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 Abstract 

This paper introduces the R package exuber for testing and date-stamping periods of 
mildly explosive dynamics (exuberance) in time series. The package computes test statis- 
tics for the supremum ADF test (SADF) of Phillips, Wu, and Yu (2011), the generalized 
SADF (GSADF) of Phillips, Shi, and Yu (2015a,b), and the panel GSADF proposed by 
Pavlidis, Yusupova, Paya, Peel, Martínez-García, Mack, and Grossman (2016); gen- 
erates finite-sample critical values based on Monte Carlo and bootstrap methods; and 
implements the corresponding date-stamping procedures. The recursive least-squares al- 
gorithm that we introduce in our implementation of these techniques utilizes the matrix 
inversion lemma and in that way achieves significant speed improvements. We illustrate 
the speed gains in a simulation experiment, and provide illustrations of the package using 
artificial series and a panel on international house prices. 
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1. Introduction

Over the last decades, and especially after the financial crisis of 2007-09, a large interest
has developed in econometric tests of exuberance (explosive behavior) in asset markets. The
objective of these tests is to detect periods in which the data generating process of a macroe-
conomic or a financial variable is characterized by (mildly) explosive dynamics.1 Because
such periods are typically followed by large market corrections which can trigger economic
recessions, exuberance tests are of prime importance for academics who want to shed light on
the functioning of asset markets, but also for policymakers for monitoring purposes. Applica-
tions of exuberance tests include, among others, stock prices, real estate valuations, precious
metals, foreign exchange rates, crypto-currencies, public debt, and bond yield spreads.

Boom-bust episodes in asset markets may take all kinds of shapes and, therefore, empirically
detecting their presence is a challenging task. Early empirical studies on exuberance adopted
linear, time-invariant model specifications. The majority of these studies tested for explosive
behaviour by applying standard right-tailed unit root tests, such as the augmented Dickey
Fuller (ADF) test, to the entire sample of available data. Although widely employed, standard
unit root tests have extremely low power in detecting episodes of explosive dynamics when
these are interrupted by market crashes (Evans 1991).

In recent years, several new econometric methodologies have been proposed to deal with this
shortcoming. Two methodologies that have gained increasing popularity are the supremum
ADF test (SADF) of Phillips et al. (2011) and the generalized SADF test (GSADF) by Phillips
et al. (2015a,b). In order to deal with the effect of a collapse in a time series on the test’s
performance, the SADF and GSADF methodologies involve a recursively evolving algorithm
that estimates ADF regressions on subsamples of data. The SADF procedure sequentially
tests for explosive behaviour by using a forward expanding window, while its extension, the
GSADF procedure, tests for exuberance using all possible subsamples of a time series given
a user-specified minimum window size. The GSADF procedure is particularly attractive
because it minimizes the impact of previous boom-bust episodes on the identification and
thereby is consistent with multiple changes in regime. Simulation evidence in Homm and
Breitung (2012), Phillips et al. (2015a), and Pavlidis, Paya, and Peel (2017) suggests that
the GSADF test has accurate size and higher power compared to the SADF and alternative
tests for changes in persistence from unit root to mildly explosive.2 An attractive feature of
both the SADF and GSADF methodologies is that, due to their recursive nature, they allow
date-stamping of the exact periods, if any, during which the series under examination displays
explosive dynamics. Therefore, they can be used to shed light on past episodes of exuberance
but also for real-time market surveillance.

For the above reasons, the SADF and GSADF methodologies have become the most commonly
applied in the literature on asset market exuberance and there are currently several software
implementations available. These implementations, which are based on translations of the
original MATLAB code of Phillips et al. (2015a)3 into other programming languages, include
the R packages psymonitor (Caspi, Phillips, and Shi 2018) and MultipleBubbles (Araujo,
Lacerda, Phillips, and Shi 2018), the EViews add-in Rtadf (Caspi 2017), and the STATA

1As noted by Blanchard (1979), among others, asset market booms followed by crashes could result from
rationale bubbles.

2These include the modified tests of Bhargava (1986), Busetti and Taylor (2004), Kim (2000), and the
Chow-type unit root test examined by Homm and Breitung (2012).

3The code is available online at https://sites.google.com/site/shupingshi/home/codes.
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module radf (Otero and Baum 2020).

Both the SADF and GSADF are univariate testing procedures and, thus, only allow drawing
conclusions one series at a time. In a number of relevant cases, exuberance is found to be
(nearly) coincident across a group of assets. Prime examples include regional and international
house prices in the 2000s (see Pavlidis et al. 2016; Greenaway-McGrevy, Grimes, and Holmes
2019; Mart́ınez-Garćıa and Grossman 2020) and stock prices (Narayan, Mishra, Sharma,
and Liu 2013). To accommodate concurrent episodes of exuberance, Pavlidis et al. (2016)
propose an extension of the GSADF procedure to a panel setting. The panel GSADF draws
inference on the presence of overall exuberance by exploiting the cross-sectional dimension of a
dataset through a sieve bootstrap procedure. This extension can perform substantially better
than univariate tests applied to aggregated series in the presence of synchronized episodes
of exuberance (Pavlidis, Mart́ınez-Garćıa, and Grossman 2019) and, like univariate tests,
provides a date-stamping strategy. Despite its advantages, a software implementation of the
panel recursive unit root testing procedure does not currently exist.

In this paper, we introduce the R package exuber which provides a unified approach for
univariate and panel testing and date-stamping periods of exuberance. Aside from extend-
ing the framework to panel data, two features that distinguish exuber from existing pack-
ages are its computational speed and functionality. With regard to the first feature, the
core function of the package recursively estimates ADF regressions by utilizing the Sher-
man–Morrison–Woodbury identity, also known as the matrix inversion lemma, to efficiently
update least-squares estimates as the sub-sample size changes. To improve further com-
putational efficiency, this function is written in C++ using the Rcpp extension package and
employs RcppArmadillo for high-performance linear algebra (Eddelbuettel and François 2011;
Eddelbuettel 2013; Eddelbuettel and Sanderson 2014). As we show in Section 4, this imple-
mentation leads to computational speed gains of one or more orders of magnitude compared
to existing implementations. The computational gains achieved are particularly important
for statistical inference. This is so because the distributions of the various test statistics of
exuberance are non-standard and thus their estimation requires the use of Monte Carlo sim-
ulation or bootstrap methods. In addition to the recursive least squares algorithm, exuber
exploits the facilities of R for parallel computing, via the packages parallel and foreach, to
compute critical values in a timely manner, even when the dimension of the dataset under
examination is large.

