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Equilibrium real exchange rate and corresponding misalignment estimates differ 
tremendously depending on the panel estimation method used to derive them. Essentially, 
these methods differ in their treatment of the time-series (time) and the cross-section 
(space) variation in the panel. The study shows that conventional panel estimation 
methods (pooled OLS, fixed, random and between effects) can be interpreted as restricted 
versions of a correlated random effects (CRE) model. It formally derives the distortion that 
arises if these restrictions are violated and uses two empirical applications from the 
literature to show that the distortion is generally very large. This suggests the use of the 
CRE model for the panel estimation of equilibrium real exchange rates and misalignments. 
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1. Introduction 
The present study proposes to use a correlated random effects (CRE) model in the spirit 
of Mundlak (1978) for the panel estimation of equilibrium real exchange rates. The 
proposed CRE model takes account of the fact that cross-section or between-group 
estimates of the impact of various explanatory variables on real exchange rates often 
differ quite substantially from the corresponding time series or fixed effects estimates. 
This is of particular importance in the case of equilibrium real exchange rate estimates 
because the residuals of the corresponding panel regressions are regularly used to 
compute currency misalignments. The present study shows that conventional (i.e. fixed 
effects, pooled OLS, random effects or between effects) panel estimation methods can 
be interpreted as restricted versions of the CRE model and that conventional 
misalignment estimates are distorted if the implicit restrictions are violated. The study 
formally derives the distortion in the misalignment estimate for each of the conventional 
panel estimation methods. Moreover, it computes the distortion for two empirical 
misalignment estimation applications adapted from the literature (a Balassa-Samuelson-
type panel regression and a regression related to the International Monetary Fund’s 
(IMF) external balance approach real exchange rate level regression). The distortion is 
regularly found to be very large which implies that a CRE instead of a conventional 
model should normally be used for the panel estimation of equilibrium real exchange 
rates. 

The long-run determination of real exchange rates is one of the perennial issues in 
economic research. In the 1960s, the classic idea of purchasing power parity that the 
real exchange rate is a constant at least in the long run had already given way to theories 
such as Balassa (1964) and Samuelson’s (1964) hypothesis, which proposes that total 
factor productivity is a long-run determinant of the real exchange rate. The Balassa-
Samuelson model suggests that an equilibrium real exchange rate can be obtained by a 
low-frequency regression of real exchange rates on a productivity variable. Berka et al. 
(2018), Chong et al. (2012), Hassan (2016) and Kakkar and Yan (2012) are only four 
prominent studies which demonstrate that the extent of the empirical validity of the 
Balassa-Samuelson theory is presently still being analysed. 

Estimates of equilibrium real exchange rates play also an important role in economic 
policy because the residual of the underlying regression is often used to compute an 
effective misalignment of the currency in question. The most prominent among such 
estimates is probably the IMF’s approach (cf. Phillips et al., 2013, and IMF, 2017) 
because it is employed in the IMF’s annual assessment of price competitiveness and 
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potential misalignments in individual countries (cf. e.g. IMF, 2018).1 The IMF’s 
approach and many similar real exchange rate regressions go beyond productivity and, 
referring to various models and economic considerations, include a set of explanatory 
variables in the regression. 

Today, the large majority of applications uses panel data for real exchange rate 
regressions because the panel improves inference (cf. e.g. Bussière et al., 2010). The 
relevant studies differ, however, in the panel estimation technique applied. To give 
some examples, Couharde et al. (2017) and Fidora et al. (2017) use fixed effects 
estimators, Fischer and Hossfeld (2014) present fixed effects and pooled OLS estimates, 
Cheung et al. (2007) and Berka et al. (2018) compute fixed effects, between effects, 
random effects and pooled OLS estimates and, in their external balance assessment 
(EBA) framework, the IMF provides both, a fixed effects-based regression (cf. Phillips 
et al., 2013) and a 2SLS regression (cf. IMF, 2017), which boils down to a pooled OLS-
based one if the instrumentation of some variables is omitted. 

The multitude of panel estimation techniques applied prompts the question of whether 
the different methods generate economically significant differences in the equilibrium 
real exchange rate and misalignment estimates. Adler and Grisse (2017) have already 
shown that the inclusion of fixed effects can alter misalignment estimates substantially. 
The present study uses all of the conventional estimation methods to compute 
misalignments according to two alternative applications adapted from the literature and 
regularly finds economically very large deviations between misalignments obtained by 
different methods. 

This result implies that it is essential to determine which panel estimation method 
should be used for the estimation of equilibrium real exchange rates, a question which 
has apparently not yet been investigated systematically. To answer the question, the 
present study first notes that the reason for the differences in the estimates is the fact 
that the alternative panel estimation methods treat the time-series variation and the 
cross-section variation in the data differently.2 This generates differing coefficient and 
misalignment estimates. 

                                                 
1 Apart from reduced-form real exchange rate regressions, the IMF also obtains equilibrium real exchange 
rate values by following an alternative strategy. This strategy consists in a current account regression and, 
subsequently, a derivation of the equilibrium real exchange rate from the equilibrium current account and 
a trade elasticity of the real exchange rate. While this second strategy for obtaining equilibrium real 
exchange rates is beyond the scope of the present study, the study’s fundamental considerations for 
optimally estimating equilibrium real exchange rates in a panel apply to panel estimates of equilibrium 
current accounts in the same manner. 
2 As will be discussed below, the existence of a meaningful between-group variation requires that real 
exchange rates are not computed from price indices but as relative price levels. 
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It is shown that the differing treatment of the time-series and the cross-section variation 
in the data is the consequence of imposing restrictions on a more general model, the 
CRE model introduced by Mundlak (1978). This model is well known in econometrics 
(cf. e.g. Wooldridge, 2010) and variously employed in non-economics Social Sciences, 
but apparently hardly ever used in economic applications. It provides separate estimates 
for the impact of the time-series and the cross-section variation of each explanatory 
variable. The fixed effects model results from the CRE model if it is assumed that there 
is no impact of the between-group variation in the explanatory variables. The 
assumption that the time-series variation in the explanatory variables does not affect the 
real exchange rate leads to the between effects model, and the assumption of an 
identical impact of the between-group and the within-group variation in the variables 
can either result in a pooled OLS or in a random effects model. 

Depending on the restriction imposed, each of the conventional panel estimation 
methods generates a specific distortion in the misalignment estimate if the 
corresponding restriction is violated. This is the phenomenon which is explored by the 
present study. It formally derives the distortion of each conventional panel estimation 
method and it shows in two empirical applications adapted from the literature that the 
distortion is mostly very large and none of the restrictions are met. This result suggests 
the use of a CRE model to obtain equilibrium real exchange rate or misalignment 
estimates in a panel. 

The results also support a more general conclusion. In applied economics, the fixed 
effects approach is the dominant linear panel estimation method. Its use is clearly 
warranted if the researcher is specifically interested in a coefficient estimate based 
solely on the within-group variation in the panel. In any other case, however, a careful 
consideration of the alternatives including a CRE model is advisable even if the null of 
a Hausman test is rejected. 

Section 2 of the study presents two alternative strategies to determine equilibrium real 
exchange rate and misalignment estimates using panel data. Section 3 introduces the 
CRE model, shows how restrictions turn it into conventional panel estimation 
procedures, and derives the potential distortion in misalignment estimates that arises if 
these restrictions are violated. Section 4 uses two empirical applications from the 
literature to assess the extent of the distortion, and section 5 concludes. 
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2. Setting the stage: two alternative strategies for the 
determination of misalignments using panel data 

Let us define (a) an equilibrium real effective exchange rate quite generally as the value 
of the effective real exchange rate that would hold for a given set of realizations of some 
fundamental variables abstracting from the effects of other factors and (b) the 
misalignment of a currency as the deviation of the observed from the equilibrium real 
exchange rate.3 

Before considering estimation issues, it is necessary to clarify how equilibrium real 
exchange rates or real exchange rate misalignments are derived in a panel data 
framework. This section presents two alternative strategies for determining such 
misalignments. The first essentially estimates the impact of explanatory variables on 
real exchange rates in a setting in which all the variables are defined bilaterally against a 
specific base country. Afterwards, a weighting matrix is used to calculate effective, i.e. 
multilateral, misalignments for all countries in the sample except the base country. The 
second strategy uses effective instead of bilateral variables already in the estimation. An 
example for misalignments derived according to strategy 1 is Fischer and Hossfeld 
(2014), an example for strategy 2 is the current IMF’s official assessment method for 
exchange rates as described in Phillips et al. (2013) and IMF (2017). 

For a formal description of strategy 1, assume that effective misalignments are to be 
derived from a panel of real exchange rates and explanatory variables by applying, for 
example, a fixed effects (FE) estimator. The FE estimation is based on the econometric 
model 

 

𝑞𝑞𝑖𝑖𝑖𝑖 = 𝑥𝑥𝑖𝑖𝑖𝑖𝛽𝛽 + 𝜔𝜔𝑖𝑖𝑖𝑖 (1) 

𝜔𝜔𝑖𝑖𝑖𝑖 = 𝜇𝜇𝑖𝑖 + 𝜀𝜀𝑖𝑖𝑖𝑖 

 

where qit denotes the log real exchange rate of country i relative to a base country at 
time t with an increase representing a domestic real appreciation, xit a (1 × K) vector of 
explanatory variables, β is a (K × 1) vector of coefficients and μi a country-specific 
unobserved effect. The error term εit is assumed to be i.i.d. 

The fixed effects regression consists in performing a pooled OLS estimation of (𝑞𝑞𝑖𝑖𝑖𝑖 −
𝑞𝑞�𝑖𝑖) on (𝑥𝑥𝑖𝑖𝑖𝑖 − �̅�𝑥𝑖𝑖) where �̅�𝑥𝑖𝑖 = 1 𝑇𝑇⁄ ∙ ∑ 𝑥𝑥𝑖𝑖𝑖𝑖

𝑇𝑇
𝑖𝑖=1  and 𝑞𝑞�𝑖𝑖 is defined analogously. It yields a 

                                                 
3 For a discussion of alternative definitions and concepts of equilibrium exchange rates, see Driver and 
Westaway (2005). 
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coefficient vector �̂�𝛽𝐹𝐹𝐹𝐹 and a number of estimates of the unobserved effects �̂�𝜇𝑖𝑖(𝐹𝐹𝐹𝐹) =

 𝑞𝑞�𝑖𝑖 − �̅�𝑥𝑖𝑖�̂�𝛽𝐹𝐹𝐹𝐹 where the FE subscript indicates that the coefficients are derived from a 
fixed effects regression. Given the definition above, the bilateral log equilibrium real 
exchange rate is, in a fixed effects framework, usually computed as 

 

𝑞𝑞�𝑖𝑖𝑖𝑖
∗ (𝐹𝐹𝐹𝐹, 𝜀𝜀) = 𝑥𝑥𝑖𝑖𝑖𝑖�̂�𝛽𝐹𝐹𝐹𝐹 + �̂�𝜇𝑖𝑖(𝐹𝐹𝐹𝐹) (2) 

 

and the corresponding bilateral misalignment as 

 

 𝑚𝑚�𝑖𝑖𝑖𝑖(𝐹𝐹𝐹𝐹, 𝜀𝜀) = 𝑞𝑞�𝑖𝑖𝑖𝑖(𝐹𝐹𝐹𝐹, 𝜀𝜀) − 𝑞𝑞�𝑖𝑖𝑖𝑖
∗ (𝐹𝐹𝐹𝐹, 𝜀𝜀) = 𝜀𝜀�̂�𝑖𝑖𝑖(𝐹𝐹𝐹𝐹), (3) 

 

where (FE, ε) indicates that the misalignment is computed from the residuals ε of a 
fixed effects regression. It is generally accepted that only effective real exchange rate 
measures can convey reliable information on issues such as the competitiveness of an 
economy or the misalignment of a currency (cf. e.g. Chinn, 2006). In order to obtain an 
effective log misalignment, 𝑚𝑚�𝑖𝑖𝑖𝑖, each bilateral misalignment is related to a weighted 
average of all the partner countries bilateral misalignments, 

 

𝑚𝑚�𝑖𝑖𝑖𝑖(𝐹𝐹𝐹𝐹, 𝜀𝜀) = 𝜀𝜀�̆�𝑖𝑖𝑖(𝐹𝐹𝐹𝐹) = 𝜀𝜀�̂�𝑖𝑖𝑖(𝐹𝐹𝐹𝐹) − ∑ 𝑤𝑤𝑖𝑖𝑖𝑖𝜀𝜀�̂�𝑖𝑖𝑖(𝐹𝐹𝐹𝐹)
𝑁𝑁
𝑖𝑖=1 , (4) 

 

where wij is the weight of partner country j for country i,  wii = 0 and ∑ 𝑤𝑤𝑖𝑖𝑖𝑖
𝑁𝑁
𝑖𝑖=1 = 1. The 

weighting matrix is usually derived from trade data.4 According to strategy 1, the final 
effective misalignment is then defined as 

 

𝑀𝑀�𝑖𝑖𝑖𝑖(𝐹𝐹𝐹𝐹, 𝜀𝜀) = 𝑒𝑒𝑚𝑚� 𝑖𝑖𝑖𝑖(𝐹𝐹𝐹𝐹,𝜀𝜀). (5) 

 

Expressed in percentage terms, the misalignment is given by 100 ∗ �𝑀𝑀�𝑖𝑖𝑖𝑖(𝐹𝐹𝐹𝐹, 𝜀𝜀) − 1�%. 

                                                 
4 Since, in policy applications, interest is usually focussed on current effective misalignment values, 
strategy 1 can be confined to use the most recent vintage of trade data (in t = T) instead of applying time-
varying trade weights. 
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As opposed to strategy 1, strategy 2 uses effective data in the estimation equation. 
Effective real exchange rates, 𝑞𝑞�𝑖𝑖𝑖𝑖, and the vector of effective explanatory variables, 𝑥𝑥�𝑖𝑖𝑖𝑖, 
are defined as 

 

                                                   𝑞𝑞�𝑖𝑖𝑖𝑖 = 𝑞𝑞𝑖𝑖𝑖𝑖 − ∑ 𝑤𝑤𝑖𝑖𝑖𝑖𝑖𝑖𝑞𝑞𝑖𝑖𝑖𝑖
𝑁𝑁
𝑖𝑖=1  (6a) 

                                                   𝑥𝑥�𝑖𝑖𝑖𝑖 = 𝑥𝑥𝑖𝑖𝑖𝑖 − ∑ 𝑤𝑤𝑖𝑖𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖
𝑁𝑁
𝑖𝑖=1 , (6b) 

 

where the wijt are trade weights specifically for period t with wiit = 0 und ∑ 𝑤𝑤𝑖𝑖𝑖𝑖𝑖𝑖
𝑁𝑁
𝑖𝑖=1 = 1. 

The econometric model 

  

𝑞𝑞�𝑖𝑖𝑖𝑖 = 𝑥𝑥�𝑖𝑖𝑖𝑖𝛽𝛽 + 𝜔𝜔�𝑖𝑖𝑖𝑖, (7) 

 

where  𝜔𝜔�𝑖𝑖𝑖𝑖 = 𝜇𝜇�𝑖𝑖 + 𝜀𝜀�̆�𝑖𝑖𝑖, could be estimated using a fixed effects approach, which would 
yield the unadjusted effective log misalignment 

 

𝑚𝑚�� 𝑖𝑖𝑖𝑖(𝐹𝐹𝐹𝐹, 𝜀𝜀) = 𝜀𝜀̆̂𝑖𝑖𝑖𝑖(𝐹𝐹𝐹𝐹). (8) 

 

As elaborated in Faruqee (1998), the unadjusted effective log misalignments in (8) 
suffer from a redundancy problem which arises from the fact that the N multilateral real 
exchange rates used in the estimation of (7) are computed from only N-1 independent 
bilateral real exchange rates. Faruqee (1998) suggests a procedure for rectifying the 
problem by first observing that one of the eigenvalues of the time-specific matrix of 
trade weights, Wt, must equal unity because the columns of Wt sum to unity. Denote the 
elements of the corresponding eigenvector as 𝑤𝑤�𝑖𝑖𝑖𝑖 where the eigenvector is normalized 

such that ∑ 𝑤𝑤�𝑖𝑖𝑖𝑖
𝑁𝑁
𝑖𝑖=1 = 1. The correct (adjusted) effective log misalignments, 𝑚𝑚�𝑖𝑖𝑖𝑖, are 

then obtained as 

 

𝑚𝑚�𝑖𝑖𝑖𝑖(𝐹𝐹𝐹𝐹, 𝜀𝜀) = 𝜀𝜀�̃�𝑖𝑖𝑖(𝐹𝐹𝐹𝐹) = 𝜀𝜀̆̂𝑖𝑖𝑖𝑖(𝐹𝐹𝐹𝐹) − ∑ 𝑤𝑤�𝑖𝑖𝑖𝑖𝜀𝜀̆̂𝑖𝑖𝑖𝑖(𝐹𝐹𝐹𝐹)
𝑁𝑁
𝑖𝑖=1  (9) 
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(see also Adler and Grisse, 2017). The final effective misalignment according to 
strategy 2, 𝑀𝑀�𝑖𝑖𝑖𝑖, is then defined as 

 

 𝑀𝑀�𝑖𝑖𝑖𝑖(𝐹𝐹𝐹𝐹, 𝜀𝜀) = 𝑒𝑒𝑚𝑚� 𝑖𝑖𝑖𝑖(𝐹𝐹𝐹𝐹,𝜀𝜀). (10) 

 

Expressed in percentage terms, the effective misalignment is given by 100 ∗
�𝑀𝑀�𝑖𝑖𝑖𝑖(𝐹𝐹𝐹𝐹, 𝜀𝜀) − 1�%. 

3. Conventional panel estimators of misalignments as 
restricted versions of a correlated random effects model 

3.1. Conventional panel estimation methods: the contenders 
The description of the two strategies for determining an equilibrium real exchange rate 
and a currency misalignment in the previous section has been cast in the context of an 
FE estimation. Couharde et al. (2017), Fidora et al. (2017), and Phillips et al. (2013) are 
recent examples from the literature where such an estimation method has been chosen. 
Given the definition of an equilibrium exchange rate above, however, the misalignments 
could, in principle, have been calculated using alternative conventional panel estimation 
methods (cf. Table 1), such as the random effects (RE) or the between effects (BE) 
model, for instance. 

Table 1: Estimators and misalignment measures considered 

Estimator  Misalignment derived from 

  𝜀𝜀 𝜔𝜔 

Pooled OLS (LS) - 𝑀𝑀𝑖𝑖𝑖𝑖(𝐿𝐿𝐿𝐿, 𝜔𝜔) 

Fixed effects (within group) (FE) 𝑀𝑀𝑖𝑖𝑖𝑖(𝐹𝐹𝐹𝐹, 𝜀𝜀) 𝑀𝑀𝑖𝑖𝑖𝑖(𝐹𝐹𝐹𝐹, 𝜔𝜔) 

Between effects (BE) 𝑀𝑀𝑖𝑖𝑖𝑖(𝐵𝐵𝐹𝐹, 𝜀𝜀) 𝑀𝑀𝑖𝑖𝑖𝑖(𝐵𝐵𝐹𝐹, 𝜔𝜔) 

Random effects (RE) 𝑀𝑀𝑖𝑖𝑖𝑖(𝑅𝑅𝐹𝐹, 𝜀𝜀) 𝑀𝑀𝑖𝑖𝑖𝑖(𝑅𝑅𝐹𝐹, 𝜔𝜔) 

Correlated random effects (CR) 𝑀𝑀𝑖𝑖𝑖𝑖(𝐶𝐶𝑅𝑅, 𝜀𝜀) 𝑀𝑀𝑖𝑖𝑖𝑖(𝐶𝐶𝑅𝑅, 𝜔𝜔) 
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The RE model estimates equation (1) (or (7)) 5 by applying a specific FGLS estimator 
with a block-diagonal covariance matrix of ωit where the main diagonal elements of 
each block for a given country i are �𝜎𝜎�𝜀𝜀

2 + 𝜎𝜎�𝜇𝜇
2�, the off-diagonal elements are 𝜎𝜎�𝜇𝜇

2, the 
parameter 𝜎𝜎�𝜀𝜀

2 is the estimated variance of ε in (1), and 𝜎𝜎�𝜇𝜇
2 is the estimated variance of μ 

in (1). The RE estimator can also be obtained by a pooled OLS regression of �𝑞𝑞𝑖𝑖𝑖𝑖 −

𝜃𝜃�𝑅𝑅𝐹𝐹𝑞𝑞�𝑖𝑖� on �𝑥𝑥𝑖𝑖𝑖𝑖 − 𝜃𝜃�𝑅𝑅𝐹𝐹�̅�𝑥𝑖𝑖� where 

 

𝜃𝜃�𝑅𝑅𝐹𝐹 = 1 − � 𝜎𝜎�𝜀𝜀
2

𝜎𝜎�𝜀𝜀
2+𝑇𝑇𝜎𝜎�𝜇𝜇

2. (11) 

 

The residuals 𝜀𝜀�̂�𝑖𝑖𝑖(𝑅𝑅𝐹𝐹) (or 𝜀𝜀̆̂𝑖𝑖𝑖𝑖(𝑅𝑅𝐹𝐹)) of the RE regression could be used to compute the 
misalignment measure 𝑀𝑀𝑖𝑖𝑖𝑖(𝑅𝑅𝐹𝐹, 𝜀𝜀) in the same manner as it is done with 𝜀𝜀�̂�𝑖𝑖𝑖(𝐹𝐹𝐹𝐹).6 

If instead the BE estimator is applied, the time-average 𝑞𝑞�𝑖𝑖 is regressed on �̅�𝑥𝑖𝑖 using OLS. 
If strategy 1 is applied, for instance, the resulting estimates of �̂�𝛽𝐵𝐵𝐹𝐹 and �̂�𝜇𝑖𝑖(𝐵𝐵𝐹𝐹) can be 
used to first compute time and country-specific residuals 𝜀𝜀�̂�𝑖𝑖𝑖(𝐵𝐵𝐹𝐹) via equation (1) and 

from that a misalignment measure 𝑀𝑀𝑖𝑖𝑖𝑖(𝐵𝐵𝐹𝐹, 𝜀𝜀). 

