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1 Introduction

Averaging estimates of individual cross-section units in a panel to estimate a common mean is

a well established idea explored in a variety of contexts. See Hsiao and Pesaran (2008) for an

overview.1 Pesaran and Smith (1995) refer to this estimator as the Mean Group (MG) estimator

and show that it is consistent in the context of estimating long-run relationships in dynamic panel

data models. In this paper, we consider the asymptotic properties of the MG estimator in a more

general (linear or nonlinear) random coeffi cient panel data setup with N cross section units and T

time periods, where the estimators of individual cross-section units are allowed to be weakly cross

correlated.

We establish the asymptotic distribution of the MG estimator in a random coeffi cient (linear

or non-linear) panel data setup under fairly general assumptions on the underlying individual

estimators. We assume variances of the individual estimators exist and the estimators are weakly

cross correlated (to be made precise in Section 2 below). We distinguish between cases when

the individual estimators are unbiased (that could arise in the case of linear panels with strictly

exogenous regressors), and when they are biased which could arise in the case of non-linear panels or

linear panel data models with weakly exogenous regressors. Under these conditions, we show that

the asymptotic distribution of the MG estimator is asymptotically normal and correctly centered

as both panel dimensions N and T → ∞, jointly. The required relative expansion rates of N

and T depend on whether the underlying estimators are biased, and if so the order of their bias.

No restrictions are imposed on the relative expansion rates of N and T when the estimators are

unbiased. When the bias is of order T−1 then it is required that
√
N/T → 0. If the order of the

bias is reduced to T−2, by use of half-panel Jackknife estimators, for example, then the validity of

the Jackknifed-MG estimators only requires N/T 3 → 0, as N and T →∞, jointly.

A consistent estimator of the asymptotic variance is also proposed under some additional reg-

ularity conditions, without needing to specify the nature and sources of the weak cross-sectional

correlation. As discussed in Pesaran and Tosetti (2011), the asymptotic variance of MG or pooled

estimators depends on the pattern of weak cross-sectional correlation of errors in the case of pan-

els with homogenous slopes, and consistent estimation of their asymptotic covariance matrix does

require some knowledge of the cross-sectional correlation of the errors (which is often diffi cult to

1See, for example, Baltagi (2013) and Chapter 28 of Pesaran (2015).
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know in practice). In contrast, the MG estimator investigated in this paper for panels with het-

erogeneous slopes, does not require any such knowledge, and its proposed covariance matrix being

non-parametric is robust to error serial correlation and heteroskedasticity.

The general assumptions for the MG estimation in this paper encompass a number of interesting

models. We discuss panel regressions with strictly exogenous regressors and spatially correlated

errors as an important although not the only illustrative example that falls within our framework.

Small sample properties of the MG estimator are investigated by Monte Carlo experiments.

We find the small sample performance of the MG estimator satisfactory in the strictly exogenous

case. In the case of weakly exogenous regressors, larger values of T are required for valid inference,

but the size distortions can be substantially reduced with bias correction methods, such as the

half-panel jackknife procedure.

The remainder of the paper is organized as follows. Section 2 sets out the assumptions, and

provides the main theoretical results. Section 3 discusses examples. Section 4 presents MC evidence,

and Section 5 concludes the paper. Proofs are provided in an appendix.

Notations. K0,K1, ..., and K denote generic finite constants that do not depend on the sample

size, (N,T ). These constants can take different values at different instances. ‖A‖ =
√
% (A′A) is

the spectral norm of A, % (A) ≡ |λmax (A)| is the spectral radius of A, and λmax (A) is the largest

eigenvalue (in absolute value) of A.2 All vectors are column vectors.

2 The Mean Group Estimator

Let θ̂iT be an estimator of the k × 1 vector of unknown parameters θi for unit i in the panel,

estimated using T observations. Suppose that
√
T
(
θ̂iT − θi0

)
is asymptotically distributed with

zero mean and a finite variance, where θi0 is the true value of θi. We do not require asymptotic

normality. Let θ̂T =
(
θ̂
′
1T , θ̂

′
2T , ..., θ̂

′
NT

)′
and θ0 =

(
θ′1,0,θ

′
2,0, ...,θ

′
N,0

)′ be the Nk × 1 vectors
that stack the estimators and the true values of the parameters for all the N units. We assume

there exists some T0 such that for all T > T0, the finite sample variance of
√
T θ̂T , denoted by

V ar
(√

T θ̂T

)
, exists. We distinguish between two possibilities for the bias of θ̂iT , and we allow

θ̂iT , for i = 1, 2, ..., N , to be weakly cross correlated.

2Note that if x is a vector, then ‖x‖ =
√
% (x′x) =

√
x′x corresponds to the Euclidean length of vector x.
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Assumption 1 (Bias of estimators)

(a) No bias: E
(
θ̂iT

)
= 0, for each i = 1, 2, ..., N .