With respect to its functionality, in comparison to other implementations, exuber has a
simple and intuitive API that enables easy manipulation of the estimated objects through S3
method dispatch, it can handle different data objects whose structure is wide, it allows for
single index parsing, and it produces publication-ready tables and graphs. Furthermore, the
two-stage econometric methodology that requires testing for explosive dynamics prior to date-
stamping is hardcoded in the design which prevents users from erroneous applications. The
exuber package is currently employed by the Federal Reserve Bank of Dallas, the International
Housing Observatory, and the UK Housing Observatory for the production of exuberance
indicators for international and UK regional housing markets.4

To demonstrate the functionality of the package and its ease of use, we provide two examples:
one with artificial time series data and another with a panel of international house prices

4Federal Reserve Bank of Dallas’ International House Price Database (https://www.dallasfed.org/
institute/houseprice#tab2), International Housing Observatory (https://int.housing-observatory.com),
and UK Housing Observatory (https://uk.housing-observatory.com).
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provided by the Federal Reserve Bank of Dallas (Mack, Mart́ınez-Garćıa, and Grossman
2011). For the former, the package also includes a set of functions that allow the simulation
of the periodically-collapsing bubble processes of Blanchard (1979) and Evans (1991) as well
as the one- and two-bubble processes proposed by Phillips et al. (2015a). For the latter
exercise, the evidence from the univariate methods hints at the possibility that a common
factor may have contributed to house price exuberance spreading across countries. We explore
this issue further and illustrate the usefulness of the panel GSADF procedure to ascertain
strong empirical evidence in favor of a period of global exuberance in international housing
markets preceding the 2007-09 recession.

The rest of the paper is organized as follows. Section 2 gives an outline of the SADF, GSADF,
and panel GSADF econometric methodologies. Section 3 provides an overview of the main
functions and methods of the package, and Section 4 deals with the computational approach to
estimation, software implementation, and performance. Section 5 presents the two hands-on
examples. Finally, the last section discusses future extensions of the package.

2. Econometric methodologies

In this section, we provide a brief description of the SADF, GSADF, and panel GSADF econo-
metric methodologies, outline the associated date-stamping strategies, and discuss technical
details about their implementation.

2.1. Univariate right-tailed tests

At the heart of all the methodologies considered lies the following ADF regression equation:

∆yt = ar1,r2 + γr1,r2yt−1 +
∑k

j=1
ψjr1,r2∆yt−j + εt, (1)

where yt denotes a generic time series, ∆yt−j with j = 1, . . . , k are lagged first differences of the
series included to accommodate serial correlation, εt ∼ N (0, σ2r1,r2) are the Gaussian residuals,

and ar1,r2 , γr1,r2 and ψjr1,r2 with j = 1, . . . , k are regression coefficients. The subscripts r1 and
r2 denote fractions of the total sample size T that specify the starting and ending points of a
subsample period.

The null hypothesis of interest is that of a unit root, H0 : γr1,r2 = 0, against the alternative
of explosive behavior in yt, H1 : γr1,r2 > 0. The ADF test statistic corresponding to this null
is given by,

ADFr2r1 = γ̂r1,r2/s.e.(γ̂r1,r2). (2)

The standard ADF test

For the ADF test, the statistic in Equation 2 is obtained by estimating the regression given
in Equation 1 on the full sample of observations, i.e., by setting r1 = 0 and r2 = 1. Under
the null of a unit root, the limit distribution of ADF1

0 is given by,∫ 1
0 WdW(∫ 1
0 W

2
)1/2 , (3)
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where W is a Wiener process. Testing for exuberance entails comparing the ADF1
0 statistic

with the right-tailed critical value from its limit distribution. In this setting with r1 and r2
fixed at 0 and 1, respectively, the alternative hypothesis is that of exuberance over the entire
sample. When the ADF1

0 test statistic exceeds the corresponding critical value, the unit root
hypothesis is rejected in favor of the alternative hypothesis. Because the standard ADF test
is not consistent with changes in regime, it exhibits extremely low power in the presence of
boom-bust episodes. In fact, nonlinear dynamics, such as those displayed by periodically-
collapsing speculative bubbles frequently lead to finding spurious stationarity even when the
process under examination is inherently explosive (see, e.g., Evans 1991).

The supremum ADF (SADF) test

Phillips et al. (2011) proposed a methodology that is consistent with a single boom-bust
episode. Their methodology involves recursively estimating Equation 1 using a forward ex-
panding sample. In this setting, the beginning of the subsample is held constant at r1 = 0,
while the end of the subsample, r2, increases from r0 (the minimum window size) to one
(the entire sample period).5 Recursive estimation of Equation 1 yields a sequence of ADF r20
statistics. The supremum of this sequence, called the SADF statistic, is defined by,

SADF(r0) = sup
r2∈[r0,1]

ADFr20 , (4)

and has a limit distribution given by,

sup
r2∈[r0,1]

∫ r2
0 WdW

(
∫ r2
0 W 2)1/2

. (5)

Similarly to the standard ADF test, rejection of the null of a unit root requires that the
SADF statistic exceeds the right-tailed critical value from its limit distribution. However,
contrary to the standard ADF test which examines the presence of explosive dynamics during
the entire period, the alternative hypothesis of the SADF test is that of explosive dynamics
in some part(s) of the sample.

The generalized SADF (GSADF) test

More recently, Phillips et al. (2015a,b) proposed an extension of the SADF, the generalized
SADF (GSADF), which has the same alternative hypothesis as the SADF but which covers a
larger number of subsamples. Specifically, given a minimum window size r0, the methodology
involves estimating the regression given in Equation 1 for all possible subsamples by allowing
both the ending point, r2, and the starting point, r1, to change. This extra flexibility on
the estimation window results in substantial power gains and makes the GSADF test better
suited to detect the presence of multiple changes in regime.

Formally, the GSADF statistic is defined as,

GSADF(r0) = sup
r2∈[r0,1],r1∈[0,r2−r0]

ADFr2r1 , (6)

5Given r0 and r1, the expanding window size of the regression is given by rw = r2 − r1.
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and its limit distribution under the null is,

sup
r2∈[r0,1],r1∈[0,r2−r0]


1
2rw[W (r2)

2 −W (r1)
2 − rw]−

∫ r2
r1
W (r)dr[W (r2)−W (r1)]

r
1/2
w

{
rw
∫ r2
r1
W (r)2dr −

[∫ r2
r1
W (r)dr

]2}1/2

 , (7)

where rw = r2 − r1 is the size of the expanding window. Again, rejection of the unit root
hypothesis in favor of the alternative hypothesis of explosive behavior in some part(s) of the
sample requires that the GSADF statistic exceeds the right-tailed critical value from its limit
distribution.

