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1 Introduction

What is the source of business cycle fluctuations? In the literature there has been the

widely accepted view that technology shocks are the main driver of cyclical movements in

economic activity.1 Moreover, since the seminal work by Beaudry and Portier (2004), there

has been a surge of interest in business cycle implications of technology news shocks, that is,

anticipated future technology shocks.2 A considerable amount of research has explored the

empirical importance of news shocks in business cycle fluctuations by embedding a variety

of news shocks in dynamic stochastic general equilibrium (DSGE) models.3 While Fujiwara,

Hirose, and Shintani (2011) introduce only technology news shocks in the model of Smets and

Wouters (2007), Khan and Tsoukalas (2012) use its extended model with both technology

and non-technology news shocks. In contrast to these models with nominal rigidity, Schmitt-

Grohé and Uribe (2012) employ a real business cycle model augmented with technology and

non-technology news shocks. Notwithstanding the use of the distinct models, the three

previous studies employ only actual data in estimating their models and adopt the common

strategy for identifying news shocks that is based on the feature that observed variables in the

models respond differently to news shocks and to related unanticipated shocks.4 Although

Schmitt-Grohé and Uribe (2012) emphasize the empirical importance of non-technology news

shocks, all of the three studies obtain the same empirical result that technology news shocks

1For a literature review, see, e.g., King and Rebelo (1999). Prescott (1986) claims that “technology
shocks account for more than half the fluctuations in the postwar period, with a best point estimate near 75
percent.”

2See also Christiano et al. (2010), Fujiwara (2010), Jaimovich and Rebelo (2009), and Lorenzoni (2009) for
theoretical studies on news shocks in dynamic stochastic general equilibrium models. Beaudry and Portier
(2014) review the literature on news driven business cycles.

3Beaudry and Portier (2006) and Barsky and Sims (2011) estimate structural vector autoregressions
(VARs) to examine the effect of technology news shocks on U.S. business cycle fluctuations. Yet sev-
eral studies, such as Fernández-Villaverde et al. (2007), Leeper, Walker, and Yang (2013), and Blanchard,
L’Huillier, and Lorenzoni (2013), point to identification issues—non-invertibility and non-fundamentalness
problems—that can arise when estimating structural VARs in the presence of news or information shocks.
Thus our paper focuses on DSGE models with news shocks.

4Milani and Treadwell (2012) estimate a canonical DSGE model incorporated with technology and non-
technology news shocks and focus on the comparison of the effect on output between unanticipated and news
shocks to monetary policy.
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are not a major source of U.S. business cycle fluctuations.5

This paper exploits not only actual data but also forecast data to identify technology and

non-technology news shocks in a canonical DSGE model with nominal rigidity. Specifically,

the paper uses the forecast data on output growth, inflation, and the interest rate in the Sur-

vey of Professional Forecasters (SPF).6 Because the data available at the time of forecasting

are real-time data but not revised one, the Real-Time Data Set for Macroeconomists provided

by the Federal Reserve Bank of Philadelphia is employed for the contemporaneously observed

time series of output growth and inflation.7 The motivation of our approach is twofold. First,

forecast data conveys information about future states of the economy expected by forecast-

ers. Therefore, the data should be informative for identifying anticipated future shocks, that

is, news shocks.8 Second, in previous studies there is an under-identification issue that the

number of shocks is far more than the number of observables due to the addition of news

shocks to their models. This issue could be ameliorated by adding forecast data so as to

increase the number of observables related to news shocks. In particular, our identification

strategy for news shocks sets the anticipation horizon of such shocks equal to the one avail-

able in their related forecast data. This strategy can help identify news shocks with different

anticipation horizon more precisely.

The paper provides new empirical evidence on U.S. business cycle fluctuations. It shows

that technology news shocks are a major source of fluctuations in U.S. output growth, in par-

5In contrast to the three studies, Born, Peter, and Pfeifer (2013) indicate that technology news shocks can
be a major driver of fluctuations in U.S. output growth, by additionally incorporating distortionary taxes
on capital and labor, policy rules for the tax rates, unanticipated and anticipated shocks to the rates, and
the government budget constraint in a DSGE model with nominal rigidity.

6Forecast data in the SPF are employed by Del Negro and Eusepi (2011), Milani (2011, 2017), Ormeño
and Molnár (2015), and Slobodyan and Wouters (2017) in estimating DSGE models. Leduc and Sill (2013)
use forecast data in the SPF and the Livingston Survey when estimating a VAR.

7Real-time actual data as well as forecast data are used by Milani (2017), Milani and Rajbhandari
(2012), Miyamoto and Nguyen (2018), and Slobodyan and Wouters (2017) when estimating DSGE models.
We estimated our model using revised data on output growth and inflation and confirmed that the main
results obtained in the estimation with the real-time actual data still hold in that with the revised one.

8To identify monetary policy news shocks, Hirose and Kurozumi (2016) use U.S. Treasury bond yield data,
which contains information on the future path of the federal funds rate expected by market participants.
Through the lens of the identified news shocks, the paper examines the changes in the Federal Reserve’s
communication strategy during the 1990s as well as business cycle implications of the shocks.
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ticular, those with short forecast horizon play a key role.9 This finding contrasts sharply with

previous empirical studies on news shocks in DSGE models, which indicate that technology

news shocks are not a major driver of U.S. business cycles. Our paper also demonstrates that

when the forecast data is not exploited in the estimation, unanticipated technology shocks

primarily drive fluctuations of output growth along with non-technology news shocks, in

line with the result of Schmitt-Grohé and Uribe (2012). The differing results between the

estimation with and without the forecast data arise from the facts that the model estimated

with such data does a much better job in replicating the observed cross-correlations of ac-

tual output growth with the inflation forecasts than the one estimated without it and that

technology news shocks play a key role in such replication. Indeed, when the data on the

inflation forecasts are not exploited in the estimation, technology news shocks are no longer

a major source of fluctuations in output growth.10

The paper also shows that exploiting the forecast data in the estimation generates more

precise estimates of news shocks and other parameters in the model. Credible intervals of

estimated parameters are all concentrated around their posterior mean when exploiting the

forecast data; otherwise, the intervals are dispersed.11

In the literature there are two closely related studies, Milani and Rajbhandari (2012)

and Miyamoto and Nguyen (2018), both of which estimate DSGE models with news shocks

using forecast data as well as actual data. All the three studies, including ours, reach

the same conclusion that exploiting forecast data in addition to actual data leads to more

precise estimates of news shocks and other model parameters. Yet there are differences

among them in what kind of news shocks are the most important for U.S. business cycles

and to what extent news shocks generate aggregate fluctuations purely through changes in

expectations, so-called “expectation driven business cycles.” Milani and Rajbhandari (2012)

9Miyamoto and Nguyen (2018) also indicate the importance of news shocks with short anticipation hori-
zon, which generate more expectational effects on business cycles than those with longer horizon.

10Miyamoto and Nguyen (2018) also demonstrate that including inflation expectations in the set of ob-
servables increases the contribution of news shocks to U.S. output fluctuations.

11By computing the measures of identification strength proposed by Iskrev (2010b), the present paper
shows that adding the forecast data-related expectational variables to the set of observables strengthens the
identification of almost all the estimated parameters in the model.
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employ several forecast data in the SPF when estimating a model of Smets and Wouters

(2007) augmented with news shocks. Their estimation result suggests that news shocks

explain a sizable portion of U.S. aggregate fluctuations, in particular, news shocks about

investment-specific technology and risk premium play the largest role. Miyamoto and Nguyen

(2018) consider the decomposition of the total effects of news shocks into those associated

with changes in expectations and with changes in fundamentals after news shocks materialize.

They focus on the former component, which is referred to as the “expectational effects of

news shocks,” and find that such effects on U.S. output fluctuations are modest in a model

that incorporates nominal rigidities into the model of Schmitt-Grohé and Uribe (2012).12

The remainder of the paper proceeds as follows. Section 2 presents an example that

accounts for how news shocks can be identified when their related expectational variables

are additionally observed. Section 3 describes a canonical DSGE model with technology and

non-technology news shocks. Section 4 explains data and econometric methods for estimating

the model. Section 5 shows results of empirical analysis. Section 6 conducts a robustness

exercise on biases of forecast data. Section 7 concludes.

2 Illustrative Example

Before proceeding to the analysis of news shocks in a DSGE model estimated with actual and

forecast data, this section presents an example to show that adding expectational variables

to the set of observables is informative for identifying news shocks.