(b) Small-T bias: E
(
θ̂iT

)
= θi0+Ki/T +O

(
T−3/2

)
, for each i = 1, 2, ..., N , where supi |Ki| <

∞.

Assumption 2 (Cross correlation of estimators) There exists T0 such that for all T > T0,

the Nk × Nk symmetric covariance matrix of
√
T θ̂T , denoted by VNT , exists and λmax (VNT ) <

K <∞.

Assumption 3 (Random coeffi cient model) For each i = 1, 2, ..., N , θi0 = θ0 + ηi, where

ηi ∼ IID (0k,Ωη) and Ωη is a k × k symmetric positive definite matrix. In addition, there exists

some ε > 0 such that E ‖ηi‖2+ε < K <∞.

Assumption 1.b allows for bias of order T−1, which is important for the case of panels with

weakly exogenous regressors. This assumption could be generalized to allow for a different upper

bound on bias in terms of T and/or N , which would alter the relative rates of N and T required for

our main results. One possibility is the bias of order O
(
T−2

)
, which we discuss below. Assumption

2 does not require the existence of higher moments, besides variances. In addition, Assumption

2 allows for weak cross-sectional correlation of
{
θ̂iT , for i = 1, 2, ..., N

}
, which is important, for

example, in panel data models with spatial dependence. This assumption can be relaxed so long

as T−1λmax (VNT ) → 0, which allows for a stronger cross-correlations of θ̂iT , i = 1, 2, ..., N . As-

sumption 3 is the standard random coeffi cient assumption. {θi0, for i = 1, 2, ..., N} are distributed

independently around the common mean θ0, which is the target of estimation and inference in this

paper. This assumption can be relaxed by assuming ηi ∼ IID
(
0k, N

−δΩη

)
, for some 0 ≤ δ ≤ 1/2,

with some implications on the relative expansion rates of N and T .

The following theorem establishes asymptotic normality of the MG estimator under the above

assumptions.

Theorem 1 (Asymptotic distribution of the MG estimator) Suppose that θ̂iT is an estimator of

θi0, for i = 1, 2, ..., N , where E (θi0) = θ0, for all i, and Assumptions 1.a, 2, and 3 hold. Then the
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mean group estimator of θ0, defined by

θ̂MG =
1

N

N∑
i=1

θ̂iT , (1)

is asymptotically distributed as

√
N
(
θ̂MG − θ0

)
a∼ N (0k,Ωη) , (2)

for N and T → ∞, jointly. If Assumption 1.b holds in place of 1.a, then (2) holds so long as
√
N/T → 0, as N and T →∞, jointly.

Inference based on (2) requires a consistent estimator of Ωη. The standard estimator of Ωη is

given by

Ω̂η =
1

N − 1

N∑
i=1

(
θ̂iT − θ̂MG

)(
θ̂iT − θ̂MG

)′
. (3)

The following theorem establishes the conditions under which Ω̂η continues to be a consistent

estimator of Ωη even if the individual estimators are cross-correlated.

Theorem 2 (Consistency of Ω̂η) Consider Ω̂η given by (3) and suppose Assumptions 1.a, 2, and

3 hold. Then Ω̂η →p Ωη, as N and T →∞, at any rate. If Assumption 1.b holds in place of 1.a,

then Ω̂η →p Ωη so long
√
N/T → 0, as N and T →∞, jointly.

There is no restriction on the relative expansion rates ofN and T when the underlying estimators

are unbiased (Assumption 1.a). The requirement
√
N/T → 0 in Theorems 1 and 2 is a consequence

of the O
(
T−1

)
bias allowed by Assumption 1.b. If the unit-specific estimators are biased, but with

a bias of smaller order than the one postulated in Assumption 1.b, then a less stringent requirement

on the relative expansion rates of N and T would be required for the asymptotic distribution of

the MG estimator to be correctly centered. One example of an estimator with a bias of lower order

are the jackknife-bias-corrected estimators discussed in Dhaene and Jochmans (2015) and Chudik,

Pesaran, and Yang (2018), which we will also examine in the Monte Carlo section below. But first,

we provide some example from the literature.
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3 Applications

There are a number of models in panel data literature that meet our high level assumptions.

Examples include heterogeneous version of the non-linear panel data models discussed in Dhaene

and Jochmans (2015), heterogeneous spatial autoregressive models, and global VARs (Pesaran,

Schuermann, and Weiner (2004)). Here we shall illustrate the applicability of our assumptions to

linear panel regressions with spatially correlated errors.