Date-stamping strategies

If the null of a unit root in yt is rejected, then the SADF and GSADF methodologies can
provide a chronology of episodes of exuberance. For the SADF methodology, estimates of
the origin and conclusion of exuberance can be obtained by comparing the time series of the
recursive backward ADF (BADF) test statistics against the right-tailed critical value of the
distribution of the standard ADF statistic. Letting re and rf correspond to the origination
and termination dates, respectively, these estimates can be constructed from,

r̂e = inf
r2∈[r0,1]

{
r2 : ADFr20 > cuαr2

}
and r̂f = inf

r2∈[r̂e,1]

{
r2 : ADFr20 < cuαr2

}
, (8)

where cuαr2 is the 100(1−α)% critical value of the ADF statistic and α is the chosen significance
level. A similar strategy is proposed by Phillips et al. (2015a,b) as part of the GSADF
methodology. The strategy in this case is based on the sequence of backward SADF (BSADF)
statistics,

BSADFr2(r0) = sup
r1∈[0,r2−r0]

SADFr2r1 , (9)

and estimates the origination and termination dates according to,

r̂e = inf
r2∈[r0,1]

{
r2 : BSADFr2(r0) > scuαr2

}
and r̂f = inf

r2∈[r̂e,1]

{
r2 : BSADFr2(r0) < scuαr2

}
,

(10)
where scuαr2 is the 100 (1− α) % critical value of the SADF for the br2T c observations. The
consistency of the SADF dating strategy in the presence of a single period of explosive dynam-
ics in yt is established in Phillips et al. (2011), and the consistency of the GSADF strategy
with one or two explosive periods is established in Phillips et al. (2015a,b).

Technical details

The computation of the recursive unit root test statistics necessitates the selection of the
minimum window size, r0, and the autoregressive lag length, k. Regarding the minimum
window size, this has to be large enough to allow initial estimation, but it should not be
too large to avoid missing short episodes of exuberance. Phillips et al. (2015a,b) recommend
setting the minimum window size according to the rule of thumb: r0 = 0.01 + 1.8/

√
T . With

respect to the selection of k, simulation evidence indicates the proposed right-tailed unit root
methodologies work well when the number of lags is fixed at a small value, i.e., 0 or 1. On the
contrary, lag selection based on information criteria can result in severe size distortions. The
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implementation of the right-tailed unit root tests also requires the limit distributions of the
SADF, GSADF and BSADF test statistics. These distributions are non-standard and depend
on the minimum window size. Consequently, critical values have to be obtained through
either Monte Carlo simulations or bootstrapping.

2.2. The panel GSADF procedure

The SADF and GSADF tests can only be applied to individual time series and, hence, do not
exploit the panel nature of many macroeconomic and financial datasets. Based on the work
of Im, Pesaran, and Shin (2003), Pavlidis et al. (2016) propose an extension of the GSADF
procedure to heterogeneous panels.

Consider the panel version of the regression given in Equation 1,

∆yi,t = ai,r1,r2 + γi,r1,r2yi,t−1 +
∑k

j=1
ψji,r1,r2∆yi,t−j + εi,t, (11)

where i = 1, . . . , N denotes the panel index and the remaining variables are defined as in the
previous sub-section. The panel GSADF test examines the null hypothesis of a unit root,
H0 : γi,r1,r2 = 0, in all N series against the alternative of explosive behavior in a subset
of series, H1 : γi,r1,r2 > 0 for some i. This alternative allows for γi,r1,r2 to differ across
panels and, in that sense, is more general (and less restrictive) than approaches that impose
a homogeneous alternative hypothesis.

The testing procedure involves constructing a measure of overall exuberance by averaging the
individual BSADF statistics at each time period,

panel BSADFr2(r0) =
1

N

∑N

i=1
BSADFi,r2(r0). (12)

Given Equation 12, the definition of the panel GSADF statistic follows naturally. It is simply
the supremum of the panel BSADF,

panel GSADF (r0) = sup
r2∈[r0,1]

panel BSADFr2(r0). (13)

Like for the univariate methods, testing for and dating episodes of overall exuberance involves
comparing the panel GSADF and panel BSADF statistics with the right-tailed critical values
from the corresponding limit distributions. However, as shown by Maddala and Wu (1999)
and Chang (2004), the limit distribution of panel unit root tests based on mean unit root
statistics is not invariant to the cross-sectional dependence of the error terms, εi. To this end,
the authors adopt a sieve bootstrap that is designed specifically to allow for cross-sectional
error dependence. Details of the sieve bootstrap algorithm can be found in the Appendix of
Pavlidis et al. (2016).

3. Installation and package overview

The package exuber is available on the Comprehensive R Archive Network (CRAN) at
https://CRAN.R-project.org/package=exuber, and can be installed and accessed from the
R console. The package has a number of dependencies on other R packages which are automat-
ically loaded with exuber. The main dependencies include Rcpp (Eddelbuettel 2013), parallel
(R Core Team 2020), foreach (Microsoft and Weston 2020), dplyr (Wickham, François, Henry,
and Müller 2020), and purrr (Henry and Wickham 2020).
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R> install.packages("exuber")

R> library("exuber")

The package exuber centers around the function radf(). This function takes as input three
arguments, (data, minw, lag) and returns a list containing ADF, SADF, GSADF, BSADF
and, whenever appropriate, panel GSADF and panel BSADF test statistics. With regard
to the first argument, exuber is capable of working with regular data.frame, ts, numeric
vector or matrix classes without the need for any further transformation. Estimation always
includes a time dimension and, in the case of multiple time series, a cross-sectional dimension.
In line with the convention in time-series econometrics, the required format is wide, where
each row corresponds to a unique time period and each column represents a different time
series. The radf() function is vectorized, i.e., it can handle multiple series at once, to improve
efficiency. This property also enables the computation of panel statistics internally as a by-
product of the univariate estimations with minimal additional cost incurred. When the data
input is a data.frame with an explicit class-Date column, exuber uses a similar principle
as tsibble (Wang, Cook, and Hyndman 2020) for index-search and parsing. In all other
cases, an integer index is automatically created. The index is used by exuber’s methods for
date-stamping and plotting.