The uncertainty over the question of which panel estimation method to use for the 
estimation of misalignments is well reflected in Cheung et al. (2007) and Berka et al. 
(2018). They compute estimates for all three methods, FE, BE, and RE, additionally 
applying a fourth, a pooled OLS estimate of equation (1). The real effective exchange 
rate level model of the IMF (2017) essentially uses a pooled OLS-type estimation as 
well, albeit in the context of strategy 2. By definition, pooled OLS does not split the 
residual ωit into a country-specific unobserved effect μi and the error εit. Therefore, the 
misalignment is derived from ωit such that the bilateral log misalignment in strategy 1, 
for instance, is defined as 

 

𝑚𝑚�𝑖𝑖𝑖𝑖(𝐿𝐿𝐿𝐿, 𝜔𝜔) = 𝜔𝜔�𝑖𝑖𝑖𝑖(𝐿𝐿𝐿𝐿) (12) 

 

                                                 
5 The following considerations apply regardless of whether 𝑀𝑀�𝑖𝑖𝑖𝑖 or 𝑀𝑀�𝑖𝑖𝑖𝑖 is used. An assessment of the 
relative strengths and weaknesses of the two strategies is beyond the scope of the present study. 
6 The random effects procedure yields an estimate of ωit. This expression needs to be split into the 
country-specific unobserved effect μi and the error εit. Following Cameron and Trivedi (2005), p. 738, the 
unobserved effect is computed as �̂�𝜇𝑖𝑖(𝑅𝑅𝐹𝐹) = �𝑇𝑇𝜎𝜎�𝜇𝜇

2 �𝑇𝑇𝜎𝜎�𝜇𝜇
2 + 𝜎𝜎�𝜀𝜀

2�� �𝜔𝜔��𝑖𝑖(𝑅𝑅𝐹𝐹), because this is the best linear 
unbiased predictor of μi. Then, the residuals are simply obtained as 𝜀𝜀�̂�𝑖𝑖𝑖(𝑅𝑅𝐹𝐹) = 𝜔𝜔�𝑖𝑖𝑖𝑖(𝑅𝑅𝐹𝐹) − �̂�𝜇𝑖𝑖(𝑅𝑅𝐹𝐹). 
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where LS indicates that the estimate is obtained by pooled OLS. Using ωit instead of εit 
implies that the misalignment measure 𝑀𝑀𝑖𝑖𝑖𝑖(𝐿𝐿𝐿𝐿, 𝜔𝜔) – contrary to the previously 
presented measures – treats the unexplained differences in the relative price levels 
explicitly as being part of the misalignment. In a similar fashion, misalignment 
measures based on ωit instead of εit can be computed for all the other conventional 
estimation methods: 𝑀𝑀𝑖𝑖𝑖𝑖(𝑅𝑅𝐹𝐹, 𝜔𝜔), 𝑀𝑀𝑖𝑖𝑖𝑖(𝐵𝐵𝐹𝐹, 𝜔𝜔) and 𝑀𝑀𝑖𝑖𝑖𝑖(𝐹𝐹𝐹𝐹, 𝜔𝜔). Misalignment measures 
based on ω implicitly assume that fundamentals do not explain the unobserved effects at 
all, while misalignment measures based on ε implicitly assume that the unobserved 
effects are completely explained by fundamentals. 

3.2. Data requirements and the case for an estimation method beyond 
the conventional ones 

The alternative panel estimation methods principally differ in their treatment of the 
time-series variation and the cross-section variation in the data. The FE method does not 
consider the cross-section variation of the average levels of the series in the panel, while 
the BE method exclusively considers the cross-section variation in these levels (the 
between-group variation); finally, the RE and the LS method use alternative ways to 
combine both. In most applications of misalignment estimation, panels of real exchange 
rates have been used that are based on price index data, such as consumption price 
indices. The broad availability of high-quality price index data at a relatively high 
frequency has probably contributed to the wide distribution of this approach. Price 
index-based real exchange rates obviously do not contain any meaningful between-
group information. In such a case, it is quite natural to compute the misalignment 
measure 𝑀𝑀𝑖𝑖𝑖𝑖(𝐹𝐹𝐹𝐹, 𝜀𝜀) which is based on the residuals 𝜀𝜀�̂�𝑖𝑖𝑖 of an FE estimation. The FE 
estimation eliminates the meaningless relative level information from the estimation 
process, and the use of the residuals eliminates it from the computation of the 
misalignment. 

In contrast, some recent applications such as Cheung et al. (2007), Fischer and Hossfeld 
(2014), Adler and Grisse (2017), IMF (2017) and Berka et al. (2018) use data 
containing meaningful between-group variation. In particular, they employ relative 
price level data to measure the real exchange rate qit. Accordingly, the list of regressors 
xit includes relative level variables such as relative productivity levels, net foreign asset 
levels and relative old age dependency ratios. Such data “allows one to exploit 
information from the cross-section” (Adler and Grisse, 2017), such as “the well-known 
positive cross-sectional relationship between relative price ... and relative per capita 
income levels” (Cheung et al., 2007). That theory suggests such a relationship in levels, 
given certain assumptions, is shown inter alia in Fischer and Hossfeld (2014). Yet also 
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from a purely econometric point of view, the inclusion of a meaningful between-group 
variation is potentially important because, in relative price levels and commonly used 
explanatory variables, this variation is often much higher than their within-group 
variation.7 Misalignment estimates based on FE approaches which necessarily rely 
solely on the relatively small within-group variation can potentially suffer from being 
imprecise (cf. e.g. Wooldridge, 2010, p. 326). Finally, Fischer and Hossfeld (2014) 
argue that an equilibrium real exchange rate is basically a cross-country concept, and 
that a pure within-group-based assessment forgoes potentially essential information. In 
fact, it must be assumed obligatorily for misalignment measures calculated from real 
exchange rates based on price index data that, on average over time, there is no 
misalignment. Putting it differently, misalignment measures derived from data without 
between-group information content must make the rather unrealistic assumption that, on 
average, the price competitiveness of all countries in the sample is identical. 

In sum, the use of relative price levels as an endogenous variable which contains 
meaningful between-group information for determining equilibrium exchange rates is 
obviously highly advisable. It prompts the question, however, of which panel estimation 
method should be used. The misalignment measure 𝑀𝑀𝑖𝑖𝑖𝑖(𝐹𝐹𝐹𝐹, 𝜀𝜀) is obviously no solution 
because the between-group information in the data is neither used in the estimation of 
the coefficients β, nor in the computation of the misalignment. In general, the presence 
of meaningful between-group information in the series of the panel implies that, using 
conventional panel estimation methods, a decision needs to be taken on whether the 
estimated unobserved effects are to be treated as being part of the equilibrium real 
exchange rate (misalignments based on ε) or part of the misalignment (misalignments 
based on ω). 

There is, however, a panel estimation method which allows the isolation of the effects 
of the economic fundamentals on the real exchange rate long-run levels, and thus the 
split of each unobserved effect into two parts, one of which is explained by the 
fundamentals and the other not. This method is the correlated random effects estimator. 
In fact, it will be shown that each of the conventional panel estimation methods’ 
different treatments of the time series and cross-section variation can be interpreted as a 
testable restriction on this estimator, and that a violation of the restriction leads to a 
distorted misalignment estimate even if the coefficient estimates are unbiased. 

                                                 
7 To give an example, the fraction of the between variance of a given variable in the sum of its between 
and its within variance exceeds 0.7 in all the variables used in the panel of application 2 below (cf. section 
4.3 and the Data Appendix), and it exceeds 0.9 in the majority of the variables. The terms of trade, being 
an index and having a between variance of zero by construction, constitute the only exception. 
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3.3. The correlated random effects estimator and its properties 
A simple panel estimator which explicitly models the impact of both the within and the 
between-group variation in the variables is the correlated random effects (CRE) 
estimator.8 The CRE model estimates the equation 

 

𝑞𝑞𝑖𝑖𝑖𝑖 = (𝑥𝑥𝑖𝑖𝑖𝑖 − �̅�𝑥𝑖𝑖)𝛽𝛽1𝐶𝐶𝑅𝑅 + �̅�𝑥𝑖𝑖𝛽𝛽2𝐶𝐶𝑅𝑅 + 𝜔𝜔𝑖𝑖𝑖𝑖(𝐶𝐶𝑅𝑅) 
𝜔𝜔𝑖𝑖𝑖𝑖(𝐶𝐶𝑅𝑅) = 𝜇𝜇𝑖𝑖(𝐶𝐶𝑅𝑅) + 𝜀𝜀𝑖𝑖𝑖𝑖(𝐶𝐶𝑅𝑅) (13) 

 

or, equivalently, 

 

𝑞𝑞𝑖𝑖𝑖𝑖 = 𝑥𝑥𝑖𝑖𝑖𝑖𝛽𝛽1𝐶𝐶𝑅𝑅 + �̅�𝑥𝑖𝑖(𝛽𝛽2𝐶𝐶𝑅𝑅 − 𝛽𝛽1𝐶𝐶𝑅𝑅) + 𝜔𝜔𝑖𝑖𝑖𝑖(𝐶𝐶𝑅𝑅) 
𝜔𝜔𝑖𝑖𝑖𝑖(𝐶𝐶𝑅𝑅) = 𝜇𝜇𝑖𝑖(𝐶𝐶𝑅𝑅) + 𝜀𝜀𝑖𝑖𝑖𝑖(𝐶𝐶𝑅𝑅) (14) 

 

where CR refers to the CRE estimator, and qit and xit necessarily contain level 
information (i.e. qit and at least some of the xit must not be based on index data), such 
that qit denotes – more narrowly than in chapter 2 of the study – the log price level of 
country i relative to a base country.9 

The CRE model goes back to Mundlak (1978). It is extensively covered in several 
advanced econometrics textbooks (cf. Wooldridge, 2010, chapter 10, or Biørn, 2017, 
chapter 6). To my knowledge, however, it is apparently hardly ever used in applied 
econometrics, especially as far as linear applications are concerned.10 Instead, linear 
applications of the CRE model are more widely found in non-economics Social 
Sciences, see, for example, the references given in Bell and Jones (2015) and in 
Schunck (2013). 

The properties of the CRE estimator include the following (see, for instance, Biørn, 
2017): 1) Regardless of whether (13) or (14) is estimated, the estimates of β1CR, β2CR, 

                                                 
8 The term “correlated random effects model” is used, for instance, in Wooldridge (2010), p. 286, or in 
Cameron and Trivedi (2005), p. 786. Note that the correlated random effects model considered here and 
the common correlated effects models used, for instance, by Bussière et al. (2010) and Fidora et al. (2017) 
for the calculation of exchange rate misalignments are quite different concepts. The common correlated 
effects models augment the explanatory variables by cross section averages in order to address the issue 
of cross-sectional dependency. 
9 For ease of notation, the variables in equations (13) and (14) are written in terms of bilateral measures as 
in strategy 1. However, all of these and the following equations also apply to effective measures as in 
strategy 2, of course. 
10 For non-linear applications in economics, see Jakubson (1988) and Goldbach et al. (2018). 
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and ωit(CR) = μi(CR) + εit(CR) are the same. 2) Regardless of whether a pooled OLS or an 
RE procedure is used to estimate the CRE model, the estimates of β1CR, β2CR, and ωit(CR) 
are the same. 3) Since the (implicit) unobserved effects μi(CR) induce autocorrelation in 
the model, the pooled OLS estimator should only be used if it is computed with robust 
standard errors. 4) The CRE model splits the unobserved effects into two parts one of 
which is explained by the fundamentals and the other not: 𝜇𝜇𝑖𝑖(𝐹𝐹𝐹𝐹) =  �̅�𝑥𝑖𝑖(𝛽𝛽2𝐶𝐶𝑅𝑅 − 𝛽𝛽1𝐶𝐶𝑅𝑅) +
𝜇𝜇𝑖𝑖(𝐶𝐶𝑅𝑅).11 Thus, the (K × 1) vector of coefficients (β2CR - β1CR) in equation (14) reflects 
the impact of the levels of the explanatory variables on the relative price level that is 
missing in equations (1) and (7) inasmuch as this impact differs from that of the time 
series components. 5) The orthogonality of the between and the within variation in 
equation (13) implies that �̂�𝛽𝐹𝐹𝐹𝐹 = �̂�𝛽1𝐶𝐶𝑅𝑅 and �̂�𝛽𝐵𝐵𝐹𝐹 = �̂�𝛽2𝐶𝐶𝑅𝑅. 

3.4. Conventional panel methods as restricted versions of the CRE 
approach and biased coefficient estimates 

The introduction of the CRE model suggests a natural econometric implementation of 
the definition of an equilibrium real exchange rate given at the start of section 2. Let us 
define the (log) equilibrium real exchange rate as the expected value of the (log) real 
exchange rate conditional on the fundamentals 

 

𝑞𝑞𝑖𝑖𝑖𝑖
∗ = 𝐹𝐹(𝑞𝑞𝑖𝑖𝑖𝑖|𝒙𝒙𝒊𝒊) (15) 

 

where 𝒙𝒙𝒊𝒊 = {𝑥𝑥𝑖𝑖1, 𝑥𝑥𝑖𝑖2, … , 𝑥𝑥𝑖𝑖𝑇𝑇}. Within the CRE model, we obtain 

 

𝑞𝑞𝑖𝑖𝑖𝑖
∗ = 𝐹𝐹(𝑞𝑞𝑖𝑖𝑖𝑖|𝒙𝒙𝒊𝒊) = 𝑥𝑥𝑖𝑖𝑖𝑖𝛽𝛽1𝐶𝐶𝑅𝑅 + �̅�𝑥𝑖𝑖(𝛽𝛽2𝐶𝐶𝑅𝑅 − 𝛽𝛽1𝐶𝐶𝑅𝑅), (16) 

 

which implies that the (log) misalignment is 

 

𝑚𝑚𝑖𝑖𝑖𝑖 = 𝑞𝑞𝑖𝑖𝑖𝑖 − 𝑞𝑞𝑖𝑖𝑖𝑖
∗   

= 𝑞𝑞𝑖𝑖𝑖𝑖 − 𝑥𝑥𝑖𝑖𝑖𝑖𝛽𝛽1𝐶𝐶𝑅𝑅 − �̅�𝑥𝑖𝑖(𝛽𝛽2𝐶𝐶𝑅𝑅 − 𝛽𝛽1𝐶𝐶𝑅𝑅)  

= 𝜔𝜔𝑖𝑖𝑖𝑖(𝐶𝐶𝑅𝑅)  

= 𝑚𝑚𝑖𝑖𝑖𝑖(𝐶𝐶𝑅𝑅, 𝜔𝜔). (17) 

                                                 
11 In a GLS estimation, 𝜀𝜀 ̅�̂�𝑖(𝐶𝐶𝑅𝑅), needs to be considered in addition; cf. equation (A7) in the Appendix. 
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These econometric definitions of an equilibrium real exchange rate and a misalignment 
suggest themselves because they are very general measures for these economic 
concepts.12 In fact, misalignments computed from the conventional estimators can be 
interpreted as being restricted versions of misalignments computed from the CRE 
model: 𝑀𝑀𝑖𝑖𝑖𝑖(𝐶𝐶𝑅𝑅, 𝜔𝜔) results from the estimates of ωit either in equation (13) or in 
equation (14), regardless of whether pooled OLS or random effects is used to estimate 
the CRE model. Because of 𝑞𝑞𝑖𝑖𝑖𝑖 = (𝑞𝑞𝑖𝑖𝑖𝑖 − 𝑞𝑞�𝑖𝑖) + 𝑞𝑞�𝑖𝑖 and the orthogonality property 
mentioned above, 𝑀𝑀𝑖𝑖𝑖𝑖(𝐹𝐹𝐹𝐹, 𝜔𝜔) results if, in a pooled OLS estimation of the CRE model 
(13) or (14), β2CR = 0 is imposed. Similarly, 𝑀𝑀𝑖𝑖𝑖𝑖(𝐵𝐵𝐹𝐹, 𝜔𝜔) results if, in this estimation, 
β1CR = 0 is imposed, and 𝑀𝑀𝑖𝑖𝑖𝑖(𝐿𝐿𝐿𝐿, 𝜔𝜔) if β2CR - β1CR = 0 is imposed. Finally, 𝑀𝑀𝑖𝑖𝑖𝑖(𝑅𝑅𝐹𝐹, 𝜔𝜔) 
results if, in a random effects estimation of (13) or (14), β2CR - β1CR = 0 is imposed. 

The CRE model combines the FE and the BE model, where, in spite of the omitted 
variables, �̂�𝛽𝐹𝐹𝐹𝐹 is an unbiased estimator of 𝛽𝛽1𝐶𝐶𝑅𝑅, and �̂�𝛽𝐵𝐵𝐹𝐹 is an unbiased estimator of 
𝛽𝛽2𝐶𝐶𝑅𝑅. The derivation in the Appendix shows, however, that the pooled OLS estimator of 
β in equation (1), �̂�𝛽𝐿𝐿𝐿𝐿, suffers from an omitted variable bias which is the second term on 
the right-hand side of 

 

�̂�𝛽𝐿𝐿𝐿𝐿 = �̂�𝛽1𝐶𝐶𝑅𝑅 + 𝜌𝜌�𝐿𝐿𝐿𝐿��̂�𝛽2𝐶𝐶𝑅𝑅 − �̂�𝛽1𝐶𝐶𝑅𝑅� (18) 

 

where the (K × K)-matrix  𝜌𝜌�𝐿𝐿𝐿𝐿 is defined as 

 

 𝜌𝜌�𝐿𝐿𝐿𝐿 = (∑ ∑ 𝑥𝑥𝑖𝑖𝑖𝑖′𝑥𝑥𝑖𝑖𝑖𝑖
𝑇𝑇
𝑖𝑖=1

𝑁𝑁
𝑖𝑖=1 )−1(𝑇𝑇 ∑ �̅�𝑥𝑖𝑖′�̅�𝑥𝑖𝑖

𝑁𝑁
𝑖𝑖=1 ). (19) 

 

Similarly, the RE estimator of β in equation (1), βRE, suffers from an omitted variable 
bias, too (for the derivation, see again the Appendix): 

 

�̂�𝛽𝑅𝑅𝐹𝐹 = �̂�𝛽1𝐶𝐶𝑅𝑅 + 𝜌𝜌�𝑅𝑅𝐹𝐹��̂�𝛽2𝐶𝐶𝑅𝑅 − �̂�𝛽1𝐶𝐶𝑅𝑅� (20) 

 

                                                 
12 An even slightly more general specification results from replacing the ordinary average of the 
regressors by weighted averages of xi where the weights are treated as additional parameters. In the 
literature, this approach is referred to as the “Chamberlain approach” (e.g. Wooldridge, 2010, p. 347-49). 
As shown by Mundlak (1978), OLS or GLS estimation using the Chamberlain approach results in 
identical estimates of the misalignment. 
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where the (K × K)-matrix 𝜌𝜌�𝑅𝑅𝐹𝐹 is defined as 

 

𝜌𝜌�𝑅𝑅𝐹𝐹 = �∑ ∑ �𝑥𝑥𝑖𝑖𝑖𝑖 − 𝜃𝜃�𝑅𝑅𝐹𝐹�̅�𝑥𝑖𝑖�′�𝑥𝑥𝑖𝑖𝑖𝑖 − 𝜃𝜃�𝑅𝑅𝐹𝐹�̅�𝑥𝑖𝑖�𝑇𝑇
𝑖𝑖=1

𝑁𝑁
𝑖𝑖=1 �

−1
× �𝑇𝑇�1 − 𝜃𝜃�𝑅𝑅𝐹𝐹�

2 ∑ �̅�𝑥𝑖𝑖′�̅�𝑥𝑖𝑖
𝑁𝑁
𝑖𝑖=1 � (21) 

 

and 𝜃𝜃�𝑅𝑅𝐹𝐹 is defined in equation (11). 

3.5. Conventional panel methods as restricted versions of the CRE 
approach: distorted misalignment estimates 

This section derives the effect on misalignment estimates that arises if the restrictions 
which convert the CRE model into one of the conventional panel estimators are 
imposed and/or if meaningful between-group variation is ignored in the computation of 
the misalignment. For this purpose, the CRE-based misalignment measure 𝑀𝑀𝑖𝑖𝑖𝑖(𝐶𝐶𝑅𝑅, 𝜔𝜔) 
is taken as the benchmark (cf. the derivation in (15)-(17)). If an alternative 
misalignment estimate is obtained by imposing a restriction on the CRE model and/or 
the ignorance of the cross-section variation in the time series levels, the deviation of this 
misalignment measure from the benchmark misalignment is called a distortion.13 

As a first step, Table 2 presents the formally derived distortions with respect to bilateral 
log misalignments. Thus, it shows the differences between the bilateral log 
misalignment based on each of the alternative estimates and 𝑚𝑚�𝑖𝑖𝑖𝑖(𝐶𝐶𝑅𝑅, 𝜔𝜔). In the upper 
part of the table (equations (22a) to (22d)), bilateral log misalignment measures based 
on the residual 𝜀𝜀�̂�𝑖𝑖𝑖 are considered. Equations (23a) to (23d) refer to bilateral log 
misalignment measures based on 𝜔𝜔�𝑖𝑖𝑖𝑖 = �̂�𝜇𝑖𝑖 + 𝜀𝜀�̂�𝑖𝑖𝑖. To obtain the distortion when using 
effective variables instead of bilateral ones, i.e. strategy 2 instead of 1, just replace each 
variable z in the equations by �̆�𝑧 such that the bilateral log misalignment 𝑚𝑚�𝑖𝑖𝑖𝑖, for 
instance, becomes the effective log misalignment 𝑚𝑚�� 𝑖𝑖𝑖𝑖. 