Consider the following panel regression

yit = θ
′
i0xit + uit, (4)

for i = 1, 2, ..., N , and t = 1, 2, ..., T , where θi0 satisfies the random coeffi cient Assumption 3. It

is convenient to define yi = (yi1, yi2, ..., yiT )
′, Xi = (xi1,xi2, ...,xiT )

′ and ui = (ui1, ui2, ..., uiT )
′, so

that (4) can be written as yi = Xiθi0+ui, for i = 1, 2, ..., N . Suppose that xit is strictly exogenous

and E (uij |Xi ) = 0 for all i and j. In addition, suppose that

E
(
uiu

′
j |X1, ...,XN

)
= σijIT , (5)

and

sup
i

N∑
j=1

|σij | < K <∞. (6)

We consider the least squares (LS) estimator

θ̂iT =
(
X′iXi

)−1
X′iyi. (7)

Under the above conditions, θ̂iT is unbiased, namely E
(
θ̂iT

)
= θi0. Hence, Assumptions 1.a holds.

Also

cov
(√

T θ̂iT ,
√
T θ̂jT

)
= σij

(
X′iXi

T

)−1(X′iXj

T

)(
X′jXj

T

)−1
= σijP

′
iPj ,

where P′i =
(
X′iXi
T

)−1 X′i√
T
, for i = 1, 2, ..., N . Now using (7) note that

√
T
(
θ̂T − θ0

)
= P′u, where
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θ̂T =
(
θ̂
′
1T , θ̂

′
2T , ..., θ̂

′
NT

)′
, θ0 =

(
θ′1,0,θ

′
2,0, ...,θ

′
N,0

)′, u =(u′1,u
′
2, ...,u

′
N )
′, and

P′ =



P′1 0k×T · · · 0k×T

0k×T P′2 0k×T
...

. . .

0k×T 0k×T P′N


.

Also E (uu′) = Σ⊗ IT , where Σ =(σij) is N ×N covariance matrix with elements σij , and

VNT = V ar
[√

T
(
θ̂T − θ0

)]
= P′ (Σ⊗ IT )P.

Taking the spectral norm, and using the triangle inequality, we have ‖VNT ‖ ≤ ‖P′‖ ‖P‖ ‖Σ⊗ IT ‖.

But ‖P′‖ = ‖P‖ = λ
1/2
max (P′P) and λ

1/2
max (P′P) ≤ supi λ

1/2
max (P′iPi). In addition, ‖Σ⊗ IT ‖ =

λ
1/2
max (Σ). Hence

‖VNT ‖ ≤ sup
i
λmax

(
P′iPi

)
λ1/2max (Σ) .

Note that P′iPi = (X
′
iXi/T )

−1, and λmax (P′iPi) = [λmin (X
′
iXi/T )]

−1. Consequently, Assumption

2 holds if λmax (Σ) < K, and infi λmin
(
X′iXi
T

)
> 0. The latter is the standard condition for identi-

fication of {θi0, for i = 1, 2, ..., N}. Condition λmax (Σ) < K is satisfied if {uit, for i = 1, 2, ..., N}

is weakly cross-correlated. An example of weakly cross-sectionally correlated errors is the spatially

autoregressive SAR(1) model: (See, for example, Anselin (1988)),

uit = ρ

N∑
j=1

wijujt + εit, (8)

or (in vector notations) ut = (IN − ρW)−1 εt. In this example, we obtain

E
(
utu

′
t

)
= (σij) = (IN − ρW)−1Λ

(
IN − ρW′)−1

where Λ is a diagonal matrix with elements σ2i = V ar (εit) on the diagonal. Condition (6) is

satisfied if supi V ar (εit) < K, |ρ| < max (1/ ‖W‖1 , 1/ ‖W‖∞), and ‖W‖1 < K, ‖W‖∞ < K.
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4 Monte Carlo evidence

4.1 Data generating process

The dependent variable and the regressor are generated as:

yit = αi + θixit + eit, (9)

xit = αi1 + κiyi,t−1 + αi2ft + vit, (10)

for i = 1, 2, ..., N and t = −49, ..., 0, 1, ..., T , with the starting values yi,−50 = 0, where θi ∼

IIDN (1, 0.25). The first 50 observations are discarded to minimize the effects of the initial values

on the outcomes. Coeffi cients κi capture feedback from yi,t−1 to xit, and we consider two options:

κi = 0 for all i (strictly exogenous regressors), and κi ∼ IIDU (0.1, 0.3) (weakly exogenous re-

gressors). In addition to feedbacks, κiyi,t−1, the regressors, xit, contain the strong common factor,

ft, and the weakly cross-sectionally correlated idiosyncratic components, vit, generated as AR(1)

processes:

ft = ρfft−1 +
√
1− ρ2fvft, vit = ρvivi,t−1 +

√
1− ρ2viξit, t = −49, ..., 0, 1, ..., T , (11)

vft, ξit ∼ IIDN (0, 1) , ρf = 0.5, f−50 = 0, ρvi ∼ IIDU (0, 0.8) , vi,−50 = 0. (12)