Consider a univariate linear rational expectations model that governs the behavior of an

endogenous variable yt

yt =
1

θ
Etyt+1 + εt,

where θ > 1 is a parameter, Et is the expectation operator conditional on information

12To obtain news shocks’ anticipation effects (before the shocks materialize) analyzed by Chahrour and
Jurado (2018) and Sims (2016), we conducted one-quarter ahead forecast error variance decompositions. Such
decompositions generally capture the effects of shocks upon impact, and thus applying the decompositions to
news shocks enables us to measure their anticipation effects because any news shocks do not materialize upon
impact. We then confirmed that technology news shocks are a major source of fluctuations in U.S. output
growth even when focusing on the anticipation effects.

5



available in period t, and εt is an exogenous disturbance that consists of unanticipated and

news (i.e., anticipated) components. Specifically, it is supposed that

εt = ν0,t + ν1,t−1,

where ν0,t denotes an unanticipated shock that is realized in period t and ν1,t−1 denotes a

news shock that is anticipated in period t− 1 to materialize in period t. The shocks ν0,t and

ν1,t are assumed to be mutually and serially uncorrelated and have mean zero and standard

deviation σn, n = 0, 1. The model can be written as the system[
Etyt+1

ν1,t

]
=

[
θ −θ
0 0

] [
yt

ν1,t−1

]
+

[
−θ 0
0 1

] [
ν0,t
ν1,t

]
,

which shows that the set of state variables is {ν1,t−1, ν0,t, ν1,t}. Thus, the undetermined

coefficient method delivers the determinate rational expectations solution13

yt = ν1,t−1 + ν0,t +
1

θ
ν1,t. (1)

Hence, yt is driven by both the unanticipated and news shocks. These shocks have distinct

effects on the evolution of yt. The unanticipated shock ν0,t has a temporary effect in period

t, while the news shock ν1,t has a persistent effect in period t+ 1 as well as in period t.

Now consider the estimation of the standard deviations σ0, σ1 and parameter θ using a

full-information likelihood-based econometric procedure. This procedure seeks a combination

of {σ0, σ1, θ} that matches the evolution of observed variables in the model as closely to their

corresponding data as possible. When only the current variable yt is observable, the standard

deviations σ0, σ1 of the two disturbances ν0,t, ν1,t as well as parameter θ cannot be identified

using (1).

The issue on the identification of the unanticipated and news shocks can be resolved

when the expectational variable Etyt+1 is observable as well. From (1) we have

Etyt+1 = ν1,t. (2)

13Note that θ > 1 is a sufficient condition for determinacy of equilibrium in the system, since there is the
only one non-predetermined variable yt and the eigenvalues of the coefficient matrix are θ and 0.
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Thus, given the observation of Etyt+1, the standard deviation σ1 can be identified. Then,

given σ1, parameter θ and the standard deviation σ0 can also be identified using (1). There-

fore, the unanticipated shock ν0,t and the news shock ν1,t can be pinned down independently.

For a general class of DSGE models, the identification issue about unanticipated and

news shocks may be more complicated than in the example presented above.14 However, the

subsequent empirical analysis demonstrates that the addition of forecast data to the set of

observables in estimation leads to more precise estimates of news shocks in a DSGE model.

3 The Model

This section presents a canonical DSGE model with technology and non-technology news

shocks for our estimation.15

In the model economy, there are households, perfectly competitive final-good firms, mo-

nopolistically competitive intermediate-good firms that face price stickiness, and a monetary

authority. In light of observed persistence of output and inflation, the model features (exter-

nal) habit formation in households’ consumption preferences and intermediate-good firms’

price indexation to past inflation. The model also incorporates a stochastic trend in output

by assuming that the technology level At follows the non-stationary stochastic process

logAt = log γ + logAt−1 + zat ,

where γ represents the steady-state (gross) rate of technological change—which turns out

to coincide with the steady-state (gross) rate of output growth—and zat denotes a (non-

14The example is simple enough to see the basic idea of our approach for identifying news shocks. In the
subsequent empirical analysis, however, each exogenous disturbance is assumed to follow a more complicated
stochastic process. Specifically, it is governed by a first-order autoregressive process incorporated with
news shocks up to five quarters ahead. The example is thus extended to the case of the shock εt with
such a stochastic process in the online appendix. In the extended example, we also confirmed that adding
expectational variables to the set of observables is informative for identifying news shocks.

15The full description of the DSGE model is shown in the online appendix. While recent empirical studies
on DSGE models use medium scale models of the sort proposed by Christiano, Eichenbaum, and Evans
(2005) and Smets and Wouters (2007), our paper exploits the relatively small scale model. We choose the
model because, compared with our model, a medium scale model of that sort contains more shocks and
then our approach for identifying news shocks requires more forecast data in estimating the medium scale
model. In the SPF, however, forecast data that help identify the additional news shocks are not necessarily
available, which would induce an under-identification issue.
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stationary) technology shock.

The log-linearized equilibrium conditions are summarized as the three equations

ŷt = (1− ωy)(ŷt−1 − zat ) + ωy
(
Etŷt+1 + Etz

a
t+1

)
− τ
(
r̂t − Etπ̂t+1 − zdt + Etz

d
t+1

)
, (3)

π̂t = ωbπ̂t−1 + ωfEtπ̂t+1 + κ

[
(1 + η)ŷt +

b

γ − b
(ŷt − ŷt−1 + zat )

]
, (4)

r̂t = φrr̂t−1 + (1− φr)(φππ̂t + φyŷt) + zmt . (5)

Equation (3) is the spending Euler equation, where ŷt, π̂t, and r̂t are log-deviations of

detrended output yt = Yt/At, the (gross) inflation rate πt, and the (gross) interest rate

rt from their respective steady-state values y, π, and r; zdt denotes a preference shock; ωy

and τ are the composite coefficients given by ωy ≡ γ/(γ + b) and τ ≡ (γ − b)/(γ + b);

and b ∈ [0, 1] represents the degree of habit persistence. Equation (4) is the so-called

New Keynesian Phillips curve, where ωb, ωf , and κ are the composite coefficients given by

ωb ≡ ι/(1 + ιβ), ωf ≡ β/(1 + ιβ), and κ ≡ (1 − ξ)(1 − ξβ)/[ξ (1 + ιβ)]; β ∈ (0, 1) is the

subjective discount factor; ι ∈ [0, 1] is the weight of price indexation to the past inflation

rate πt−1 relative to the steady-state inflation rate π; ξ ∈ (0, 1) is the so-called Calvo (1983)

parameter that represents the degree of price stickiness; and η ≥ 0 is the inverse of the

elasticity of labor supply. Equation (5) is a Taylor (1993) type monetary policy rule, where

φr ∈ [0, 1) represents the degree of interest rate smoothing, φπ and φy are the degrees of

monetary policy responses to inflation and (detrended) output, and zmt denotes a monetary

policy shock.

The shocks zxt , x ∈ {a, d,m} are all governed by first-order autoregressive processes

zxt = ρxz
x
t−1 + εxt ,

where ρx ∈ [0, 1) is the shock persistence parameter and εxt is a disturbance that consists

not only of an unanticipated component but also of news components. Specifically, for the

quarterly model, the disturbance is of the form

εxt = νx0,t +
5∑

n=1

νxn,t−n,
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where each component νxn,t−n, n = 0, 1, . . . , 5 is a normally distributed innovation with mean

zero and standard deviation σxn. That is, the disturbance εxt contains news components up

to five quarters ahead. The maximum anticipation horizon of five quarters is determined

on the basis of the maximum horizon for the quarterly forecasts of output growth, inflation,

and the interest rate in the SPF, which are used in our estimation as explained in the next

section. As shown in the ensuing empirical analysis, setting the anticipation horizon of each

disturbance’s news components equal to the one available in the related forecast data of the

SPF helps identify the standard deviations of each component of the disturbance as well as

other parameters in the model.

4 Econometric Methodology

This section explains data and econometric methods for estimating the model presented in

the preceding section.

4.1 Data used in model estimation

The model is estimated with Bayesian methods using quarterly U.S. time series. The set

of observables contains the output growth rate 100∆ log Yt, the inflation rate 100 log πt, and

the interest rate 100 log rt. In addition, the set includes forecasts for these three rates up to

five quarters ahead {100E∗
t ∆ log Yt+n, 100E∗

t log πt+n, 100E∗
t log rt+n}5n=1, where E∗

t denotes

expectations formed by forecasters. The data on the rates of output growth, inflation, and

nominal interest are respectively the growth rate of real GDP per capita,16 the inflation rate of

the GDP implicit price deflator, and the interest rate on three-month Treasury bills. The data

on forecasts for the three rates are those in the SPF. Moreover, taking into consideration that

forecasters use real-time data, but not revised one, at the time of forming their expectations,

we use the contemporaneously realized rates of output growth and inflation in the Real-Time

Data Set for Macroeconomists provided by the Federal Reserve Bank of Philadelphia.

