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Abstract

This paper, using the Bewley (1979) transformation of the autoregressive distributed lag
model, proposes a novel pooled Bewley (PB) estimator of long-run coefficients for
dynamic panels with heterogeneous short-run dynamics, in the same setting as the widely
used Pooled Mean Group (PMG) estimator. Asymptotic normality of the PB estimator is
established, and Monte Carlo simulations reveal a good small sample performance of PB
compared with existing estimators in the literature, namely PMG, PDOLS, and FMOLS.
This paper also considers application of two bias-correction methods and a bootstrapping
of critical values to conduct inference robust to cross-sectional dependence of errors. An
empirical application to the aggregate consumption function taken from the original PMG
paper illustrates the importance of the choice of individual estimators in practice.
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1 Introduction

Estimation of cointegrating relationships in panels with heterogeneous short-run dynamics is impor-
tant for empirical research in open economy macroeconomics as well as in other fields in economics.
Existing single-equation panel estimators in the literature are panel Fully Modified OLS (FMOLS)
by [Pedroni (1996|, 2001z, [2001b), panel Dynamic OLS (PDOLS) by Mark and Sul (2003), and the
likelihood based Pooled Mean Group (PMG) estimator by [Pesaran, Shin, and Smith (1999)EHE| In
this paper, we propose a pooled Bewley (PB) estimator of long-run relationships, relying on the
Bewley transform of an autoregressive distributed lag (ARDL) model (Bewley, 1979)E|

Our setting is the same as that of |[Pesaran, Shin, and Smith (1999). Under this setting, any
short-run feedbacks between the outcome variable (y) and regressors (x) are allowed, but the
direction of the long run causality is assumed go from x to y. Hence, same as in the case of
the PMG estimator, PB allows for heterogeneous short-run feedbacks, but restricts the direction
of long run causality. PB estimator is computed analytically, and it does not rely on numerical
maximization of the complex likelihood function of PMG estimator. In contrast to PMG, we also
adopt robust equal weighting in pooling of the long-run coefficients. We derive the asymptotic
distribution of the PB estimator when the cross-section dimension (n) and the time dimension (T)
diverge to infinity jointly such that sup,, p Vn/T'=¢ < K, for some small € > 0 and a fixed positive
constant, K, which allows for the relevant empirical setting where both n and T' are large and of
similar order of magnitude, whilst it excludes panels where T is short relative to n. We allow joint
asymptotics for (n,T"), whereas PMG together with PDOLS and FMOLS all assume 7 is fixed and
T — oco. Although the asymptotic theory is more difficult to establish in the former case, we think
it is the more relevant case to consider. How well individual estimators work in samples of interest
in practice where n and/or T' are often less than 50 is a different matter, which we shed light on
using Monte Carlo experiments.

Monte Carlo evidence shows PB estimator can be superior to PMG, PDOLS and FMOLS, in
terms of its overall precision as measured by the Root Mean Square Error (RMSE), and in terms

of accuracy of inference as measured by size distortions. These experiments reveal PB is a useful

' Multi-equation (system) approach by |Breitung (2005)} and the related system PMG approach by |Chudik, Pesaran,
and Smith (2022)| are another contributions in the literature on estimating cointegrating vectors in a panel context.

“There are numerous applications in the literature adopting these estimators. Literature review of these applica-
tions is outside the scope of this paper.

3See [Wickens and Breusch (1988)|for a discussion of the Bewley transform.



addition to the literature.

Monte Carlo evidence also shows that the time dimension is very important for the performance
of these estimators, and that all of the four estimators suffer from the same two drawbacks: size
distortions and a small bias. Although the size distortions are found to be the smallest for the
PB estimator in our experiments, all four estimators exhibit notable over-rejections in sample
sizes relevant in practice. In addition, all four estimators (perhaps unsurprisingly) suffer from a
bias in finite samples, albeit a rather small one. Both drawbacks diminish with an increase in
T. Nevertheless, we consider adopting existing approaches in the literature to improve on the
performance of all four estimators in small samples.

To improve accuracy of inference, and, importantly, to be able to conduct valid inference regard-
less of the degree of cross-sectional dependence of errors, we adopt the Wild bootstrap procedure
used by |[Herwartz and Walle (2018). We found this procedure to be remarkably effective for all
four estimators, regardless of cross-sectional dependence of errors, and we therefore recommend
using it in empirical research. Regarding the small sample bias, we consider application of two
bias-correction methods taken from the literature, relying either on split-panel jackknife (Dhaene
and Jochmans, |2015)) or stochastic simulations approachesﬁ We find both of these approaches can
be helpful in reducing the bias (for all four estimators). However, given that the bias is small to
begin with, the value of bias correction methods is more limited.

The relevance of choosing a particular estimation approach is illustrated in the context of
a consumption function application for OECD economies taken from [Pesaran, Shin, and Smith
(1999). This application shows quite a different conclusion would be reached when using PB
estimator, which does not reject the zero long-run coefficient on inflation, in line with the long-
run neutrality of monetary policy, whereas the original PMG estimates suggest a large, highly
statistically significant negative long-run coefficient. Estimates of the long-run coefficient on output
are less diverse across estimators, but the inference on whether a unit long-run coefficient on output
(as suggested by balanced growth path models in the literature) can be rejected or not depends on
the choice of a particular estimator. This empirical illustration highlights the importance of the

PB estimator complementing the existing estimators in the literature.

41n contrast to split-panel approaches in panels without stochastic trends, as, for instance, considered by of Dhaene
and Jochmans (2015)| or |Chudik, Pesaran, and Yang (2018)| in this paper we need to combine the full sample and
half-panel subsamples using different weighting due to the fact that the rate of convergence of the estimators of long
run coefficients is faster, at v/nT’, as opposed to the usual rate of v/nT.