The errors eit and ξit are generated as spatial autoregressive process:

eit = δe

N∑
j=1

wijejt + εit, and ξit = δξ

N∑
j=1

wijξjt + ζit, (13)

where εit ∼ IIDN
(
0, σ2i

)
, σ2i ∼ IIDU (0.5, 1.5), and ζit ∼ IIDN (0, 1) . The spatial coeffi cients,

δe and δξ, capture the degree of cross correlations of the errors, and wij are the elements of the

N ×N spatial weights matrix W = (wij). We follow Kelejian and Prucha (2007) and assume units

are set out on a rectangular grid at locations (s, r), for r = 1, 2, ...,m1 and s = 1, 2, ...,m2 such that

N = m1m2.3 W is a rook type matrix, where two units are neighbors if their Euclidean distance

is less than or equal to one. The weights matrix is normalized such that rows sum to one. We set

δe = δξ = 0.6. The fixed effects (αi) and the loadings (αi1, αi2) do not change across replications

3We consider (m1,m2) ∈ {(5, 4) , (6, 5) , (10, 5) , (10, 10) , (40, 25) , (75, 40)}, for N = 20, 30, 50, 100, 1000, and
3000, respectively.
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and are generated as αi ∼ IIDN (1, 1) and (αi1, αi2)
′ ∼ IIDN (0.5τ 2, 0.5I2), for i = 1, 2, ..., N ,

where τ 2 = (1, 1)′, and I2 is 2 × 2 identity matrix. We conduct R = 2, 000 replications per

each MC experiment and consider sample size combinations N = 20, 30, 50, 100, 1000, 3000, and

T = 10, 20, 30, 50, 100, 1000.

4.2 Findings

Table 1 reports findings for the bias, Root Mean Square Error (RMSE), size (5% nominal level) and

power of the MG and jackknifed-MD estimators.4 The nominal size of the tests is set to 5 percent,

and power is computed under the alternatives E (θi) = 0.9 for all i. The bias of the MG estimator is

very small when regressors are strictly exogenous (κi = 0), reported in Part A of Table 1. Size of the

tests based on the MG estimator is close to the nominal level of 5% for all values of N and T , except

for the few of the smallest sample sizes considered, where the tests based on the MG estimator do

not achieve correct size (for T = 10). But reported size distortions are very mild. Jackknife bias

correction is clearly not required in the experiments with strictly exogenous regressors, and we see

that the jackknifed-MG estimator has somewhat larger RMSE and consequently lower power.

The MG estimator exhibits downward bias in the weakly exogenous case, reported in Part B of

Table 1. This bias declines in T , as expected. As a consequence, we see significant size distortions

for sample sizes where the ratio
√
N/T is not suffi ciently small, whereas the size remains close

to the nominal level for experiments where T is not too small as compared to N . Jackknife bias

correction does help in reducing the bias of the MG estimator, and the size of the tests based on

the jackknifed-MG estimator is close to the 5% nominal level for all sample sizes considered, except

for T = 10 where small size distortions are reported. Overall, the simulations accord well with the

asymptotic results established in the paper.

5 Conclusion

This paper has established asymptotic results for the MG estimator when the underlying individual

estimators are weakly cross-sectionally correlated, and possibly biased. Our high-level setup allows

4The MG estimator is computed using the simple average of θ̂i. Jackknifed-MG is based on averaging the estimators

θ̃i = 2θ̂i−0.5
(
θ̂ai + θ̂bi

)
, where θ̂i is the estimator using the full sample of T periods, and θ̂ai, θ̂bi are the estimators

using the first and the second halves of the sample, respectively. When T is odd one of the observations from the
start or the end of the sample is dropped.
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for a number of linear or non-linear panel data specifications. We conclude that in large panels MG

estimator could be useful, especially when regressors are strictly exogenous. In the case of panels

with weakly exogenous regressors we suggest a simple Jackknifed-MG estimator. The random

coeffi cient specification allows for correct inference even when nothing is known about the weak

cross-sectional dependence of the errors. This is in contrast to the well known homogenous case,

where cross-sectional dependence of errors results in incorrect inference unless the nature of the

cross-sectional error dependence is known and can be taken into account.