With regards to the arguments minw and lag, these are non-negative integers that specify
the minimum window size and the lag length k used in estimation. The default values for
these arguments are set equal to the value suggested by the rule of Phillips et al. (2015a)
bT (0.01 + 1.8/

√
(T )c and zero, respectively. Users can obtain the default minimum win-

dow size by using the helper function psy_minw(). Given (data, minw, lag), the function
radf() returns an object of class radf_obj.

Drawing inference on the estimated unit root test statistics requires knowledge of their un-
derlying distributions. The functions radf_mc_cv(), radf_wb_cv(), and radf_sb_cv() gen-
erate 90%, 95%, and 99% critical values for different sample and minimum window sizes.
The three functions for generating critical values return an object of class radf_cv. The
function radf_mc_cv() generates Monte Carlo finite-sample critical values for univariate unit
root tests approximating the Brownian motion processes in the limiting functionals specified
in Section 2 by using independent N (0, 1) random variates. While, functions radf_wb_cv()

and radf_sb_cv() implement the univariate wild bootstrap and the panel sieve bootstrap
methodologies outlined in Harvey, Leybourne, Sollis, and Taylor (2016) and Pavlidis et al.
(2016).6 The default values for the number of Monte Carlo repetitions (nrep) and boot-
strap repetitions (nboot) in exuber are set to 1000 and 500, respectively. Users can also
obtain the entire distribution of the various test statistics by using the corresponding func-
tions radf_mc_distr(), radf_wb_distr() and radf_sb_distr(), which return an object of
class radf_distr.7

6The arguments of the radf_mc_cv() function are (n, minw, nrep, seed). The argument n inputs the
number of observations in the sample, minw is the minimum window size as defined in the radf() function,
while nrep and seed set the number of Monte Carlo simulations and specify if and how the random number
generator should be initialized, respectively. The arguments for radf_wb_cv() and radf_sb_cv() are (data,

minw, lag, nboot, seed) with the same interpretation as before except for the added argument nboot which
sets the number of bootstrap repetitions.

7radf stands for recursive ADF. The naming of these functions attaches to that one of three terms, mc for
the Monte Carlo procedure, wb for the univariate wild bootstrap and sb for the panel sieve bootstrap, plus cv

at the end to indicate that they are critical values or distr for the entire distribution.
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Because the majority of users employ Monte Carlo critical values and adopt the default
minimum window size, exuber comes with a stored dataset of critical values for sample sizes
of up to 600 observations (radf_crit). These critical values can be replicated with the
radf_mc_cv() function by setting the number of repetitions nrep to 2000 and the seed to
123. For applications which involve series of length between 600 and 2000 observations,
critical values can be obtained from the exuberdata package. Due to CRAN restrictions on
package size, exuberdata is distributed through the ‘Drat’ R Archive Template (Eddelbuettel
2019), which works seamlessly with exuber, does not depend on Rtools, and makes it easy
for package installation and upgrades.8 The stored dataset of critical values and exuberdata
are convenience features, unique of the package exuber, added to facilitate its use in practice.9

Several S3 methods are available to process the output of radf() together with the output
of one of the functions for generating critical values. The use of S3 methods reflects our
preference for software scalability, as we intend to include new econometric methodologies in
future versions of the package. All methods take as inputs two objects, obj and cv, where
obj is of class radf_obj and cv is the output of the function radf_mc_cv(), radf_wb_cv(),
or radf_sb_cv(), i.e., an object of class radf_cv.

The method summary() returns a table of the estimated ADF, SADF, GSADF test statistics
together with the corresponding critical values for each individual series in data. When
the cross-sectional dimension of the dataset is large, the output of summary() can become
lengthy and its interpretation tedious. In such cases, the user can work directly with objects
radf_obj and radf_cv (as we will demonstrate in Section 5) or alternatively use the method
diagnostics(). For each series in a panel, diagnostics() compares the estimated SADF or
GSADF test statistic to the corresponding set of critical values and reports whether the null of
a unit root is rejected and, if so, at which level of significance. When running diagnostics()

the user has the ability to select, via the argument option, whether to report results for the
univariate SADF or GSADF test, with the latter being the default.10

Date-stamping is implemented via the method datestamp().11 This method produces an
object of class ds_radf which contains the estimates of the origination, termination, and
duration of episodes of exuberance. To prevent erroneous applications of the testing pro-
cedure, datestamp() only reports results for series for which the first-stage test statistic is
significant and, when all series are found to be non-explosive, it prints a message to notify
the user. In some applications, researchers may want to exclude very short episodes of exu-
berance by setting a minimum duration period. The package exuber does not set a minimum
duration for periods of exuberance by default. However, minimum duration requirements
can be introduced as a refinement at the discretion of the user by altering the value of the
argument min_duration. Phillips et al. (2015a,b) recommend two rules for setting the mini-
mum duration: δ log(T ) and δ log(T )/T , where δ is a frequency-dependent scaling parameter.
These rules can be computed by using the helper function psy_ds(). Finally, similar to
diagnostics(), datestamp gives the option of displaying results for either the SADF or the
GSADF testing procedure.

8The exuberdata package is hosted at https://github.com/kvasilopoulos/exuberdata and can be easily
installed using the wrapper function in exuber, install_exuberdata().

9The datasets of critical values in exuber are also used by the STATA module radf.
10The method summary() has inputs (obj, cv) while the method diagnostics() has inputs (obj, cv,

option) all of which have been previously introduced.
11The method datestamp() takes as inputs four arguments (data, cv, min_duration, option).
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To produce publication-ready graphs, exuber uses the ggplot2::autoplot methods for plot-
ting objects of classes radf_obj, ds_radf, and radf_distr. An attractive feature of this
implementation is that it allows users to exploit the common features from the ggplot2 pack-
age to manipulate plots. augment and augment_join as well as tidy and tidy_join methods
are also available to manipulate the data into a convenient format for custom plotting.

For class radf_obj objects, autoplot() produces a faceted plot displaying BADF or BSADF
statistics together with the corresponding sequence of critical values. In generating these
graphs, users can set the autoplot() argument shade_opt to the function shade() which will
demarcate the periods of exuberance identified by datestamp(). For class ds_radf objects,
autoplot() produces a ‘chronology’ plot which displays a set of segmented horizontal lines,
with each line representing the identified periods of exuberance for an individual series. If the
data input in radf() includes a Date index then this is automatically used in the creation of
x-axes.12 We demonstrate the above plotting options in Section 5.

Finally, exuber provides functions for simulating data from popular bubble data generating
processes. These include the periodically-collapsing bubble processes of Blanchard (1979)
and Evans (1991) and the one- and two-bubble processes proposed by Phillips et al. (2015a).
Those are implemented using the functions sim_blan(), sim_evans(), sim_psy1(), and
sim_psy2(), respectively. The package exuber also includes sim_data, an artificial dataset
containing series simulated from those same data generating processes, and another auxiliary
function sim_div() to simulate log dividend series from a random walk with drift (West
(1988)).