The remainder of this paper is organized as follows. Section [2| presents the model and assump-
tions, introduces the PB estimator, and provides asymptotic results. Application of bias correction
methods and bootstrapping critical values are also discussed in Section[2] Section 3| presents Monte
Carlo evidence. Section {| revisits the aggregate consumption function empirical application in
Pesaran, Shin, and Smith (1999). Section [5 concludes. Mathematical derivations and proofs, and

additional Monte Carlo results are provided in an Appendix.

2 Pooled Bewley estimator of long-run relationships

We adopt the same setting as Pesaran, Shin, and Smith (1999). Consider the following illustrative

model

Ay = ¢ — 04 (Yir—1 — BTig—1) + Uyt (1)

Az = Ugit, (2)

fori=1,2,...n, and t = 1,2,...,T. For expositional clarity and notational simplicity, we focus
on a single regressor and one lag, but it is understood that the developed approach is applicable
to multiple lags of Az; = (Ayit, Azy)" entering both equations —, and the approach is also

applicable to multiple regressors. The following assumptions are postulated.
Assumption 1 (Coefficients) There exists € > 0 such that € < a; < 1 for all i.

Assumption 2 (Innovations) uy ;i ~ II1D (0, U%i), and uy i s given by
Uy it = 0iUz 4t + Vit (3)

for all i and t, where vy ~ 11D (0, 012”-), and uy ;1 is independently distributed of vy for all i,i,t,
andt'. In addition, sup; ; luie|'® < K and sup; ; I luzit|® < K, and limits lim, con ™' 7 02, =

2 : -1y 2 2 2) 2 o
o2 and lim p_oon™ ' 31 02,02,/ (602) = w3 eist.

Assumption 3 (Initial values and deterministic terms) z;o = (yi,o,ﬂsi,o)/ is given by

zio = p; + Cj (L) uo, (4)



for alli and ¢, and ¢; = Qifl; 1 — azﬂﬂm for all i, where ug = (uy,i,0>um,i,0),7 Ky = (Mz’,hMi,Q)l;

il < K, and C; (L) is defined in Section [A.1] in Appendia.

Remark 1 Assumption rules out zero as a limit point of {c,i € N}, where we use N to denote
the set of natural numbers. Assumption@ allows for ug ;¢ to be correlated with wuy ;. Cross-section
dependence of u; is ruled out. Assumption @ (together with the remaining assumptions) ensure

Az and (yix — Bxi) are covariance stationary.

Substituting first for w4 in , and then substituting u, ;; = Ax;;, we obtain the following

ARDL representation for y;;
Ayir = ¢; — o (Yiji—1 — Big—1) + i Az + vy (5)

The pooled Bewley estimator takes advantage of the Bewley transform (Bewley, [1979)). Subtracting

(1 — ;) yir from both sides of and re-arranging, we have
aiyit = ¢ — (1 — a;) Ayir + iy + 6;Axiy + vy, (6)
or (noting that a; > 0 for all 4 and multiplying the equation above by a; ')

Yit = ai_lci + Bxi + ’l/);AZit + a;lvit, (7)

a; ) o,

/
where Az = (Ayy, Azy), and 9; = (—ﬂ Q) . Further, stacking for t = 1,2,....,T, we
have

yi = a;lciTT +x;0 4+ AZ;y, + a;lvi, (8)

where y; = (yi1, Yiz, -, Yir) s Xi = (Ti1, Tiny ooy 2i7) s AZi = (AZ;,U AZLQ, ey AZQ,T>/, vi = (vi1,0i2,
and 77 is T x 1 vector of ones. Define projection matrix M, = Ip — 7p7/.. This projec-
tion matrix subtracts the period average. Let ¥; = (%1, %2, ..., %ir) = Myy;, and similarly
%i = (i1, Tigy o, Bir) = Myxi, AZ; = M;AZ;, and ¥; = M,v;. Multiplying (8) by M, we
have

¥i = %8 + AZiyp, + a7 ¥,

...,’l)l'7T)/,



Consider the matrix of instruments

H;, = (yi-1,%,%i-1) = M;H;, H; = (yi 1, %, Xi,—1) , 9)

where y; -1 = (yiﬁl,yiﬁl,...,yi,T,l)' is the data vector on the first lag of y;, similarly x; 1 =

(i, i1, ...,xi’T_l)/. The PB estimator of § is given by

n -1 n
B= <Z igMﬁ%) <Z i;MzS’z> : (10)
i—1 i=1

where

~ ~ ~\—1 -
M; = P; — P;AZ; (AZQPiAZi) AZ/P;, (11)

and

~ -~ -1
. (H’H) i (12)

is the projection matrix associated with H,.
In addition to Assumptions [I}3] we also require the following high-level conditions to hold in
the derivations of the asymptotic distribution of the PB estimator under the joint asymptotics

n, T — oo.
Assumption 4 There exists Ty € N such that the following conditions are satisfied:

(i) supen, 710 E [)‘;11211 (Bir)] < K, where Byp = AZP;AZ;|T, P; is given by , and AZ;
is defined below (@

(ii) sup;en, r>1 E {)\;11211 <ATI~{;-”}~I;FAT>} < K, where

T 0 .
Ag = CH = (%0,8%:,8,), (13)
0 T*1/2

~ ~ ~ / ~
§i-1 = <§i,o,§i,1,-~-7§i,:r—1> s &it—1 = Uit—1 — BTit—1, Uit and Ty are defined below (H);

~ ~ ~ ~ / ~ ~ ~ ~ /
Xi = (i1, Tig, ooy Tyr) 5 and AX; = (AZ1, Ao, ..., AZi7) .