In the table, each first line of the equations defines the distortion, while the following 
line(s) present(s) the expressions for the distortion derived in the Appendix. Trivially, if 
a CRE model is estimated, but the estimated unobserved effect which is not explained 
by the fundamentals, �̂�𝜇𝑖𝑖(𝐶𝐶𝑅𝑅), is erroneously considered to be part of the equilibrium real 
exchange rate as in (22a), the deviation from the baseline case is simply �̂�𝜇𝑖𝑖(𝐶𝐶𝑅𝑅). As a 

                                                 
13 The section considers differences of the type 𝑚𝑚�𝑖𝑖𝑖𝑖(∙) − 𝑚𝑚�𝑖𝑖𝑖𝑖(𝐶𝐶𝑅𝑅, 𝜔𝜔) or 𝑀𝑀�𝑖𝑖𝑖𝑖(∙) − 𝑀𝑀�𝑖𝑖𝑖𝑖(𝐶𝐶𝑅𝑅, 𝜔𝜔), 
respectively, because it aims to derive the potential error obtained by imposing a restriction on the 
estimator. In the study, these differences are called distortions instead of biases. The term bias rather 
refers to differences of the type 𝐹𝐹[𝜑𝜑�] − 𝜑𝜑 where φ is usually a parameter and not an expression such as 
mit or Mit which potentially include explanatory variables. 
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remark, the correction for 𝜀𝜀̅�̂�𝑖(𝐶𝐶𝑅𝑅) is necessary in (22a), for instance, because, in a random 

effects regression, it is not guaranteed that 𝜀𝜀̅�̂�𝑖 = 0 exactly, such that 

 

𝑞𝑞�𝑖𝑖 − �̅�𝑥𝑖𝑖�̂�𝛽2𝐶𝐶𝑅𝑅 = �̂�𝜇𝑖𝑖(𝐶𝐶𝑅𝑅) + 𝜀𝜀̅�̂�𝑖(𝐶𝐶𝑅𝑅). (24) 

 

Table 2: Distortions of bilateral log misalignment measures compared to 
𝒎𝒎� 𝒊𝒊𝒊𝒊(𝑪𝑪𝑪𝑪, 𝝎𝝎) 

(22a) 𝑚𝑚�𝑖𝑖𝑖𝑖(𝐶𝐶𝑅𝑅, 𝜀𝜀) − 𝑚𝑚�𝑖𝑖𝑖𝑖(𝐶𝐶𝑅𝑅, 𝜔𝜔) =  𝜀𝜀�̂�𝑖𝑖𝑖(𝐶𝐶𝑅𝑅) − ��̂�𝜇𝑖𝑖(𝐶𝐶𝑅𝑅) + 𝜀𝜀�̂�𝑖𝑖𝑖(𝐶𝐶𝑅𝑅)� 

= −�𝑞𝑞�𝑖𝑖 − �̅�𝑥𝑖𝑖�̂�𝛽2𝐶𝐶𝑅𝑅� + 𝜀𝜀̅�̂�𝑖(𝐶𝐶𝑅𝑅) 

(22b) 𝑚𝑚�𝑖𝑖𝑖𝑖(𝐹𝐹𝐹𝐹, 𝜀𝜀) − 𝑚𝑚�𝑖𝑖𝑖𝑖(𝐶𝐶𝑅𝑅, 𝜔𝜔) =  𝜀𝜀�̂�𝑖𝑖𝑖(𝐹𝐹𝐹𝐹) − ��̂�𝜇𝑖𝑖(𝐶𝐶𝑅𝑅) + 𝜀𝜀�̂�𝑖𝑖𝑖(𝐶𝐶𝑅𝑅)� 

= −�𝑞𝑞�𝑖𝑖 − �̅�𝑥𝑖𝑖�̂�𝛽2𝐶𝐶𝑅𝑅� 

(22c) 𝑚𝑚�𝑖𝑖𝑖𝑖(𝐵𝐵𝐹𝐹, 𝜀𝜀) − 𝑚𝑚�𝑖𝑖𝑖𝑖(𝐶𝐶𝑅𝑅, 𝜔𝜔) =  𝜀𝜀�̂�𝑖𝑖𝑖(𝐵𝐵𝐹𝐹) − ��̂�𝜇𝑖𝑖(𝐶𝐶𝑅𝑅) + 𝜀𝜀�̂�𝑖𝑖𝑖(𝐶𝐶𝑅𝑅)� 

= −�𝑞𝑞�𝑖𝑖 − �̅�𝑥𝑖𝑖�̂�𝛽2𝐶𝐶𝑅𝑅� + (𝑥𝑥𝑖𝑖𝑖𝑖 − �̅�𝑥𝑖𝑖)��̂�𝛽1𝐶𝐶𝑅𝑅 − �̂�𝛽2𝐶𝐶𝑅𝑅� 

(22d) 𝑚𝑚�𝑖𝑖𝑖𝑖(𝑅𝑅𝐹𝐹, 𝜀𝜀) − 𝑚𝑚�𝑖𝑖𝑖𝑖(𝐶𝐶𝑅𝑅, 𝜔𝜔) =  𝜀𝜀�̂�𝑖𝑖𝑖(𝑅𝑅𝐹𝐹) − ��̂�𝜇𝑖𝑖(𝐶𝐶𝑅𝑅) + 𝜀𝜀�̂�𝑖𝑖𝑖(𝐶𝐶𝑅𝑅)� 

= −�𝑞𝑞�𝑖𝑖 − �̅�𝑥𝑖𝑖�̂�𝛽2𝐶𝐶𝑅𝑅� + (𝑥𝑥𝑖𝑖𝑖𝑖 − �̅�𝑥𝑖𝑖)𝜌𝜌�𝑅𝑅𝐹𝐹��̂�𝛽1𝐶𝐶𝑅𝑅 − �̂�𝛽2𝐶𝐶𝑅𝑅� + 𝜀𝜀̅�̂�𝑖(𝑅𝑅𝐹𝐹) 

(23a) 𝑚𝑚�𝑖𝑖𝑖𝑖(𝐹𝐹𝐹𝐹, 𝜔𝜔) − 𝑚𝑚�𝑖𝑖𝑖𝑖(𝐶𝐶𝑅𝑅, 𝜔𝜔) =  𝜔𝜔�𝑖𝑖𝑖𝑖(𝐹𝐹𝐹𝐹) − 𝜔𝜔�𝑖𝑖𝑖𝑖(𝐶𝐶𝑅𝑅) 

= ��̂�𝜇𝑖𝑖(𝐹𝐹𝐹𝐹) + 𝜀𝜀�̂�𝑖𝑖𝑖(𝐹𝐹𝐹𝐹)� − ��̂�𝜇𝑖𝑖(𝐶𝐶𝑅𝑅) + 𝜀𝜀�̂�𝑖𝑖𝑖(𝐶𝐶𝑅𝑅)� 

= −�̅�𝑥𝑖𝑖��̂�𝛽1𝐶𝐶𝑅𝑅 − �̂�𝛽2𝐶𝐶𝑅𝑅� 

(23b) 𝑚𝑚�𝑖𝑖𝑖𝑖(𝐵𝐵𝐹𝐹, 𝜔𝜔) − 𝑚𝑚�𝑖𝑖𝑖𝑖(𝐶𝐶𝑅𝑅, 𝜔𝜔) =  𝜔𝜔�𝑖𝑖𝑖𝑖(𝐵𝐵𝐹𝐹) − 𝜔𝜔�𝑖𝑖𝑖𝑖(𝐶𝐶𝑅𝑅) 

= ��̂�𝜇𝑖𝑖(𝐵𝐵𝐹𝐹) + 𝜀𝜀�̂�𝑖𝑖𝑖(𝐵𝐵𝐹𝐹)� − ��̂�𝜇𝑖𝑖(𝐶𝐶𝑅𝑅) + 𝜀𝜀�̂�𝑖𝑖𝑖(𝐶𝐶𝑅𝑅)� 

= (𝑥𝑥𝑖𝑖𝑖𝑖 − �̅�𝑥𝑖𝑖)��̂�𝛽1𝐶𝐶𝑅𝑅 − �̂�𝛽2𝐶𝐶𝑅𝑅� 

(23c) 𝑚𝑚�𝑖𝑖𝑖𝑖(𝑅𝑅𝐹𝐹, 𝜔𝜔) − 𝑚𝑚�𝑖𝑖𝑖𝑖(𝐶𝐶𝑅𝑅, 𝜔𝜔) =  𝜔𝜔�𝑖𝑖𝑖𝑖(𝑅𝑅𝐹𝐹) − 𝜔𝜔�𝑖𝑖𝑖𝑖(𝐶𝐶𝑅𝑅) 

= ��̂�𝜇𝑖𝑖(𝑅𝑅𝐹𝐹) + 𝜀𝜀�̂�𝑖𝑖𝑖(𝑅𝑅𝐹𝐹)� − ��̂�𝜇𝑖𝑖(𝐶𝐶𝑅𝑅) + 𝜀𝜀�̂�𝑖𝑖𝑖(𝐶𝐶𝑅𝑅)� 

= (𝑥𝑥𝑖𝑖𝑖𝑖𝜌𝜌�𝑅𝑅𝐹𝐹 − �̅�𝑥𝑖𝑖)��̂�𝛽1𝐶𝐶𝑅𝑅 − �̂�𝛽2𝐶𝐶𝑅𝑅� 

(23d) 𝑚𝑚�𝑖𝑖𝑖𝑖(𝐿𝐿𝐿𝐿, 𝜔𝜔) − 𝑚𝑚�𝑖𝑖𝑖𝑖(𝐶𝐶𝑅𝑅, 𝜔𝜔) =  𝜔𝜔�𝑖𝑖𝑖𝑖(𝐿𝐿𝐿𝐿) − 𝜔𝜔�𝑖𝑖𝑖𝑖(𝐶𝐶𝑅𝑅) 

= 𝜔𝜔�𝑖𝑖𝑖𝑖(𝐿𝐿𝐿𝐿) − ��̂�𝜇𝑖𝑖(𝐶𝐶𝑅𝑅) + 𝜀𝜀�̂�𝑖𝑖𝑖(𝐶𝐶𝑅𝑅)� 

= (𝑥𝑥𝑖𝑖𝑖𝑖𝜌𝜌�𝐿𝐿𝐿𝐿 − �̅�𝑥𝑖𝑖)��̂�𝛽1𝐶𝐶𝑅𝑅 − �̂�𝛽2𝐶𝐶𝑅𝑅� 

Note: Parameters 𝜌𝜌�𝑅𝑅𝐹𝐹  and 𝜌𝜌�𝐿𝐿𝐿𝐿 are given by equations (21) and (19), respectively; parameters and 
variables marked by “CR” refer to the RE (GLS) estimates of the CRE model (14). To obtain the 
distortions when using effective variables in the regression (strategy 2) instead of strategy 1, just replace 
each variable z by �̆�𝑧. For derivations, see the Appendix. 
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The distortion from computing the misalignment as the residual of an FE regression is 
again primarily the unobserved effect obtained in the corresponding CRE regression (cf. 
(22b)).14 This is the error that is inherent in conventional estimates of the equilibrium 
real exchange rates which ignore between-group information, for instance, because they 
use real exchange rates computed from indices. 

If instead the time series variation is eliminated from the regression by employing a BE 
estimator, the distortion of a misalignment measure based on the residual ε additionally 
depends on �̂�𝛽1𝐶𝐶𝑅𝑅 − �̂�𝛽2𝐶𝐶𝑅𝑅 (cf. (22c)). The term �̂�𝛽1𝐶𝐶𝑅𝑅 − �̂�𝛽2𝐶𝐶𝑅𝑅 also affects the distortion of 
the misalignments computed from residuals of conventional RE regressions in (22d). 

Table 3: Distortions of final effective misalignment measures compared to 
𝑴𝑴� 𝒊𝒊𝒊𝒊(𝑪𝑪𝑪𝑪, 𝝎𝝎) 

(25a) 𝑀𝑀�𝑖𝑖𝑖𝑖(𝐶𝐶𝑅𝑅, 𝜀𝜀) − 𝑀𝑀�𝑖𝑖𝑖𝑖(𝐶𝐶𝑅𝑅, 𝜔𝜔) = 𝑒𝑒𝑥𝑥𝑒𝑒�𝜀𝜀�̆�𝑖𝑖𝑖(𝐶𝐶𝑅𝑅)��1 − 𝑒𝑒𝑥𝑥𝑒𝑒�𝜇𝜇�𝑖𝑖(𝐶𝐶𝑅𝑅)�� 

(25b) 𝑀𝑀�𝑖𝑖𝑖𝑖(𝐹𝐹𝐹𝐹, 𝜀𝜀) − 𝑀𝑀�𝑖𝑖𝑖𝑖(𝐶𝐶𝑅𝑅, 𝜔𝜔) = 𝑒𝑒𝑥𝑥𝑒𝑒�𝜀𝜀�̆�𝑖𝑖𝑖(𝐶𝐶𝑅𝑅)��𝑒𝑒𝑥𝑥𝑒𝑒�−𝜀𝜀̅�̆�𝑖(𝐶𝐶𝑅𝑅)� − 𝑒𝑒𝑥𝑥𝑒𝑒�𝜇𝜇�𝑖𝑖(𝐶𝐶𝑅𝑅)�� 

(25c) 𝑀𝑀�𝑖𝑖𝑖𝑖(𝐵𝐵𝐹𝐹, 𝜀𝜀) − 𝑀𝑀�𝑖𝑖𝑖𝑖(𝐶𝐶𝑅𝑅, 𝜔𝜔) = 𝑒𝑒𝑥𝑥𝑒𝑒�𝜀𝜀�̆�𝑖𝑖𝑖(𝐶𝐶𝑅𝑅)��𝑒𝑒𝑥𝑥𝑒𝑒�(𝑥𝑥�𝑖𝑖𝑖𝑖 − �̅�𝑥�𝑖𝑖)��̂�𝛽1𝐶𝐶𝑅𝑅 − �̂�𝛽2𝐶𝐶𝑅𝑅� − 𝜀𝜀̅�̆�𝑖(𝐶𝐶𝑅𝑅)�

− 𝑒𝑒𝑥𝑥𝑒𝑒�𝜇𝜇�𝑖𝑖(𝐶𝐶𝑅𝑅)�� 

(25d) 𝑀𝑀�𝑖𝑖𝑖𝑖(𝑅𝑅𝐹𝐹, 𝜀𝜀) − 𝑀𝑀�𝑖𝑖𝑖𝑖(𝐶𝐶𝑅𝑅, 𝜔𝜔) = 𝑒𝑒𝑥𝑥𝑒𝑒�𝜀𝜀�̆�𝑖𝑖𝑖(𝐶𝐶𝑅𝑅)��𝑒𝑒𝑥𝑥𝑒𝑒�(𝑥𝑥�𝑖𝑖𝑖𝑖 − �̅�𝑥�𝑖𝑖)𝜌𝜌�𝑅𝑅𝐹𝐹��̂�𝛽1𝐶𝐶𝑅𝑅 − �̂�𝛽2𝐶𝐶𝑅𝑅� + 𝜀𝜀̅�̆�𝑖(𝑅𝑅𝐹𝐹)

− 𝜀𝜀̅�̆�𝑖(𝐶𝐶𝑅𝑅)� − 𝑒𝑒𝑥𝑥𝑒𝑒�𝜇𝜇�𝑖𝑖(𝐶𝐶𝑅𝑅)�� 

(26a) 𝑀𝑀�𝑖𝑖𝑖𝑖(𝐹𝐹𝐹𝐹, 𝜔𝜔) − 𝑀𝑀�𝑖𝑖𝑖𝑖(𝐶𝐶𝑅𝑅, 𝜔𝜔) =  𝑒𝑒𝑥𝑥𝑒𝑒�𝜔𝜔�𝑖𝑖𝑖𝑖(𝐶𝐶𝑅𝑅)��𝑒𝑒𝑥𝑥𝑒𝑒�−�̅�𝑥�𝑖𝑖��̂�𝛽1𝐶𝐶𝑅𝑅 − �̂�𝛽2𝐶𝐶𝑅𝑅�� − 1� 

(26b) 𝑀𝑀�𝑖𝑖𝑖𝑖(𝐵𝐵𝐹𝐹, 𝜔𝜔) − 𝑀𝑀�𝑖𝑖𝑖𝑖(𝐶𝐶𝑅𝑅, 𝜔𝜔) =  𝑒𝑒𝑥𝑥𝑒𝑒�𝜔𝜔�𝑖𝑖𝑖𝑖(𝐶𝐶𝑅𝑅)��𝑒𝑒𝑥𝑥𝑒𝑒�(𝑥𝑥�𝑖𝑖𝑖𝑖 − �̅�𝑥�𝑖𝑖)��̂�𝛽1𝐶𝐶𝑅𝑅 − �̂�𝛽2𝐶𝐶𝑅𝑅�� − 1� 

(26c) 𝑀𝑀�𝑖𝑖𝑖𝑖(𝑅𝑅𝐹𝐹, 𝜔𝜔) − 𝑀𝑀�𝑖𝑖𝑖𝑖(𝐶𝐶𝑅𝑅, 𝜔𝜔) =  𝑒𝑒𝑥𝑥𝑒𝑒�𝜔𝜔�𝑖𝑖𝑖𝑖(𝐶𝐶𝑅𝑅)��𝑒𝑒𝑥𝑥𝑒𝑒�(𝑥𝑥�𝑖𝑖𝑖𝑖𝜌𝜌�𝑅𝑅𝐹𝐹 − �̅�𝑥�𝑖𝑖)��̂�𝛽1𝐶𝐶𝑅𝑅 − �̂�𝛽2𝐶𝐶𝑅𝑅�� − 1� 

(26d) 𝑀𝑀�𝑖𝑖𝑖𝑖(𝐿𝐿𝐿𝐿, 𝜔𝜔) − 𝑀𝑀�𝑖𝑖𝑖𝑖(𝐶𝐶𝑅𝑅, 𝜔𝜔) =  𝑒𝑒𝑥𝑥𝑒𝑒�𝜔𝜔�𝑖𝑖𝑖𝑖(𝐶𝐶𝑅𝑅)��𝑒𝑒𝑥𝑥𝑒𝑒�(𝑥𝑥�𝑖𝑖𝑖𝑖𝜌𝜌�𝐿𝐿𝐿𝐿 − �̅�𝑥�𝑖𝑖)��̂�𝛽1𝐶𝐶𝑅𝑅 − �̂�𝛽2𝐶𝐶𝑅𝑅�� − 1� 

Note: Expression 𝑒𝑒𝑥𝑥𝑒𝑒(𝑧𝑧) = 𝑒𝑒𝑧𝑧. Parameters 𝜌𝜌�𝑅𝑅𝐹𝐹  and 𝜌𝜌�𝐿𝐿𝐿𝐿 are given by equations (21) and (19), 
respectively; parameters and variables marked by “CR” refer to the RE (GLS) estimates of the CRE 
model (14). To obtain the distortions when using effective variables in the regression (strategy 2) instead 
of strategy 1, just replace each variable �̆�𝑧 by �̃�𝑧. For derivations, see the Appendix. 

Equations (23a) – (23d) show the distortions that arise if between-group variation is 
used in the calculation of the misalignment by assigning the country-specific 
                                                 
14 Recall from section 3.3 that the unobserved effect obtained from the CRE regression is usually different 
from the unobserved effect obtained in a FE regression because the CRE regression corrects the FE 
regression unobserved effect for the impact of the levels of the explanatory variables – insofar as these are 
different from the impact of the time series components. 
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unobserved effect to the misalignment but a conventional panel estimation method is 
applied instead of the CRE model. Each of the last lines in equations (23a) – (23d) 
shows that it is again �̂�𝛽1𝐶𝐶𝑅𝑅 − �̂�𝛽2𝐶𝐶𝑅𝑅 that dominates the distortion. In fact, if �̂�𝛽1𝐶𝐶𝑅𝑅 = �̂�𝛽2𝐶𝐶𝑅𝑅, 
no distortion arises. 

The distortions of bilateral log misalignments given in Table 2 can be used to compute 
distortions of the final effective misalignments. In fact, these are of primary interest 
from an economic policy perspective. Table 3 provides the formulae for the distortions 
of the final effective misalignments compared to 𝑀𝑀�𝑖𝑖𝑖𝑖(𝐶𝐶𝑅𝑅, 𝜔𝜔), again for strategy 1. The 
corresponding distortions of misalignment measures which result from strategy 2 are 
obtained if, in each formula, each variable �̆�𝑧 is replaced by �̃�𝑧, respectively. 

4. Applications 

4.1. General remarks 
This section considers two misalignment computation procedures from the literature, 
and applies all the conventional panel estimation methods as well as the CRE model to 
compute misalignment measures for the countries in the panel. A comparison of the 
alternative misalignment measures reveals the impact of the panel estimation method on 
the estimated misalignment. The comparison is based on the difference in the estimated 
final effective misalignments shown in equations (25a)-(25d) and (26a)-(26d) in 
Table 3. These values refer, however, to a single observation in the panel, i.e. the 
deviation of the conventionally estimated effective misalignment from the unrestricted 
one for a given country at a given year measured in percentage points. Some 
aggregation or selection is therefore required to obtain meaningful metrics. 

The first and most representative metric that will be shown is the mean absolute 
difference, which aggregates the differences over the entire sample; for equation (25b) 
and strategy 1, for example, this is computed as 

 

𝑀𝑀𝑀𝑀𝑀𝑀(𝐹𝐹𝐹𝐹, 𝜀𝜀)𝑁𝑁𝑇𝑇 = 1
𝑁𝑁𝑇𝑇

�∑ ∑ �𝑀𝑀�𝑖𝑖𝑖𝑖(𝐹𝐹𝐹𝐹, 𝜀𝜀) − 𝑀𝑀�𝑖𝑖𝑖𝑖(𝐶𝐶𝑅𝑅, 𝜔𝜔)�𝑇𝑇
𝑖𝑖=1

𝑁𝑁
𝑖𝑖=1 �. (27) 

 

However, policymakers are typically more interested in the current value of a 
misalignment than in historical ones. Therefore, the mean absolute difference for all the 
values at time T is shown as a second metric, i.e. for equation (25b) and strategy 1 
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𝑀𝑀𝑀𝑀𝑀𝑀(𝐹𝐹𝐹𝐹, 𝜀𝜀)𝑇𝑇 = 1
𝑁𝑁

�∑ �𝑀𝑀�𝑖𝑖𝑇𝑇(𝐹𝐹𝐹𝐹, 𝜀𝜀) − 𝑀𝑀�𝑖𝑖𝑇𝑇(𝐶𝐶𝑅𝑅, 𝜔𝜔)�𝑁𝑁
𝑖𝑖=1 �. (28) 

 

Finally, they may also be interested in the maximum absolute difference at time T, again 
for equation (25b) and strategy 1 

 

𝑀𝑀𝑀𝑀(𝐹𝐹𝐹𝐹, 𝜀𝜀)𝑇𝑇𝑚𝑚𝑇𝑇𝑇𝑇 = max
𝑖𝑖

�𝑀𝑀�𝑖𝑖𝑇𝑇(𝐹𝐹𝐹𝐹, 𝜀𝜀) − 𝑀𝑀�𝑖𝑖𝑇𝑇(𝐶𝐶𝑅𝑅, 𝜔𝜔)�. (29) 

 

This value expresses the largest error that has been calculated for current values of all 
the countries in the sample if, for the computation of a misalignment, a given 
conventional panel estimation method (in (29) the residuals of a fixed effects 
estimation) has been used instead of the sum of the unobserved effect and the residual 
from the unrestricted CRE model. 

To be able to estimate the CRE model, the applications considered must not employ 
index data, but rather data that contain relative level information for the endogenous and 
at least some of the explanatory variables. Annual relative price level data has therefore 
been used as the endogenous variable in both applications. 

Because the fundamental source of the distortions in misalignments based on 
conventional panel methods is the correlation between the unobserved effects and the 
time averages of the explanatory variables, applying a test to this correlation would be 
helpful in this context. As Wooldridge (2010) points out, the null hypothesis of the 
Hausman test on the difference between the random and the fixed effects estimates is in 
fact equivalent to positing that this correlation is zero.15 Hausman and Taylor (1981) 
have shown that the Hausman test can alternatively be computed by comparing the 
between and the fixed effects estimates. This amounts to estimating the CRE model (14) 
and testing H0: ��̂�𝛽2𝐶𝐶𝑅𝑅 − �̂�𝛽1𝐶𝐶𝑅𝑅� = 0 for all variables that vary over i and t. In fact, 
Wooldridge (2010) highly recommends applying this procedure by using a fully robust 
Wald statistic because – in contrast to a conventional Hausman test – it is robust against 
violations of the assumption of the usual random effects block-diagonal covariance 
matrix. 

Therefore, this version of the Hausman test is regularly computed in the applications 
below. If the null hypothesis is rejected, however, the usual conclusion to turn to a fixed 

                                                 
15 See Wooldridge (2010), p. 331. As a caveat, this requires that no time-constant explanatory variables 
are included in the regression equation. 
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effects regression is generally only valid if the researcher is exclusively interested in the 
coefficient estimates derived only from the within-group variation in the data. If the 
analysis aims at broader insights, a rejection of the null suggests the use of a CRE 
model for estimation. In the present case, which focuses as much on the misalignment 
estimate as on the coefficient estimate and where between-group variation is expected to 
contribute to the outcome, a rejection implies that the potential distortion in the 
misalignment is large (see Table 3), which makes it important to use a CRE model for 
estimation. If, by contrast, the null cannot be rejected there is less of a case for the CRE 
model. 