4. Software implementation

The implementation of the univariate and panel right-tailed unit root testing procedures
outlined in Section 2 requires the application of iterative routines which repeatedly fit the
ADF regression given in Equation 1 on subsamples of data by solving a sequence of otherwise
standard least-squares problems. Unlike other software implementations, exuber exploits the
matrix inversion lemma to update least-squares estimates, thus, significantly reducing the
costs that arise when dealing with long-time series or with large panels. In this section,
we describe both the computational approach and the performance gains achieved against
the MATLAB code of Phillips et al. (2015a), the EViews add-in Rtadf (Caspi 2017), the R
packages psymonitor (Caspi et al. 2018) and MultipleBubbles (Araujo et al. 2018), and the
STATA module radf of Otero and Baum (2020).

4.1. Computational approach

By replacing the sample fractions r1 and r2 with their discrete time analogues, t1 and t2, the
ADF regression given in Equation 1 can be rewritten in matrix form as,

Yt1:t2 = Xt1:t2βt1:t2 + Et1:t2 , (14)

where

12index() can be used to retrieve or replace the index of an object while series_name() allows the user to
retrieve or replace the series names.
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Yt1:t2 =


∆yt1

∆yt1+1
...

∆yt2

 , Xt1:t2 =


xt1
xt1+1

...
xt2

 =


1 yt1−1 ∆yt1−1 · · · ∆yt1−k
1 yt1 ∆yt1 · · · ∆yt1−k+1
...

...
... · · ·

...
1 yt2−1 ∆yt2−1 · · · ∆yt2−k

 ,

Et1:t2 =


εt1
εt1+1

...
εt2

 , and βt1:t2 =


αt1:t2
γt1:t2
ψ1
t1:t2
...

ψkt1:t2

 .

For a given subsample, t1 : t2, the solution to the least-squares problem,

argmin
βt1:t2

||Yt1:t2 −Xt1:t2βt1:t2 ||2, (15)

is given by
βt1:t2 = (X>t1:t2Xt1:t2)−1X>t1:t2Yt1:t2 . (16)

The main computational cost in estimating Equation 16 and the coefficient standard errors
arises from the computation and inversion of the square matrix Dt1:t2 = (X>t1:t2Xt1:t2). Be-
cause the construction of Dt1:t2 takes O(nv2) (where v = k + 2 is the number of regression
parameters and n = t2 − t1 + 1 is the subsample size) and the inversion of Dt1:t2 typically
requires O(v3), the overall algorithmic complexity per iteration is O(v3 +nv2). This cost may
be acceptable in settings where the number of series and iterations is relatively small, but
it makes the application of recursive unit root tests to long financial series and large panels
cumbersome, and it becomes prohibitive for extensive power and size simulation experiments.

To get a sense of the magnitude of this problem, consider a single series of T = 1000 obser-
vations and a minimum window size given by the rule of thumb in Section 2, i.e., m = 74.
In this setting, the estimation of the SADF and GSADF tests requires T −m+ 1 = 935 and
(T −m + 1)(T −m + 2)/2 = 437580 recursions, respectively, and the generation of critical
values involves the computation of matrix Dt1:t2 and its inverse hundreds of millions or billions
of times, depending on the number of Monte Carlo or bootstrap repetitions.

To reduce algorithmic complexity, the workhorse function of exuber, radf(), employs a re-
cursive least-squares method which incrementally updates Dt1:t2 from its previous value. Fol-
lowing the standard notation in the statistics literature, let Gt1:t2 = D−1t1:t2 denote the gain
matrix. Using the matrix inversion lemma, the gain matrix can be recursively computed from
its previous value according to,

Gt1:t2 = Gt1:t2−1 − (1 + xt2Gt1:t2−1x
>
t2)−1(Gt1:t2−1x

>
t2)(xt2Gt1:t2−1), (17)

and the coefficient vector can be incrementally updated by,

βt1:t2 = βt1:t2−1 −Gt1:t2x>t2(xt2βt1:t2−1 −∆yt2). (18)

The attractiveness of the above algorithm lies in the fact that it involves solely matrix mul-
tiplications, which reduces the computational cost per recursion from O(v3 + nv2) to O(v2),
which only increases linearly with the number of recursions.
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Figure 1: Package performance comparison.

4.2. Computational performance

For interpreted languages such as R, iterative function calls typically come with a heavy
computational overhead due to high-level language properties like dynamic typing, bounds
checking, and garbage collection (see, e.g., Sridharan and Patel 2014). To avoid substantial
speed penalties and obtain high-level computational efficiency, radf() is written in C++ using
the Rcpp extension package in conjunction with RcppArmadillo for high-performance linear
algebra. As we show next, this implementation leads to substantial gains in computational
efficiency.

Figure 1 displays the run-time performance of exuber for samples of size T = {100, . . . , 1000},
lag length k = 1, and a minimum window size of 30 observations. It also shows the perfor-
mance of the original MATLAB code PSY of Phillips et al. (2015a), the EViews add-in
Rtadf Caspi (2017), the two other R packages psymonitor (Caspi et al. 2018) and Mul-
tipleBubbles13 (Araujo et al. 2018), and the STATA module radf (Otero and Baum 2020).
As previously mentioned, unlike exuber, these packages use a batch least-squares algorithm.
Median times are generated on an Intel (R) Core(TM) i7-8700 CPU @3.20GHz with 64.0 GB
RAM using 100 simulations. As is evident from the figure, exuber performs remarkably well
both in absolute and relative terms, with the difference in computation time across packages
becoming particularly apparent as the sample size increases. For a sample size of 1000 ob-
servations, the computation time for exuber is just 0.78 seconds. The MATLAB code PSY
of Phillips et al. (2015a) ranks second, with a median time of 10.7 seconds (14 times slower),
and the STATA radf module ranks third, with a median time of 20.8 seconds (27 time slower).

13The function gsadf_sadf() of MultipleBubbles does not allow for a user-specified minimum window size.
To provide meaningful comparisons across packages, in our simulation experiments we have used a slightly
modified version of the function. The modification does not affect run-time performance.
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The median time of the two R packages, psymonitor and MultipleBubles, are 59.2 seconds (76
times slower) and 102.4 seconds (132 times slower), respectively. Finally, the EViews add-in
Rtadf is by far the slowest, as it requires 1496.5 seconds (1919 times slower).