Remark 2 Under Assumptions (and without Assumption , we have plimy_, B; 1 = By,

where B; is nonsingular (see Lemma in Appendiz). Similarly, it can be shown that Assumptions



are sufficient for plimp_, ATI:I;?" I:IfAT to exist and to be nonsingular. However, these results
are not sufficient for the moments of HB:lH and H(ATH;"H;»*AT)AH to exist, which we require for

the derivations of the asymptotic distribution of the PB estimator. This is ensured by Assumption

)

2.1 Asymptotic results
The following theorem establishes the asymptotic distribution of B .

Theorem 1 Let (y;,xit) be generated by model —(@ and suppose Assumptz’ons hold. Con-
sitder the PB estimator B given by (@ Then,

TVn (B _ ,3> SaN(0,9), Q= wiw?, (14)

asn, T — oo such that sup,, 1 /n/TT¢ < K, for some e > 0, where w? = 02/6, 03 = lim,_oon ' Y 1 02,

and w? = lim ;,0on 1Y 0 02,02 (6@?).

xi” vt

All proofs are provided in Appendix.

Remark 3 Like the PMG estimator in |Pesaran, Shin, and Smith (1999), the PB estimator will
also work when variables are integrated of order 0 (the I(0) case), which is not pursued in this

paper. In the 1(0) case, the PB estimator converges at rate vVnT'.

To conduct inference, let
2 1 -~ X/M'X‘
~ —_ 3 1™
@ =nty —T2 (15)
i=1

and

o 1TSS (XM 2
w%:nz<l Tl Z) ; (16)

=1

e .
where V7 is the vector of residuals from , namely

Vi =M, (yz' - ﬁ&) - (17)

Q= 2. (18)



2.2 Bias mitigation and bootstrapping critical values for robust inference

When n is not sufficiently small relative to T, specifically when /n/T — K > 0, then /nT (B — B)
is no longer asymptotically distributed with zero mean. The asymptotic bias is due nonzero mean of
x/M,;V;, and it can be of some relevance for finite sample performance, as the Monte Carlo evidence
in Section [Blillustrates. Monte Carlo evidence also reveals that the inference based on PB and other
existing estimators in the literature can suffer from serious size distortions in finite samples. To deal
with these problems, we consider bootstrapping critical values using Wild bootstrap by Herwartz
and Walle (2018)| for more accurate and more robust inference that allows for arbitrary cross-
sectional dependence of errors. In addition, we also implement two bias-mitigation approaches - a
simulation based and split-panel jackknife methodsﬂ

We describe these methods next for the PB estimator. The same methods are also implemented
for the remaining estimators in this paper (PMG, PDOLS, and FMOLS), described in the online

supplement.

2.2.1 Simulation-based bias reduction

Once an estimate of the bias of B is available, denoted as 13, then the bias-corrected PB estimator
is given by

B=p-b. (19)

One possibility of estimating the bias in the literature is by stochastic simulation. We adopt the

following Wild bootstrap algorithm for generating simulated data.

1. Compute ﬁ . Given B , estimate the remaining unknown coefficients of elements of — by

least squares, and compute residuals iy ¢, Uy it

(r) _

yait T

) (r) _

xit T

2. For each r = 1,2, ..., R, generate new draws for @ ay a,ﬁ’”)

(r)

a; ’ is randomly drawn from Rademacher distribution (Liu, [1988]),

Uy it, and U g 5t, Where

r) —1, with probability 1/2
t =

1, with probability 1/2

’There are numerous approaches that could be considered for bias reduction, besides the two methods considered
in this paper. Comprehensive comparison of different bias-reduction methods is outside the scope of this paper.



Given the estimated parameters of — from Step 1, and initial values y;1, ;1 generate
simulated data yg),xg) for t = 2,3,...,7 and ¢ = 1,2,...,n. Using the generated data

compute B(r) .

Using simulated data with R chosen to be largeﬁ we compute an estimate of the bias bp =
[Pfl Zle B(T) — B} This procedure can be iterated by using the bias-corrected estimator, B , in
Step 1. This is not considered in this paper.

We compute the o percent critical values using the 1 — a percent quantile of {|t(r) | }le’ where
() = B(T)/se (B(T)>, B(T) = B(T) — b is the bias-corrected estimate of (8 using the r-th draw of the
simulated data, se (B(T)> = T 'n~Y20() is the corresponding standard error estimate, and Q)

is computed in the same way as Q in but using the simulated data.

2.2.2 Jackknife bias reduction

We also consider half-panel jackknife bias correction methodm which can be written as

Bjk:Bjk(“):B—’f<ﬁa2+ﬂb—B>, (20)

where B is the full sample PB estimator, Ba and Bb are the first and the second half sub-sample PB
estimators, and k is a suitably chosen weighting parameter. In stationary setting, where the bias

is of order O (Tﬁl), K is chosen to be one, so that % — K- (TL/Q — %) = 0 for any arbitrary K.
In general, when the bias is of order O (T'7) for some ¢ > 0, then s can be chosen to solve

% — K- (ﬁ - %) = 0, which yields k = 1/ (2° — 1). Under our setup with I(1) variables, we

need to correct 3 for its O (T*2) bias, namely e = 2, which yields x = 1/3.