4.2. Application 1: misalignments according to the productivity 
approach 

As a first application, consider Fischer and Hossfeld’s (2014) estimation procedure to 
obtain misalignments for a panel of advanced and emerging economies.16 They employ 
a simple model-oriented equilibrium real exchange rate concept based on the 
productivity approach which is mostly associated with Balassa (1964) and Samuelson 
(1964). Therefore, they use only a single explanatory variable which is a country’s 
relative productivity level. In the present application, their preferred measure, labour 
productivity per hour worked, is used because it is hardly biased by different levels of 
part-time work across countries.17 The panel consists of annual data for log relative 
price and log relative productivity levels in N = 53 countries. It is an unbalanced panel 
in which the series for most countries span the period from 1980 to 2015 (T1 = 36), 
while for some the observation period starts as late as 1995 (T2 = 21).18 Fischer and 
Hossfeld (2014) use strategy 1, a fixed effects regression and the estimated sum of the 
unobserved effect and the residual for the computation of the misalignment, i.e. they 
compute the misalignment as 𝑀𝑀�𝑖𝑖𝑖𝑖(𝐹𝐹𝐹𝐹, 𝜔𝜔). 

Table 4 compiles results for this application. Coefficient estimates of the various panel 
estimators are shown in Table 4a. The first thing to note is the wide range of values that 
is covered by the estimates. The fixed effects estimate of the elasticity amounts to 0.24 
and is thus less than half the size of the between effects estimate of 0.52 or the OLS 
estimate of 0.50. This result contrasts with Fischer and Hossfeld (2014), who use a 
slightly smaller sample and present estimates for �̂�𝛽𝐹𝐹𝐹𝐹 and �̂�𝛽𝐿𝐿𝐿𝐿, both of which are close to 
                                                 
16 Low income economies which are mainly responsible for the non-linearity result in the income price 
level relationship found by Hassan (2016) are not included in the sample so that there is no reason to 
deviate from a linear specification of the model. 
17 See the Data Appendix for further information. 
18 The results for the linear CRE model also apply to the case of unbalanced panels, as is shown in 
Woodridge (2009). In unbalanced panels, parameters such as θ in equation (11) differ, however, across 
countries according to the respective value of T, of course. 
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0.5. Especially the time-series relying fixed effects estimate seems to be relatively 
unstable. So, the panel estimation method clearly matters for the elasticity estimates. 

Table 4: Misalignment estimation according to the productivity approach 
a) Coefficient estimates obtained by alternative panel estimators 

Variable ��̂�𝛽𝐹𝐹𝐹𝐹 = �̂�𝛽1𝐶𝐶𝑅𝑅� ��̂�𝛽𝐵𝐵𝐹𝐹 = �̂�𝛽2𝐶𝐶𝑅𝑅� ��̂�𝛽2𝐶𝐶𝑅𝑅 − �̂�𝛽1𝐶𝐶𝑅𝑅� �̂�𝛽𝑅𝑅𝐹𝐹 �̂�𝛽𝐿𝐿𝐿𝐿 

Productivity 0.24** 0.52*** 0.29*** 0.30*** 0.50*** 

b) Hausman test 

Hausman (𝜒𝜒1
2) = 12.00*** 

c) Deviation from unrestricted misalignment measure 𝑴𝑴� 𝒊𝒊𝒊𝒊(𝑪𝑪𝑪𝑪, 𝝎𝝎) in percentage 
points 

 FE, ε BE, ε RE, ε CR, ε FE, ω BE, ω RE, ω LS, ω 

MADNT 18.80 19.20 18.31 18.23 12.39 2.95 9.50 2.68 

MADT 20.13 22.37 19.96 19.44 12.95 4.31 10.62 4.82 

ADTmax 57.79 82.89 61.54 55.83 71.79 23.57 62.00 28.70 

d) Misalignments estimates for the four largest economies in the sample in 
T = 2015 in % (a positive value indicates an overvaluation) 

 FE, ε BE, ε RE, ε CR, ε FE, ω BE, ω RE, ω LS, ω CR, ω 

USA -1.67 2.74 -0.32 -2.00 20.93 -5.62 14.09 -3.48 -9.67 

China 39.05 20.85 34.19 40.78 8.49 56.71 18.28 51.57 80.28 

Japan -32.77 -27.39 -30.72 -32.37 16.42 1.77 12.80 3.02 -5.78 

Germany -6.89 -4.36 -6.04 -6.98 4.65 -8.62 1.37 -7.49 -11.02 

Note: ***, ** denote significance at the 1, 5% level according to country cluster robust standard errors, 
respectively. Hausman test computed for H0: ��̂�𝛽2𝐶𝐶𝑅𝑅 − �̂�𝛽1𝐶𝐶𝑅𝑅� = 0. Coefficients �̂�𝛽1𝐶𝐶𝑅𝑅 and �̂�𝛽2𝐶𝐶𝑅𝑅 and the 
corresponding variances are obtained by estimating the CRE model using equation (13), coefficient 
��̂�𝛽2𝐶𝐶𝑅𝑅 − �̂�𝛽1𝐶𝐶𝑅𝑅� and the corresponding variance is obtained by estimating the CRE model using equation 
(14). The choice of the CRE equation does not affect the misalignment estimates. 

Using robust standard errors, all the estimates are significant independently of the panel 
estimation method used.19 Since all the coefficient estimates �̂�𝛽1𝐶𝐶𝑅𝑅, �̂�𝛽2𝐶𝐶𝑅𝑅, and ��̂�𝛽2𝐶𝐶𝑅𝑅 −

�̂�𝛽1𝐶𝐶𝑅𝑅� are significantly different from zero, all the restrictions considered above are 
rejected, which implies that the use of none of the conventional panel estimation 

                                                 
19 The standard errors are computed as being country-cluster robust. Specific time series issues are not 
additionally covered in this study, and are beyond its scope. For a corresponding discussion, see, for 
instance, Bussière et al. (2010). 
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methods is appropriate. In line with the significance of ��̂�𝛽2𝐶𝐶𝑅𝑅 − �̂�𝛽1𝐶𝐶𝑅𝑅�, the Hausman test 
is clearly rejected. This suggests that, instead of any conventional panel estimation 
technique, a CRE model should be used to obtain misalignment estimates. 

As illustrated in Table 4c, misalignments computed conventionally (by applying a 
conventional panel estimation method and/or by ignoring the between-group variation 
in the data) differ substantially on average from those determined in a CRE model 
where the unobserved effect is included in the misalignment measure. The most 
widespread procedure, a conventional fixed effects estimation without the use of 
between-group information, yields misalignment estimates that deviate from them by 19 
percentage points on average over the whole sample, by 20 percentage points on 
average in the politically sensitive most recent period and by 58 percentage points for 
the most seriously affected economy in the most recent period. 

As long as the misalignment is computed merely from the residual, ε, the average 
deviation from the unrestricted misalignment measure is large but it is hardly affected 
by the panel estimation method. The only cases in which the average distortion is 
relatively small are the between effects estimates in which the unobserved effects are 
assigned to the misalignment (BE, ω) and the pooled OLS estimates (LS, ω). Yet even if 
these estimation methods are used, the maximum deviation from 𝑀𝑀�𝑖𝑖𝑇𝑇(𝐶𝐶𝑅𝑅, 𝜔𝜔) in 2015 
ranged between 20 and 30 percentage points. 

As an illustrative example, Table 4d shows the estimated misalignments for the four 
largest economies in nominal US dollar terms in 2015, the most recent year of the 
sample. The substantial distortion from imposing restrictions on a CRE model and/or 
ignoring the impact of between-group variation also arises in the case of the specific 
four countries considered. A comparison of columns (FE, ε), (RE, ε) and (CR, ε) 
illustrates again that it does not make much of a difference whether a fixed effects, a 
random effects or a correlated random effects panel estimator is used for the 
computation of the misalignment, as long as one thinks that the between-group variation 
in a panel is irrelevant for the assessment of an equilibrium exchange rate. 

As soon as it is accepted that between-group variation can be relevant for an equilibrium 
exchange rate assessment (i.e. ω is used for computation), however, the differences 
between the misalignment estimates of alternative panel estimators become 
economically large. Just considering the available conventional misalignment estimates 
(i.e. all the columns except “CR, ε” and “CR, ω”), the misalignment estimates for the 
USA range between an undervaluation of 3½% and an overvaluation of 21%, for China 
between an overvaluation of 8½% and 56½%, and for Japan between an undervaluation 
of 33% and an overvaluation of 16½%. Answering the question raised in the 
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introduction, these differences are large to the point of making the assessment entirely 
arbitrary. They underline the importance of the present investigation. 

4.3. Application 2: misalignments according to an IMF (2017)-type 
real effective exchange rate level model 

Instead of computing a strictly model-based equilibrium exchange rate such as the one 
based on the productivity approach in the previous section, many applications pursue a 
more eclectic econometric approach in the sense that the estimate of the equilibrium 
value includes a multitude of regressors based on a variety of economic models and 
thoughts. The equilibrium exchange rates derived in such approaches are often termed 
behavioural equilibrium exchange rates (BEERs, cf. e.g. Clark and MacDonald, 1999). 

In the following, a BEER approach will be presented as a second application which is 
close to but not identical with the IMF’s (2017) real effective exchange rate (REER) 
level model. This model has obtained a significant political importance because, since 
2015, the IMF employs it for the regular assessment of the external balances of 40 
economies in the framework of the EBA methodology (see Phillips et al., 2013). As in 
the IMF’s REER level model, the present application uses strategy 2 to compute 
misalignments for a balanced panel of the N = 40 economies exogenously given by the 
IMF. The present application differs from the IMF’s REER model, however, in 
employing a reduced number of widely available and commonly used explanatory 
variables. The avoidance of both instrumental variables and interaction terms simplifies 
the analysis. In such a simplified setting, the IMF REER level model boils down to a 
pooled OLS estimate of the misalignment, i.e. to 𝑀𝑀�𝑖𝑖𝑖𝑖(𝐿𝐿𝐿𝐿, 𝜔𝜔).20 

The following explanatory variables are used in the analysis:21 in accordance with the 
first application, a productivity variable should be included. Since the preferred 
measure, productivity per hour worked, is not available for South Africa prior to 2001, 
per capita GDP measured in PPP terms has been used as a proxy. Apart from that, the 
list of explanatory variables comprises the old age dependency ratio, government 
consumption per GDP, net foreign assets per GDP, trade openness, the change in 
reserves per GDP capturing foreign exchange intervention and finally the terms of trade. 
The endogenous variable is the relative price level based on the same data as in 
application 1. The observation period of the balanced panel spans 1995-2015, i.e. T = 
21. 

                                                 
20 As already mentioned, the IMF uses a two-stage least squares regression in fact in order to account for 
the instrumental variables. 
21 The Data Appendix provides more information on the data, especially about sources and comparisons 
with the data employed in IMF (2017) and Phillips et al. (2013). 
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Table 5: Misalignment estimation according to an IMF (2017)-type BEER 
approach: the unrestricted model 
a) Coefficient estimates obtained by alternative panel estimators 

Variable ��̂�𝛽𝐹𝐹𝐹𝐹 = �̂�𝛽1𝐶𝐶𝑅𝑅� ��̂�𝛽𝐵𝐵𝐹𝐹 = �̂�𝛽2𝐶𝐶𝑅𝑅� ��̂�𝛽2𝐶𝐶𝑅𝑅 − �̂�𝛽1𝐶𝐶𝑅𝑅� �̂�𝛽𝑅𝑅𝐹𝐹 �̂�𝛽𝐿𝐿𝐿𝐿 

GDP per capita 0.65*** 0.44*** -0.21*** 0.64*** 0.51*** 

Old age depen-
dency ratio 

0.002 0.01** 0.01 0.0004 0.006* 

Gov. consumption 
per GDP 

0.02*** 0.007 -0.01 0.02*** 0.009 

Net foreign assets 
per GDP 

-0.07** 0.19*** 0.26*** -0.06* 0.10** 

Openness -0.003** -0.0006 0.002 -0.003*** -0.001* 

Reserves per GDP 0.05 -0.81* -0.86* 0.05 -0.38 

Terms of trade 0.54*** - - 0.53*** 0.53*** 

b) Hausman test 

Hausman (𝜒𝜒6
2) = 19.45*** 

c) Deviation from unrestricted misalignment measure 𝑴𝑴� 𝒊𝒊𝒊𝒊(𝑪𝑪𝑪𝑪, 𝝎𝝎) in percentage 
points 

 FE, ε BE, ε RE, ε CR, ε FE, ω BE, ω RE, ω LS, ω 

MADNT 12.29 14.43 12.15 12.14 9.76 7.64 8.64 4.74 

MADT 12.55 14.65 12.29 12.40 10.00 12.04 8.97 6.68 

ADTmax 50.95 62.11 49.53 50.12 33.48 101.88 28.20 46.84 

d) Misalignments estimates for the four largest economies in the sample in 
T = 2015 in % (a positive value indicates an overvaluation) 

 FE, ε BE, ε RE, ε CR, ε FE, ω BE, ω RE, ω LS, ω CR, ω 

USA 11.49 14.75 10.76 11.31 -16.12 2.18 -15.04 -3.08 -0.72 

China -3.08 15.73 -1.87 -2.80 37.41 42.09 32.45 33.16 19.00 

Japan -18.77 -32.41 -18.01 -18.65 -6.41 -24.90 -2.91 -13.07 -9.73 

Germany -1.64 -14.96 -1.99 -1.78 -3.51 -23.42 -2.74 -15.81 -11.42 

Note: ***, **, * denote significance at the 1, 5, 10% level according to country cluster robust standard 
errors, respectively. Hausman test computed for H0: ��̂�𝛽2𝐶𝐶𝑅𝑅 − �̂�𝛽1𝐶𝐶𝑅𝑅� = 0. Coefficients �̂�𝛽1𝐶𝐶𝑅𝑅 and �̂�𝛽2𝐶𝐶𝑅𝑅 and 
the corresponding variances are obtained by estimating the CRE model using equation (13), coefficient 
��̂�𝛽2𝐶𝐶𝑅𝑅 − �̂�𝛽1𝐶𝐶𝑅𝑅� and the corresponding variance is obtained by estimating the CRE model using equation 
(14). The choice of the CRE equation does not affect the misalignment estimates. 
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Table 6: Misalignment estimation according to an IMF (2017)-type BEER 
approach: the restricted model 
a) Coefficient estimates obtained by alternative panel estimators 

Variable ��̂�𝛽𝐹𝐹𝐹𝐹 = �̂�𝛽1𝐶𝐶𝑅𝑅� ��̂�𝛽𝐵𝐵𝐹𝐹 = �̂�𝛽2𝐶𝐶𝑅𝑅� �̂�𝛽𝑅𝑅𝐹𝐹 �̂�𝛽𝐿𝐿𝐿𝐿 

GDP per capita 0.65*** 0.43*** 0.64*** 0.47*** 

Old age depen-
dency ratio 

- 0.01*** 0.002 0.01** 

Gov. consumption 
per GDP 

0.02*** - 0.02*** 0.004 

Net foreign assets 
per GDP 

-0.07** 0.19*** -0.06* 0.10* 

Openness -0.003** - -0.003** -0.002 

Reserves per GDP - -0.98*** 0.03 -0.61* 

Terms of trade 0.53*** - 0.54*** 0.52*** 

b) Deviation from unrestricted misalignment measure 𝑴𝑴� 𝒊𝒊𝒊𝒊(𝑪𝑪𝑪𝑪, 𝝎𝝎) in percentage 
points 

 FE, ε BE, ε RE, ε CR, ε FE, ω BE, ω RE, ω LS, ω 

MADNT 12.93 14.96 12.78 12.78 10.42 8.14 10.10 5.45 

MADT 13.14 15.90 13.11 12.98 10.27 13.22 10.06 8.26 

ADTmax 49.55 72.71 49.13 48.76 26.94 119.20 28.06 63.48 

c) Misalignments estimates for the four largest economies in the sample in T = 2015 
in % (a positive value indicates an overvaluation) 

 FE, ε BE, ε RE, ε CR, ε FE, ω BE, ω RE, ω LS, ω CR, ω 

USA 11.16 13.42 11.12 11.00 -10.05 1.03 -8.66 -1.05 -0.99 

China -3.53 17.54 -1.81 -3.25 31.84 48.35 32.54 39.58 21.76 

Japan -17.31 -33.16 -18.85 -17.20 11.71 -25.80 6.93 -14.30 -8.21 

Germany -1.88 -16.29 -2.00 -2.04 -2.42 -26.29 -3.04 -19.00 -13.61 

Note: ***, **, * denote significance at the 1, 5, 10% level according to country cluster robust standard 
errors, respectively. Coefficients �̂�𝛽1𝐶𝐶𝑅𝑅 and �̂�𝛽2𝐶𝐶𝑅𝑅 and the corresponding variances are obtained by 
estimating the CRE model using equation (13). 
 

Table 5a shows that the coefficient estimates and significance values differ substantially 
across estimation methods. Apart from the terms of trade, only the coefficient of GDP 
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per capita is always statistically significant and consistently signed.22 This is in line with 
application 1 and underscores the importance of including a proxy for productivity in 
real exchange rate regressions. While the statistical significance and the sign of the 
other explanatory variables depend on the estimator, it should be noted that the CRE 
approach, which estimates both the effect of the within-group and the between-group 
variation in the variables as β�1CR and β�2CR, respectively, yields evidence of a significant 
influence for each of the variables considered. 

With one exception, all the significant coefficient estimates have the expected sign: a 
rise in relative productivity proxied by GDP per capita raises relative price levels as is 
implied by the productivity approach. A higher old age dependency ratio increases the 
share of the economically inactive population, which decreases net savings and 
appreciates real exchange rates. Accelerating government consumption per GDP exerts 
the same effect on net savings justifying the positive coefficient. A higher value of net 
foreign assets per GDP generates c.p. larger capital inflows which appreciate the 
domestic currency in nominal and real terms. The expected positive sign is found in the 
between-group variation of the data (i.e. �̂�𝛽𝐵𝐵𝐹𝐹 = �̂�𝛽2𝐶𝐶𝑅𝑅) and by using OLS. The fixed 
effects (i.e. �̂�𝛽𝐹𝐹𝐹𝐹 = �̂�𝛽1𝐶𝐶𝑅𝑅) and the simple random effects approach suggest a significantly 
negative sign. In the CRE model, the total effect will be dominated by the between-
group variation because the corresponding coefficient is larger and because the between 
variation of the NFA variable is nearly double that of the within variation. However, the 
result once more illustrates the importance of accounting for the between-group 
variation in the data instead of ignoring it as is done by the fixed effects estimator. 

The IMF considers trade openness as proxy for trade liberalisation, a greater degree of 
which lowers the domestic price of tradable goods and thus depreciates the real 
exchange rate (cf. Phillips et al., 2013). As far as an increasing build-up of reserves per 
GDP is a reflection of intensified foreign exchange intervention, this should exert a 
downward pressure on the domestic currency and thus result in a real depreciation. An 
improvement in the terms of trade, finally, should c.p. also improve the trade balance 
and thus tend to appreciate the domestic currency in real terms as in IMF (2017). 

As in application 1, Table 5b shows that the Hausman test is safely rejected. This 
suggests that the CRE model is the appropriate method for obtaining misalignment 
estimates without severe distortions. Table 5c gives evidence that misalignments based 
on conventional estimators again deviate considerably on average from misalignments 
determined in a CRE model, where the unobserved effect is included in the 
                                                 
22 The terms of trade are an index variable. Therefore, their time averages are meaningless, and �̂�𝛽𝐵𝐵𝐹𝐹 =
�̂�𝛽2𝐶𝐶𝑅𝑅 cannot be sensibly calculated. See the Data Appendix. 
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misalignment measure. While still displaying substantial deviations, pooled OLS-based 
misalignments are closest to the CRE-based ones, although they are computed from 
biased coefficient estimates. 

The exemplary misalignments provided in Table 5d illustrate once again the tremendous 
influence of the chosen panel estimator on the misalignment estimates. Compared to the 
estimates of application 1 shown in Table 4d, the CRE model using ω (last column) 
assesses the US dollar less favourably and the renminbi and the yen more so.23 

Table 6 gives the results of a general-to-specific exercise where the least significant 
variables have been eliminated from the CRE model in successive steps. The 
insignificance of the entire set of all the eliminated variables has been confirmed by a 
Wald test. Columns two (�̂�𝛽1𝐶𝐶𝑅𝑅) and three (�̂�𝛽2𝐶𝐶𝑅𝑅) of Table 6a comprise the estimated 
coefficients of the resulting CRE model. Only for GDP per capita and net foreign assets 
per GDP, do both the within as well as the between variation exert a (statistically 
significant) influence on relative price levels. Only the within variation in the variables 
government consumption per GDP, trade openness and the terms of trade affects the 
real exchange rates significantly, while for the old age dependency ratio and the change 
in reserves per GDP, it is only the between variation.24 Interestingly, the figures in 
Table 6a also imply that conventional panel estimators would have detected the 
significance of only a subset of the variables considered. While both a fixed effects and 
a random effects estimator assess the variables with a pure between-group effect as 
insignificant, the between-group and the pooled OLS estimator ignore the significance 
of at least two variables with a pure within variation effect. This implies that a CRE 
model does not only provide estimates of the misalignment without distortions, it can 
also be superior to conventional panel estimators in identifying significant relationships 
for the set of explanatory variables. 

5. Conclusions 
The present study considers two questions. First, which panel estimation method should 
be used to estimate an equilibrium real effective exchange rate (REER) or a 
corresponding misalignment? Second, are the deviations between the misalignment 
estimates of alternative panel estimators economically significant? 

                                                 
23 This illustrates that, apart from the panel estimation method, the choice of the equilibrium concept and 
the ensuing selection of explanatory variables can also have a substantial impact on a misalignment 
estimate. This topic is, however, not further explored in the present study. 
24 Interestingly, Phillips et al. (2013) already argue that it is a challenge “that the cross-sectional (between 
country) variation of reserve accumulation is twice its time variation within countries, making the effect 
difficult to detect under fixed effects estimation” (p. 25). 
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In response to question 1, the study suggests to use a correlated random effects (CRE) 
model in the spirit of Mundlak (1978) for the panel estimation of an equilibrium REER. 
This model estimates separate coefficients for the deviation from the time average of a 
variable and for its time average (the between-group variation). Conventional panel 
estimation methods such as the fixed effects, between effects, random effects or pooled 
OLS estimator, which estimate only a single coefficient per variable, can be interpreted 
as restricted versions of the CRE model. If these restrictions are empirically violated, 
systematic deviations of the conventionally estimated misalignment from the CRE 
model-based one occur. The study derives such distortions for each of the conventional 
panel estimation methods.25 

In response to question 2, two applications of equilibrium REER estimates adapted from 
the literature show that the distortion is often very large; the deviation between the 
misalignment assessments derived from a conventional panel estimation method and 
from the CRE model typically exceeds 10 percentage points, on average. The 
conventional model with the smallest distortion is mostly the simple pooled OLS 
approach. 

To give examples for the reasons behind the large distortions, the two coefficients for 
the relative productivity levels typically differ significantly from each other, and many 
variables significantly affect the real exchange rate either only through the between or 
only through the within variation. Therefore, using a CRE model can also help 
identifying significant explanatory variables. 

