 0.0020 0.0003 0.0002 0.0004 0.0056 0.0013 0.0037
331 0.0006 0.0006 0.0006 0.0006 0.0006 0.1132 0.1132 0.0061 0.0005 0.0045 0.0045 0.0040 0.0040 0.0040 0.0023 0.0030 0.0024 0.0058 0.0073 0.0051
332 0.0006 0.0006 0.0006 0.0006 0.0006 0.1132 0.1132 0.0061 0.0005 0.0045 0.0045 0.0040 0.0040 0.0040 0.0023 0.0030 0.0024 0.0058 0.0073 0.0051

341,342 0.0641 0.0201 0.0201 0.0201 0.0201 0.0252 0.0252 0.4278 0.0415 0.0473 0.0473 0.0568 0.0568 0.0568 0.0180 0.0245 0.0232 0.0106 0.0332 0.0303
352 0.0148 0.1546 0.1546 0.1546 0.1546 0.0345 0.0345 0.0615 0.3691 0.3888 0.3888 0.0659 0.0659 0.0659 0.0529 0.0375 0.0274 0.0147 0.0251 0.0300
355 0.0123 0.0124 0.0124 0.0124 0.0124 0.0184 0.0184 0.0118 0.0168 0.0565 0.0565 0.0060 0.0060 0.0060 0.0035 0.0155 0.0265 0.0225 0.0070 0.0052
356 0.0123 0.0124 0.0124 0.0124 0.0124 0.0184 0.0184 0.0118 0.0168 0.0565 0.0565 0.0060 0.0060 0.0060 0.0035 0.0155 0.0265 0.0225 0.0070 0.0052
361 0.0046 0.0011 0.0011 0.0011 0.0011 0.0043 0.0043 0.0004 0.0016 0.0047 0.0047 0.0649 0.0649 0.0649 0.0039 0.0035 0.0056 0.0037 0.0047 0.0021
362 0.0046 0.0011 0.0011 0.0011 0.0011 0.0043 0.0043 0.0004 0.0016 0.0047 0.0047 0.0649 0.0649 0.0649 0.0039 0.0035 0.0056 0.0037 0.0047 0.0021
369 0.0046 0.0011 0.0011 0.0011 0.0011 0.0043 0.0043 0.0004 0.0016 0.0047 0.0047 0.0649 0.0649 0.0649 0.0039 0.0035 0.0056 0.0037 0.0047 0.0021
371 0.0009 0.0011 0.0011 0.0011 0.0011 0.0305 0.0305 0.0013 0.0061 0.0155 0.0155 0.0106 0.0106 0.0106 0.2511 0.2840 0.0469 0.0755 0.0110 0.0092
381 0.0413 0.0016 0.0016 0.0016 0.0016 0.0656 0.0656 0.0095 0.0195 0.0164 0.0164 0.0111 0.0111 0.0111 0.0393 0.1154 0.0627 0.0447 0.0258 0.0139
383 0.0005 0.0011 0.0011 0.0011 0.0011 0.0022 0.0022 0.0011 0.0029 0.0054 0.0054 0.0044 0.0044 0.0044 0.0213 0.0105 0.3393 0.0666 0.0241 0.0202
384 0.0007 0.0010 0.0010 0.0010 0.0010 0.0016 0.0016 0.0016 0.0008 0.0018 0.0018 0.0048 0.0048 0.0048 0.0178 0.0057 0.0119 0.3630 0.0110 0.0397

For Traded Goods Sectors Expenditure on Intermediates - φN,m

311 313,314 321 322 323 324 331 332 341,342 352 355 356 361 362 369 371 381 383 384 400

400 0.6185 0.2700 0.2700 0.2700 0.2700 0.5212 0.5212 0.4448 0.5029 0.3484 0.3484 0.6228 0.6228 0.6228 0.5743 0.4736 0.4121 0.3345 0.7950 0.7735
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