~ k
Inference using BJ can be conducted based on but with dj?] replaced by

2
2 1 zn: [<1 + k) X;M; — 2HXizb,iMab,i vi (21)
w,, = wv = n - T s

SWe set R = 10,000 in this paper.
"For other panel applications of split-panel jackknife methods, see for example Dhaene and Jochmans (2015)| and
Chudik, Pesaran, and Yang (2018)|



~ ~jk
where v = M; (yi — ﬂ] XZ->,

X, . Maﬂ'
M, ;

X i (xgﬂ») and M, ; (M,;) are defined in the same way as x;, and M; but using only the first
(second) half of the sample.
We compute bootstrapped critical values to conduct more accurate and robust small sample

inference. Specifically, the a percent critical value is computed as the 1 — a percent quantile of

{2

the simulated data generated using the algorithm described in Subsection [2.2.1] se (Bg?) is the

R ~(r ~(r ~(r
} _p where tﬂ) = Bé»k)/se (B;-k)), Bg-k) is the jackknife estimate of § using the r-th draw of

corresponding standard error estimate, namely se (Bé?) = T n Y/ QQ%), Qg? = w;‘(*T)wg (r) in
which w,, () and o2 ) are computed using the simulated data, based on expressions and ,

z,(r

respectively.

3 Monte Carlo Evidence

3.1 Design

The Data Generating Process (DGP) is given by —, fori =1,2,...,n, T = 1,2,....,T, with
starting values satisfying Assumption (3| with p; ~ ITDN (79,12), and ¢; = a;p; 1 — ;B 5. We
generate a; ~ 11DU [0.2,0.3]. We consider two DGPs based on the cross-sectional dependence of
errors. In the cross-sectionally independent DGP, we generate wuy ;1 = 0yi€yit, Uzit = Oz iCeit

0202, ~IIDU[0.8,1.2],

€y.i 1 .
W CIIDN (05, %), S ~ P and p; ~ I1DU [0.3,0.7).

€x,it Pi 1

In the DGP with cross-sectionally dependent errors, we generate e, ;; to contain a factor structure

with strong, semi-strong and weak factors,

m
€y it = <5y,it + Z’mfﬁt) )

(=1



where ey 5 ~ IIDN (0,1), for ~ IIDN (0,1), v, ~ IIDU [O,Pymaxjg], for £=1,2,...,m. We choose
m = 5 factors and Vyaxp = 2n%~1 with ap = 1,0.9,0.8,0.7,0.6, for £ = 1,2,...,5, respectively.
)—1/2

Scaling constant s¢; is set to ensure F (ez,it) = 1, namely 3¢ = (1 + > 7?4 . We generate
ezt to ensure unit variance and cov (eyﬁ,emt) = p;. Specifically, ezt = pieyit + /1 — p?emt,
ezxit ~ IIDN (0,1). Both designs features heteroskedastic (over ¢) and correlated (over y & x
equations) errors, namely E (uzzt) = 012/,1'7 E (u2 ) =02, and corr (uy it, Uy it) = p;. We consider

it x,00

n, T = 20, 30,40, 50 and compute Ry;c = 2000 Monte Carlo replications.

3.2 Objectives

We report bias, root mean square error (RMSE), size (Hp : = 1, 5% nominal level) and power
(Hy : 8 = 0.9, 5% nominal level) findings for the PB estimator B given by , with variance
estimated using . Moreover, we also report findings for the two bias corrected versions of PB
estimator as described in Subsection with bootstrapped critical values for inference robust to
cross-sectional dependence of errors. We compare the performance of PB estimators with the PMG
estimator by Pesaran, Shin, and Smith (1999), panel dynamic OLS (PDOLS) estimator by Mark
and Sul (2003), and the group-mean fully modified OLS (FMOLS) estimator by [Pedroni (1996,
2001b)). Similarly to PB estimator, we also consider jackknife and simulation based bias-corrected
versions of the PMG, PDOLS and FMOLS estimators with cross-sectionally robust bootstrapped

critical values, described in the online supplementE]

3.3 Findings

Table 1 report findings for the original (bias-uncorrected) estimators. PB estimator stands out as
the most precise estimator in terms of having the lowest RMSE values among the four estimators.
The second best is PMG estimator with RMSE values 1 to 21 percent larger compared with PB
estimator, the third is PDOLS with RMSE values 23 to 66 percent larger compared with PB, and
the FMOLS comes last with RMSE values 95 to 180 percent larger compared with PB. In terms
of the bias alone, the ordering of the estimators is slightly different with PMG and PB switching
their places. For T' = 20, the bias of PMG estimator is -0.016 to -0.020, the bias of PB estimator

is in the range -0.034 to -0.037, the bias of the PDOLS estimator is in the range -0.052 to -0.056

$We use R, = 10000 replications (within each MC replication) for simulation-based bias correction and for com-
putation of robust and more accurate bootstrapped critical values.

10



and the bias of the FMOLS estimator is in the range -0.104 to -0.110. For such a small values of
T, the bias is not very large, and, as expected, it declines with an increase in T'.

All four estimators suffer from varying degrees of size distortions. The inference based on PB
estimator is the most accurate. Specifically, the size distortions for the PB estimator are lowest
among the four estimators - with reported size in the range between 9.9 and 25.2 percent, exceeding

the chosen nominal value of 5 percent. Size distortions diminish with an increase in 7T

Table 1: MC findings for the estimation of long-run coefficient 5 in experiments with
cross-sectionally independent errors.

Estimators without bias correction and inference conducted using standard critical values.