Finally, distortions such as the ones derived here can generally occur, in principle, if 
between-group information in the panel is supposed to play a role. Therefore, CRE 
models may not only be recommendable in the case of REER misalignment 
computation but also in the panel estimation in a broad range of economic models 
where between-group variation is supposed to play a role. This applies, for instance, to 
equilibrium current account assessments such as the ones in Phillips et al. (2013) and 
IMF (2017). A corresponding exploration is, however, left for future research. 

  

                                                 
25 The case for the CRE model depends, of course, on the acceptance of the idea put forward by Cheung 
et al. (2007), Fischer and Hossfeld (2014), IMF (2017) and Berka et al. (2018) among others that 
between-group information should not be ignored in equilibrium real exchange rate panel regressions, 
which implies, for instance, that relative price levels instead of relative price indices should be used as 
endogenous variable. 
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Appendix 

1. Mathematical Appendix 
For ease of exposition and without loss of generality, let us assume  that the overall 
sample mean of all the variables is zero, or, equivalently, that all variables are 
demeaned, i.e. 1 NT⁄ ∙ ∑ ∑ qit

T
t=1

N
i=1 = 0 and 1 NT⁄ ∙ ∑ ∑ xit

T
t=1

N
i=1 = 0 for each of the K 

explanatory variables xit. 

Derivation of the bias in the coefficient estimates of the pooled OLS 
and the RE models compared with the CRE model 
Suppose equation (14) represents the true model to be estimated by pooled OLS. Instead 
of (14), however, equation (1) is erroneously estimated by pooled OLS. Then, �̅�𝑥𝑖𝑖 must 
be treated as an omitted variable, (𝛽𝛽2𝐶𝐶𝑅𝑅 − 𝛽𝛽1𝐶𝐶𝑅𝑅) is its unbiased coefficient, and 𝛽𝛽1𝐶𝐶𝑅𝑅 is 
the unbiased coefficient that one tries to obtain by estimating βLS. Now apply the 
general omitted variable formula (cf. e.g. Greene, 2017, p. 59) and recall that, for 
pooled OLS, ∑ ∑ 𝑥𝑥𝑖𝑖𝑖𝑖′𝜔𝜔�𝑖𝑖

𝑇𝑇
𝑖𝑖=1

𝑁𝑁
𝑖𝑖=1 = 0. This yields 

�̂�𝛽𝐿𝐿𝐿𝐿 = �̂�𝛽1𝐶𝐶𝑅𝑅 + (∑ ∑ 𝑥𝑥𝑖𝑖𝑖𝑖′𝑥𝑥𝑖𝑖𝑖𝑖
𝑇𝑇
𝑖𝑖=1

𝑁𝑁
𝑖𝑖=1 )−1�(∑ ∑ 𝑥𝑥𝑖𝑖𝑖𝑖′�̅�𝑥𝑖𝑖

𝑇𝑇
𝑖𝑖=1

𝑁𝑁
𝑖𝑖=1 )��̂�𝛽2𝐶𝐶𝑅𝑅 − �̂�𝛽1𝐶𝐶𝑅𝑅� +

∑ ∑ 𝑥𝑥𝑖𝑖𝑖𝑖′𝜔𝜔�𝑖𝑖
𝑇𝑇
𝑖𝑖=1

𝑁𝑁
𝑖𝑖=1 �  

 = �̂�𝛽1𝐶𝐶𝑅𝑅 + (∑ ∑ 𝑥𝑥𝑖𝑖𝑖𝑖′𝑥𝑥𝑖𝑖𝑖𝑖
𝑇𝑇
𝑖𝑖=1

𝑁𝑁
𝑖𝑖=1 )−1(∑ ∑ 𝑥𝑥𝑖𝑖𝑖𝑖′�̅�𝑥𝑖𝑖

𝑇𝑇
𝑖𝑖=1

𝑁𝑁
𝑖𝑖=1 )��̂�𝛽2𝐶𝐶𝑅𝑅 − �̂�𝛽1𝐶𝐶𝑅𝑅�  

 = �̂�𝛽1𝐶𝐶𝑅𝑅 + (∑ ∑ 𝑥𝑥𝑖𝑖𝑖𝑖′𝑥𝑥𝑖𝑖𝑖𝑖
𝑇𝑇
𝑖𝑖=1

𝑁𝑁
𝑖𝑖=1 )−1(∑ ∑ �̅�𝑥𝑖𝑖′�̅�𝑥𝑖𝑖

𝑇𝑇
𝑖𝑖=1

𝑁𝑁
𝑖𝑖=1 )��̂�𝛽2𝐶𝐶𝑅𝑅 − �̂�𝛽1𝐶𝐶𝑅𝑅�.                    (A1) 

From (A1) and 

∑ �̅�𝑥𝑖𝑖′�̅�𝑥𝑖𝑖
𝑇𝑇
𝑖𝑖=1 =  𝑇𝑇�̅�𝑥𝑖𝑖′�̅�𝑥𝑖𝑖 (A2) 

equations (18) and (19) follow. 

Suppose now that equation (14) still represents the true model, now to be estimated by 
RE (which yields the same coefficients as a pooled OLS estimate, of course). An RE 
estimate of (14) is equivalent to the pooled OLS estimate of 

𝑞𝑞𝑖𝑖𝑖𝑖 − 𝜃𝜃�𝐶𝐶𝑅𝑅𝑞𝑞�𝑖𝑖 
 = �𝑥𝑥𝑖𝑖𝑖𝑖 − 𝜃𝜃�𝐶𝐶𝑅𝑅�̅�𝑥𝑖𝑖�𝛽𝛽1𝐶𝐶𝑅𝑅 + ��̅�𝑥𝑖𝑖 − 𝜃𝜃�𝐶𝐶𝑅𝑅�̅�𝑥𝑖𝑖�(𝛽𝛽2𝐶𝐶𝑅𝑅 − 𝛽𝛽1𝐶𝐶𝑅𝑅) + 𝜔𝜔𝑖𝑖𝑖𝑖(𝐶𝐶𝑅𝑅) − 𝜃𝜃�𝐶𝐶𝑅𝑅𝜔𝜔�𝑖𝑖(𝐶𝐶𝑅𝑅) (A3) 

where 𝜃𝜃�𝐶𝐶𝑅𝑅 is defined as 𝜃𝜃�𝑅𝑅𝐹𝐹 in equation (11). If instead of (A3), equation (1) is 
erroneously estimated by an RE procedure, this would amount to the pooled OLS 
estimation of 

𝑞𝑞𝑖𝑖𝑖𝑖 − 𝜃𝜃�𝑅𝑅𝐹𝐹𝑞𝑞�𝑖𝑖 = �𝑥𝑥𝑖𝑖𝑖𝑖 − 𝜃𝜃�𝑅𝑅𝐹𝐹�̅�𝑥𝑖𝑖�𝛽𝛽𝑅𝑅𝐹𝐹 + 𝜔𝜔𝑖𝑖𝑖𝑖(𝑅𝑅𝐹𝐹) − 𝜃𝜃�𝑅𝑅𝐹𝐹𝜔𝜔�𝑖𝑖(𝑅𝑅𝐹𝐹). (A4) 
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Again, the unbiased coefficient of the omitted variable is (𝛽𝛽2𝐶𝐶𝑅𝑅 − 𝛽𝛽1𝐶𝐶𝑅𝑅), and 𝛽𝛽1𝐶𝐶𝑅𝑅 is the 
unbiased coefficient that one tries to obtain by estimating βRE. Applying the omitted 
variable formula yields 

�̂�𝛽𝑅𝑅𝐹𝐹 = �̂�𝛽1𝐶𝐶𝑅𝑅 + �∑ ∑ �𝑥𝑥𝑖𝑖𝑖𝑖 − 𝜃𝜃�𝑅𝑅𝐹𝐹�̅�𝑥𝑖𝑖�′�𝑥𝑥𝑖𝑖𝑖𝑖 − 𝜃𝜃�𝑅𝑅𝐹𝐹�̅�𝑥𝑖𝑖�𝑇𝑇
𝑖𝑖=1

𝑁𝑁
𝑖𝑖=1 �

−1
  

 �∑ ∑ �𝑥𝑥𝑖𝑖𝑖𝑖 − 𝜃𝜃�𝑅𝑅𝐹𝐹�̅�𝑥𝑖𝑖�′��̅�𝑥𝑖𝑖 − 𝜃𝜃�𝑅𝑅𝐹𝐹�̅�𝑥𝑖𝑖�𝑇𝑇
𝑖𝑖=1

𝑁𝑁
𝑖𝑖=1 ���̂�𝛽2𝐶𝐶𝑅𝑅 − �̂�𝛽1𝐶𝐶𝑅𝑅�. (A5) 

�∑ ∑ �𝑥𝑥𝑖𝑖𝑖𝑖 − 𝜃𝜃�𝑅𝑅𝐹𝐹�̅�𝑥𝑖𝑖�′��̅�𝑥𝑖𝑖 − 𝜃𝜃�𝑅𝑅𝐹𝐹�̅�𝑥𝑖𝑖�𝑇𝑇
𝑖𝑖=1

𝑁𝑁
𝑖𝑖=1 �  

 =�∑ ∑ �𝑥𝑥𝑖𝑖𝑖𝑖 − 𝜃𝜃�𝑅𝑅𝐹𝐹�̅�𝑥𝑖𝑖�′�1 − 𝜃𝜃�𝑅𝑅𝐹𝐹��̅�𝑥𝑖𝑖
𝑇𝑇
𝑖𝑖=1

𝑁𝑁
𝑖𝑖=1 � 

 =�∑ ∑ 𝑥𝑥𝑖𝑖𝑖𝑖′�̅�𝑥𝑖𝑖
𝑇𝑇
𝑖𝑖=1

𝑁𝑁
𝑖𝑖=1 − ∑ ∑ 𝜃𝜃�𝑅𝑅𝐹𝐹�̅�𝑥𝑖𝑖′�̅�𝑥𝑖𝑖

𝑇𝑇
𝑖𝑖=1

𝑁𝑁
𝑖𝑖=1 ��1 − 𝜃𝜃�𝑅𝑅𝐹𝐹� 

 =�∑ 𝑇𝑇�̅�𝑥𝑖𝑖′�̅�𝑥𝑖𝑖
𝑁𝑁
𝑖𝑖=1 − ∑ 𝑇𝑇𝜃𝜃�𝑅𝑅𝐹𝐹�̅�𝑥𝑖𝑖′�̅�𝑥𝑖𝑖

𝑁𝑁
𝑖𝑖=1 ��1 − 𝜃𝜃�𝑅𝑅𝐹𝐹� 

 =(∑ 𝑇𝑇�̅�𝑥𝑖𝑖′�̅�𝑥𝑖𝑖
𝑁𝑁
𝑖𝑖=1 )�1 − 𝜃𝜃�𝑅𝑅𝐹𝐹�

2
. (A6) 

Combining (A5) and (A6) yields the equations (20) and (21). 

Derivation of equations (22a)-(22d) and (23a)-(23d) in Table 2 
Equation (22a) results from (24). 

For the derivation of equation (22b), given (22a) it is sufficient to show that 

𝜀𝜀�̂�𝑖𝑖𝑖(𝐶𝐶𝑅𝑅) − 𝜀𝜀̅�̂�𝑖(𝐶𝐶𝑅𝑅) = 𝜀𝜀�̂�𝑖𝑖𝑖(𝐹𝐹𝐹𝐹). (A7) 

The residual 𝜀𝜀�̂�𝑖𝑖𝑖(𝐹𝐹𝐹𝐹) of an FE regression of equation (1) is given by 

𝜀𝜀�̂�𝑖𝑖𝑖(𝐹𝐹𝐹𝐹) = 𝑞𝑞𝑖𝑖𝑖𝑖 − 𝑞𝑞�𝑖𝑖 − (𝑥𝑥𝑖𝑖𝑖𝑖 − �̅�𝑥𝑖𝑖)�̂�𝛽𝐹𝐹𝐹𝐹. (A8) 

It is well known that �̂�𝛽𝐹𝐹𝐹𝐹 = �̂�𝛽1𝐶𝐶𝑅𝑅 (cf. section 3.3 and Biørn, 2017), such that 

𝜀𝜀�̂�𝑖𝑖𝑖(𝐹𝐹𝐹𝐹) = 𝑞𝑞𝑖𝑖𝑖𝑖 − 𝑞𝑞�𝑖𝑖 − (𝑥𝑥𝑖𝑖𝑖𝑖 − �̅�𝑥𝑖𝑖)�̂�𝛽1𝐶𝐶𝑅𝑅. (A9) 

Extending (A9) by �̅�𝑥𝑖𝑖�̂�𝛽2𝐶𝐶𝑅𝑅 yields 

𝜀𝜀�̂�𝑖𝑖𝑖(𝐹𝐹𝐹𝐹) = 𝑞𝑞𝑖𝑖𝑖𝑖 − (𝑥𝑥𝑖𝑖𝑖𝑖 − �̅�𝑥𝑖𝑖)�̂�𝛽1𝐶𝐶𝑅𝑅 − �̅�𝑥𝑖𝑖�̂�𝛽2𝐶𝐶𝑅𝑅 − �𝑞𝑞�𝑖𝑖 − �̅�𝑥𝑖𝑖�̂�𝛽2𝐶𝐶𝑅𝑅� (A10) 

Combining equation (A10) with equation (24) yields 

𝜀𝜀�̂�𝑖𝑖𝑖(𝐹𝐹𝐹𝐹) = 𝑞𝑞𝑖𝑖𝑖𝑖 − (𝑥𝑥𝑖𝑖𝑖𝑖 − �̅�𝑥𝑖𝑖)�̂�𝛽1𝐶𝐶𝑅𝑅 − �̅�𝑥𝑖𝑖�̂�𝛽2𝐶𝐶𝑅𝑅 − ��̂�𝜇𝑖𝑖(𝐶𝐶𝑅𝑅) + 𝜀𝜀̅�̂�𝑖(𝐶𝐶𝑅𝑅)�. (A11) 

Equations (A11) and (13) result in (A7). 

For the derivation of equation (22c), start with the definition of 𝜀𝜀�̂�𝑖𝑖𝑖(𝐵𝐵𝐹𝐹) according to (1), 

𝜀𝜀�̂�𝑖𝑖𝑖(𝐵𝐵𝐹𝐹) = 𝑞𝑞𝑖𝑖𝑖𝑖 − 𝑥𝑥𝑖𝑖𝑖𝑖�̂�𝛽𝐵𝐵𝐹𝐹 − �̂�𝜇𝑖𝑖(𝐵𝐵𝐹𝐹)                                                                                 (A12) 
 = 𝑞𝑞𝑖𝑖𝑖𝑖 − 𝑥𝑥𝑖𝑖𝑖𝑖�̂�𝛽𝐵𝐵𝐹𝐹 − �𝑞𝑞�𝑖𝑖 − �̅�𝑥𝑖𝑖�̂�𝛽𝐵𝐵𝐹𝐹�. 
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It is well known that �̂�𝛽𝐵𝐵𝐹𝐹 = �̂�𝛽2𝐶𝐶𝑅𝑅 (cf. section 3.3 and Biørn, 2017), such that 

𝜀𝜀�̂�𝑖𝑖𝑖(𝐵𝐵𝐹𝐹) = 𝑞𝑞𝑖𝑖𝑖𝑖 − 𝑞𝑞�𝑖𝑖 − (𝑥𝑥𝑖𝑖𝑖𝑖 − �̅�𝑥𝑖𝑖)�̂�𝛽2𝐶𝐶𝑅𝑅. (A13) 

Inserting the CRE estimate of equation (13) into (A13) yields 

𝜀𝜀�̂�𝑖𝑖𝑖(𝐵𝐵𝐹𝐹) = (𝑥𝑥𝑖𝑖𝑖𝑖 − �̅�𝑥𝑖𝑖)�̂�𝛽1𝐶𝐶𝑅𝑅 + �̅�𝑥𝑖𝑖�̂�𝛽2𝐶𝐶𝑅𝑅 + ��̂�𝜇𝑖𝑖(𝐶𝐶𝑅𝑅) + 𝜀𝜀�̂�𝑖𝑖𝑖(𝐶𝐶𝑅𝑅)� − 𝑞𝑞�𝑖𝑖 − (𝑥𝑥𝑖𝑖𝑖𝑖 − �̅�𝑥𝑖𝑖)�̂�𝛽2𝐶𝐶𝑅𝑅. (A14) 

Equation (A14) is equivalent to (22c). 

For the derivation of (22d), note first that the residual of an RE estimate of equation (1) 
is 

𝜀𝜀�̂�𝑖𝑖𝑖(𝑅𝑅𝐹𝐹) = 𝑞𝑞𝑖𝑖𝑖𝑖 − 𝑥𝑥𝑖𝑖𝑖𝑖�̂�𝛽𝑅𝑅𝐹𝐹 − �̂�𝜇𝑖𝑖(𝑅𝑅𝐹𝐹). (A15) 

As has already been noted in relation with equation (24), it is not guaranteed, in a 
random effects regression, that 𝜀𝜀̅�̂�𝑖 = 0 exactly, such that 

𝜀𝜀�̂�𝑖𝑖𝑖(𝑅𝑅𝐹𝐹) = 𝑞𝑞𝑖𝑖𝑖𝑖 − 𝑥𝑥𝑖𝑖𝑖𝑖�̂�𝛽𝑅𝑅𝐹𝐹 − �𝑞𝑞�𝑖𝑖 − �̅�𝑥𝑖𝑖�̂�𝛽𝑅𝑅𝐹𝐹 − 𝜀𝜀̅�̂�𝑖(𝑅𝑅𝐹𝐹)�. (A16) 

Inserting the CRE estimate of equation (13) into (A16) and re-arranging terms yields  

𝜀𝜀�̂�𝑖𝑖𝑖(𝑅𝑅𝐹𝐹) = (𝑥𝑥𝑖𝑖𝑖𝑖 − �̅�𝑥𝑖𝑖)�̂�𝛽1𝐶𝐶𝑅𝑅 + �̅�𝑥𝑖𝑖�̂�𝛽2𝐶𝐶𝑅𝑅 + ��̂�𝜇𝑖𝑖(𝐶𝐶𝑅𝑅) + 𝜀𝜀�̂�𝑖𝑖𝑖(𝐶𝐶𝑅𝑅)�  

 −𝑥𝑥𝑖𝑖𝑖𝑖�̂�𝛽𝑅𝑅𝐹𝐹 − �𝑞𝑞�𝑖𝑖 − �̅�𝑥𝑖𝑖�̂�𝛽𝑅𝑅𝐹𝐹 − 𝜀𝜀̅�̂�𝑖(𝑅𝑅𝐹𝐹)� (A17) 

𝜀𝜀�̂�𝑖𝑖𝑖(𝑅𝑅𝐹𝐹) − ��̂�𝜇𝑖𝑖(𝐶𝐶𝑅𝑅) + 𝜀𝜀�̂�𝑖𝑖𝑖(𝐶𝐶𝑅𝑅)�  

 = −�𝑞𝑞�𝑖𝑖 − �̅�𝑥𝑖𝑖�̂�𝛽2𝐶𝐶𝑅𝑅� + (𝑥𝑥𝑖𝑖𝑖𝑖 − �̅�𝑥𝑖𝑖)��̂�𝛽1𝐶𝐶𝑅𝑅 − �̂�𝛽𝑅𝑅𝐹𝐹� + 𝜀𝜀̅�̂�𝑖(𝑅𝑅𝐹𝐹) (A18) 

Combining this with (20) yields the second equation of (22d). 

In each of (23a) – (23d), the first two equations are definitions. For the derivation of the 
last equation of (23a), note that, according to (1) and (14), 

��̂�𝜇𝑖𝑖(𝐹𝐹𝐹𝐹) + 𝜀𝜀�̂�𝑖𝑖𝑖(𝐹𝐹𝐹𝐹)� − ��̂�𝜇𝑖𝑖(𝐶𝐶𝑅𝑅) + 𝜀𝜀�̂�𝑖𝑖𝑖(𝐶𝐶𝑅𝑅)�  

 = 𝑞𝑞𝑖𝑖𝑖𝑖 − 𝑥𝑥𝑖𝑖𝑖𝑖�̂�𝛽𝐹𝐹𝐹𝐹 − �𝑞𝑞𝑖𝑖𝑖𝑖 − 𝑥𝑥𝑖𝑖𝑖𝑖�̂�𝛽1𝐶𝐶𝑅𝑅 − �̅�𝑥𝑖𝑖��̂�𝛽2𝐶𝐶𝑅𝑅 − �̂�𝛽1𝐶𝐶𝑅𝑅��. (A19) 

This is equivalent to the third equation of (23a) since �̂�𝛽𝐹𝐹𝐹𝐹 = �̂�𝛽1𝐶𝐶𝑅𝑅. 