In the baseline estimation, it is assumed that forecasters’ expectations are consistent

16Note that the forecast and real-time actual data on output growth are based on real GNP before 1992.
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with rational expectations.17 Thus, the observation equations that relate the data to model

variables are given by

100∆ log Yt
100 log πt
100 log rt

100E∗
t ∆ log Yt+1

...
100E∗

t ∆ log Yt+5

100E∗
t log πt+1

...
100E∗

t log πt+5

100E∗
t log rt+1

...
100E∗

t log rt+5



=



γ̄
π̄
r̄
γ̄
...
γ̄
π̄
...
π̄
r̄
...
r̄



+



ŷt − ŷt−1 + zat
π̂t
r̂t

Etŷt+1 − ŷt + Etz
a
t+1

...
Etŷt+5 − Etŷt+4 + Etz

a
t+5

Etπ̂t+1
...

Etπ̂t+5

Etr̂t+1
...

Etr̂t+5



,

where γ̄ = 100(γ − 1), π̄ = 100(π − 1), and r̄ = 100(r − 1).

The sample period is from 1984:Q1 through 2008:Q4. The start of the sample period is

determined so as to exclude the period of possible indeterminacy of equilibrium on the basis

of the results of Clarida, Gaĺı, and Gertler (2000) and Lubik and Schorfheide (2004). The

end of the sample period follows from the fact that our estimation strategy is not able to

deal with the non-linearity of the monetary policy rule arising from the zero lower bound on

the nominal interest rate.

4.2 Priors for model parameters

The prior distributions for model parameters to be estimated are shown in Table 1. The priors

for structural parameters, monetary policy parameters, and shock persistence parameters are

chosen on the basis of Smets and Wouters (2007). As for the steady-state rates of output

growth, inflation, and nominal interest, γ̄, π̄, r̄, the prior mean is set equal to the sample

mean. The subjective discount factor β is determined so as to satisfy the steady-state

condition 1 = βr/(γπ) = β(1 + r̄/100)/[(1 + γ̄/100)(1 + π̄/100)]. The prior mean of the

standard deviations of the unanticipated technology and preference shocks σa0, σd0 are set at

2, while that of the unanticipated monetary policy shock σm0 is chosen at 0.25. Regarding the

17Relaxing this assumption is considered in the robustness exercise presented later.
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standard deviations of news components of each shock, this paper follows Fujiwara, Hirose,

and Shintani (2011) to set equal weights on the unanticipated component and on the sum

of news components in the priors, and thus, in terms of prior mean, each σxn, x ∈ {a, d,m},

n = 1, 2, . . . , 5 is set at 5−1/2 × σx0 (so that
∑5

n=1 σ
2
xn = σ2

x0).
18

In the Bayesian estimation, the Kalman filter is used to evaluate the likelihood function

for the system of log-linearized equilibrium conditions of the model, and the Metropolis-

Hastings algorithm is applied to generate draws from the posterior distribution of model

parameters.19 These draws yield inference on model parameters, variance decompositions,

and impulse responses.

5 Results of Empirical Analysis

This section presents results of empirical analysis. A novelty of the analysis is that the

forecast data is additionally exploited to identify the news shocks in the DSGE model pre-

sented above. Thus, the model is estimated with and without the forecast data to compare

estimation results with each other.

5.1 Posterior estimates of model parameters

The posterior estimates of model parameters are shown in Table 2. The second and third

columns of the table present each parameter’s posterior mean and 90 percent credible interval

in the baseline estimation, that is, the estimation with the forecast data, while the fourth and

fifth columns show those in the estimation without it. Note that in the latter estimation,

18Schmitt-Grohé and Uribe (2012) argue that the use of inverse gamma distributions for priors of the
standard deviations of shock innovations does not allow for a positive density at zero. Thus, following them,
we also estimated the model by replacing the inverse gamma distributions with the gamma distributions for
the priors of the standard deviations of all the shock innovations in the model, and confirmed that the main
results obtained in the baseline estimation (with the inverse gamma distributions) still hold in the estimation
with the gamma distributions, as reported in the online appendix.

19In each estimation, 200, 000 draws are generated and the first 100, 000 draws are discarded. The scale
factor for the jumping distribution in the Metropolis-Hastings algorithm is adjusted so that the acceptance
rate is approximately 24 percent. The Brooks and Gelman (1998) measure is used to check the convergence
of the posterior distribution of model parameters. For each estimated parameter of the model, the prior and
posterior distributions and MCMC convergence diagnostics in the baseline estimation are presented in the
online appendix.
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revised data on output growth and inflation are used instead of the real-time data, as in

previous empirical studies on DSGE models with news shocks, and that there is no crucial

difference between the results of the estimation with the real-time data and with the revised

data (as well as the forecast data).20

In Table 2, four notable differences are detected between the estimation with and with-

out the forecast data. First of all, the standard deviations of all the components of the

technology shock, σan, n = 0, 1, . . . , 5, have larger posterior mean in the baseline estima-

tion than in the estimation with no forecast data. Remarkable differences are found in the

one- and four-quarter ahead news components’ standard deviations σa1, σa4, whose 90 per-

cent credible intervals do not overlap between the estimation with and without the forecast

data. Regarding the preference shock, the posterior mean of the standard deviation σd0 of

the unanticipated component is over twice larger in the baseline estimation, whereas that of

each news component—the one-quarter ahead one σd1 in particular—is substantially smaller.

As for the monetary policy shock, the posterior mean of the standard deviations of all the

components except the one-quarter ahead news one σm1 is smaller in the baseline estimation.

Second, for most of the parameters that determine the degree of persistence in the model,

the posterior estimates are significantly lower in the baseline estimation than in the estima-

tion with no forecast data.21 The posterior mean estimates of the habit persistence parameter

b, the price indexation parameter ι, the price stickiness parameter ξ, and the technology and

monetary policy shocks’ persistence parameters ρa, ρm are substantially smaller in the base-

line estimation, and their 90 percent credible intervals do not overlap between the estimation

with and without the forecast data.22 As noted in Section 2, news shocks have a persistent

effect, and thus the larger standard deviations of the technology shock’s news components in

the baseline estimation make up for the lower values of the parameters that determine the

20The result of the estimation with the revised data is reported in the online appendix.
21A similar result is obtained by Fuhrer (2017), who incorporates forecasters’ expectations in a dynamic

macro model.
22On the other hand, the posterior estimates of the interest rate smoothing parameter φr and the preference

shock’s persistence parameter ρd are higher in the baseline estimation, and their 90 percent credible intervals
do not overlap between the estimation with and without the forecast data.
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degree of persistence in the model.23

Third, the posterior mean estimates of the steady-state rates of output growth, inflation,

and nominal interest, γ̄, π̄, r̄, differ between the estimation with and without the forecast

data. In particular, the 90 percent credible interval of the steady-state interest rate does not

overlap between them. These differences suggest the possibility that the forecasts are biased

to a certain degree. This possibility is examined in the robustness exercise presented later.