The computational speed of exuber on the one hand and the recursive nature of our estimation
algorithm on the other render parallel estimation for a single series nontrivial and unnecessary.
Parallel computing is particularly beneficial, however, for statistical inference. exuber uses
the package parallel and the looping construct of foreach to acquire the non-standard finite-
sample distributions of the various test statistics via Monte Carlo or bootstrap simulations.
These distributions are generated using the functions radf_mc_cv(), radf_wb_cv(), and
radf_sb_cv().

5. Examples with artificial and real data

To demonstrate the functionality of the package, this section provides two applications. The
first application involves an artificial series, while the second explores the presence of explosive
dynamics in a panel of international house price data.

5.1. Simulated bubble series

For our first application, we simulate data from the one-bubble data generating process of
Phillips et al. (2015a) using the function sim_psy1(). This data generating process switches
from a martingale to mildly explosive and then collapses back to a martingale at predetermined
sample points. We consider a series of 100 observations, and set the start and end dates of the
bubble period at observations 50 and 70. The time evolution of the series can be visualized
in Figure 2.

R> sim <- sim_psy1(100, te = 50, tf = 70, seed = 145)

R> autoplot(sim)

Figure 2: Simulation of a single-bubble process.
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To illustrate the ease of use of exuber by non-expert users, we adopt the default values in the
estimation of the unit root test statistics.

R> radf_sim <- radf(sim)

This produces an object of class radf_obj that contains the entire set of test statistics for the
univariate testing procedures (i.e., the ADF, SADF, GSADF, BADF, and BSADF). Following
the econometric methodology of Section 2, the first stage of our analysis involves comparing
the ADF, SADF, and GSADF statistics contained in the radf_obj object to their corre-
sponding right-tailed critical values. This can be easily done using the method summary().
Because the estimation is based on the default window size and the sample size is less than
600 observations, summary() does not require as input a radf_cv object of critical values.
Instead, it automatically uses the Monte Carlo critical values stored in the package.

R> summary(radf_sim)

Using `radf_crit` for `cv`.

-- Summary (minw = 19, lag = 0) ----- Monte Carlo (nrep = 2000) --

series1 :

# A tibble: 3 x 5

name tstat `90` `95` `99`
<fct> <dbl> <dbl> <dbl> <dbl>

1 adf -2.38 -0.413 -0.0812 0.652

2 sadf 10.6 0.988 1.29 1.92

3 gsadf 11.6 1.71 1.97 2.57

A comparison of the SADF and GSADF test statistics to their critical values suggests that
the null hypothesis of a unit root against the alternative of explosive behaviour is rejected at
all conventional levels of significance. On the contrary, the standard ADF test fails to reject
the null, which is in line with the low power of the ADF test to detect bubbles that burst
in-sample.

Having established the statistical significance of the SADF and GSADF test statistics at the
5% level, we can turn to the identification of the episode(s) of exuberance. To visualize these
episodes, we simply pass the estimated radf_obj object to autoplot(). This returns a plot
of the estimated BSADF statistics together with the sequence of 95% critical values. Shaded
areas in the plot indicate periods during which the BSADF statistic exceeds its critical value
and, thus, we see that there is evidence of exuberance. A similar plot can be obtained for the
SADF testing procedure by altering the value of the option argument.

R> library(ggplot2)

R> autoplot_sim_gsadf <- autoplot(radf_sim) +

R+ labs(title = NULL)

Using `radf_crit` for `cv`.
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R> autoplot_sim_sadf <- autoplot(radf_sim, option = "sadf") +

R+ labs(title = NULL)

Using `radf_crit` for `cv`.

R> library(patchwork)

R> autoplot_sim_sadf + autoplot_sim_gsadf

Figure 3: Datestamping with the SADF (left) and GSADF (right) tests.

A visual inspection of the two graphs in Figure 3 reveals that once the bubble starts, the
BADF and BSADF test statistics gradually increase and eventually exceed their critical val-
ues, rejecting the null hypothesis of no explosiveness. When the bubble bursts, both statistics
fall below the critical bound almost instantaneously and remain there until the end of the
sample.

To obtain the exact dates of the origination and collapse of the bubble and the bubble duration,
we use the datestamp() method.

R> datestamp(radf_sim)

Using `radf_crit` for `cv`.

-- Datestamp (min_duration = 0) ---------------------------- Monte Carlo --

series1 :

Start End Duration

1 54 71 17
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R> datestamp(radf_sim, option = "sadf")

Using `radf_crit` for `cv`.

-- Datestamp (min_duration = 0) ---------------------------- Monte Carlo --

series1 :

Start End Duration

1 54 71 17

The results indicate that the bubble had started by observation 54 under the GSADF and
the SADF procedures and continued until observation 70. In sum, both tests perform well in
detecting and dating the period of exuberance.

5.2. International house prices

In our second application, we employ data on real house prices provided by the International
House Price Database of the Federal Reserve Bank of Dallas (Mack et al. 2011). The dataset
has a large cross-sectional dimension (23 countries at the time of our implementation) and
starts in the first quarter of 1975, thus allowing an international perspective on the evolution of
housing markets over the last four decades. We use the ihpdr package (Vasilopoulos 2020) to
download the 2015:Q1 data release directly from the R console and, then, use dplyr (Wickham
et al. 2020) to select the columns corresponding to real house prices (rhpi), excluding the
Aggregate series. Finally, we use tidyr (Wickham and Henry 2020) to pivot the data into
wide format.14

R> library(dplyr)

R> library(tidyr)

R> library(ihpdr)

R>

R> hprices <- ihpdr::ihpd_get(version = "1501") %>%

R+ filter(country != "Aggregate") %>%

R+ select(Date, country, rhpi) %>%

R+ pivot_wider(names_from = country, values_from = rhpi)

R> hprices

# A tibble: 161 x 24

Date Australia Belgium Canada Switzerland Germany Denmark Spain

<date> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

1 1975-01-01 39.2 44.3 59.3 93.8 111. 57.4 86.2

2 1975-04-01 38.5 45.4 59.0 91.8 110. 57.6 93.0

3 1975-07-01 38.6 46.5 59.7 90.4 111. 59.1 91.5

4 1975-10-01 37.8 48.1 59.4 88.9 111. 58.1 94.7

14The house price indexes are expressed in real terms using the personal consumption expenditure deflator
of the corresponding country and have the same base year, 2005.
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5 1976-01-01 38.0 50.6 59.1 86.8 112. 58.4 92.9