The third equation of (23b) results analogously using (1), (14) and �̂�𝛽𝐵𝐵𝐹𝐹 = �̂�𝛽2𝐶𝐶𝑅𝑅: 

��̂�𝜇𝑖𝑖(𝐵𝐵𝐹𝐹) + 𝜀𝜀�̂�𝑖𝑖𝑖(𝐵𝐵𝐹𝐹)� − ��̂�𝜇𝑖𝑖(𝐶𝐶𝑅𝑅) + 𝜀𝜀�̂�𝑖𝑖𝑖(𝐶𝐶𝑅𝑅)�  

 = 𝑞𝑞𝑖𝑖𝑖𝑖 − 𝑥𝑥𝑖𝑖𝑖𝑖�̂�𝛽𝐵𝐵𝐹𝐹 − �𝑞𝑞𝑖𝑖𝑖𝑖 − 𝑥𝑥𝑖𝑖𝑖𝑖�̂�𝛽1𝐶𝐶𝑅𝑅 − �̅�𝑥𝑖𝑖��̂�𝛽2𝐶𝐶𝑅𝑅 − �̂�𝛽1𝐶𝐶𝑅𝑅��  

 = 𝑞𝑞𝑖𝑖𝑖𝑖 − 𝑥𝑥𝑖𝑖𝑖𝑖�̂�𝛽2𝐶𝐶𝑅𝑅 − �𝑞𝑞𝑖𝑖𝑖𝑖 − 𝑥𝑥𝑖𝑖𝑖𝑖�̂�𝛽1𝐶𝐶𝑅𝑅 − �̅�𝑥𝑖𝑖��̂�𝛽2𝐶𝐶𝑅𝑅 − �̂�𝛽1𝐶𝐶𝑅𝑅��  

 = (𝑥𝑥𝑖𝑖𝑖𝑖 − �̅�𝑥𝑖𝑖)��̂�𝛽1𝐶𝐶𝑅𝑅 − �̂�𝛽2𝐶𝐶𝑅𝑅�. (A20) 
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To derive the third equation of (23c), use first (1) and (14) again, before applying 
equation (20): 

��̂�𝜇𝑖𝑖(𝑅𝑅𝐹𝐹) + 𝜀𝜀�̂�𝑖𝑖𝑖(𝑅𝑅𝐹𝐹)� − ��̂�𝜇𝑖𝑖(𝐶𝐶𝑅𝑅) + 𝜀𝜀�̂�𝑖𝑖𝑖(𝐶𝐶𝑅𝑅)�  

 = 𝑞𝑞𝑖𝑖𝑖𝑖 − 𝑥𝑥𝑖𝑖𝑖𝑖�̂�𝛽𝑅𝑅𝐹𝐹 − �𝑞𝑞𝑖𝑖𝑖𝑖 − 𝑥𝑥𝑖𝑖𝑖𝑖�̂�𝛽1𝐶𝐶𝑅𝑅 − �̅�𝑥𝑖𝑖��̂�𝛽2𝐶𝐶𝑅𝑅 − �̂�𝛽1𝐶𝐶𝑅𝑅��  

 = 𝑥𝑥𝑖𝑖𝑖𝑖��̂�𝛽1𝐶𝐶𝑅𝑅 − �̂�𝛽𝑅𝑅𝐹𝐹� − �̅�𝑥𝑖𝑖��̂�𝛽1𝐶𝐶𝑅𝑅 − �̂�𝛽2𝐶𝐶𝑅𝑅�  

 = 𝑥𝑥𝑖𝑖𝑖𝑖��̂�𝛽1𝐶𝐶𝑅𝑅 − �̂�𝛽1𝐶𝐶𝑅𝑅 − 𝜌𝜌�𝑅𝑅𝐹𝐹��̂�𝛽2𝐶𝐶𝑅𝑅 − �̂�𝛽1𝐶𝐶𝑅𝑅�� − �̅�𝑥𝑖𝑖��̂�𝛽1𝐶𝐶𝑅𝑅 − �̂�𝛽2𝐶𝐶𝑅𝑅�  

 = (𝑥𝑥𝑖𝑖𝑖𝑖𝜌𝜌�𝑅𝑅𝐹𝐹 − �̅�𝑥𝑖𝑖)��̂�𝛽1𝐶𝐶𝑅𝑅 − �̂�𝛽2𝐶𝐶𝑅𝑅�. (A21) 

In the same vain, the third equation of (23d) can be derived from (1), (14) and (18): 

𝜔𝜔�𝑖𝑖𝑖𝑖(𝐿𝐿𝐿𝐿) − ��̂�𝜇𝑖𝑖(𝐶𝐶𝑅𝑅) + 𝜀𝜀�̂�𝑖𝑖𝑖(𝐶𝐶𝑅𝑅)�  

 = 𝑞𝑞𝑖𝑖𝑖𝑖 − 𝑥𝑥𝑖𝑖𝑖𝑖�̂�𝛽𝐿𝐿𝐿𝐿 − �𝑞𝑞𝑖𝑖𝑖𝑖 − 𝑥𝑥𝑖𝑖𝑖𝑖�̂�𝛽1𝐶𝐶𝑅𝑅 − �̅�𝑥𝑖𝑖��̂�𝛽2𝐶𝐶𝑅𝑅 − �̂�𝛽1𝐶𝐶𝑅𝑅��  

 = 𝑥𝑥𝑖𝑖𝑖𝑖��̂�𝛽1𝐶𝐶𝑅𝑅 − �̂�𝛽𝐿𝐿𝐿𝐿� − �̅�𝑥𝑖𝑖��̂�𝛽1𝐶𝐶𝑅𝑅 − �̂�𝛽2𝐶𝐶𝑅𝑅�  

 = 𝑥𝑥𝑖𝑖𝑖𝑖��̂�𝛽1𝐶𝐶𝑅𝑅 − �̂�𝛽1𝐶𝐶𝑅𝑅 − 𝜌𝜌�𝐿𝐿𝐿𝐿��̂�𝛽2𝐶𝐶𝑅𝑅 − �̂�𝛽1𝐶𝐶𝑅𝑅�� − �̅�𝑥𝑖𝑖��̂�𝛽1𝐶𝐶𝑅𝑅 − �̂�𝛽2𝐶𝐶𝑅𝑅�  

 = (𝑥𝑥𝑖𝑖𝑖𝑖𝜌𝜌�𝐿𝐿𝐿𝐿 − �̅�𝑥𝑖𝑖)��̂�𝛽1𝐶𝐶𝑅𝑅 − �̂�𝛽2𝐶𝐶𝑅𝑅�. (A22) 

Since strategy 2 estimates the same equations as strategy 1 with the sole difference of 
using effective instead of bilateral variables, all the derivations apply also to strategy 2; 
just replace each variable z by �̆�𝑧. To give an example, equation (22d) applied to strategy 
2 becomes 

𝑚𝑚�� 𝑖𝑖𝑖𝑖(𝑅𝑅𝐹𝐹, 𝜀𝜀) − 𝑚𝑚�� 𝑖𝑖𝑖𝑖(𝐶𝐶𝑅𝑅, 𝜔𝜔) =  𝜀𝜀̆̂𝑖𝑖𝑖𝑖(𝑅𝑅𝐹𝐹) − �𝜇𝜇�̂𝑖𝑖(𝐶𝐶𝑅𝑅) + 𝜀𝜀̆̂𝑖𝑖𝑖𝑖(𝐶𝐶𝑅𝑅)�  

 = −�𝑞𝑞��𝑖𝑖 − 𝑥𝑥�̅𝑖𝑖�̂�𝛽2𝐶𝐶𝑅𝑅� + (𝑥𝑥�𝑖𝑖𝑖𝑖 − 𝑥𝑥�̅𝑖𝑖)𝜌𝜌�𝑅𝑅𝐹𝐹��̂�𝛽1𝐶𝐶𝑅𝑅 − �̂�𝛽2𝐶𝐶𝑅𝑅� + 𝜀𝜀̆ ̅�̂�𝑖(𝑅𝑅𝐹𝐹) (A23) 

where the parameters �̂�𝛽1𝐶𝐶𝑅𝑅, �̂�𝛽2𝐶𝐶𝑅𝑅 and 𝜌𝜌�𝑅𝑅𝐹𝐹 are obtained in an estimation procedure that 
uses effective variables. 

Derivation of equations (25a)-(25d) and (26a)-(26d) in Table 3 
For the derivation of equations (25a)-(25d) and (26a)-(26d), note first that, according to 
equations (3), (4) and (5), each effective misalignment 𝑀𝑀�𝑖𝑖𝑖𝑖(Γ𝜀𝜀, 𝜀𝜀) and 𝑀𝑀�𝑖𝑖𝑖𝑖(Γ𝜔𝜔, 𝜔𝜔) is 
related to the corresponding estimated bilateral log misalignment 𝑚𝑚�𝑖𝑖𝑖𝑖(Γ𝜀𝜀, 𝜀𝜀) and 
𝑚𝑚�𝑖𝑖𝑖𝑖(Γ𝜔𝜔, 𝜔𝜔) in the following way: 

𝑀𝑀�𝑖𝑖𝑖𝑖(Γ𝜀𝜀, 𝜀𝜀) = 𝑒𝑒𝑥𝑥𝑒𝑒�𝑚𝑚�𝑖𝑖𝑖𝑖(Γ𝜀𝜀, 𝜀𝜀) − ∑ 𝑤𝑤𝑖𝑖𝑖𝑖𝑚𝑚�𝑖𝑖𝑖𝑖(Γ𝜀𝜀, 𝜀𝜀)𝑁𝑁
𝑖𝑖=1 �  

 = 𝑒𝑒𝑥𝑥𝑒𝑒�𝜀𝜀�̂�𝑖𝑖𝑖(Γ𝜀𝜀) − ∑ 𝑤𝑤𝑖𝑖𝑖𝑖𝜀𝜀�̂�𝑖𝑖𝑖(Γ𝜀𝜀)
𝑁𝑁
𝑖𝑖=1 �, (A24) 
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𝑀𝑀�𝑖𝑖𝑖𝑖(Γ𝜔𝜔, 𝜔𝜔) = 𝑒𝑒𝑥𝑥𝑒𝑒�𝑚𝑚�𝑖𝑖𝑖𝑖(Γ𝜔𝜔, 𝜔𝜔) − ∑ 𝑤𝑤𝑖𝑖𝑖𝑖𝑚𝑚�𝑖𝑖𝑖𝑖(Γ𝜔𝜔, 𝜔𝜔)𝑁𝑁
𝑖𝑖=1 �  

 = 𝑒𝑒𝑥𝑥𝑒𝑒�𝜔𝜔�𝑖𝑖𝑖𝑖(Γ𝜔𝜔) − ∑ 𝑤𝑤𝑖𝑖𝑖𝑖𝜔𝜔�𝑖𝑖𝑖𝑖(Γ𝜔𝜔)
𝑁𝑁
𝑖𝑖=1 � (A25) 

where 𝑒𝑒𝑥𝑥𝑒𝑒(𝑧𝑧) = 𝑒𝑒𝑧𝑧, the set of estimation methods Γ𝜀𝜀 = {𝐶𝐶𝑅𝑅, 𝐹𝐹𝐹𝐹, 𝐵𝐵𝐹𝐹, 𝑅𝑅𝐹𝐹} and Γ𝜔𝜔 =
{𝐶𝐶𝑅𝑅, 𝐹𝐹𝐹𝐹, 𝐵𝐵𝐹𝐹, 𝑅𝑅𝐹𝐹, 𝐿𝐿𝐿𝐿}. 

For the derivation of (25a), set Γ𝜀𝜀 = 𝐶𝐶𝑅𝑅 in (A24) and Γ𝜔𝜔 = 𝐶𝐶𝑅𝑅 in (A25) to obtain 

𝑀𝑀�𝑖𝑖𝑖𝑖(𝐶𝐶𝑅𝑅, 𝜀𝜀) − 𝑀𝑀�𝑖𝑖𝑖𝑖(𝐶𝐶𝑅𝑅, 𝜔𝜔)  

 =  𝑒𝑒𝑥𝑥𝑒𝑒�𝜀𝜀�̂�𝑖𝑖𝑖(𝐶𝐶𝑅𝑅) − ∑ 𝑤𝑤𝑖𝑖𝑖𝑖𝜀𝜀�̂�𝑖𝑖𝑖(𝐶𝐶𝑅𝑅)
𝑁𝑁
𝑖𝑖=1 � 

 −𝑒𝑒𝑥𝑥𝑒𝑒��̂�𝜇𝑖𝑖(𝐶𝐶𝑅𝑅) + 𝜀𝜀�̂�𝑖𝑖𝑖(𝐶𝐶𝑅𝑅) − ∑ 𝑤𝑤𝑖𝑖𝑖𝑖��̂�𝜇𝑖𝑖(𝐶𝐶𝑅𝑅) + 𝜀𝜀�̂�𝑖𝑖𝑖(𝐶𝐶𝑅𝑅)�𝑁𝑁
𝑖𝑖=1 �  

 =  𝑒𝑒𝑥𝑥𝑒𝑒�𝜀𝜀�̂�𝑖𝑖𝑖(𝐶𝐶𝑅𝑅) − ∑ 𝑤𝑤𝑖𝑖𝑖𝑖𝜀𝜀�̂�𝑖𝑖𝑖(𝐶𝐶𝑅𝑅)
𝑁𝑁
𝑖𝑖=1 � 

 −𝑒𝑒𝑥𝑥𝑒𝑒�𝜀𝜀�̂�𝑖𝑖𝑖(𝐶𝐶𝑅𝑅) − ∑ 𝑤𝑤𝑖𝑖𝑖𝑖𝜀𝜀�̂�𝑖𝑖𝑖(𝐶𝐶𝑅𝑅)
𝑁𝑁
𝑖𝑖=1 + �̂�𝜇𝑖𝑖(𝐶𝐶𝑅𝑅) − ∑ 𝑤𝑤𝑖𝑖𝑖𝑖�̂�𝜇𝑖𝑖(𝐶𝐶𝑅𝑅)

𝑁𝑁
𝑖𝑖=1 �  

 =  𝑒𝑒𝑥𝑥𝑒𝑒�𝜀𝜀�̂�𝑖𝑖𝑖(𝐶𝐶𝑅𝑅) − ∑ 𝑤𝑤𝑖𝑖𝑖𝑖𝜀𝜀�̂�𝑖𝑖𝑖(𝐶𝐶𝑅𝑅)
𝑁𝑁
𝑖𝑖=1 � 

 −𝑒𝑒𝑥𝑥𝑒𝑒�𝜀𝜀�̂�𝑖𝑖𝑖(𝐶𝐶𝑅𝑅) − ∑ 𝑤𝑤𝑖𝑖𝑖𝑖𝜀𝜀�̂�𝑖𝑖𝑖(𝐶𝐶𝑅𝑅)
𝑁𝑁
𝑖𝑖=1 �𝑒𝑒𝑥𝑥𝑒𝑒��̂�𝜇𝑖𝑖(𝐶𝐶𝑅𝑅) − ∑ 𝑤𝑤𝑖𝑖𝑖𝑖�̂�𝜇𝑖𝑖(𝐶𝐶𝑅𝑅)

𝑁𝑁
𝑖𝑖=1 �  

 =  𝑒𝑒𝑥𝑥𝑒𝑒�𝜀𝜀�̂�𝑖𝑖𝑖(𝐶𝐶𝑅𝑅) − ∑ 𝑤𝑤𝑖𝑖𝑖𝑖𝜀𝜀�̂�𝑖𝑖𝑖(𝐶𝐶𝑅𝑅)
𝑁𝑁
𝑖𝑖=1 ��1 − 𝑒𝑒𝑥𝑥𝑒𝑒��̂�𝜇𝑖𝑖(𝐶𝐶𝑅𝑅) − ∑ 𝑤𝑤𝑖𝑖𝑖𝑖�̂�𝜇𝑖𝑖(𝐶𝐶𝑅𝑅)

𝑁𝑁
𝑖𝑖=1 ��  

 =  𝑒𝑒𝑥𝑥𝑒𝑒�𝜀𝜀�̆�𝑖𝑖𝑖(𝐶𝐶𝑅𝑅)��1 − 𝑒𝑒𝑥𝑥𝑒𝑒�𝜇𝜇�𝑖𝑖(𝐶𝐶𝑅𝑅)�� (A26) 

where the last equation makes use of the notation for an effective variable in strategy 1 

�̆�𝑧𝑖𝑖𝑖𝑖 = 𝑧𝑧𝑖𝑖𝑖𝑖 − ∑ 𝑤𝑤𝑖𝑖𝑖𝑖𝑧𝑧𝑖𝑖𝑖𝑖
𝑁𝑁
𝑖𝑖=1 . (A27) 

For the derivation of (25b), set Γ𝜀𝜀 = 𝐹𝐹𝐹𝐹 in (A24) and Γ𝜔𝜔 = 𝐶𝐶𝑅𝑅 in (A25) to obtain 

𝑀𝑀�𝑖𝑖𝑖𝑖(𝐹𝐹𝐹𝐹, 𝜀𝜀) − 𝑀𝑀�𝑖𝑖𝑖𝑖(𝐶𝐶𝑅𝑅, 𝜔𝜔)  

 =  𝑒𝑒𝑥𝑥𝑒𝑒�𝜀𝜀�̂�𝑖𝑖𝑖(𝐹𝐹𝐹𝐹) − ∑ 𝑤𝑤𝑖𝑖𝑖𝑖𝜀𝜀�̂�𝑖𝑖𝑖(𝐹𝐹𝐹𝐹)
𝑁𝑁
𝑖𝑖=1 � 

 −𝑒𝑒𝑥𝑥𝑒𝑒��̂�𝜇𝑖𝑖(𝐶𝐶𝑅𝑅) + 𝜀𝜀�̂�𝑖𝑖𝑖(𝐶𝐶𝑅𝑅) − ∑ 𝑤𝑤𝑖𝑖𝑖𝑖��̂�𝜇𝑖𝑖(𝐶𝐶𝑅𝑅) + 𝜀𝜀�̂�𝑖𝑖𝑖(𝐶𝐶𝑅𝑅)�𝑁𝑁
𝑖𝑖=1 �  

 =  𝑒𝑒𝑥𝑥𝑒𝑒�𝜀𝜀�̂�𝑖𝑖𝑖(𝐶𝐶𝑅𝑅) − 𝜀𝜀̅�̂�𝑖(𝐶𝐶𝑅𝑅) − ∑ 𝑤𝑤𝑖𝑖𝑖𝑖�𝜀𝜀�̂�𝑖𝑖𝑖(𝐶𝐶𝑅𝑅) − 𝜀𝜀̅�̂�𝑖(𝐶𝐶𝑅𝑅)�𝑁𝑁
𝑖𝑖=1 � 

 −𝑒𝑒𝑥𝑥𝑒𝑒��̂�𝜇𝑖𝑖(𝐶𝐶𝑅𝑅) + 𝜀𝜀�̂�𝑖𝑖𝑖(𝐶𝐶𝑅𝑅) − ∑ 𝑤𝑤𝑖𝑖𝑖𝑖��̂�𝜇𝑖𝑖(𝐶𝐶𝑅𝑅) + 𝜀𝜀�̂�𝑖𝑖𝑖(𝐶𝐶𝑅𝑅)�𝑁𝑁
𝑖𝑖=1 �  

 =  𝑒𝑒𝑥𝑥𝑒𝑒�𝜀𝜀�̂�𝑖𝑖𝑖(𝐶𝐶𝑅𝑅) − ∑ 𝑤𝑤𝑖𝑖𝑖𝑖𝜀𝜀�̂�𝑖𝑖𝑖(𝐶𝐶𝑅𝑅)
𝑁𝑁
𝑖𝑖=1 − �𝜀𝜀̅�̂�𝑖(𝐶𝐶𝑅𝑅) − ∑ 𝑤𝑤𝑖𝑖𝑖𝑖𝜀𝜀̅�̂�𝑖(𝐶𝐶𝑅𝑅)

𝑁𝑁
𝑖𝑖=1 �� 

 −𝑒𝑒𝑥𝑥𝑒𝑒�𝜀𝜀�̂�𝑖𝑖𝑖(𝐶𝐶𝑅𝑅) − ∑ 𝑤𝑤𝑖𝑖𝑖𝑖𝜀𝜀�̂�𝑖𝑖𝑖(𝐶𝐶𝑅𝑅)
𝑁𝑁
𝑖𝑖=1 + �̂�𝜇𝑖𝑖(𝐶𝐶𝑅𝑅) − ∑ 𝑤𝑤𝑖𝑖𝑖𝑖�̂�𝜇𝑖𝑖(𝐶𝐶𝑅𝑅)

𝑁𝑁
𝑖𝑖=1 �  

 =  𝑒𝑒𝑥𝑥𝑒𝑒�𝜀𝜀�̂�𝑖𝑖𝑖(𝐶𝐶𝑅𝑅) − ∑ 𝑤𝑤𝑖𝑖𝑖𝑖𝜀𝜀�̂�𝑖𝑖𝑖(𝐶𝐶𝑅𝑅)
𝑁𝑁
𝑖𝑖=1 � 

 ∙ �𝑒𝑒𝑥𝑥𝑒𝑒�−�𝜀𝜀̅�̂�𝑖(𝐶𝐶𝑅𝑅) − ∑ 𝑤𝑤𝑖𝑖𝑖𝑖𝜀𝜀̅�̂�𝑖(𝐶𝐶𝑅𝑅)
𝑁𝑁
𝑖𝑖=1 �� − 𝑒𝑒𝑥𝑥𝑒𝑒��̂�𝜇𝑖𝑖(𝐶𝐶𝑅𝑅) − ∑ 𝑤𝑤𝑖𝑖𝑖𝑖�̂�𝜇𝑖𝑖(𝐶𝐶𝑅𝑅)

𝑁𝑁
𝑖𝑖=1 ��  

 =  𝑒𝑒𝑥𝑥𝑒𝑒�𝜀𝜀�̆�𝑖𝑖𝑖(𝐶𝐶𝑅𝑅)��𝑒𝑒𝑥𝑥𝑒𝑒�−𝜀𝜀̅�̆�𝑖(𝐶𝐶𝑅𝑅)� − 𝑒𝑒𝑥𝑥𝑒𝑒�𝜇𝜇�𝑖𝑖(𝐶𝐶𝑅𝑅)�� (A28) 
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where the second equation makes use of (A7) and the last one of (A27). 