Last but not least, the 90 percent credible intervals of all the estimated parameters are

concentrated around their posterior mean in the baseline estimation, whereas the intervals

are dispersed in the estimation with no forecast data. Thus, exploiting the forecast data in

the estimation enables us to obtain much more precise estimates of not only the news shocks

but also the other parameters in the model. To analyze this more formally, we compute the

identification strength of each parameter in the estimation with and without the forecast

data in the set of observables, following Iskrev (2010b). In his approach, let ϑi denote the

i-th element of a set of estimated parameters ϑ, and then the identification strength of each

parameter ϑi ∈ ϑ is measured as

si =

√
ϑ2
i

(IT (ϑ)−1)(i,i)
,

where IT (ϑ) is the Fisher information matrix given a sample size T . Figure 1 plots the

pair of the identification strength for each parameter in the estimation with and without

the forecast data on a log scale using the asymptotic information matrix, evaluated at the

posterior mean estimates of model parameters. Because the vertical and horizontal axes

correspond respectively to the identification strength in the estimation with and without the

forecast data, the point for the parameter in question above the 45-degree line represents

an improvement in the identification of the parameter in the estimation with the forecast

data. The figure shows that, for almost all the estimated parameters, the strength measures

are substantially larger in the estimation with the forecast data, indicating that adding the

forecast data to the set of observables is very informative for identifying the parameters in

23A similar result is obtained by Milani (2017), who analyzes sentiment shocks in a DSGE model with
adaptive learning that is estimated using real-time actual data and forecast data.
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the model.24

Before proceeding to the paper’s main question of which shock is a major source of fluc-

tuations in U.S. output growth, we note that fitting the model to the forecast data as well as

the actual data brings about not only the aforementioned benefit of substantially improving

the identification of model parameters but also a cost of deteriorating the estimated model’s

ability to replicate the second moments of the actual data. The variances of the output

growth rate ∆ log Yt, the inflation rate log πt, and the interest rate log rt implied by the

model estimated without the forecast data, evaluated at the posterior mean of parameters,

are 0.83, 0.41, and 0.29, while those of the corresponding (revised) actual data used in the

estimation are 0.38, 0.07, and 0.30, respectively. On the other hand, their counterparts im-

plied by the model estimated with the forecast data are 1.51, 1.19, and 0.38, whereas those

of the (real-time) actual data used in the estimation are 0.23, 0.09, and 0.30, respectively.

5.2 What is the source of fluctuations in U.S. output growth?

With the estimates of model parameters presented above, we now examine the main question

of which shock is a major source of fluctuations of U.S. output growth in the model.

Table 3 reports the relative contribution of all the shock innovations to the variances

of the output growth rate ∆ log Yt, the inflation rate log πt, and the interest rate log rt,

obtained by spectrum decomposition at the business cycle frequency of 6–32 quarters.25

Before presenting the variance decompositions based on the posterior estimates, the second

to fourth columns of the table display the decompositions evaluated at the prior mean of

model parameters (shown in Table 1). The prior suggests that the unanticipated technology

shock νa0,t accounts for more than half of fluctuations in output growth, while each of the

technology news shocks νan,t−n, n = 1, 2, ..., 5 explains less than 10 percent of the fluctuations.

The fifth to seventh columns of Table 3 show the variance decompositions evaluated at

24We also conducted the (local) identification analysis proposed by Iskrev (2010a) and found that all the
estimated parameters are identified in both the estimation with and without the forecast data.

25Forecast error variance decompositions at the horizon of 4, 8, and 16 quarters as well as the infinite
horizon are reported in the online appendix. These decompositions are not qualitatively different from the
spectrum decompositions presented here.
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the posterior mean of model parameters in the baseline estimation (presented in the second

column of Table 2). As can be seen in the fifth column (of Table 3), it is evident that the

technology news shocks νan,t−n, n = 1, 2, ..., 5 are a major source of fluctuations in output

growth when the forecast data is exploited in the estimation.26 The shocks explain almost

half of the fluctuations. In particular, the one-quarter ahead technology news shock νa1,t−1

plays a crucial role in accounting for the fluctuations. This finding is novel in the literature,

since previous studies, such as Fujiwara, Hirose, and Shintani (2011), Khan and Tsoukalas

(2012), and Schmitt-Grohé and Uribe (2012), have shown that technology news shocks are

not a major driver of U.S. business cycles although they play a non-negligible role. The

unanticipated technology shock νa0,t is also important for fluctuations of output growth,

in line with the results of many existing studies on business cycles. Regarding inflation

variability, its primary source is the unanticipated preference shock νd0,t. This shock is also

the primary source of interest rate volatility, since the estimated monetary policy response

to inflation is much larger than the one to output.

It is worth noting that each news shock involves two distinct effects, anticipation effects

(before the shock materializes) and realization ones (after it materializes), as pointed out

by Chahrour and Jurado (2018) and Sims (2016). The variance decompositions presented

above inherently measure the total effects of these two. To obtain the anticipation effects,

we conduct one-quarter ahead forecast error variance decompositions.27 Table 4 reports

the decompositions evaluated at the posterior mean of model parameters in the baseline

estimation. Though the relative contribution of the technology news shocks νan,t−n, n =

1, 2, ..., 5 to fluctuations of output growth in terms of the anticipation effects is slightly less

than that in terms of the total effects reported in the fifth column of Table 3, the shocks are

a major source of fluctuations in U.S. output growth even when focusing on the anticipation

effects.

26This finding is also obtained when the real-time data on output growth and inflation are replaced with
the revised one in the estimation, as reported in the online appendix.

27One-quarter ahead forecast error variance decompositions generally capture the effects of shocks upon
impact, and thus applying the decompositions to news shocks enables us to measure their anticipation effects
because any news shocks do not materialize upon impact.

15



When the forecast data is not exploited in the estimation as in previous empirical studies

on DSGE models with news shocks, the importance of technology news shocks is diminished.

The eighth to tenth columns of Table 3 report the variance decompositions in the estimation

with no forecast data (evaluated at the posterior mean of model parameters presented in the

fourth column of Table 2). As shown in the eighth column, the primary source of fluctua-

tions in output growth here is the unanticipated technology shock νa0,t. Besides, instead of

the technology news shocks, the preference news shocks—the one-quarter ahead one νd1,t−1

in particular—make substantial contribution to the fluctuations. These results—the unan-

ticipated technology shock and the non-technology news shocks mainly drive fluctuations

of output growth—are consistent with the result of Schmitt-Grohé and Uribe (2012). The

preference news shocks are also the primary drivers of inflation variability and interest rate

volatility.

5.3 Features of shocks driving fluctuations of U.S. output growth

What causes the differing primary sources of fluctuations of output growth between the

estimation with and without the forecast data? To address this question, we begin by

analyzing impulse responses to the three shocks that are major drivers of the fluctuations

in either the baseline estimation or the estimation with no forecast data: the unanticipated

technology shock νa0,t, the one-quarter ahead technology news shock νa1,t−1, and the one-

quarter ahead preference news shock νd1,t−1.

Figure 2 illustrates the impulse responses of the current and one-quarter ahead expected

future rates of (quarterly) output growth and inflation, 100∆ log Yt, 100 log πt, 100Et∆ log Yt+1,

100Et log πt+1, to the three shocks νa0,t, ν
a
1,t−1, ν

d
1,t−1, evaluated at the posterior mean of model

parameters in each estimation. In each panel of the figure, a one-standard-deviation shock is

added in period one. The left panels present the impulse responses in the baseline estimation,

while the right panels show those in the estimation with no forecast data. As shown in the

figure, qualitative properties of the impulse responses are the same between the estimation

with and without the forecast data, and thus the rest of this subsection explains the dynamic

16



properties of the responses solely in the baseline estimation.

The top left panel plots the impulse responses to the unanticipated technology shock

νa0,t. This shock has two features. First, the shock generates strong persistence of the

current and expected future rates of output growth. Second, it gives rise to strongly negative

comovements between output growth and inflation in terms of both the current and expected

future rates for the first two or three quarters and thereafter weakly positive ones.

The middle left panel illustrates the impulse responses to the one-quarter ahead technol-

ogy news shock νa1,t−1. This technology shock is anticipated in period one to materialize in

period two. The shock has three features. First, it generates strong persistence of the current

and expected future rates of output growth, as is similar to the unanticipated technology

shock. Second, the current rates of output growth and inflation comove until the news shock

materializes, and thereafter the shock yields a negative comovement between them for the

subsequent three quarters and a weakly positive one afterwards. Third, the shock brings

about a negative comovement between current output growth and expected future inflation

for the first three quarters and a weakly positive one thereafter. Notice that the technology

news shock has more impact on expected future inflation than the unanticipated technology

shock, as can be seen from the comparison of the top and middle left panels.

One may wonder whether the one-quarter ahead technology news shock νa1,t−1 is actu-

ally different from the unanticipated technology shock νa0,t in an unconditional sense. To

investigate this, we simulate the model only with either νa0,t or νa1,t−1, each of which has

unit variance, given the other model parameters fixed at the posterior mean in the base-

line estimation, and calculate the unconditional variances and correlations with respect to

the current and one-quarter ahead expected future rates of output growth and inflation,

∆ log Yt, log πt, ∆ logEtYt+1, and logEtπt+1, as shown in Table 5. While the variances of

∆ log Yt and ∆ logEtYt+1 and their correlation are almost the same between the cases of νa0,t

and νa1,t−1, the variances of log πt and logEtπt+1 and the correlations of log πt with ∆ log Yt,

∆ logEtYt+1, and logEtπt+1 generated by νa1,t−1 are approximately half of those generated

by νa0,t. Moreover, the correlations between ∆ log Yt and logEtπt+1 and between ∆ logEtYt+1
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and logEtπt+1 are nearly doubled in the case of νa1,t−1. Thus, these two shocks can generate

the distinct comovement patterns among the contemporaneous and expectational variables.