6 1976-04-01 38.2 52.0 59.7 85.9 112. 57.3 99.6

7 1976-07-01 38.4 53.4 58.7 85.0 113. 57.3 98.5

8 1976-10-01 37.9 54.8 57.5 85.2 115. 58.6 93.7

9 1977-01-01 37.9 55.9 55.8 84.5 116. 57.5 89.6

10 1977-04-01 37.8 57.5 55.2 85.1 117. 59.3 81.2

# ... with 151 more rows, and 16 more variables: Finland <dbl>,

# France <dbl>, UK <dbl>, Ireland <dbl>, Italy <dbl>, Japan <dbl>, `S.
# Korea` <dbl>, Luxembourg <dbl>, Netherlands <dbl>, Norway <dbl>, `New
# Zealand` <dbl>, Sweden <dbl>, US <dbl>, `S. Africa` <dbl>,

# Croatia <dbl>, Israel <dbl>

R> plot_hprices <- ihpdr::ihpd_get(version = "1501") %>%

R+ filter(Date <= "2015-12-31", country != "Aggregate") %>%

R+ select(Date, country, rhpi) %>%

R+ group_by(Date) %>%

R+ summarise(

R+ mean = mean(rhpi),

R+ q25 = quantile(rhpi, probs = 0.25),

R+ q75 = quantile(rhpi, probs = 0.75)) %>%

R+ ungroup() %>%

R+ ggplot(aes(Date, mean)) +

R+ geom_line() +

R+ geom_ribbon(aes(ymin = q25, ymax = q75), fill = "#174B97", alpha = 0.5) +

R+ labs(x = NULL, y = NULL) +

R+ theme_bw()

R> plot_hprices

Figure 4: Real house prices.
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Figure 4 displays the time evolution of the cross-sectional mean of real house prices together
with the lower and upper quartiles. As can be seen from the figure, mean real house prices
troughed in the mid-1990s and peaked around 2006. Furthermore, by looking at the upper
and lower quartiles, we observe that the run-up in real house prices during this period was
not driven by the behavior of a few housing markets, but it was a widespread phenomenon.
This last observation has led to a consensus among economists that this boom-bust episode
in housing played a central role in the 2007-09 financial crisis around the world, and has
naturally generated a vast interest in modelling the dynamics of house prices.

To further demonstrate the functionality of exuber, in our econometric analysis of real house
prices we set the minimum window size equal to 36 quarters, the lag length equal to one, and
the minimum duration of an episode of exuberance using the rule of Phillips et al. (2015a):

R> min_dur <- psy_ds(hprices)

R> min_dur

[1] 5

The fact that the minimum window size differs from its default value implies that we cannot
use the stored critical values to draw inference. Instead, we need to generate a new radf_cv

object. The estimation of the right-tailed unit root test statistics for all countries and the
generation of Monte Carlo critical values can be easily achieved by using the functions radf()
and radf_mc_cv().

R> radf_hprices <- radf(hprices, minw = 36, lag = 1)

Using `Date` as index variable.

R> mc_critical_values <- radf_mc_cv(nrow(hprices), minw = 36, seed = 145)

Having obtained the radf_obj and radf_cv objects, there are now a number of different ways
to display the estimation results. We first focus on the presentation of country-specific results
and then illustrate how the user can obtain an overall picture of exuberance for the entire
dataset. Following the same approach as for the simulated data, we apply the summary(),
datestamp(), and autoplot() methods to the radf_obj and radf_cv objects. The former
two methods return a list of elements, with each element containing results for a specific
country. For illustration purposes, we focus on the UK and US housing markets and report
their chronology of exuberance under the GSADF procedure.15 This choice reflects the eco-
nomic size and significance of these two countries, but also the fact that their housing markets
exemplify the distinct pattern of the boom-bust episode of the late 1990s and 2000s.

R> summary_results <- summary(radf_hprices, mc_critical_values)

R> summary_results[c("US", "UK")]

15As stated earlier, GSADF is the default option in datestamp() and autoplot().
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$US

# A tibble: 3 x 5

name tstat `90` `95` `99`
<fct> <dbl> <dbl> <dbl> <dbl>

1 adf -1.03 -0.362 0.0530 0.787

2 sadf 4.15 0.993 1.31 1.77

3 gsadf 6.04 1.55 1.78 2.39

$UK

# A tibble: 3 x 5

name tstat `90` `95` `99`
<fct> <dbl> <dbl> <dbl> <dbl>

1 adf -0.0907 -0.362 0.0530 0.787

2 sadf 2.94 0.993 1.31 1.77

3 gsadf 3.87 1.55 1.78 2.39

R> datestamp_results <- datestamp(radf_hprices, mc_critical_values,

min_duration = min_dur)

R> datestamp_results[c("US", "UK")]

$US

Start End Duration

1 1998-10-01 2007-07-01 35

$UK

Start End Duration

1 1987-07-01 1989-10-01 9

2 2000-04-01 2008-04-01 32

According to the output of summary(), the null hypothesis of a unit root in real house prices 
is rejected in favour of explosive dynamics at the 5% significance level by the SADF and 
GSADF tests for both the US and the UK, but not by the ADF test. Furthermore, the 
output of datestamp() and Figure 5 produced with autoplot() indicate that an episode of 
exuberance took place from the late 1990s/early 2000s to the late 2000s in both countries. 
For the UK, an episode of exuberance also took place in the first part of the sample period, 
from 1987 to 1989.

R> autoplot(radf_hprices, mc_critical_values, select_series = c("UK", "US"),  
R+ shade_opt = shade(8))
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Figure 5: Date-stamping periods of exuberance in the UK and US housing markets.

Turning to the entire dataset, a way to concisely report first-stage results is via the function
tidy().

R> tidy(radf_hprices)

# A tibble: 23 x 4

id adf sadf gsadf

<fct> <dbl> <dbl> <dbl>

1 Australia 0.502 2.82 5.47

2 Belgium -0.0410 0.996 3.16

3 Canada 0.648 0.751 4.40

4 Switzerland -2.19 2.39 3.27

5 Germany -1.22 -0.140 2.50

6 Denmark -1.02 2.00 3.01

7 Spain -1.49 0.0704 4.01

8 Finland -1.01 2.84 2.87

9 France -0.618 3.34 5.32

10 UK -0.0907 2.94 3.87

# ... with 13 more rows

R> tidy(mc_critical_values)

# A tibble: 3 x 4

sig adf sadf gsadf

<fct> <dbl> <dbl> <dbl>

1 90 -0.362 0.993 1.55

2 95 0.0530 1.31 1.78

3 99 0.787 1.77 2.39
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Alternatively, one can use diagnostics() to quickly check the significance of the GSADF
and SADF statistics.