In order to derive (25c), set Γ𝜀𝜀 = 𝐵𝐵𝐹𝐹 in (A24) and Γ𝜔𝜔 = 𝐶𝐶𝑅𝑅 in (A25). This yields 

𝑀𝑀�𝑖𝑖𝑖𝑖(𝐵𝐵𝐹𝐹, 𝜀𝜀) − 𝑀𝑀�𝑖𝑖𝑖𝑖(𝐶𝐶𝑅𝑅, 𝜔𝜔)  

 =  𝑒𝑒𝑥𝑥𝑒𝑒�𝜀𝜀�̂�𝑖𝑖𝑖(𝐵𝐵𝐹𝐹) − ∑ 𝑤𝑤𝑖𝑖𝑖𝑖𝜀𝜀�̂�𝑖𝑖𝑖(𝐵𝐵𝐹𝐹)
𝑁𝑁
𝑖𝑖=1 � 

 −𝑒𝑒𝑥𝑥𝑒𝑒��̂�𝜇𝑖𝑖(𝐶𝐶𝑅𝑅) + 𝜀𝜀�̂�𝑖𝑖𝑖(𝐶𝐶𝑅𝑅) − ∑ 𝑤𝑤𝑖𝑖𝑖𝑖��̂�𝜇𝑖𝑖(𝐶𝐶𝑅𝑅) + 𝜀𝜀�̂�𝑖𝑖𝑖(𝐶𝐶𝑅𝑅)�𝑁𝑁
𝑖𝑖=1 � 

 =  𝑒𝑒𝑥𝑥𝑒𝑒�𝜀𝜀�̂�𝑖𝑖𝑖(𝐶𝐶𝑅𝑅) − 𝜀𝜀̅�̂�𝑖(𝐶𝐶𝑅𝑅) + (𝑥𝑥𝑖𝑖𝑖𝑖 − �̅�𝑥𝑖𝑖)��̂�𝛽1𝐶𝐶𝑅𝑅 − �̂�𝛽2𝐶𝐶𝑅𝑅� − ∑ 𝑤𝑤𝑖𝑖𝑖𝑖�𝜀𝜀�̂�𝑖𝑖𝑖(𝐶𝐶𝑅𝑅) − 𝜀𝜀̅�̂�𝑖(𝐶𝐶𝑅𝑅)
𝑁𝑁
𝑖𝑖=1  

 +�𝑥𝑥𝑖𝑖𝑖𝑖 − �̅�𝑥𝑖𝑖���̂�𝛽1𝐶𝐶𝑅𝑅 − �̂�𝛽2𝐶𝐶𝑅𝑅��� − 𝑒𝑒𝑥𝑥𝑒𝑒�𝜀𝜀�̂�𝑖𝑖𝑖(𝐶𝐶𝑅𝑅) − ∑ 𝑤𝑤𝑖𝑖𝑖𝑖𝜀𝜀�̂�𝑖𝑖𝑖(𝐶𝐶𝑅𝑅)
𝑁𝑁
𝑖𝑖=1 + �̂�𝜇𝑖𝑖(𝐶𝐶𝑅𝑅) 

 − ∑ 𝑤𝑤𝑖𝑖𝑖𝑖�̂�𝜇𝑖𝑖(𝐶𝐶𝑅𝑅)
𝑁𝑁
𝑖𝑖=1 �  

 =  𝑒𝑒𝑥𝑥𝑒𝑒�𝜀𝜀�̂�𝑖𝑖𝑖(𝐶𝐶𝑅𝑅) − ∑ 𝑤𝑤𝑖𝑖𝑖𝑖𝜀𝜀�̂�𝑖𝑖𝑖(𝐶𝐶𝑅𝑅)
𝑁𝑁
𝑖𝑖=1 ��𝑒𝑒𝑥𝑥𝑒𝑒�(𝑥𝑥𝑖𝑖𝑖𝑖 − �̅�𝑥𝑖𝑖)��̂�𝛽1𝐶𝐶𝑅𝑅 − �̂�𝛽2𝐶𝐶𝑅𝑅� 

 − ∑ 𝑤𝑤𝑖𝑖𝑖𝑖�𝑥𝑥𝑖𝑖𝑖𝑖 − �̅�𝑥𝑖𝑖���̂�𝛽1𝐶𝐶𝑅𝑅 − �̂�𝛽2𝐶𝐶𝑅𝑅�𝑁𝑁
𝑖𝑖=1 − �𝜀𝜀̅�̂�𝑖(𝐶𝐶𝑅𝑅) − ∑ 𝑤𝑤𝑖𝑖𝑖𝑖𝜀𝜀̅�̂�𝑖(𝐶𝐶𝑅𝑅)

𝑁𝑁
𝑖𝑖=1 �� 

 −𝑒𝑒𝑥𝑥𝑒𝑒��̂�𝜇𝑖𝑖(𝐶𝐶𝑅𝑅) − ∑ 𝑤𝑤𝑖𝑖𝑖𝑖�̂�𝜇𝑖𝑖(𝐶𝐶𝑅𝑅)
𝑁𝑁
𝑖𝑖=1 �� 

 =  𝑒𝑒𝑥𝑥𝑒𝑒�𝜀𝜀�̆�𝑖𝑖𝑖(𝐶𝐶𝑅𝑅)��𝑒𝑒𝑥𝑥𝑒𝑒�(𝑥𝑥𝚤𝚤𝑖𝑖 − �̅�𝑥𝚤𝚤� )��̂�𝛽1𝐶𝐶𝑅𝑅 − �̂�𝛽2𝐶𝐶𝑅𝑅� − 𝜀𝜀̅�̆�𝑖(𝐶𝐶𝑅𝑅)� − 𝑒𝑒𝑥𝑥𝑒𝑒�𝜇𝜇�𝑖𝑖(𝐶𝐶𝑅𝑅)��  

 =  𝑒𝑒𝑥𝑥𝑒𝑒�𝜀𝜀�̆�𝑖𝑖𝑖(𝐶𝐶𝑅𝑅)��𝑒𝑒𝑥𝑥𝑒𝑒�(𝑥𝑥�𝑖𝑖𝑖𝑖 − �̅�𝑥�𝑖𝑖)��̂�𝛽1𝐶𝐶𝑅𝑅 − �̂�𝛽2𝐶𝐶𝑅𝑅� − 𝜀𝜀̅�̆�𝑖(𝐶𝐶𝑅𝑅)� − 𝑒𝑒𝑥𝑥𝑒𝑒�𝜇𝜇�𝑖𝑖(𝐶𝐶𝑅𝑅)�� (A29) 

where the fourth equation makes use of (A27) and the second of 

𝜀𝜀�̂�𝑖𝑖𝑖(𝐵𝐵𝐹𝐹) = 𝜀𝜀�̂�𝑖𝑖𝑖(𝐶𝐶𝑅𝑅) − 𝜀𝜀̅�̂�𝑖(𝐶𝐶𝑅𝑅) + (𝑥𝑥𝑖𝑖𝑖𝑖 − �̅�𝑥𝑖𝑖)��̂�𝛽1𝐶𝐶𝑅𝑅 − �̂�𝛽2𝐶𝐶𝑅𝑅�, (A30) 

which results from combining (22c) and (24). 

Setting Γ𝜀𝜀 = 𝑅𝑅𝐹𝐹 in (A24) and Γ𝜔𝜔 = 𝐶𝐶𝑅𝑅 in (A25) allows the derivation of (25d): 

𝑀𝑀�𝑖𝑖𝑖𝑖(𝑅𝑅𝐹𝐹, 𝜀𝜀) − 𝑀𝑀�𝑖𝑖𝑖𝑖(𝐶𝐶𝑅𝑅, 𝜔𝜔)  

 =  𝑒𝑒𝑥𝑥𝑒𝑒�𝜀𝜀�̂�𝑖𝑖𝑖(𝑅𝑅𝐹𝐹) − ∑ 𝑤𝑤𝑖𝑖𝑖𝑖𝜀𝜀�̂�𝑖𝑖𝑖(𝑅𝑅𝐹𝐹)
𝑁𝑁
𝑖𝑖=1 � 

 −𝑒𝑒𝑥𝑥𝑒𝑒��̂�𝜇𝑖𝑖(𝐶𝐶𝑅𝑅) + 𝜀𝜀�̂�𝑖𝑖𝑖(𝐶𝐶𝑅𝑅) − ∑ 𝑤𝑤𝑖𝑖𝑖𝑖��̂�𝜇𝑖𝑖(𝐶𝐶𝑅𝑅) + 𝜀𝜀�̂�𝑖𝑖𝑖(𝐶𝐶𝑅𝑅)�𝑁𝑁
𝑖𝑖=1 � 

 = 𝑒𝑒𝑥𝑥𝑒𝑒�𝜀𝜀�̂�𝑖𝑖𝑖(𝐶𝐶𝑅𝑅) − 𝜀𝜀̅�̂�𝑖(𝐶𝐶𝑅𝑅) + 𝜀𝜀̅�̂�𝑖(𝑅𝑅𝐹𝐹) + (𝑥𝑥𝑖𝑖𝑖𝑖 − �̅�𝑥𝑖𝑖)𝜌𝜌�𝑅𝑅𝐹𝐹��̂�𝛽1𝐶𝐶𝑅𝑅 − �̂�𝛽2𝐶𝐶𝑅𝑅� 

 − ∑ 𝑤𝑤𝑖𝑖𝑖𝑖�𝜀𝜀�̂�𝑖𝑖𝑖(𝐶𝐶𝑅𝑅) − 𝜀𝜀̅�̂�𝑖(𝐶𝐶𝑅𝑅) + 𝜀𝜀̅�̂�𝑖(𝑅𝑅𝐹𝐹) + �𝑥𝑥𝑖𝑖𝑖𝑖 − �̅�𝑥𝑖𝑖�𝜌𝜌�𝑅𝑅𝐹𝐹��̂�𝛽1𝐶𝐶𝑅𝑅 − �̂�𝛽2𝐶𝐶𝑅𝑅��𝑁𝑁
𝑖𝑖=1 � 

 −𝑒𝑒𝑥𝑥𝑒𝑒�𝜀𝜀�̂�𝑖𝑖𝑖(𝐶𝐶𝑅𝑅) − ∑ 𝑤𝑤𝑖𝑖𝑖𝑖𝜀𝜀�̂�𝑖𝑖𝑖(𝐶𝐶𝑅𝑅)
𝑁𝑁
𝑖𝑖=1 + �̂�𝜇𝑖𝑖(𝐶𝐶𝑅𝑅) − ∑ 𝑤𝑤𝑖𝑖𝑖𝑖�̂�𝜇𝑖𝑖(𝐶𝐶𝑅𝑅)

𝑁𝑁
𝑖𝑖=1 �  

 =  𝑒𝑒𝑥𝑥𝑒𝑒�𝜀𝜀�̂�𝑖𝑖𝑖(𝐶𝐶𝑅𝑅) − ∑ 𝑤𝑤𝑖𝑖𝑖𝑖𝜀𝜀�̂�𝑖𝑖𝑖(𝐶𝐶𝑅𝑅)
𝑁𝑁
𝑖𝑖=1 ��𝑒𝑒𝑥𝑥𝑒𝑒�(𝑥𝑥𝑖𝑖𝑖𝑖 − �̅�𝑥𝑖𝑖)𝜌𝜌�𝑅𝑅𝐹𝐹��̂�𝛽1𝐶𝐶𝑅𝑅 − �̂�𝛽2𝐶𝐶𝑅𝑅� 

 − ∑ 𝑤𝑤𝑖𝑖𝑖𝑖�𝑥𝑥𝑖𝑖𝑖𝑖 − �̅�𝑥𝑖𝑖�𝜌𝜌�𝑅𝑅𝐹𝐹��̂�𝛽1𝐶𝐶𝑅𝑅 − �̂�𝛽2𝐶𝐶𝑅𝑅�𝑁𝑁
𝑖𝑖=1 − �𝜀𝜀̅�̂�𝑖(𝐶𝐶𝑅𝑅) − ∑ 𝑤𝑤𝑖𝑖𝑖𝑖𝜀𝜀̅�̂�𝑖(𝐶𝐶𝑅𝑅)

𝑁𝑁
𝑖𝑖=1 � 

 +�𝜀𝜀̅�̂�𝑖(𝑅𝑅𝐹𝐹) − ∑ 𝑤𝑤𝑖𝑖𝑖𝑖𝜀𝜀̅�̂�𝑖(𝑅𝑅𝐹𝐹)
𝑁𝑁
𝑖𝑖=1 �� − 𝑒𝑒𝑥𝑥𝑒𝑒��̂�𝜇𝑖𝑖(𝐶𝐶𝑅𝑅) − ∑ 𝑤𝑤𝑖𝑖𝑖𝑖�̂�𝜇𝑖𝑖(𝐶𝐶𝑅𝑅)

𝑁𝑁
𝑖𝑖=1 �� 
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 =  𝑒𝑒𝑥𝑥𝑒𝑒�𝜀𝜀�̆�𝑖𝑖𝑖(𝐶𝐶𝑅𝑅)��𝑒𝑒𝑥𝑥𝑒𝑒�(𝑥𝑥𝚤𝚤𝑖𝑖 − �̅�𝑥𝚤𝚤� )𝜌𝜌�𝑅𝑅𝐹𝐹��̂�𝛽1𝐶𝐶𝑅𝑅 − �̂�𝛽2𝐶𝐶𝑅𝑅� − 𝜀𝜀̅�̆�𝑖(𝐶𝐶𝑅𝑅) + 𝜀𝜀̅�̆�𝑖(𝑅𝑅𝐹𝐹)� 

 −𝑒𝑒𝑥𝑥𝑒𝑒�𝜇𝜇�𝑖𝑖(𝐶𝐶𝑅𝑅)��  

 =  𝑒𝑒𝑥𝑥𝑒𝑒�𝜀𝜀�̆�𝑖𝑖𝑖(𝐶𝐶𝑅𝑅)��𝑒𝑒𝑥𝑥𝑒𝑒�(𝑥𝑥�𝑖𝑖𝑖𝑖 − �̅�𝑥�𝑖𝑖)𝜌𝜌�𝑅𝑅𝐹𝐹��̂�𝛽1𝐶𝐶𝑅𝑅 − �̂�𝛽2𝐶𝐶𝑅𝑅� − 𝜀𝜀̅�̆�𝑖(𝐶𝐶𝑅𝑅) + 𝜀𝜀̅�̆�𝑖(𝑅𝑅𝐹𝐹)� 

 −𝑒𝑒𝑥𝑥𝑒𝑒�𝜇𝜇�𝑖𝑖(𝐶𝐶𝑅𝑅)�� (A31) 

where the fourth equation makes use of (A27) and the second of 

𝜀𝜀�̂�𝑖𝑖𝑖(𝑅𝑅𝐹𝐹) = 𝜀𝜀�̂�𝑖𝑖𝑖(𝐶𝐶𝑅𝑅) − 𝜀𝜀̅�̂�𝑖(𝐶𝐶𝑅𝑅) + 𝜀𝜀̅�̂�𝑖(𝑅𝑅𝐹𝐹) + (𝑥𝑥𝑖𝑖𝑖𝑖 − �̅�𝑥𝑖𝑖)𝜌𝜌�𝑅𝑅𝐹𝐹��̂�𝛽1𝐶𝐶𝑅𝑅 − �̂�𝛽2𝐶𝐶𝑅𝑅�, (A32) 

which results from combining (22d) and (24). 

Equation (26a) can be derived if (A25) is used first with Γ𝜔𝜔 = 𝐹𝐹𝐹𝐹 and then with Γ𝜔𝜔 =
𝐶𝐶𝑅𝑅: 

𝑀𝑀�𝑖𝑖𝑖𝑖(𝐹𝐹𝐹𝐹, 𝜔𝜔) − 𝑀𝑀�𝑖𝑖𝑖𝑖(𝐶𝐶𝑅𝑅, 𝜔𝜔)  

 =  𝑒𝑒𝑥𝑥𝑒𝑒��̂�𝜇𝑖𝑖(𝐹𝐹𝐹𝐹) + 𝜀𝜀�̂�𝑖𝑖𝑖(𝐹𝐹𝐹𝐹) − ∑ 𝑤𝑤𝑖𝑖𝑖𝑖��̂�𝜇𝑖𝑖(𝐹𝐹𝐹𝐹) + 𝜀𝜀�̂�𝑖𝑖𝑖(𝐹𝐹𝐹𝐹)�𝑁𝑁
𝑖𝑖=1 � 

 −𝑒𝑒𝑥𝑥𝑒𝑒��̂�𝜇𝑖𝑖(𝐶𝐶𝑅𝑅) + 𝜀𝜀�̂�𝑖𝑖𝑖(𝐶𝐶𝑅𝑅) − ∑ 𝑤𝑤𝑖𝑖𝑖𝑖��̂�𝜇𝑖𝑖(𝐶𝐶𝑅𝑅) + 𝜀𝜀�̂�𝑖𝑖𝑖(𝐶𝐶𝑅𝑅)�𝑁𝑁
𝑖𝑖=1 � 

 = 𝑒𝑒𝑥𝑥𝑒𝑒��̂�𝜇𝑖𝑖(𝐶𝐶𝑅𝑅) + 𝜀𝜀�̂�𝑖𝑖𝑖(𝐶𝐶𝑅𝑅) − �̅�𝑥𝑖𝑖��̂�𝛽1𝐶𝐶𝑅𝑅 − �̂�𝛽2𝐶𝐶𝑅𝑅� − ∑ 𝑤𝑤𝑖𝑖𝑖𝑖��̂�𝜇𝑖𝑖(𝐶𝐶𝑅𝑅) + 𝜀𝜀�̂�𝑖𝑖𝑖(𝐶𝐶𝑅𝑅)
𝑁𝑁
𝑖𝑖=1  

 −�̅�𝑥𝑖𝑖��̂�𝛽1𝐶𝐶𝑅𝑅 − �̂�𝛽2𝐶𝐶𝑅𝑅��� − 𝑒𝑒𝑥𝑥𝑒𝑒��̂�𝜇𝑖𝑖(𝐶𝐶𝑅𝑅) + 𝜀𝜀�̂�𝑖𝑖𝑖(𝐶𝐶𝑅𝑅) − ∑ 𝑤𝑤𝑖𝑖𝑖𝑖��̂�𝜇𝑖𝑖(𝐶𝐶𝑅𝑅) + 𝜀𝜀�̂�𝑖𝑖𝑖(𝐶𝐶𝑅𝑅)�𝑁𝑁
𝑖𝑖=1 �  

 = 𝑒𝑒𝑥𝑥𝑒𝑒�𝜔𝜔�𝑖𝑖𝑖𝑖(𝐶𝐶𝑅𝑅) − ∑ 𝑤𝑤𝑖𝑖𝑖𝑖𝜔𝜔�𝑖𝑖𝑖𝑖(𝐶𝐶𝑅𝑅)
𝑁𝑁
𝑖𝑖=1 − ��̅�𝑥𝑖𝑖��̂�𝛽1𝐶𝐶𝑅𝑅 − �̂�𝛽2𝐶𝐶𝑅𝑅� 

 − ∑ 𝑤𝑤𝑖𝑖𝑖𝑖�̅�𝑥𝑖𝑖��̂�𝛽1𝐶𝐶𝑅𝑅 − �̂�𝛽2𝐶𝐶𝑅𝑅�𝑁𝑁
𝑖𝑖=1 �� − 𝑒𝑒𝑥𝑥𝑒𝑒�𝜔𝜔�𝑖𝑖𝑖𝑖(𝐶𝐶𝑅𝑅) − ∑ 𝑤𝑤𝑖𝑖𝑖𝑖𝜔𝜔�𝑖𝑖𝑖𝑖(𝐶𝐶𝑅𝑅)

𝑁𝑁
𝑖𝑖=1 �  

 = 𝑒𝑒𝑥𝑥𝑒𝑒�𝜔𝜔�𝑖𝑖𝑖𝑖(𝐶𝐶𝑅𝑅) − ∑ 𝑤𝑤𝑖𝑖𝑖𝑖𝜔𝜔�𝑖𝑖𝑖𝑖(𝐶𝐶𝑅𝑅)
𝑁𝑁
𝑖𝑖=1 � 

 ∙ � 𝑒𝑒𝑥𝑥𝑒𝑒�−��̅�𝑥𝑖𝑖��̂�𝛽1𝐶𝐶𝑅𝑅 − �̂�𝛽2𝐶𝐶𝑅𝑅� − ∑ 𝑤𝑤𝑖𝑖𝑖𝑖�̅�𝑥𝑖𝑖��̂�𝛽1𝐶𝐶𝑅𝑅 − �̂�𝛽2𝐶𝐶𝑅𝑅�𝑁𝑁
𝑖𝑖=1 �� − 1�  

 = 𝑒𝑒𝑥𝑥𝑒𝑒�𝜔𝜔�𝑖𝑖𝑖𝑖(𝐶𝐶𝑅𝑅)� ∙ � 𝑒𝑒𝑥𝑥𝑒𝑒�−�̅�𝑥�𝑖𝑖��̂�𝛽1𝐶𝐶𝑅𝑅 − �̂�𝛽2𝐶𝐶𝑅𝑅�� − 1� (A33) 

where the second equation uses (23a) and the last one (A27). 

For the derivation of (26b), use (A25) by first setting Γ𝜔𝜔 = 𝐵𝐵𝐹𝐹 and then Γ𝜔𝜔 = 𝐶𝐶𝑅𝑅: 

𝑀𝑀�𝑖𝑖𝑖𝑖(𝐵𝐵𝐹𝐹, 𝜔𝜔) − 𝑀𝑀�𝑖𝑖𝑖𝑖(𝐶𝐶𝑅𝑅, 𝜔𝜔)  

 =  𝑒𝑒𝑥𝑥𝑒𝑒��̂�𝜇𝑖𝑖(𝐵𝐵𝐹𝐹) + 𝜀𝜀�̂�𝑖𝑖𝑖(𝐵𝐵𝐹𝐹) − ∑ 𝑤𝑤𝑖𝑖𝑖𝑖��̂�𝜇𝑖𝑖(𝐵𝐵𝐹𝐹) + 𝜀𝜀�̂�𝑖𝑖𝑖(𝐵𝐵𝐹𝐹)�𝑁𝑁
𝑖𝑖=1 � 

 −𝑒𝑒𝑥𝑥𝑒𝑒��̂�𝜇𝑖𝑖(𝐶𝐶𝑅𝑅) + 𝜀𝜀�̂�𝑖𝑖𝑖(𝐶𝐶𝑅𝑅) − ∑ 𝑤𝑤𝑖𝑖𝑖𝑖��̂�𝜇𝑖𝑖(𝐶𝐶𝑅𝑅) + 𝜀𝜀�̂�𝑖𝑖𝑖(𝐶𝐶𝑅𝑅)�𝑁𝑁
𝑖𝑖=1 � 

 = 𝑒𝑒𝑥𝑥𝑒𝑒��̂�𝜇𝑖𝑖(𝐶𝐶𝑅𝑅) + 𝜀𝜀�̂�𝑖𝑖𝑖(𝐶𝐶𝑅𝑅) + (𝑥𝑥𝑖𝑖𝑖𝑖 − �̅�𝑥𝑖𝑖)��̂�𝛽1𝐶𝐶𝑅𝑅 − �̂�𝛽2𝐶𝐶𝑅𝑅� − ∑ 𝑤𝑤𝑖𝑖𝑖𝑖��̂�𝜇𝑖𝑖(𝐶𝐶𝑅𝑅) + 𝜀𝜀�̂�𝑖𝑖𝑖(𝐶𝐶𝑅𝑅)
𝑁𝑁
𝑖𝑖=1  

 +�𝑥𝑥𝑖𝑖𝑖𝑖 − �̅�𝑥𝑖𝑖���̂�𝛽1𝐶𝐶𝑅𝑅 − �̂�𝛽2𝐶𝐶𝑅𝑅��� − 𝑒𝑒𝑥𝑥𝑒𝑒��̂�𝜇𝑖𝑖(𝐶𝐶𝑅𝑅) + 𝜀𝜀�̂�𝑖𝑖𝑖(𝐶𝐶𝑅𝑅) − ∑ 𝑤𝑤𝑖𝑖𝑖𝑖��̂�𝜇𝑖𝑖(𝐶𝐶𝑅𝑅) + 𝜀𝜀�̂�𝑖𝑖𝑖(𝐶𝐶𝑅𝑅)�𝑁𝑁
𝑖𝑖=1 �  
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 = 𝑒𝑒𝑥𝑥𝑒𝑒�𝜔𝜔�𝑖𝑖𝑖𝑖(𝐶𝐶𝑅𝑅) − ∑ 𝑤𝑤𝑖𝑖𝑖𝑖𝜔𝜔�𝑖𝑖𝑖𝑖(𝐶𝐶𝑅𝑅)
𝑁𝑁
𝑖𝑖=1 + (𝑥𝑥𝑖𝑖𝑖𝑖 − �̅�𝑥𝑖𝑖)��̂�𝛽1𝐶𝐶𝑅𝑅 − �̂�𝛽2𝐶𝐶𝑅𝑅� 

 − ∑ 𝑤𝑤𝑖𝑖𝑖𝑖�𝑥𝑥𝑖𝑖𝑖𝑖 − �̅�𝑥𝑖𝑖���̂�𝛽1𝐶𝐶𝑅𝑅 − �̂�𝛽2𝐶𝐶𝑅𝑅�𝑁𝑁
𝑖𝑖=1 � − 𝑒𝑒𝑥𝑥𝑒𝑒�𝜔𝜔�𝑖𝑖𝑖𝑖(𝐶𝐶𝑅𝑅) − ∑ 𝑤𝑤𝑖𝑖𝑖𝑖𝜔𝜔�𝑖𝑖𝑖𝑖(𝐶𝐶𝑅𝑅)

𝑁𝑁
𝑖𝑖=1 �  

 = 𝑒𝑒𝑥𝑥𝑒𝑒�𝜔𝜔�𝑖𝑖𝑖𝑖(𝐶𝐶𝑅𝑅) − ∑ 𝑤𝑤𝑖𝑖𝑖𝑖𝜔𝜔�𝑖𝑖𝑖𝑖(𝐶𝐶𝑅𝑅)
𝑁𝑁
𝑖𝑖=1 � 

 ∙ � 𝑒𝑒𝑥𝑥𝑒𝑒�(𝑥𝑥𝑖𝑖𝑖𝑖 − �̅�𝑥𝑖𝑖)��̂�𝛽1𝐶𝐶𝑅𝑅 − �̂�𝛽2𝐶𝐶𝑅𝑅� − ∑ 𝑤𝑤𝑖𝑖𝑖𝑖�𝑥𝑥𝑖𝑖𝑖𝑖 − �̅�𝑥𝑖𝑖���̂�𝛽1𝐶𝐶𝑅𝑅 − �̂�𝛽2𝐶𝐶𝑅𝑅�𝑁𝑁
𝑖𝑖=1 � − 1�  

 = 𝑒𝑒𝑥𝑥𝑒𝑒�𝜔𝜔�𝑖𝑖𝑖𝑖(𝐶𝐶𝑅𝑅)� ∙ � 𝑒𝑒𝑥𝑥𝑒𝑒�(𝑥𝑥𝚤𝚤𝑖𝑖 − �̅�𝑥𝚤𝚤� )��̂�𝛽1𝐶𝐶𝑅𝑅 − �̂�𝛽2𝐶𝐶𝑅𝑅�� − 1�  

 = 𝑒𝑒𝑥𝑥𝑒𝑒�𝜔𝜔�𝑖𝑖𝑖𝑖(𝐶𝐶𝑅𝑅)� ∙ � 𝑒𝑒𝑥𝑥𝑒𝑒�(𝑥𝑥�𝑖𝑖𝑖𝑖 − �̅�𝑥�𝑖𝑖)��̂�𝛽1𝐶𝐶𝑅𝑅 − �̂�𝛽2𝐶𝐶𝑅𝑅�� − 1� (A34) 

where the second equation uses (23b) and the fifth one (A27). 