The bottom left panel in Figure 2 presents the impulse responses to the one-quarter ahead

preference news shock νd1,t−1. This preference shock is anticipated in period one to materialize

in period two. The shock generates negative comovements of current output growth with

current and expected future inflation until the shock materializes, and thereafter it yields

positive ones.

5.4 Why are technology news shocks a major driver of fluctuations
of U.S. output growth in the presence of forecast data?

In light of the aforementioned features of the three shocks, we now address the question

of why the technology news shocks are a major driver of fluctuations of output growth in

the baseline estimation. To this end, we compare the time-series properties of the actual

and forecast data with those implied by the models estimated with and without the forecast

data, by calculating the autocorrelations of output growth and its cross-correlations with

the other observed variables.

Each panel in Figure 3 plots the correlograms of output growth with each observed

variable in the data and the corresponding series implied by the model estimated with the

forecast data and the one without it. The number shown in the legend for the model

estimated with or without the forecast data is the root mean square errors (RMSE) in

each cross-correlation over the lead and lag range from i = −5 to i = 5 relative to the

corresponding data.28 Crucial differences in the RMSE between the model estimated with

the forecast data and the one without it are detected in the cross-correlations between

current output growth ∆ log Yt and expected future inflation logE∗
t+iπt+i+n, n = 1, 2, 3, 4.

The model estimated with the forecast data does a much better job of replicating the observed

28In calculating the RMSE in the autocorrelation of output growth and its cross-correlations with inflation
and the interest rate, the real-time data on output growth and inflation are used for the model estimated with
the forecast data, while the revised data on them are used for the model estimated without it, conforming
to the data used in each estimation. On the other hand, in computing the RMSE in the cross-correlations of
output growth with all the forecasts, the real-time data on output growth are employed for both the model
estimated with the forecast data and the one without it.
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cross-correlations between actual output growth and the inflation forecasts than the model

estimated without it.

When the forecast data is not used in the estimation, the observed variables are output

growth, inflation, and the interest rate. The model is then estimated so that the evolution

of these three variables would be as close to the corresponding revised actual data as possi-

ble. Thus, the estimated model should be able to well replicate the observed persistence of

output growth and the observed cross-correlations between output growth and inflation, in

particular, the slightly negative cross-correlations between current output growth and past

inflation and the almost zero cross-correlations between current output growth and future

inflation. The impulse responses presented above show that the unanticipated technology

shock generates not only persistent dynamics of output growth but also a strongly negative

comovement between output growth and lagged inflation and a weakly positive one between

output growth and leading inflation, while the preference news shocks give rise to a positive

comovement between output growth and lagged inflation after the news shocks materialize.

Thus, a combination of these shocks can well replicate the observed tendency of the autocor-

relations of output growth and its cross-correlations with inflation. Therefore, in the absence

of the forecast data in the estimation, the unanticipated technology shock can be a primary

driver of fluctuations in output growth along with the preference news shocks.

The model estimated without the forecast data, however, tends to yield positive cross-

correlations between current output growth and the lags of expected future inflation (the first-

and second-order lags in particular), which are at odds with the data. The impulse responses

shown above indicate that these positive correlations are mainly due to the preference news

shocks. When the forecast data is exploited as well, the model is estimated so that the

time-series properties of the expected future rates of output growth, inflation, and nominal

interest up to five quarters ahead as well as their current rates would be matched as closely

to those of the corresponding forecast and real-time actual data as possible. According to the

impulse responses, the technology news shocks have more impact on expected future inflation

than the unanticipated technology shock, thus generating stronger negative comovements
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between current output growth and the lags of expected future inflation. On the other hand,

the technology news shocks bring about a positive comovement between the current rates

of output growth and inflation to some extent, whereas the unanticipated technology shock

generates a strongly negative comovement between them. Thus, some combination of the

unanticipated and news shocks to technology can generate a slightly negative correlation

between them. Therefore, in the model estimated with the forecast data, the increased

role of the technology news shocks (rather than the preference news shocks) helps replicate

the observed cross-correlations of actual output growth with both actual inflation and the

inflation forecasts along with the unanticipated technology shock.

5.5 Importance of inflation forecast data

Before closing this section, it is worth stressing that the data on the inflation forecasts are

of crucial importance for the main result that the technology news shocks are a major driver

of fluctuations in output growth.

When the data on the inflation forecasts are not exploited in the estimation, the posterior

estimates of almost all the parameters that determine the degree of persistence in the model,

i.e., b, ι, ξ, φr, ρa, ρm, are significantly larger than their counterparts in the baseline estima-

tion, as reported in the last two columns of Table 2.29 More importantly, compared with the

baseline estimation, the standard deviations of all the components of the preference shock,

σdn, n = 0, 1, ..., 5, are substantially larger, whereas that of the one-quarter ahead technol-

ogy news shock σa1 is significantly smaller. Consequently, the technology news shocks no

longer make major contribution to fluctuations of output growth, as shown in the third to

last column of Table 3. In the absence of the inflation forecast data, the combination of the

unanticipated preference shock νd0,t, the preference news shocks νdn,t−n, n = 1, 2, ..., 5, and the

unanticipated technology shock νa0,t are the main drivers of fluctuations in output growth. In

this case, the model is estimated without matching the evolution of model-implied expected

29The only exception is the preference shock’s persistence ρd, whose posterior estimate is lower than in the
baseline estimation. As for the other parameters, the posterior estimate of the monetary policy response to
output φy is larger than in the baseline estimation, while that of the steady-state inflation rate π̄ is smaller.
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future inflation closely to the inflation forecast data, and thus the estimated model does

not necessarily replicate the observed cross-correlations between actual output growth and

the inflation forecasts. Therefore, in such a model, the technology news shocks cannot be a

major source of fluctuations in output growth.

6 Robustness Exercise on Biases of Forecast Data

In the baseline estimation, it is assumed that forecasters’ expectations are completely con-

sistent with rational expectations. Yet their expectations are likely to deviate from rational

expectations. Indeed, as mentioned in Section 5.1, the estimated steady-state rates of out-

put growth, inflation, and nominal interest, γ̄, π̄, r̄, differ between the estimation with and

without the forecast data, suggesting the possibility of biases in the forecasts.

To assess the robustness of the baseline estimation results with respect to possible biases

of the forecasts relative to rational expectations, the observation equations are generalized

as follows.

100∆ log Yt
100 log πt
100 log rt

100∆ logE∗
t Yt+1

...
100∆ logE∗

t Yt+5

100 logE∗
t πt+1

...
100 logE∗

t πt+5

100 logE∗
t rt+1

...
100 logE∗

t rt+5



=



γ̄
π̄
r̄

γ̄ + b̄Y 1
...

γ̄ + b̄Y 5

π̄ + b̄π1
...

π̄ + b̄π5
r̄ + b̄r1

...
r̄ + b̄r5



+



ŷt − ŷt−1 + zat
π̂t
r̂t

Etŷt+1 − ŷt + Etz
a
t+1 + ζY 1

t
...

Etŷt+5 − Etŷt+4 + Etz
a
t+5 + ζY 5

t

Etπ̂t+1 + ζπ1t
...