R> diagnostics(radf_hprices, mc_critical_values)

-- Diagnostics (option = gsadf) ---------------------------- Monte Carlo --

Australia: Rejects H0 at the 1% significance level

Belgium: Rejects H0 at the 1% significance level

Canada: Rejects H0 at the 1% significance level

Switzerland: Rejects H0 at the 1% significance level

Germany: Rejects H0 at the 1% significance level

Denmark: Rejects H0 at the 1% significance level

Spain: Rejects H0 at the 1% significance level

Finland: Rejects H0 at the 1% significance level

France: Rejects H0 at the 1% significance level

UK: Rejects H0 at the 1% significance level

Ireland: Rejects H0 at the 1% significance level

Italy: Cannot reject H0

Japan: Rejects H0 at the 1% significance level

S. Korea: Cannot reject H0

Luxembourg: Rejects H0 at the 1% significance level

Netherlands: Rejects H0 at the 1% significance level

Norway: Rejects H0 at the 1% significance level

New Zealand: Rejects H0 at the 1% significance level

Sweden: Rejects H0 at the 1% significance level

US: Rejects H0 at the 1% significance level

S. Africa: Rejects H0 at the 1% significance level

Croatia: Rejects H0 at the 5% significance level

Israel: Rejects H0 at the 10% significance level

R> diagnostics(radf_hprices, mc_critical_values, option="sadf")

-- Diagnostics (option = sadf) ---------------------------- Monte Carlo --

Australia: Rejects H0 at the 1% significance level

Belgium: Rejects H0 at the 10% significance level

Canada: Cannot reject H0

Switzerland: Rejects H0 at the 1% significance level

Germany: Cannot reject H0

Denmark: Rejects H0 at the 1% significance level

Spain: Cannot reject H0

Finland: Rejects H0 at the 1% significance level

France: Rejects H0 at the 1% significance level

UK: Rejects H0 at the 1% significance level
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Ireland: Rejects H0 at the 1% significance level

Italy: Cannot reject H0

Japan: Rejects H0 at the 5% significance level

S. Korea: Cannot reject H0

Luxembourg: Rejects H0 at the 1% significance level

Netherlands: Cannot reject H0

Norway: Rejects H0 at the 1% significance level

New Zealand: Rejects H0 at the 1% significance level

Sweden: Cannot reject H0

US: Rejects H0 at the 1% significance level

S. Africa: Cannot reject H0

Croatia: Cannot reject H0

Israel: Rejects H0 at the 5% significance level

A comparison of the results of the two econometric tests reveals large differences. For the
GSADF, there is strong evidence of exuberance in real house prices with the null hypothesis
of a unit root being rejected for all but three countries at the 5% significance level. On
the contrary, the number of rejections of the null hypothesis is substantially smaller for the
SADF test. In particular, the test cannot reject the null for almost half of the countries in our
sample (13 out of the 23) at the 5% significance level. Given the superior power properties
of the GSADF procedure, the conclusion that emerges is that episodes of exuberance were
widespread across housing markets.

R> autoplot(datestamp_results)

Figure 6: Date-stamping periods of exuberance in international housing markets.

Figure 6 provides a chronology of the identified periods of exuberance for each country. By far,
the most interesting observation is the near-simultaneous exuberance in real house prices from
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the early to the mid-2000s. As evident from the figure, this phenomenon has no precedent
at least in our sample period and hints to the possibility that a common factor may have
contributed to house price exuberance spreading across countries.

We explore this issue further by employing the panel recursive unit root testing procedure.
This procedure requires the estimation of the panel GSADF and BSADF statistics and the
generation of the corresponding critical values. Panel test statistics are already computed as
a by-product of the univariate estimation and are included in the radf object radf_hprices.
We next compute sieve bootstrap critical values with radf_sb_cv() and display the results.

R> panel_critical_values <- radf_sb_cv(hprices, minw = 36, lag = 1, seed = 145)

Using `Date` as index variable.

R> summary(radf_hprices, panel_critical_values)

-- Summary (minw = 36, lag = 1) ---------- Sieve Bootstrap (nboot = 500) --

panel :

# A tibble: 1 x 5

name tstat `90` `95` `99`
<fct> <dbl> <dbl> <dbl> <dbl>

1 gsadf_panel 2.06 0.105 0.122 0.155

R> autoplot(radf_hprices, cv = panel_critical_values, min_duration = min_dur)

Figure 7: Date-stamping periods of overall exuberance in international housing markets.

R> datestamp(radf_hprices, panel_critical_values, min_duration = min_dur)
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-- Datestamp (min_duration = 5) ------------------------ Sieve Bootstrap --

panel :

Start End Duration

1 2001-01-01 2008-10-01 31

The panel results indicate that the null hypothesis of a unit root can be rejected at all
conventional levels, providing strong evidence in favor of global exuberance. Furthermore, the
date-stamping results illustrated in Figure 7 demonstrate in a clear manner the three phases of
the international boom-bust episode in housing markets. The panel BSADF statistic sequence
starts below its critical value at the beginning of the sample period; it increases rapidly after
the mid-1990s and becomes significant during the early 2000s, with the period of global
exuberance in housing markets continuing until 2006-07; and, finally, it collapses below its
critical value.

6. Conclusion

Econometric tests of exuberance in asset prices have been attracting increasing interest over
the last decade. This paper presents the R package exuber for recursive right-tailed unit
root testing using the popular SADF and GSADF methodologies proposed by Phillips et al.
(2011) and Phillips et al. (2015a,b), respectively, and the panel GSADF of Pavlidis et al.
(2016). What differentiates exuber from existing implementations is its computational speed,
the simple and intuitive API, and its ease of use. We demonstrated these features using
simulation experiments, as well as with applications to artificial and real world data.

While several methodological advances have occurred over the last years, testing for and
dating periods of exuberance remains a topic of ongoing econometric research. Our intention
is to extend the statistical toolkit of exuber in future versions of the package to provide users
with the state-of-the-art methodologies in this area. For the near future, we plan to include
the reverse-regression algorithm for detecting bubble implosion of Phillips and Shi (2018),
the end-of-sample bubble detection test of Astill, Harvey, Leybourne, and Taylor (2017), and
the transmission of exuberance (contagion) test of Greenaway-McGrevy and Phillips (2016).
We also plan to incorporate the Chow-type test and the modified versions of the Busetti and
Taylor (2004) and Kim (2000) tests proposed by Homm and Breitung (2012).
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