Equation (26c) is derived by using (A25) where first Γ𝜔𝜔 = 𝑅𝑅𝐹𝐹 and then Γ𝜔𝜔 = 𝐶𝐶𝑅𝑅: 

𝑀𝑀�𝑖𝑖𝑖𝑖(𝑅𝑅𝐹𝐹, 𝜔𝜔) − 𝑀𝑀�𝑖𝑖𝑖𝑖(𝐶𝐶𝑅𝑅, 𝜔𝜔)  

 =  𝑒𝑒𝑥𝑥𝑒𝑒��̂�𝜇𝑖𝑖(𝑅𝑅𝐹𝐹) + 𝜀𝜀�̂�𝑖𝑖𝑖(𝑅𝑅𝐹𝐹) − ∑ 𝑤𝑤𝑖𝑖𝑖𝑖��̂�𝜇𝑖𝑖(𝑅𝑅𝐹𝐹) + 𝜀𝜀�̂�𝑖𝑖𝑖(𝑅𝑅𝐹𝐹)�𝑁𝑁
𝑖𝑖=1 � 

 −𝑒𝑒𝑥𝑥𝑒𝑒��̂�𝜇𝑖𝑖(𝐶𝐶𝑅𝑅) + 𝜀𝜀�̂�𝑖𝑖𝑖(𝐶𝐶𝑅𝑅) − ∑ 𝑤𝑤𝑖𝑖𝑖𝑖��̂�𝜇𝑖𝑖(𝐶𝐶𝑅𝑅) + 𝜀𝜀�̂�𝑖𝑖𝑖(𝐶𝐶𝑅𝑅)�𝑁𝑁
𝑖𝑖=1 � 

 = 𝑒𝑒𝑥𝑥𝑒𝑒��̂�𝜇𝑖𝑖(𝐶𝐶𝑅𝑅) + 𝜀𝜀�̂�𝑖𝑖𝑖(𝐶𝐶𝑅𝑅) + (𝑥𝑥𝑖𝑖𝑖𝑖𝜌𝜌�𝑅𝑅𝐹𝐹 − �̅�𝑥𝑖𝑖)��̂�𝛽1𝐶𝐶𝑅𝑅 − �̂�𝛽2𝐶𝐶𝑅𝑅� 

 − ∑ 𝑤𝑤𝑖𝑖𝑖𝑖��̂�𝜇𝑖𝑖(𝐶𝐶𝑅𝑅) + 𝜀𝜀�̂�𝑖𝑖𝑖(𝐶𝐶𝑅𝑅) + �𝑥𝑥𝑖𝑖𝑖𝑖𝜌𝜌�𝑅𝑅𝐹𝐹 − �̅�𝑥𝑖𝑖���̂�𝛽1𝐶𝐶𝑅𝑅 − �̂�𝛽2𝐶𝐶𝑅𝑅��𝑁𝑁
𝑖𝑖=1 � 

 −𝑒𝑒𝑥𝑥𝑒𝑒��̂�𝜇𝑖𝑖(𝐶𝐶𝑅𝑅) + 𝜀𝜀�̂�𝑖𝑖𝑖(𝐶𝐶𝑅𝑅) − ∑ 𝑤𝑤𝑖𝑖𝑖𝑖��̂�𝜇𝑖𝑖(𝐶𝐶𝑅𝑅) + 𝜀𝜀�̂�𝑖𝑖𝑖(𝐶𝐶𝑅𝑅)�𝑁𝑁
𝑖𝑖=1 �  

 = 𝑒𝑒𝑥𝑥𝑒𝑒�𝜔𝜔�𝑖𝑖𝑖𝑖(𝐶𝐶𝑅𝑅) − ∑ 𝑤𝑤𝑖𝑖𝑖𝑖𝜔𝜔�𝑖𝑖𝑖𝑖(𝐶𝐶𝑅𝑅)
𝑁𝑁
𝑖𝑖=1 + (𝑥𝑥𝑖𝑖𝑖𝑖𝜌𝜌�𝑅𝑅𝐹𝐹 − �̅�𝑥𝑖𝑖)��̂�𝛽1𝐶𝐶𝑅𝑅 − �̂�𝛽2𝐶𝐶𝑅𝑅� 

 − ∑ 𝑤𝑤𝑖𝑖𝑖𝑖�𝑥𝑥𝑖𝑖𝑖𝑖𝜌𝜌�𝑅𝑅𝐹𝐹 − �̅�𝑥𝑖𝑖���̂�𝛽1𝐶𝐶𝑅𝑅 − �̂�𝛽2𝐶𝐶𝑅𝑅�𝑁𝑁
𝑖𝑖=1 � − 𝑒𝑒𝑥𝑥𝑒𝑒�𝜔𝜔�𝑖𝑖𝑖𝑖(𝐶𝐶𝑅𝑅) − ∑ 𝑤𝑤𝑖𝑖𝑖𝑖𝜔𝜔�𝑖𝑖𝑖𝑖(𝐶𝐶𝑅𝑅)

𝑁𝑁
𝑖𝑖=1 � 

 = 𝑒𝑒𝑥𝑥𝑒𝑒�𝜔𝜔�𝑖𝑖𝑖𝑖(𝐶𝐶𝑅𝑅) − ∑ 𝑤𝑤𝑖𝑖𝑖𝑖𝜔𝜔�𝑖𝑖𝑖𝑖(𝐶𝐶𝑅𝑅)
𝑁𝑁
𝑖𝑖=1 � ∙ �𝑒𝑒𝑥𝑥𝑒𝑒�(𝑥𝑥𝑖𝑖𝑖𝑖𝜌𝜌�𝑅𝑅𝐹𝐹 − �̅�𝑥𝑖𝑖)��̂�𝛽1𝐶𝐶𝑅𝑅 − �̂�𝛽2𝐶𝐶𝑅𝑅� 

 − ∑ 𝑤𝑤𝑖𝑖𝑖𝑖�𝑥𝑥𝑖𝑖𝑖𝑖𝜌𝜌�𝑅𝑅𝐹𝐹 − �̅�𝑥𝑖𝑖���̂�𝛽1𝐶𝐶𝑅𝑅 − �̂�𝛽2𝐶𝐶𝑅𝑅�𝑁𝑁
𝑖𝑖=1 � − 1�  

 = 𝑒𝑒𝑥𝑥𝑒𝑒�𝜔𝜔�𝑖𝑖𝑖𝑖(𝐶𝐶𝑅𝑅)� ∙ � 𝑒𝑒𝑥𝑥𝑒𝑒��𝑥𝑥𝚤𝚤𝑖𝑖𝜌𝜌�𝑅𝑅𝐹𝐹 − �̅�𝑥𝚤𝚤� ���̂�𝛽1𝐶𝐶𝑅𝑅 − �̂�𝛽2𝐶𝐶𝑅𝑅�� − 1�  

 = 𝑒𝑒𝑥𝑥𝑒𝑒�𝜔𝜔�𝑖𝑖𝑖𝑖(𝐶𝐶𝑅𝑅)� ∙ � 𝑒𝑒𝑥𝑥𝑒𝑒�(𝑥𝑥�𝑖𝑖𝑖𝑖𝜌𝜌�𝑅𝑅𝐹𝐹 − �̅�𝑥�𝑖𝑖)��̂�𝛽1𝐶𝐶𝑅𝑅 − �̂�𝛽2𝐶𝐶𝑅𝑅�� − 1� (A35) 

where the second equation uses (23c) and the fifth one (A27). 

For the derivation of (26d), use (A25) by first setting Γ𝜔𝜔 = 𝐿𝐿𝐿𝐿 and then Γ𝜔𝜔 = 𝐶𝐶𝑅𝑅: 

𝑀𝑀�𝑖𝑖𝑖𝑖(𝐿𝐿𝐿𝐿, 𝜔𝜔) − 𝑀𝑀�𝑖𝑖𝑖𝑖(𝐶𝐶𝑅𝑅, 𝜔𝜔)  

 =  𝑒𝑒𝑥𝑥𝑒𝑒�𝜔𝜔�𝑖𝑖𝑖𝑖(𝐿𝐿𝐿𝐿) − ∑ 𝑤𝑤𝑖𝑖𝑖𝑖𝜔𝜔�𝑖𝑖𝑖𝑖(𝐿𝐿𝐿𝐿)
𝑁𝑁
𝑖𝑖=1 � 

 −𝑒𝑒𝑥𝑥𝑒𝑒��̂�𝜇𝑖𝑖(𝐶𝐶𝑅𝑅) + 𝜀𝜀�̂�𝑖𝑖𝑖(𝐶𝐶𝑅𝑅) − ∑ 𝑤𝑤𝑖𝑖𝑖𝑖��̂�𝜇𝑖𝑖(𝐶𝐶𝑅𝑅) + 𝜀𝜀�̂�𝑖𝑖𝑖(𝐶𝐶𝑅𝑅)�𝑁𝑁
𝑖𝑖=1 � 

 = 𝑒𝑒𝑥𝑥𝑒𝑒��̂�𝜇𝑖𝑖(𝐶𝐶𝑅𝑅) + 𝜀𝜀�̂�𝑖𝑖𝑖(𝐶𝐶𝑅𝑅) + (𝑥𝑥𝑖𝑖𝑖𝑖𝜌𝜌�𝐿𝐿𝐿𝐿 − �̅�𝑥𝑖𝑖)��̂�𝛽1𝐶𝐶𝑅𝑅 − �̂�𝛽2𝐶𝐶𝑅𝑅� 
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 − ∑ 𝑤𝑤𝑖𝑖𝑖𝑖��̂�𝜇𝑖𝑖(𝐶𝐶𝑅𝑅) + 𝜀𝜀�̂�𝑖𝑖𝑖(𝐶𝐶𝑅𝑅) + �𝑥𝑥𝑖𝑖𝑖𝑖𝜌𝜌�𝐿𝐿𝐿𝐿 − �̅�𝑥𝑖𝑖���̂�𝛽1𝐶𝐶𝑅𝑅 − �̂�𝛽2𝐶𝐶𝑅𝑅��𝑁𝑁
𝑖𝑖=1 � 

 −𝑒𝑒𝑥𝑥𝑒𝑒��̂�𝜇𝑖𝑖(𝐶𝐶𝑅𝑅) + 𝜀𝜀�̂�𝑖𝑖𝑖(𝐶𝐶𝑅𝑅) − ∑ 𝑤𝑤𝑖𝑖𝑖𝑖��̂�𝜇𝑖𝑖(𝐶𝐶𝑅𝑅) + 𝜀𝜀�̂�𝑖𝑖𝑖(𝐶𝐶𝑅𝑅)�𝑁𝑁
𝑖𝑖=1 �  

 = 𝑒𝑒𝑥𝑥𝑒𝑒�𝜔𝜔�𝑖𝑖𝑖𝑖(𝐶𝐶𝑅𝑅)� ∙ � 𝑒𝑒𝑥𝑥𝑒𝑒�(𝑥𝑥�𝑖𝑖𝑖𝑖𝜌𝜌�𝐿𝐿𝐿𝐿 − �̅�𝑥�𝑖𝑖)��̂�𝛽1𝐶𝐶𝑅𝑅 − �̂�𝛽2𝐶𝐶𝑅𝑅�� − 1� (A36) 

where the second equation uses (23d) and the third (A35). 

If strategy 2 is used instead of strategy 1, the (adjusted) effective misalignments 
𝑀𝑀�𝑖𝑖𝑖𝑖(Γ𝜀𝜀, 𝜀𝜀) and 𝑀𝑀�𝑖𝑖𝑖𝑖(Γ𝜔𝜔, 𝜔𝜔) are related to the corresponding estimated unadjusted 
effective log misalignment 𝑚𝑚�� 𝑖𝑖𝑖𝑖(Γ𝜀𝜀, 𝜀𝜀) and 𝑚𝑚�� 𝑖𝑖𝑖𝑖(Γ𝜔𝜔, 𝜔𝜔) through equations (8)-(10) as 

𝑀𝑀�𝑖𝑖𝑖𝑖(Γ𝜀𝜀, 𝜀𝜀) = 𝑒𝑒𝑥𝑥𝑒𝑒�𝑚𝑚�� 𝑖𝑖𝑖𝑖(Γ𝜀𝜀, 𝜀𝜀) − ∑ 𝑤𝑤�𝑖𝑖𝑖𝑖𝑚𝑚��𝑖𝑖𝑖𝑖(Γ𝜀𝜀, 𝜀𝜀)𝑁𝑁
𝑖𝑖=1 �  

 = 𝑒𝑒𝑥𝑥𝑒𝑒�𝜀𝜀̆̂𝑖𝑖𝑖𝑖(Γ𝜀𝜀) − ∑ 𝑤𝑤�𝑖𝑖𝑖𝑖𝜀𝜀̆̂𝑖𝑖𝑖𝑖(Γ𝜀𝜀)
𝑁𝑁
𝑖𝑖=1 �, (A37) 

𝑀𝑀�𝑖𝑖𝑖𝑖(Γ𝜔𝜔, 𝜔𝜔) = 𝑒𝑒𝑥𝑥𝑒𝑒�𝑚𝑚�� 𝑖𝑖𝑖𝑖(Γ𝜔𝜔, 𝜔𝜔) − ∑ 𝑤𝑤�𝑖𝑖𝑖𝑖𝑚𝑚��𝑖𝑖𝑖𝑖(Γ𝜔𝜔, 𝜔𝜔)𝑁𝑁
𝑖𝑖=1 �  

 = 𝑒𝑒𝑥𝑥𝑒𝑒�𝜔𝜔��𝑖𝑖𝑖𝑖(Γ𝜔𝜔) − ∑ 𝑤𝑤�𝑖𝑖𝑖𝑖𝜔𝜔��𝑖𝑖𝑖𝑖(Γ𝜔𝜔)
𝑁𝑁
𝑖𝑖=1 � (A38) 

A comparison of (A37) and (A38) with (A24) and (A25), respectively, shows that the 
mathematical structure of the equations is practically identical although the variables 
and parameters have a different meaning. Accordingly, equations (25a)-(25d) and (26a)-
(26d) are valid for strategy 2, too, if each variable z� is replaced by z�. As an additionally 
necessary adjustment, the time dependency of the weights 𝑤𝑤�𝑖𝑖𝑖𝑖 implies that 𝜇𝜇�𝑖𝑖𝑖𝑖 and 𝜀𝜀̅�̃�𝑖𝑖𝑖 
are time dependent as well. To give an example, equation (25d) applied to strategy 2 
becomes 

𝑀𝑀�𝑖𝑖𝑖𝑖(𝑅𝑅𝐹𝐹, 𝜀𝜀) − 𝑀𝑀�𝑖𝑖𝑖𝑖(𝐶𝐶𝑅𝑅, 𝜔𝜔) = 𝑒𝑒𝑥𝑥𝑒𝑒�𝜀𝜀�̃�𝑖𝑖𝑖(𝐶𝐶𝑅𝑅)�  

 ∙ �𝑒𝑒𝑥𝑥𝑒𝑒�(𝑥𝑥�𝑖𝑖𝑖𝑖 − �̅�𝑥�𝑖𝑖)𝜌𝜌�𝑅𝑅𝐹𝐹��̂�𝛽1𝐶𝐶𝑅𝑅 − �̂�𝛽2𝐶𝐶𝑅𝑅� + 𝜀𝜀̅�̃�𝑖𝑖𝑖(𝑅𝑅𝐹𝐹) − 𝜀𝜀̅�̃�𝑖𝑖𝑖(𝐶𝐶𝑅𝑅)� − 𝑒𝑒𝑥𝑥𝑒𝑒�𝜇𝜇�𝑖𝑖𝑖𝑖(𝐶𝐶𝑅𝑅)�� (A39) 

where the parameters �̂�𝛽1𝐶𝐶𝑅𝑅, �̂�𝛽2𝐶𝐶𝑅𝑅 and 𝜌𝜌�𝑅𝑅𝐹𝐹 are obtained in an estimation procedure that 
uses effective variables. 

2. Data Appendix 

Application 1 
Productivity data are taken from the Conference Board’s Total Economy Database; 
relative price level data are based on the IMF’s World Economic Outlook “implied PPP 
exchange rates”. Fischer and Hossfeld (2014) use the exogenously given group of 57 
countries for which the European Central Bank and the Deutsche Bundesbank compute 
real effective exchange rates (cf. Schmitz et al., 2013). For data availability reasons, 
Fischer and Hossfeld’s (2014) estimates based on labour productivity per hour worked, 
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however, included only 46 of these countries. Since then, data availability has improved 
so that, in the present study, the panel contains 53 of the 57 exogenously given 
economies. These are Argentina, Australia, Austria, Belgium, Brazil, Bulgaria, Canada, 
Chile, China, Cyprus, the Czech Republic, Denmark, Estonia, Finland, France, 
Germany, Greece, Hong Kong, Hungary, Iceland, India, Indonesia, Ireland, Israel, Italy, 
Japan, Latvia, Lithuania, Luxembourg, Malaysia, Malta, Mexico, the Netherlands, New 
Zealand, Norway, the Philippines, Poland, Portugal, Romania, Russia, Singapore, the 
Slovak Republic, Slovenia, South Korea, Spain, Sweden, Switzerland, Taiwan, 
Thailand, Turkey, the United Kingdom, the United States, and Venezuela. Similar 
results to those shown here emerge if, instead of 53 countries, the original set of 46 
countries is used. The countries whose observation period starts in 1995 instead of 1980 
are the former communist transition economies and those that experienced a 
hyperinflation in the years before 1995. 

Application 2 
List of countries included: Australia, Austria, Belgium, Brazil, Canada, Chile, China, 
Colombia, the Czech Republic, Denmark, Finland, France, Germany, Greece, Hungary, 
India, Indonesia, Ireland, Italy, Japan, Malaysia, Mexico, the Netherlands, New 
Zealand, Norway, Pakistan, Peru, the Philippines, Poland, Portugal, Russia, South 
Africa, South Korea, Spain, Sweden, Switzerland, Thailand, Turkey, the United 
Kingdom, and the United States. 

Per capita GDP measured in PPP terms: Source: Total Economy Database, The 
Conference Board. Comparable variable in IMF (2017) and Phillips et al. (2013): 
Output in PPP terms per working-age population relative to economies at the 
frontier of highest productivity. 

Old age dependency ratio: Source: WDI (“Age dependency ratio, old (% of working-
age population)”). Comparable variable in IMF (2017): IMF (2017) also considers 
the old age dependency ratio as explanatory variable, but the final specification 
used aging speed and the dependency ratio as explanatory variables that are 
supposed to capture demographics. 

Government consumption per GDP: Source: WDI (“General government final 
consumption expenditure (% of GDP)”). Comparable variable in Phillips et al. 
(2013): An instrumented variable of a cyclically-adjusted fiscal balance was 
included in the regression. However, it was found to be not statistically significant. 

Net foreign assets per GDP: Source: Update on the External Wealth of Nations Mark II 
database, see http://www.imf.org/~/media/Files/Publications/WP/2017/datasets/ 
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wp115.ashx and Lane and Milesi-Ferretti (2018). Comparable variable in IMF 
(2017): Net foreign asset to GDP ratio. In Phillips et al. (2013), this variable is 
considered but not included in the regression.  

Trade openness: Source: WDI. Trade openness is computed as the sum of the two series 
“Exports of goods and services (% of GDP)” and “Imports of goods and services 
(% of GDP)”. Comparable variable in IMF (2017) and Phillips et al. (2013): Trade 
openness. 

Change in reserves per GDP (capturing foreign exchange intervention): Source: WDI. 
Change in reserves per GDP is computed from the two series “Total reserves 
(includes gold, current US$)” and “GDP (current US$)” as (Reserves/GDP)t – 
(Reserves/GDP)t-1. Comparable variable in IMF (2017) and Phillips et al. (2013): A 
foreign exchange intervention measure which is an instrumented variable of the 
change in reserves to GDP interacted with a capital controls index. 

Terms of trade: Source: WEO (“Terms of trade, total, US Dollars”). Comparable 
variable in IMF (2017) and Phillips et al. (2013): Commodity terms of trade. 

Relative price levels: Source: WEO. Relative price levels are obtained by dividing the 
purchasing power parity series of a country by its nominal exchange rate against the 
US dollar. IMF (2017) uses a similar variable, in which the relative effective price 
level is computed for 2011, and REER indices are used to extend the data to other 
years of the observation period. 

Variables which are not percentage shares are expressed in logs (as, for instance, in 
Fidora et al., 2017). These are the relative price levels, per capita GDP and the terms of 
trade. Since strategy 2 is used for the computation of the equilibrium exchange rates, the 
variables of each country need to be related to the weighted average of its trade partners. 
Therefore, equations (6a) and (6b) have been used to produce effective variables. As an 
exception, the terms of trade are not transformed into effective variables because they 
are already measured relative to the rest of the world (see Adler and Grisse, 2017). This 
is in line with IMF (2017), where the IMF abstains from a transformation of the 
commodity terms of trade, too. 

The terms of trade variable is an index. This implies that, in contrast with the rest of the 
variables, it does not contain any meaningful between-group variation. Therefore, the 
log terms of trade series have been normalized so that the country-specific mean equals 
zero. Otherwise, the BE and the CRE estimates would erroneously produce an effect of 
the terms of trade time-averages on the relative price levels, although the time-averages 
of an index are meaningless. 
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According to IMF (2017) and Phillips et al. (2013), some of the explanatory variables in 
the IMF regressions are lagged while others are included contemporarily. The 
regression results shown in the present paper are obtained exclusively with 
contemporary variables. As a robustness check, the same regressions have been 
performed with all the explanatory variables being lagged by one period. These 
regressions yield results that differ only slightly from the corresponding ones, which use 
contemporary variables instead. 
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