Etπ̂t+5 + ζπ5t
Etr̂t+1 + ζr1t

...
Etr̂t+5 + ζr5t



,

where b̄Xn and ζXnt , X ∈ {Y, π, r}, n = 1, 2, . . . , 5 respectively denote the constant and time-

varying components of biases of the n-quarter ahead forecasts for output growth, inflation,

and the interest rate relative to the corresponding rational expectations. The time-varying

components ζXnt are all governed by first-order autoregressive processes with the persistence

parameter ρXn ∈ [0, 1) and the innovation νXn ∼ N(0, σ2
Xn). The autoregressive processes

are employed because the adjustment of forecasters’ expectations is generally considered to
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be more sluggish than that of rational expectations. In estimating the model with the gen-

eralized observation equations, b̄rn are determined so as to satisfy the steady-state condition

1 = β[1 + (r̄+ b̄rn)/100]/{[1 + (γ̄+ b̄Y n)/100][1 + (π̄+ b̄πn)/100]}. Then, for each X ∈ {Y, π}

and each n = 1, 2, . . . , 5, we set the prior of the constant component b̄Xn to be the normal

distribution with mean zero and standard deviation 0.25, that of the time-varying compo-

nent’s persistence parameter ρXn to be the beta distribution with mean 0.5 and standard

deviation 0.1, and that of its innovation’s standard deviation σXn to be the inverse gamma

distribution with mean 0.25 (i.e., one percent in annualized terms) and standard deviation

2. The other priors are the same as in the baseline estimation.

Table 6 reports each parameter’s posterior mean and 90 percent credible interval in the

estimation. In this table, two remarkable features are detected. First, the estimates of

the constant components b̄Xn and the time-varying components’ standard deviations σXn

suggest no large biases of the forecasts, whereas those of the persistence parameters ρXn

show a considerable degree of the persistence in the time-varying components ζXnt . Thus,

some fraction of the persistence in the forecasts is captured by the time-varying components

of the biases. This gives rise to the second feature. The estimates of the standard deviations

σa3, σa4, σa5 of the three- to five-quarter ahead technology news shocks are smaller than

their counterparts in the baseline estimation. As noted above, news shocks have a persistent

effect. Then, the persistent time-varying components of the biases reduce the size of the

technology news shocks.30

The second column of Table 7 reports the variance decomposition of the output growth

rate ∆ log Yt in the estimation with the generalized observation equations. While both the

unanticipated and news shocks to technology account for most of the fluctuations of output

growth in line with the result of the baseline estimation, the relative contribution of the

technology news shocks is slightly smaller than that of the unanticipated technology shock.

30Besides, the posterior estimate of the price stickiness parameter ξ is higher than in the baseline estima-
tion. As for the other parameters (except those related to the biases of the forecasts), the posterior estimates
are similar to their counterparts in the baseline estimation in that the 90 percent credible intervals overlap
between the baseline estimation and the estimation with the generalized observation equations.
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This is because the standard deviations of the three- to five-quarter ahead technology news

shocks are smaller in the estimation with the generalized observation equations. Nevertheless,

as is the case with the baseline estimation, the one-quarter ahead technology news shock plays

a key role in explaining the fluctuations; its relative contribution to them is 37 percent.

Therefore, the main results obtained in the baseline estimation still hold even when the

possibility of forecast biases is taken into consideration. One point to be emphasized here is

that the log marginal likelihood is 1303 in the estimation with the generalized observation

equations, while it is 1595 in the baseline estimation. The log Bayes factor in favor of the

latter relative to the former estimation is 292. According to Jeffreys (1961), this value—which

exceeds log 100 (= 4.61)—constitutes “decisive evidence” in favor of the baseline estimation

relative to the estimation with the generalized observation equations.

7 Concluding Remarks

This paper has exploited not only actual data but also forecast data to identify technology

and non-technology news shocks in a canonical DSGE model. According to the estimation

results, technology news shocks are a major source of fluctuations in U.S. output growth.

This finding is novel in the literature because previous studies with DSGE models have

concluded that technology news shocks are not a major driver of U.S. business cycles although

they play a non-negligible role. Moreover, it has been shown that exploiting the forecast data

and setting the anticipation horizon of the news shocks equal to the one available in their

related forecast data generates much more precise estimates of the news shocks and other

parameters in the model.

One of the limitations in the present analysis is that forecasters’ expectations behind

the forecast data are assumed to be consistent with rational expectations in the baseline

estimation. The robustness exercise has demonstrated that the main results obtained in

the baseline estimation survive to a considerable extent even when exogenous biases of the

forecasts relative to rational expectations are allowed. Yet the replacement of rational expec-

tations with learning in the model along the lines of Milani (2007, 2011, 2017), Slobodyan
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and Wouters (2012a, b, 2017), and Ormeño and Molnár (2015) might yield a differing estima-

tion result. Moreover, there has been a growing literature on DSGE models with subjective

expectations or beliefs, as reviewed by, for example, Coibion, Gorodnichenko, and Kamdar

(2018). It is of great interest to formalize forecasters’ expectations in our model along the

lines of the literature. Extending our analysis to these dimensions is left for future research.
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[16] Fernández-Villaverde, Jesú  s, Juan F. Rubio-Ramı́rez, Thomas J.  Sargent,  and  Mark

W.  Watson (2007) ABCs (and Ds) of understanding VARs.   American Economic Review 

97(3), 1021–1026. https://doi.org/10.1257/aer.97.3.1021

[17] Fuhrer, Jeffrey C. (2017) Expectations as a source of macroeconomic persistence: evi- 

dence from survey expectations in a dynamic macro model. Journal of Monetary Eco- 

nomics 86, 22–35. https://doi.org/10.1016/j.jmoneco.2016.12.003

[18] Fujiwara, Ippei (2010) A note on growth expectation. Macroeconomic Dynamics 14(2), 

242–256. https://doi.org/10.1017/s1365100509090105

https://doi.org/10.1257/aer.20170792
https://doi.org/10.1086/426038
https://doi.org/10.3386/w16402
https://doi.org/10.1162/003355300554692
https://doi.org/10.1257/jel.20171300
https://doi.org/10.1016/j.jedc.2011.04.005
https://doi.org/10.1257/aer.97.3.1021
https://doi.org/10.1016/j.jmoneco.2016.12.003
https://doi.org/10.1017/s1365100509090105


27 

[19] Fujiwara, Ippei, Yasuo Hirose, and Mototsugu Shintani (2011) Can news be a major

source of aggregate fluctuations? a Bayesian DSGE approach. Journal of Money, Credit 

and Banking 43(1), 1–29. https://doi.org/10.1111/j.1538-4616.2010.00363.x

[20] Hirose, Yasuo and Takushi Kurozumi (2016) Changes in the Federal Reserve

communication strategy: a structural investigation. Journal of Money, Credit and 

Banking 49(1), 171–185. https://doi.org/10.1111/jmcb.12378

[21] Iskrev, Nikolay (2010a) Local identification in DSGE models. Journal of Monetary Eco- 

nomics 57(2), 189–202. https://doi.org/10.1016/j.jmoneco.2009.12.007

[22] Iskrev, Nikolay (2010b) Evaluating the strength of identification in DSGE models. an

a priori approach. Bank de Portugal Economics and Research Department Working

Paper 32/2010

[23] Jaimovich, Nir and Sergio T. Rebelo (2009) Can news  about the future drive the business

cycle? American Economic Review 99(4), 1097–1118.

https://doi.org/10.1257/aer.99.4.1097

[24] Jeffreys, Harold (1961) The Theory of Probability. Oxford, UK: Oxford University Press.

[25] Khan, Hashmat and John Tsoukalas (2012) The quantitative importance of news

shocks in estimated DSGE models. Journal of Money, Credit and Banking 44(8), 1535–

1561. https://doi.org/10.1111/j.1538-4616.2012.00543.x

[26] King, Robert G. and Sergio T. Rebelo (1999) Resuscitating real business cycles. In

John B. Taylor and Michael Woodford (eds.) Handbook of Macroeconomics Vol. 1B, pp.

927–1007. Amsterdam: Elsevier Science, North-Holland.

https://doi.org/10.1016/s1574-0048(99)10022-3

[27] Leduc, Sylvain and Keith Sill (2013) Expectations and economic fluctuations: an

analysis using survey data. Review of Economics and Statistics 95(4), 1352–1367.

https://doi.org/10.1162/rest_a_00374

https://doi.org/10.1111/j.1538-4616.2010.00363.x
https://doi.org/10.1111/jmcb.12378
https://doi.org/10.1016/j.jmoneco.2009.12.007
https://doi.org/10.1257/aer.99.4.1097
https://doi.org/10.1111/j.1538-4616.2012.00543.x
https://doi.org/10.1016/s1574-0048(99)10022-3
https://doi.org/10.1162/rest_a_00374


28 

[28] Leeper, Eric M., Todd B. Walker, and Shu-Chun Susan Yang (2013) Fiscal foresight 

and information flows. Econometrica 81(3), 1115–1145.

https://doi.org/10.3982/ecta8337

[29] Lorenzoni, Guido (2009) A theory of demand shocks. American Economic Review 99(5), 

2050–2084. https://doi.org/10.1257/aer.99.5.2050

[30] Lubik, Thomas A. and Frank Schorfheide (2004) Testing for indeterminacy: an appli- 

cation to U.S. monetary policy. American Economic Review 94(1), 190–217. 

https://doi.org/10.1257/000282804322970760

[31] Milani, Fabio (2007) Expectations, learning and macroeconomic persistence. Journal of 

Monetary Economics 54(7), 2065–2082. https://doi.org/10.1016.j.jmoneco.2006.11.007

[32] Milani, Fabio (2011) Expectation shocks and learning as drivers of the business cycle. 