Bias (x 100) RMSE (x 100) Size (5% level) Power (5% level)
n\T 20 30 40 50 20 30 40 50 20 30 40 50 20 30 40 50
PB
20 -3.69 -1.75 -1.07 -0.73 6.43 4.12 3.04 2.45 18.40 13.35 11.80 11.40 34.00 68.30 89.95 97.70
30 -3.39 -1.79 -1.04 -0.74 5.55 3.54 2.58 2.03 19.40 14.50 11.95 10.10 43.70 81.50 96.50 99.60
40 -3.56 -1.87 -1.06 -0.74 5.18 3.25 2.33 1.81 21.25 15.55 12.30 10.45 45.90 87.35 99.05 99.95
50 -3.58 -1.90 -1.09 -0.74 4.96 3.05 2.18 1.66 25.20 15.55 13.40 9.95 54.05 93.25 99.65 100.00
PMG
20 -1.97 -0.89 -0.51 -0.32 707 479 3.40 2.57 39.45 28.15 21.40 17.85 63.40 82.20 93.75 98.95
30 -1.56 -0.97 -0.41 -0.33 6.32 3.99 2.78 2.08 41.10 28.45 22.50 16.55 71.20 89.60 98.10 99.85
40 -1.64 -0.86 -0.44 -0.31 5.71 3.44 2.47 1.85 43.10 29.25 23.05 18.10 77.25 95.15 99.60 100.00
50 -1.70 -0.93 -0.48 -0.31 5.23 3.10 2.26 1.67 42.25 28.60 23.75 16.85 81.00 97.00 99.80 100.00
PDOLS
20 -5.60 -3.64 -2.82 -2.32 7.93 5.28 4.02 3.31 21.75 19.10 17.30 19.30 17.35 43.15 72.95 90.15
30 -5.25 -3.60 -2.75 -2.26 7.05 4.81 3.64 2.96 24.10 23.10 23.10 24.20 21.40 55.90 84.85 97.30
40 -547 -3.77 -2.84 -2.31 6.78 4.69 3.53 2.86 29.90 30.60 28.30 30.10 21.70 62.60 91.35 99.10
50 -5.46 -3.78 -2.88 -2.30 6.57 4.52 3.45 2.75 35.10 34.30 34.40 36.45 25.25 72.40 95.85 99.85
FMOLS

20 -11.01 -7.16 -5.45 -4.25 12.56 8.44 6.55 5.18 89.25 78.25 69.90 64.15 45.00 56.60 79.05 92.60
30 -10.44 -7.06 -5.30 -4.17 11.58 7.99 6.09 4.83 93.80 86.15 77.90 71.95 44.90 63.20 88.75 98.20
40 -10.78 -7.31 -5.50 -4.26 11.59 8.00 6.08 4.77 97.45 92.95 85.65 82.20 44.60 67.85 92.70 99.20
50 -10.76 -7.35 -5.50 -4.22 11.44 7.91 5.98 4.65 98.70 96.25 91.35 86.85 46.10 73.70 95.35 99.85

Notes: DGP is given by Aysr = ¢; — o (Yi,t—1 — BTit—1) + Uy,it and Azyy = Uz ¢, for e = 1,2, ...,n, T =1,2,..., T,
with =1 and a; ~ IIDU [0.2,0.3]. Errors wuy,it, ug ¢ are cross-sectionally independent, heteroskedastic over ¢, and
correlated over y & x equations. See Section for complete description of the DGP. The pooled Bewley estimator
is given by , with variance estimated using (18). PMG is the Pooled Mean Group estimator proposed by
Pesaran, Shin, and Smith (1999)l PDOLS is panel dynamic OLS estimator by Mark and Sul (2003)l FMOLS is the
group-mean fully modified OLS estimator by |Pedroni| (1996, [2001b)). The size and power findings are computed

using 5% nominal level and the reported power is the rejection frequency for testing the hypothesis 8 = 0.9.
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Table 2: MC findings for the estimation of long-run coefficient 5 in experiments with

cross-sectionally independent errors.

Bias corrected estimators and inference conducted using bootstrapped critical values.

Bias (x 100)

RMSE (x 100)

Size (5% level)

Power (5% level)