9



T
ab
le
1:
M
on
te
C
ar
lo
F
in
d
in
gs
fo
r
th
e
P
er
fo
rm
an
ce
of
M
G
an
d
Ja
ck
k
n
if
ed
-M
G
E
st
im
at
or
s

B
ia
s
(x
1
0
0
)

R
M
S
E
(x
1
0
0
)

S
iz
e(
x
1
0
0
)

P
ow
er
(x
1
0
0
)

N
\
T

10
20

30
50

10
0

10
00

10
20

30
50

10
0

10
00

10
20

30
50

10
0

10
00

10
20

30
50

10
0

10
00

P
ar
t
A
:

E
x
p
er
im
en
ts
w
it
h
st
ri
ct
ly
ex
o
g
en
o
u
s
re
g
re
ss
o
rs
,
κ
i
=
0
fo
r
i
=
1
,2
,.
..
,N

M
G

20
0.
04

-0
.0
6

-0
.1
5

-0
.0
9

-0
.1
0

-0
.0
2

14
.8
0

12
.6
9

12
.1
3

11
.6
7

11
.3
3

11
.1
0

9.
3

8.
1

7.
3

6.
8

6.
7

6.
5

16
.9
5

15
.0
5

16
.3
0

15
.6
0

16
.0
0

16
.4
5

30
0.
08

-0
.2
1

0.
03

-0
.0
7

0.
01

-0
.0
7

12
.1
5

10
.3
2

9.
71

9.
41

9.
19

9.
01

8.
5

6.
7

5.
8

5.
4

5.
3

5.
0

20
.0
0

19
.2
5

20
.2
0

19
.7
5

20
.5
0

20
.3
5

50
-0
.2
3

-0
.1
4

-0
.0
6

-0
.1
5

-0
.1
3

-0
.1
4

9.
31

8.
23

7.
85

7.
51

7.
42

7.
23

7.
8

7.
4

7.
1

7.
1

6.
0

5.
7

24
.3
0

27
.6
5

28
.3
0

27
.7
0

29
.5
5

29
.5
0

10
0

-0
.0
6

0.
04

-0
.0
3

0.
00

0.
02

-0
.0
4

6.
74

5.
87

5.
51

5.
30

5.
25

5.
09

8.
3

7.
3

6.
2

5.
9

6.
1

5.
7

40
.1
0

46
.0
0

48
.2
0

49
.8
5

51
.3
0

51
.1
0

10
00

0.
02

0.
00

0.
01

-0
.0
1

0.
00

0.
01

2.
03

1.
85

1.
74

1.
69

1.
67

1.
61

6.
5

7.
2

6.
3

6.
3

6.
5

5.
7

99
.9
5

10
0.
00

10
0.
00

10
0.
00

10
0.
00

10
0.
00

30
00

0.
01

-0
.0
2

-0
.0
1

-0
.0
1

0.
01

0.
00

1.
23

1.
07

1.
02

0.
97

0.
97

0.
94

7.
7

7.
6

6.
8

5.
7

6.
4

6.
4

10
0.
00

10
0.
00

10
0.
00

10
0.
00

10
0.
00

10
0.
00

Ja
ck
kn
if
ed
-M
G

20
-0
.0
6

-0
.0
4

-0
.1
7

-0
.0
9

-0
.1
1

-0
.0
2

16
.5
3

12
.8
6

12
.1
9

11
.7
0

11
.3
4

11
.1
0

8.
7

8.
3

7.
2

7.
1

6.
8

6.
6

16
.0
5

14
.6
0

16
.0
0

15
.2
5

16
.0
5

16
.3
5

30
-0
.0
1

-0
.2
7

0.
07

-0
.0
9

-0
.0
1

-0
.0
7

13
.3
6

10
.6
2

9.
85

9.
45

9.
21

9.
01

7.
8

7.
0

5.
9

5.
2

5.
3

5.
0

17
.3
5

18
.4
5

20
.2
5

19
.9
0

20
.8
0

20
.3
5

50
-0
.0
9

-0
.1
8

-0
.0
8

-0
.1
4

-0
.1
3

-0
.1
4

10
.3
4

8.
35

7.
91

7.
53

7.
43

7.
23

7.
5

7.
8

7.
0

7.
1

6.
1

5.
7

21
.6
0

27
.5
5

27
.8
5

27
.8
5

29
.3
5

29
.4
5

10
0

-0
.0
3

0.
04

-0
.0
4

0.
02

0.
02

-0
.0
4

7.
52

5.
98

5.
58

5.
30

5.
25

5.
09

8.
2

7.
3

6.
4

5.
8

6.
2

5.
7

34
.9
5

45
.1
5

47
.2
0

49
.9
5

51
.1
0

51
.1
5

10
00

-0
.0
2

0.
01

0.
01

-0
.0
1

0.
00

0.
01

2.
28

1.
89

1.
75

1.
70

1.
67

1.
61

7.
0

7.
8

6.
6

6.
0

6.
5

5.
7

99
.6
5

10
0.
00

10
0.
00

10
0.
00

10
0.
00

10
0.
00

30
00

0.
00

-0
.0
2

-0
.0
1

-0
.0
1

0.
01

0.
00

1.
35

1.
09

1.
03

0.
97

0.
97

0.
94

7.
5

7.
5

7.
1

5.
8

6.
7

6.
4

10
0.
00

10
0.
00

10
0.
00

10
0.
00

10
0.
00

10
0.
00

P
ar
t
B
:

E
x
p
er
im
en
ts
w
it
h
w
ea
k
ly
ex
o
g
en
o
u
s
re
g
re
ss
o
rs
,
κ
i
∼
I
I
D
U
(0
.1
,0
.3
)

M
G

20
-2
.4
2

-1
.3
6

-0
.9
1

-0
.5
2

-0
.3
3

-0
.0
7

14
.5
3

12
.8
5

12
.0
1

11
.6
4

11
.3
5

11
.0
7

9.
2

8.
0

6.
5

7.
0

6.
3

6.
4

13
.1
0

15
.1
0

15
.4
0

15
.6
0

16
.0
5

16
.2
5

30
-2
.3
7

-1
.5
1

-0
.7
5

-0
.5
5

-0
.3
0

-0
.1
2

12
.0
5

10
.2
5

9.
60

9.
35

9.
18

9.
01

9.
1

7.
4

5.
5

5.
6

5.
4

5.
0

14
.0
5

16
.2
0

18
.3
5

18
.9
0

19
.8
5

20
.5
5

50
-2
.5
4

-1
.3
1

-0
.9
2

-0
.6
1

-0
.3
4

-0
.1
7

9.
54

8.
24

7.
81

7.
58

7.
44

7.
23

9.
2

7.
5

7.
0

6.
5

6.
6

5.
9

18
.1
0

24
.0
0

25
.5
0

26
.8
0

28
.7
0

29
.0
0

10
0

-2
.5
7

-1
.2
0

-0
.8
7

-0
.5
8

-0
.2
7

-0
.0
7

7.
05

5.
89

5.
48

5.
34

5.
25

5.
08

10
.4

7.
3

6.
0

6.
4

5.
8

6.
0

27
.3
5

37
.7
5

41
.7
5

46
.0
0

48
.9
5

50
.5
0

10
00

-2
.4
4

-1
.2
4

-0
.8
4

-0
.5
3

-0
.2
5

-0
.0
3

3.
20

2.
18

1.
94

1.
77

1.
68

1.
61

27
.1

12
.8

9.
6

7.
6

6.
4

5.
8

96
.9
5

10
0.
00

10
0.
00

10
0.
00

10
0.
00

10
0.
00

30
00

-2
.4
2

-1
.2
4

-0
.8
3

-0
.4
9

-0
.2
4

-0
.0
3

2.
72

1.
62

1.
31

1.
10

1.
00

0.
95

59
.9

25
.8

15
.3

10
.0

7.
4

6.
5

10
0.
00

10
0.
00

10
0.
00

10
0.
00

10
0.
00

10
0.
00

Ja
ck
kn
if
ed
-M
G

20
-0
.2
0

-0
.1
8

-0
.0
7

0.
02

-0
.0
8

-0
.0
4

16
.3
2

13
.0
4

12
.1
4

11
.6
5

11
.3
7

11
.0
8

9.
4

7.
8

7.
1

7.
0

6.
1

6.
4

14
.1
0

16
.3
5

16
.8
5

16
.7
5

16
.6
5

16
.3
0

30
-0
.3
6

-0
.3
9

0.
06

-0
.0
5

-0
.0
6

-0
.0
9

13
.3
1

10
.4
0

9.
77

9.
40

9.
19

9.
01

8.
2

6.
6

5.
7

5.
4

5.
2

5.
0

15
.6
0

17
.9
0

19
.9
0

20
.0
5

20
.5
5

20
.7
0

50
-0
.4
0

-0
.1
3

-0
.1
3

-0
.1
1

-0
.0
9

-0
.1
4

10
.2
5

8.
31

7.
90

7.
59

7.
45

7.
23

7.
8

7.
1

6.
7

6.
6

6.
6

5.
9

20
.5
0

27
.5
0

27
.5
5

28
.9
5

29
.7
5

28
.9
5

10
0

-0
.4
3

-0
.0
4

-0
.0
2

-0
.0
9

-0
.0
2

-0
.0
4

7.
41

5.
95

5.
52

5.
34

5.
26

5.
09

8.
8

7.
2

6.
3

6.
1

5.
8

6.
0

30
.9
0

44
.2
5

48
.2
5

49
.1
0

50
.4
0

50
.8
5

10
00

-0
.3
3

-0
.0
5

-0
.0
2

-0
.0
4

0.
01

0.
00

2.
36

1.
84

1.
77

1.
70

1.
66

1.
61

8.
2

6.
2

6.
3

6.
5

6.
2

5.
9

99
.1
5

10
0.
00

10
0.
00

10
0.
00

10
0.
00

10
0.
00

30
00

-0
.2
8

-0
.0
6

-0
.0
1

0.
01

0.
01

0.
00

1.
41

1.
06

1.
02

0.
99

0.
97

0.
95

9.
2

7.
2

6.
9

6.
5

6.
7

6.
4

10
0.
00

10
0.
00

10
0.
00

10
0.
00

10
0.
00

10
0.
00

N
ot
es
:
T
he
D
G
P
is
gi
ve
n
by

y
it
=
α
i
+
θ
i
x