Economic Journal 121(552), 379–401. https://doi.org/10.1111/j.1468-0297.2011.02422.x

[33] Milani, Fabio (2017) Sentiment and the U.S. business cycle. Journal of Economic Dy- 

namics and Control 82, 289–311. https://doi.org/10.1016/j.jedc.2017.07.005

[34] Milani, Fabio and Ashish Rajbhandari (2012) Observed expectations, news shocks, 

and the business cycle. University of California-Irvine Department of Economics 

Working Paper 121305.

[35] Milani, Fabio and John Treadwell (2012) The effects of monetary policy “news” and 

“surprises.” Journal of Money, Credit and Banking 44(8), 1667–1692.

https://doi.org/10.1111/j.1538-4616.2012.00549.x

[36] Miyamoto, Wataru and Thuy Lan Nguyen (2018) The expectational effects of news 

in business cycles: evidence from forecast data. Working paper.
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Table 1: Prior distributions for parameters in the model

Parameter Distribution Mean Std. dev.
η Inverse of elasticity of labor supply Gamma 2.000 0.200
b Habit persistence Beta 0.700 0.150
ι Price indexation Beta 0.500 0.100
ξ Price stickiness Beta 0.500 0.100
φr Interest rate smoothing Beta 0.750 0.100
φπ Monetary policy response to inflation Gamma 1.500 0.200
φy Monetary policy response to output Gamma 0.125 0.050
γ̄ Steady-state output growth rate (quarterly) Gamma 0.470 0.100
π̄ Steady-state inflation rate (quarterly) Gamma 0.640 0.100
r̄ Steady-state interest rate (quarterly) Gamma 1.230 0.100
ρa Persistence of technology shock Beta 0.500 0.100
ρd Persistence of preference shock Beta 0.500 0.100
ρm Persistence of monetary policy shock Beta 0.500 0.100
σa0 Std. dev. of unanticipated technology shock Inv. Gamma 2.000 ∞
σa1 Std. dev. of 1-quarter ahead technology news shock Inv. Gamma 0.894 ∞
σa2 Std. dev. of 2-quarter ahead technology news shock Inv. Gamma 0.894 ∞
σa3 Std. dev. of 3-quarter ahead technology news shock Inv. Gamma 0.894 ∞
σa4 Std. dev. of 4-quarter ahead technology news shock Inv. Gamma 0.894 ∞
σa5 Std. dev. of 5-quarter ahead technology news shock Inv. Gamma 0.894 ∞
σd0 Std. dev. of unanticipated preference shock Inv. Gamma 2.000 ∞
σd1 Std. dev. of 1-quarter ahead preference news shock Inv. Gamma 0.894 ∞
σd2 Std. dev. of 2-quarter ahead preference news shock Inv. Gamma 0.894 ∞
σd3 Std. dev. of 3-quarter ahead preference news shock Inv. Gamma 0.894 ∞
σd4 Std. dev. of 4-quarter ahead preference news shock Inv. Gamma 0.894 ∞
σd5 Std. dev. of 5-quarter ahead preference news shock Inv. Gamma 0.894 ∞
σm0 Std. dev. of unanticipated monetary policy shock Inv. Gamma 0.250 ∞
σm1 Std. dev. of 1-quarter ahead monetary policy news shock Inv. Gamma 0.112 ∞
σm2 Std. dev. of 2-quarter ahead monetary policy news shock Inv. Gamma 0.112 ∞
σm3 Std. dev. of 3-quarter ahead monetary policy news shock Inv. Gamma 0.112 ∞
σm4 Std. dev. of 4-quarter ahead monetary policy news shock Inv. Gamma 0.112 ∞
σm5 Std. dev. of 5-quarter ahead monetary policy news shock Inv. Gamma 0.112 ∞
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Table 2: Posterior estimates of parameters in the model

Baseline No forecast data No inflation forecast data
Parameter Mean 90% interval Mean 90% interval Mean 90% interval

η 2.097 [1.795, 2.376] 2.039 [1.691, 2.363] 2.093 [1.765, 2.440]
b 0.729 [0.699, 0.758] 0.843 [0.792, 0.892] 0.941 [0.925, 0.958]
ι 0.058 [0.047, 0.071] 0.234 [0.135, 0.326] 0.127 [0.072, 0.181]
ξ 0.769 [0.750, 0.789] 0.865 [0.837, 0.896] 0.913 [0.899, 0.927]
φr 0.912 [0.902, 0.923] 0.836 [0.795, 0.881] 0.955 [0.945, 0.966]
φπ 1.630 [1.445, 1.804] 1.577 [1.255, 1.881] 1.566 [1.280, 1.892]
φy 0.016 [0.006, 0.025] 0.094 [0.034, 0.153] 0.081 [0.031, 0.127]
γ̄ 0.386 [0.340, 0.430] 0.455 [0.316, 0.603] 0.343 [0.251, 0.432]
π̄ 0.760 [0.708, 0.810] 0.639 [0.511, 0.769] 0.516 [0.393, 0.633]
r̄ 1.565 [1.458, 1.665] 1.192 [1.061, 1.328] 1.495 [1.405, 1.584]
ρa 0.059 [0.047, 0.072] 0.351 [0.221, 0.484] 0.301 [0.190, 0.404]
ρd 0.938 [0.927, 0.952] 0.734 [0.620, 0.849] 0.847 [0.815, 0.880]
ρm 0.436 [0.397, 0.476] 0.667 [0.556, 0.774] 0.601 [0.531, 0.670]
σa0 1.388 [1.153, 1.615] 0.917 [0.494, 1.331] 1.669 [1.249, 2.055]
σa1 1.408 [1.147, 1.663] 0.414 [0.220, 0.613] 0.482 [0.219, 0.732]
σa2 0.714 [0.581, 0.845] 0.437 [0.213, 0.660] 0.470 [0.226, 0.728]
σa3 0.740 [0.599, 0.883] 0.432 [0.218, 0.631] 0.440 [0.222, 0.656]
σa4 0.873 [0.712, 1.028] 0.468 [0.221, 0.705] 0.469 [0.220, 0.714]
σa5 0.679 [0.565, 0.796] 0.496 [0.227, 0.761] 0.575 [0.251, 0.905]
σd0 2.660 [2.273, 3.017] 1.257 [0.513, 2.041] 7.422 [5.624, 9.196]
σd1 1.303 [1.078, 1.522] 3.154 [1.974, 4.401] 6.272 [4.469, 7.957]
σd2 0.438 [0.370, 0.509] 0.854 [0.210, 1.687] 2.146 [1.549, 2.710]
σd3 0.404 [0.341, 0.463] 0.735 [0.221, 1.348] 1.815 [1.354, 2.302]
σd4 0.368 [0.315, 0.421] 0.656 [0.220, 1.136] 1.556 [1.134, 1.942]
σd5 0.373 [0.324, 0.422] 0.811 [0.201, 1.502] 1.631 [1.157, 2.061]
σm0 0.050 [0.044, 0.056] 0.067 [0.049, 0.083] 0.047 [0.041, 0.053]
σm1 0.075 [0.066, 0.083] 0.045 [0.028, 0.062] 0.076 [0.068, 0.085]
σm2 0.026 [0.023, 0.029] 0.039 [0.025, 0.052] 0.032 [0.027, 0.036]
σm3 0.019 [0.016, 0.021] 0.038 [0.024, 0.050] 0.019 [0.017, 0.021]
σm4 0.022 [0.019, 0.024] 0.043 [0.027, 0.059] 0.020 [0.017, 0.022]
σm5 0.021 [0.018, 0.023] 0.040 [0.025, 0.054] 0.019 [0.016, 0.021]

Note: This table shows each parameter’s posterior mean and 90 percent credible interval in the baseline

estimation, the estimation with no forecast data, and that with no inflation forecast data.
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Table 4: One-quarter ahead forecast error variance decompositions of output growth, infla-
tion, and the interest rate