n\T 20 30 40 50 20 30 40 50 20 30 40 50 20 30 40 50
Jackknife bias-corrected estimators
PB
20 -1.60 -0.52 -0.25 -0.14 6.27 4.18 3.10 2.52 5.95 5.15 5.40 5.30 25.10 56.75 82.95 94.30
30 -1.34 -0.55 -0.25 -0.18 5.24 3.45 2.58 2.06 6.70 5.05 5.10 5.00 37.45 73.70 93.10 99.05
40 -1.45 -0.60 -0.24 -0.15 4.59 3.03 2.29 1.81 5.85 5.06 4.50 4.90 42.80 84.10 98.15 99.85
50 -1.53 -0.62 -0.26 -0.15 4.23 2.72 2.07 1.61 6.20 4.60 5.65 4.25 51.10 90.80 99.55 100.00
PMG
20 -0.55 -0.20 -0.05 0.01 9.26 5.59 3.78 2.86 14.90 11.05 9.10 7.20 33.45 57.15 83.05 95.60
30 -0.10 -0.30 0.02 -0.04 7.35 4.48 3.09 2.28 14.00 10.95 8.50 7.35 45.60 72.05 93.10 99.30
40 -0.27 -0.13 -0.01 -0.01 6.73 3.83 2.72 2.06 15.40 9.30 8.90 8.05 48.90 82.95 97.10 99.75
50 -0.42 -0.21 -0.06 0.00 6.13 3.43 247 1.83 16.45 9.65 9.40 7.55 57.55 88.55 98.85 100.00
PDOLS
20 -4.22 -2.56 -1.97 -1.59 8.00 5.05 3.77 3.04 8.40 5.80 5.40 4.75 8.70 27.50 55.25 77.90
30 -3.91 -2.55 -1.92 -1.56 6.89 4.42 3.30 2.64 8.70 5.75 5.95 4.70 10.15 37.30 69.75 91.00
40 -4.09 -2.69 -1.98 -1.60 6.35 4.17 3.08 2.47 7.70 5.80 4.90 4.05 10.05 41.10 75.20 94.95
50 -4.11 -2.70 -2.02 -1.58 6.01 3.91 2.93 2.30 7.90 590 4.55 3.55 11.30 45.75 83.75 97.60
FMOLS
20 -8.70 -5.07 -3.70 -2.76 11.19 7.19 5.52 4.33 10.85 5.95 4.55 4.00 1.05 1.40 8.10 25.75
30 -8.17 -5.02 -3.60 -2.73 10.02 6.60 4.94 3.86 9.95 5.00 4.65 3.00 0.50 1.65 10.20 35.20
40 -8.49 -5.22 -3.78 -2.78 9.84 6.40 4.79 3.68 9.20 5.00 3.45 3.25 0.15 0.75 8.85 38.70
50 -8.50 -5.28 -3.78 -2.74 9.61 6.26 4.62 3.50 10.65 5.00 3.75 2.85 0.10 0.95 10.55 45.75
Stochastic simulation bias-corrected estimators
PB
20 -1.28 -0.33 -0.16 -0.11 5.87 3.93 2.93 2.39 7.25 6.20 6.05 5.75 36.20 67.60 88.30 96.95
30 -0.98 -0.39 -0.15 -0.13 4.90 3.24 2.43 1.93 7.75 6.35 6.35 5.80 52.20 84.00 96.90 99.55
40 -1.07 -0.43 -0.13 -0.10 4.24 2.83 2.15 1.70 7.00 6.55 5.95 5.10 59.75 91.35 99.45 99.95
50 -1.09 -0.44 -0.15 -0.10 3.89 2.56 1.96 1.52 8.95 6.25 6.45 5.55 69.40 95.50 99.90 100.00
PMG
20 -1.28 -0.44 -0.21 -0.11 7.88 4.83 3.41 2.57 14.10 1045 7.90 6.80 35.25 63.40 86.70 97.30
30 -0.88 -0.55 -0.12 -0.13 6.40 3.99 2.79 2.08 13.10 10.75 8.25 6.85 47.45 77.75 95.85 99.65
40 -0.96 -0.44 -0.14 -0.11 5.73 3.42 2.47 1.85 14.95 9.05 7.80 6.90 53.55 87.60 98.40 99.85
50 -1.02 -0.51 -0.19 -0.10 5.20 3.06 2.24 1.66 15.15 9.85 9.05 6.95 60.90 91.65 99.30 100.00
PDOLS
20 -2.19 -0.90 -0.59 -0.42 6.75 4.31 3.12 2.55 10.35 7.80 7.25 7.25 28.70 64.45 86.65 95.85
30 -1.89 -0.96 -0.59 -0.43 5.70 3.62 2.63 2.08 10.75 890 7.70 7.15 39.90 77.10 95.35 99.30
40 -2.00 -1.04 -0.59 -0.41 4.98 3.24 2.34 1.84 10.05 8.65 7.05 7.35 46.40 85.75 98.65 99.95
50 -2.00 -1.05 -0.64 -0.40 4.61 2.93 2.14 1.65 10.70 9.40 8.65 6.80 52.85 91.55 99.50 100.00
FMOLS
20 -4.59 -1.97 -1.30 -0.80 8.84 5.62 4.28 3.40 17.10 10.90 9.20 7.40 20.20 41.10 63.20 81.70
30 -4.19 -2.04 -1.28 -0.84 7.54 4.86 3.61 2.83 18.50 10.90 9.15 7.70 24.85 51.60 78.60 93.15
40 -4.36 -2.14 -1.34 -0.81 6.89 4.36 3.22 2.51 20.10 12.05 9.80 7.75 26.10 60.40 86.25 96.80
50 -4.41 -2.22 -1.35 -0.78 6.56 4.10 2.98 2.29 23.80 14.35 10.50 8.90 30.45 69.45 92.05 99.20

Notes: See the notes to Table 1. Bias-corrected versions of the PB estimator are described in Subsection 2.2
Bias-corrected versions of the PMG, PDOLS and FMOLS estimator are described in the online supplement.

Inference is conducted using bootstrapped critical values.
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We consider next the bias-corrected versions of the four estimators with inference computed
using robust bootstrap critical values. Upper panel of Table 2 reports findings for estimators
corrected for bias using the jackknife procedure, and the bottom panel reports on simulation-based
bias corrected estimators. Bias correction did not change the overall ranking of estimators — PB
continues to be tho most precise (lowest RMSE). Both bias correction approaches are quite effective
in reducing the bias. The bias of PB and PMG estimators for any of the two bias corrections are
very low. Bias correction did not only resulted in better bias, but notably in many cases it improved
RMSE values, which is quite a good news. In the case of PB estimator, using simulation based
bias correction resulted in improved RMSE performance for all choices of n,T - by about 2 to
23 percent. Results in Table 2 also show notable improvement to inference comes from using
bootstrapped critical values - with PB having virtually no size distortions and size distortions of
the remaining estimators are relatively minor.

Last but not least, we consider the DGP with cross-sectionally correlated errors. The corre-
sponding results, reported in Tables S1 and S2 in the online supplement, reveal the same ranking
of estimator, and, importantly, the bootstrapped critical values continue to deliver correct size,
showing the robustness to cross-sectional dependence of errors.