it
+
e i
t
,
an
d
x
it
=
α
i1
+
κ
i
y
i,
t−
1
+
α
i2
f t
+
v i
t
,
w
he
re
f t
an
d
v i
t
ar
e
A
R
(1
)
pr
oc
es
se
s
ge
ne
ra
te
d
ac
co
rd
in
g
to

f t
=

ρ
f
f t
−
1
+
√ 1−

ρ
2 f
v f
t
,
an
d
v i
t
=
ρ
v
i
v i
,t
−
1
+
√ 1−

ρ
2 v
i
ξ i
t
,
se
e
(1
1)
-(
12
).
T
he
fix
ed
eff
ec
ts
(α
i
)
an
d
lo
ad
in
gs
(α
i1
,
α
i2
)
do

no
t
ch
an
ge
ac
ro
ss
re
pl
ic
at
io
ns
an
d
ar
e

ge
ne
ra
te
d
as
α
i
∼
I
I
D
N
(1
,1
),
(α
i1
,α

i2
)′
∼
I
I
D
N
(0
.5
τ
2
,0
.5
I 2
).
In
no
va
ti
on
s
e i
t
an
d
ξ i
t
ar
e
ge
ne
ra
te
d
ac
co
rd
in
g
to
th
e
sp
at
ia
l
au
to
re
gr
es
si
ve
pr
oc
es
se
s
in
(1
3)
w
it
h

th
e
sp
at
ia
l
A
R
co
effi
ci
en
ts
δ e
=
δ ξ
=
0
.6
.

10



References

Anselin, L. (1988). Spatial Econometrics: Methods and Models. Kluwer Academic Publishers,

Dordrecht, The Netherlands. https://doi.org/10.1007/978-94-015-7799-1.

Baltagi, B. H. (2013). Econometric Analysis of Panel Data (5th ed.). John Wiley & Sons Ltd.

ISBN: 978-1-118-67232-7.

Chudik, A., M. H. Pesaran, and J.-C. Yang (2018). Half-panel jackknife fixed-effects estimation

of linear panels with weakly exogenous regressors. Journal of Applied Econometrics 33 (6), 

816—836. . https://doi.org/10.1002/jae.2623.

Dhaene, G. and K. Jochmans (2015). Split-panel jackknife estimation of fixed-effect models.

Review of Economic Studies 82 (3), 991—1030. https://doi.org/10.1093/restud/rdv007.

Hsiao, C. and M. H. Pesaran (2008). Random coeffi cient models. In The Econometrics of Panel

Data, Chapter 6, pp. 185—213. Springer. ISBN: 978-3-540-75892-1.

Kelejian, H. H. and I. R. Prucha (2007). HAC estimation in a spatial framework. Journal of

Econometrics 140 (1), 131—154. https://doi.org/10.1016/j.jeconom.2006.09.005.

Pesaran, M. H. (2015). Time series and panel data econometrics. Oxford University Press. ISBN:

9780198736912, https://doi.org/10.1093/acprof:oso/9780198736912.001.0001.

Pesaran, M. H., T. Schuermann, and S. Weiner (2004). Modelling Regional Interdependencies us-

ing a Global Error-Correcting Macroeconometric Model. Journal of Business and Economics

Statistics 22, 129—162. https://doi.org/10.1198/073500104000000019.

Pesaran, M. H. and R. Smith (1995). Estimating long-run relationships from dynamic het-

erogeneous panels. Journal of econometrics 68 (1), 79—113. https://doi.org/10.1016/0304-

4076(94)01644-F.

Pesaran, M. H. and E. Tosetti (2011). Large panels with common factors and spatial correlation.

Journal of Econometrics 161 (2), 182—202. https://doi.org/10.1016/j.jeconom.2010.12.003.