Shock ∆ log Yt log πt log rt
νa0,t 33.4 7.0 7.7
νa1,t−1 25.4 0.2 0.2
νa2,t−2 5.0 1.6 1.7
νa3,t−3 4.2 4.2 4.3
νa4,t−4 4.7 8.7 8.9
νa5,t−5 2.4 6.5 6.6
νd0,t 12.0 39.7 40.2
νd1,t−1 4.7 1.7 1.6
νd2,t−2 0.4 0.0 0.0
νd3,t−3 0.3 0.1 0.1
νd4,t−4 0.2 0.1 0.1
νd5,t−5 0.1 0.2 0.2
νm0,t 2.2 7.3 5.4
νm1,t−1 4.1 17.1 17.3
νm2,t−2 0.4 2.1 2.1
νm3,t−3 0.2 1.0 1.0
νm4,t−4 0.2 1.4 1.4
νm5,t−5 0.2 1.2 1.2

Note: This table shows the one-quarter ahead forecast error variance decompositions of the output growth

rate ∆ log Yt, the inflation rate log πt, and the interest rate log rt, evaluated at the posterior mean of model

parameters in the baseline estimation.
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Table 5: Unconditional variances and correlations generated by unanticipated technology
shock or one-quarter ahead technology news shock

(a) Unanticipated technology shock νa0,t
∆ log Yt log πt ∆ logEtYt+1 logEtπt+1

Variances: 0.249 0.024 0.128 0.007
Correlations:

∆ log Yt 1.000 -0.763 0.997 -0.381
log πt 1.000 -0.809 0.885

∆ logEtYt+1 1.000 -0.450
logEtπt+1 1.000

(b) One-quarter ahead technology news shock νa1,t−1

∆ log Yt log πt ∆ logEtYt+1 logEtπt+1

Variances: 0.215 0.014 0.126 0.014
Correlations:

∆ log Yt 1.000 -0.482 0.997 -0.736
log πt 1.000 -0.475 0.328

∆ logEtYt+1 1.000 -0.790
logEtπt+1 1.000

Note: This table shows the unconditional variances and correlations of the output growth rate ∆ log Yt, the

inflation rate log πt, the one-quarter ahead expected future output growth rate ∆ logEtYt+1, and the one-

quarter ahead expected future inflation rate logEtπt+1, generated by either the unanticipated technology

shock νa0,t or the one-quarter ahead technology news shock νa1,t−1, each of which has unit variance, given the

other model parameters fixed at the posterior mean in the baseline estimation.
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Table 6: Posterior estimates of model parameters in the estimation with the generalized
observation equations

Parameter Mean 90% interval Parameter Mean 90% interval
η 2.130 [2.039, 2.215] b̄π1 0.052 [0.036, 0.069]
b 0.775 [0.751, 0.799] b̄π2 0.028 [0.007, 0.050]
ι 0.067 [0.047, 0.084] b̄π3 0.031 [0.009, 0.054]
ξ 0.832 [0.820, 0.845] b̄π4 0.029 [0.007, 0.054]
φr 0.894 [0.882, 0.904] b̄π5 0.042 [0.013, 0.072]
φπ 1.946 [1.796, 2.088] ρY 1 0.448 [0.421, 0.467]
φy 0.038 [0.021, 0.055] ρY 2 0.439 [0.386, 0.508]
γ̄ 0.368 [0.341, 0.394] ρY 3 0.406 [0.336, 0.460]
π̄ 0.760 [0.716, 0.802] ρY 4 0.540 [0.506, 0.574]
r̄ 1.397 [1.327, 1.472] ρY 5 0.402 [0.369, 0.429]
ρa 0.088 [0.057, 0.120] ρπ1 0.453 [0.424, 0.490]
ρd 0.939 [0.924, 0.953] ρπ2 0.417 [0.398, 0.438]
ρm 0.438 [0.412, 0.464] ρπ3 0.373 [0.310, 0.431]
σa0 1.728 [1.457, 1.994] ρπ4 0.387 [0.342, 0.428]
σa1 1.654 [1.345, 1.964] ρπ5 0.666 [0.616, 0.722]
σa2 0.572 [0.385, 0.764] ρr1 0.409 [0.379, 0.438]
σa3 0.348 [0.244, 0.447] ρr2 0.483 [0.454, 0.516]
σa4 0.333 [0.233, 0.431] ρr3 0.540 [0.483, 0.597]
σa5 0.366 [0.278, 0.451] ρr4 0.536 [0.510, 0.569]
σd0 2.723 [2.240, 3.163] ρr5 0.517 [0.462, 0.562]
σd1 1.493 [1.238, 1.728] σY 1 0.073 [0.050, 0.095]
σd2 0.479 [0.381, 0.574] σY 2 0.055 [0.042, 0.067]
σd3 0.413 [0.327, 0.496] σY 3 0.052 [0.040, 0.063]
σd4 0.257 [0.188, 0.323] σY 4 0.056 [0.043, 0.069]
σd5 0.276 [0.208, 0.340] σY 5 0.098 [0.081, 0.114]
σm0 0.062 [0.053, 0.071] σπ1 0.079 [0.064, 0.094]
σm1 0.065 [0.055, 0.075] σπ2 0.048 [0.039, 0.057]
σm2 0.023 [0.018, 0.028] σπ3 0.045 [0.037, 0.053]
σm3 0.021 [0.017, 0.025] σπ4 0.051 [0.043, 0.059]
σm4 0.020 [0.016, 0.024] σπ5 0.051 [0.042, 0.060]
σm5 0.019 [0.015, 0.022] σr1 0.032 [0.029, 0.034]
b̄Y 1 −0.044 [−0.065,−0.025] σr2 0.031 [0.029, 0.034]
b̄Y 2 −0.001 [−0.020, 0.019] σr3 0.031 [0.029, 0.033]
b̄Y 3 0.016 [0.000, 0.035] σr4 0.031 [0.029, 0.033]
b̄Y 4 0.036 [0.019, 0.055] σr5 0.033 [0.029, 0.037]
b̄Y 5 0.038 [0.017, 0.059] — — —

Notes: This table shows each parameter’s posterior mean and 90 percent credible interval in the estimation

with the generalized observation equations.
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Table 7: Variance decompositions in the estimation with the generalized observation equa-
tions

Shock ∆ log Yt log πt log rt
νa0,t 45.1 11.2 12.9
νa1,t−1 36.5 5.8 6.4
νa2,t−2 3.5 0.9 0.6
νa3,t−3 0.9 1.0 0.6
νa4,t−4 0.6 2.0 1.4
νa5,t−5 0.5 3.8 3.1
νd0,t 5.1 38.1 48.6
νd1,t−1 2.2 9.1 12.1
νd2,t−2 0.7 0.8 1.1
νd3,t−3 0.8 0.8 1.0
νd4,t−4 0.4 0.5 0.5
νd5,t−5 0.4 0.8 0.8
νm0,t 1.4 9.0 4.7
νm1,t−1 1.5 11.3 2.0
νm2,t−2 0.2 1.5 0.4
νm3,t−3 0.1 1.3 0.8
νm4,t−4 0.1 1.2 1.3
νm5,t−5 0.0 1.0 1.6

Note: This table shows the variance decompositions of the output growth rate ∆ log Yt, the inflation rate

log πt, and the interest rate log rt at the business cycle frequency of 6–32 quarters, evaluated at the posterior

mean of model parameters in the estimation with the generalized observation equations.
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Figure 1: Identification strength in the estimation with and without the forecast data
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Note: This figure plots the pair of the identification strength for each parameter of the model in the estimation

with and without the forecast data, evaluated at the posterior mean of parameters, on a log scale using the

asymptotic information matrix following Iskrev (2010b).
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Figure 2: Impulse responses in the baseline estimation and the estimation with no forecast
data
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Notes: Each panel shows the impulse responses of the output growth rate 100∆ log Yt, the inflation rate

100 log πt, the one-quarter ahead expected future output growth rate 100Et∆ log Yt+1, and the one-quarter

ahead expected future inflation rate 100Et log πt+1 (in quarterly terms) to the shock in question, evaluated

at the posterior mean of model parameters in the baseline estimation and the estimation with no forecast

data. In period one, a one-standard-deviation shock innovation is added.
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Figure 3: Correlograms of output growth with the observed variables
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(i) logE∗
t+iπt+i+1 (j) logE∗

t+iπt+i+2
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(q) logE∗
t+irt+i+4 (r) logE∗

t+irt+i+5
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Notes: Each panel shows the correlograms of output growth (∆ log Yt) with each observed variable in the
data and the corresponding series implied by the model estimated with the forecast data and the one
without it, evaluated at the posterior mean of parameters, for leads and lags ranging from i = −5 to
i = +5. “RMSE” shown in the legend represents the root mean square errors in each cross-correlation over
the range from i = −5 to i = +5 relative to the corresponding data.
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