We conclude that PB estimator can perform better (in terms of overall precision as measured
by RMSE, and in terms of accuracy of inference) than existing estimators (PMG, PDOLS, and
FMOLS) in finite sample sizes of interest, regardless if bias corrections are considered or not. Bias
corrections and bootstrapping critical values are helpful for all four estimators - resulting not only
in reduced bias, but sometimes also in better RMSE, and in all cases in more accurate inference
robust to cross-sectional dependence of errors, which is important in practice. We consider PB to
be useful addition to the existing literature as a complement of the PMG, PDOLS, and FMOLS

estimators.

4 Empirical Application

This section revisits consumption function empirical application undertaken by [Pesaran, Shin, and

Smith (1999), hereafter PSS. The long-run consumption function is assumed to be given by

cit = di + By + Bomi + Vi,
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for country ¢ = 1,2,...,n, where ¢;; is the logarithm of real consumption per capita, yfi is the
logarithm of real per capita disposable income, ;; is the rate of inflation, and ¥;; is an I (0) process.
We take the dataset from PSS, which consists of N = 24 countries and a slightly unbalanced time
period covering 1960—1993E| PSS assume all variables are I (1) and cointegrated; and they estimate
the coefficients 5; and (35 using an ARDL(1,1,1) specification, which can be written as the following

error-correcting equation
Acy = —oy (Ci,t—l —d; — 519%—1 - 527Tz',t—1> + 01 Ay + S Ami + vy, (22)

where all coefficients, except the long-run coefficients 8, and 35 are country-specific.

Table 3 presents alternative estimates of the long-run coefficients. The upper panel presents
findings for estimators without bias correction and standard confidence intervals. The middle
and lower panels present jackknife and simulation based bias-corrected estimates with confidence
intervals based on bootstrapped critical values. Results are quite heterogenous across different
approaches to estimation and inference. According to the bias-corrected PB estimated (the most
preferred estimator based on the MC experiments), the long-run coefficient on GDP (/) is esti-
mated at 0.921 and 0.926, depending on the type of bias correction, and the long-run coefficient on
inflation (B5) is estimated at -0.120 and -0.125. Unit coefficient on GDP cannot be rejected at 5%
nominal level, whereas zero coefficient on inflation cannot be rejected, either. From an economic
perspective, unit GDP long-run elasticity and no long-run effects of inflation on consumption are
both quite plausible - the former hypothesis in line with balanced growth path models, and the
latter in line with monetary policy neutrality in the long-run. Quite a different conclusion would be
reached according to PMG estimates - namely both the unit coefficients on GDP and zero coefficient
on inflation would be rejected. PDOLS estimates and the corresponding inference are both similar
to PB estimates and inference (not rejecting unit GDP and zero inflation long run coefficients).
FMOLS estimator was the least preferred according to MC evidence. FMOLS estimates of 3, are
largest among the four types of estimators, and the unit coefficient cannot be rejected. FMOLS
estimates of 4 are also quite large — close to PMG estimates and about twice the magnitude of PB

and PDOLS estimates. The choice of individual estimators clearly matters in this empirical illus-

"We have downloaded data at http://www.econ.cam.ac.uk/people-files/emeritus/mhpl/pmge_prog.zip. Codes
for empirical application in this paper is available from authors’ websites.

14



tration. Last but not least, it is also worth highlighting that the bootstrapped robust confidence
intervals of the bias-corrected estimators in the middle and bottom sections of Table 3 are larger
compared with the conventional confidence intervals in the upper section. According to MC evi-
dence, the difference could be due to a combination of two factors — poor small sample performance
of the asymptotic confidence intervals even in the ideal case of independently distributed errors
across cross section, and possible error cross sectional dependence. In particular, the conventional

confidence intervals in Table 3 are likely conveying a false sense of statistical precision.

Table 3: Estimated consumption function coefficients for OECD countries

B1: Income  95% Conf. Int. 3,: Inflation 95% Conf. Int.

Estimator without bias correction

PB 912 [.845,.980] -.134 [-.260,-.008]
PMG .904 [.889,.919] -.466 [-.566,-.365]
PDOLS .923 [.798,1.047) -.187 [-.407,.033]
FMOLS .951 [.942,.959] -.336 [-.408,-.265]
Jackknife bias-corrected estimators
PB 926 [.835,1.017 -.120 [-.345,.105]
PMG 915 [.880,.949] -.403 [-616.,-.190]
PDOLS  .940 [.737,1.143] -.184 [-.530,.161]
FMOLS .983 [.912,1.053) -.397 [-1.370,.576]
Stochastic simulation bias-corrected estimators
PB 921 [.830,1.012] -.125 [-.314,.065]
PMG .905 [.875,.936] =477 [-.657,-.297]
PDOLS .932 [.746,1.118] -.183 [-.499,.133]
FMOLS .985 [.941,1.028] -.438 [-1.047,.171]

Notes: This table revisits empirical application in Table 1 of |Pesaran, Shin, and Smith (1999)l reporting estimates of long-run
income elasticity (8;) and inflation effect (85) coefficients and their 95% confidence intervals in the ARDL(1,1,1) consumption
functions for OECD countries using the dataset from |Pesaran, Shin, and Smith (1999)l PB stands for pooled Bewley
estimator developed in this paper. PMG is the Pooled Mean Group estimator proposed by [Pesaran, Shin, and Smith (1999).
PDOLS is panel dynamic OLS estimator by [Mark and Sul (2003)l FMOLS is the group-mean fully modified OLS estimator
by [Pedroni| (1996} 2001b)). Description of bias correction methods is provided in Subsection for PB estimator and in the
online supplement for PMG, PDOLS and FMOLS estimators. Inference in the case of original estimators uncorrected for bias
is conducted using the standard asymptotic critical values, and it is valid only when errors are not cross-sectionally
dependent. Inference in the case of bias-corrected estimators is conducted using bootstrapped critical values following |Chudik,
Pesaran, and Smith (2022) and it is robust to cross-section dependence of errors.
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5 Conclusion