11



A Proofs

Proof of Theorem 1. Let η =(η′1,η
′
2, ...,η

′
N )
′ and note that

θ̂MG =
1

N

(
τ ′N ⊗ Ik

) (
θ̂T − θ0

)
+
1

N

(
τ ′N ⊗ Ik

)
θ0, (A.1)

where τN is N × 1 vector of ones, and Ik is a k × k identity matrix. Also

θ0 =
(
τ ′N ⊗ θ0

)
+ η. (A.2)

Using (A.1)-(A.2) in (1) yields

√
N
(
θ̂MG − θ0

)
=

1√
N

(
τ ′N ⊗ Ik

)
η +

1√
NT

(
τ ′N ⊗ Ik

)√
T
(
θ̂T − θ0

)
.

Note that θ0 is Nk × 1 and θ0 is k × 1. Let

ζNT =
1√
NT

(
τ ′N ⊗ Ik

)√
T
(
θ̂T − θ0

)
, (A.3)

and note that it can also be written equivalently as

ζNT =
1√
N

N∑
i=1

(
θ̂iT − θi0

)
. (A.4)

We now establish that ζNT →p 0, by showing that E (ζNT )→ 0 and ‖V ar (ζNT )‖ → 0. Consider

first the mean of ζNT . Under Assumption 1.a, E (ζNT ) = 0, regardless of the relative rate of N

and T . Under Assumption 1.b, we have

E (ζNT ) =
1√
N

N∑
i=1

[
Ki

T
+O

(
T−3/2

)]
=

√
N

T

1

N

N∑
i=1

Ki +O

(√
N

T 3/2

)
,

where note that N−1
∑N

i=1 |Ki| ≤ supi |Ki| < ∞. Hence, under Assumption 1.b, E (ζNT ) → 0, as

N and T →∞ such that
√
N/T → 0.

Consider now (using (A.3))

V ar (ζNT ) =
1

NT

(
τ ′N ⊗ Ik

)
V ar

(√
T θ̂T

) (
τ ′N ⊗ Ik

)′ ,
and, using spectral norm, note that ‖V ar (ζNT )‖ ≤ 1

NT ‖τ
′
N ⊗ Ik‖2 ‖VNT ‖, where

VNT = V ar
(√

T θ̂T

)
. (A.5)
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But ‖τ ′N ⊗ Ik‖2 = λmax (τ
′
NτN ⊗ Ik) = N , and ‖V ar (ζNT )‖ ≤ T−1 ‖VNT ‖. Hence, ‖V ar (ζNT )‖ →

0, as N and T →∞ if T−1 ‖VNT ‖ → 0, which is clearly satisfied under Assumption 2.5 Result (2)

now follows by noting that under Assumption 3, N−1/2 (τ ′N ⊗ Ik)η
a∼ N (0k,Ωη). This completes

the proof.

Proof of Theorem 2. Note that

θ̂iT − θ̂MG =
(
θ̂iT − θi0

)
+ (θi0 − θ0)−

(
θ̂MG − θ0

)
= ηi + ξiT − vNT ,

where ξiT = θ̂iT − θi0, vNT = θ̂MG − θ0, and we used Assumption 3. Hence(
θ̂iT − θ̂MG

)(
θ̂iT − θ̂MG

)′
= ηiη

′
i + ξiT ξ

′
iT + vNTv′NT

+ηiξ
′
iT − ηiv′NT + ξiTη′i

−ξiTv′NT − vNTη
′
i − vNT ξ

′
iT . (A.6)

Assuming E ‖ηi‖2+ε < K for some ε > 0, we have N−1
∑N

i=1 ηiη
′
i →p Ωη, as N → ∞ (regardless

of T ). We establish convergence of the cross section averages of the remaining terms on the right

side of (A.6) next. Proof of Theorem 1 established

E
∥∥∥√NvNT

∥∥∥ < K, (A.7)

as N and T →∞ at any rate under Assumption 1.a, and as N and T →∞ such that
√
N/T → 0

under Assumption 1.b. In addition, Assumption 2 implies

ξiT = θ̂iT − θi0 = Op

(
T−1/2

)
. (A.8)

Using (A.8) and Assumption 3 , we have N−1
∑N

i=1 ξiT ξ
′
iT = Op

(
T−1/2

)
, and N−1

∑N
i=1 ηiξ

′
iT =

Op
(
T−1/2

)
. Using (A.7), (A.8) and Assumption 3 , we obtainN−1

∑N
i=1 vNTv′NT = vNTv′NT →p 0,

N−1
∑N

i=1 ηiv
′
NT =

(
N−1

∑N
i=1 ηi

)
v′NT →p 0, andN−1

∑N
i=1 ξiTv′NT =

(
N−1

∑N
i=1 ξiT

)
v′NT →p

0, as N,T → ∞ such that
√
N/T → 0. Hence Ω̂η →p Ωη, as N,T → ∞ such that

√
N/T → 0.

This completes the proof.

5Note that ‖VNT ‖ = λ
1/2
max

(
V2
NT

)
= λmax (VNT ).
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