This paper proposed pooled Bewley (PB) estimator of long-run relationships in heterogeneous
dynamic panels. Compared with other existing estimators in the literature — namely PMG, PDOLS
and FMOLS — Monte Carlo evidence reveals that PB can perform well in small samples. While
we developed the asymptotic theory of PB estimator under a similar setting as PMG estimator,
notably we assumed cross-sectionally independent errors, we have also considered bootstrapping of
critical values for inference when errors are arbitrarily cross-sectionally correlated. This makes PB

suited for applications where cross-sectional independence cannot be assumed.

16



References

Bewley, R. A. (1979). The direct estimation of the equilibrium response in a linear dynamic model.

Economics Letters 3, 357-361.

Breitung, J. (2005). A parametric approach to the estimation of cointegration vectors in panel datal
Econometric Reviews 24, 151-173.

Chudik, A. and M. H. Pesaran (2013). Econometric analysis of high dimensional VARs featuring a domi-
nant unitl Econometric Reviews 32, 592-649.

Chudik, A., M. H. Pesaran, and R. P. Smith (2022). Revisiting the Great Ratios Hypothesis. Globalization
Institute Working Paper No. 415.

Chudik, A., M. H. Pesaran, and J.-C. Yang (2018). Half-panel jackknife fixed-effects estimation of linear
panels with weakly exogenous regressors. Journal of Applied Econometrics 33(6), 816-836.

Dhaene, G. and K. Jochmans (2015). Split-panel jackknife estimation of fixed-effect models. Review of
Economic Studies 82(3), 991-1030.

Herwartz, H. and Y. M. Walle (2018). A powerful wild bootstrap diagnosis of panel unit rootsunder linear
trends and time-varying volatility. Computational Statistics 33, 379-411.

Liu, R. (1988). Bootstrap procedure under some non-i.i.d. models. Ann. Statist. 16. 1696-1708.

Mark, N. C. and D. Sul (2003). |Cointegration vector estimation by panel DOLS and long-run money
demand. Ozford Bulletin of Economics and Statistics.

Pedroni, P. (1996). Fully Modified OLS for Heterogeneous Cointegrated Panels and the Case of Purchasing

Power Parity. Indiana University working papers in economics no. 96-020 (June 1996).

Pedroni, P. (2001a). Fully modified OLS for heterogeneous cointegrated panels. In B. Baltagi, T. Fomby,
and R. C. Hill (Eds.), Nonstationary Panels, Panel Cointegration, and Dynamic Panels, (Advances in
Econometrics, Vol. 15), pp. 93-130. Emerald Group Publishing Limited, Bingley.

Pedroni, P. (2001b). Purchasing Power Parity Tests in Cointegrated Panels. The Review of Economics
and Statistics 83, 727-731.

Pesaran, M. H., Y. Shin, and R. P. Smith (1999). Pooled mean group estimation of dynamic heterogeneous

panels. Journal of the American Statistical Association 94, 621-634.

Phillips, P. C. B. and H. R. Moon (1999). [Linear regression limit theory for nonstationary panel datal
Econometrica 67, 1057-1011.

Wickens, M. R. and T. S. Breusch (1988). Dynamic specification, the long-run and the estimation of

transformed regression models. The Economic Journal 98, 189-205.

17


https://doi.org/10.1016/0165-1765(79)90011-9
https://doi.org/10.1081/etc-200067895
https://doi.org/10.1080/07474938.2012.740374
https://doi.org/10.1080/07474938.2012.740374
https://doi.org/10.24149/gwp415
https://doi.org/10.1002/jae.2623
https://doi.org/10.1002/jae.2623
https://doi.org/10.1093/restud/rdv007
https://doi.org/10.1007/s00180-017-0784-5
https://doi.org/10.1007/s00180-017-0784-5
https://doi.org/10.1214/aos/1176351062
https://doi.org/10.3386/t0287
https://doi.org/10.3386/t0287
https://web.williams.edu/Economics/pedroni/WP-96-20.pdf
https://web.williams.edu/Economics/pedroni/WP-96-20.pdf
https://doi.org/10.1016/S0731-9053(00)15004-2
https://doi.org/10.1162/003465301753237803
https://doi.org/10.1080/01621459.1999.10474156
https://doi.org/10.1080/01621459.1999.10474156
https://doi.org/10.1111/1468-0262.00070
https://doi.org/10.2307/2233314 
https://doi.org/10.2307/2233314 

A Appendix

This Appendix is organized in four sections. Section introduces some notations and definitions. Section
[A22] presents lemmas and proofs needed for the proof of Theorem [I} Section [A-3] presents proof of Theorem
m

A.1 Notations and definitions

Let z;y = (i, zi), and define C; (L) = Y50 CyL! and C; (L) = >2;°, C, LY, where

Cio = I
Cu = (&, -I)d =12 .,
l-—a; a;
P, = @i aiff ) (A1)
0 1
0 B
(1) = C. . =1 —
Cz(]-) CzO + Czl + ZILI{.IO @Z ( 0 1 >
and
1 =B
C, = C;p—C;(1)=
i0 0 ( ) < 0 0 )
‘ ¢
1-— (67 —(1— (67
i = Ci i1 +Cu= ( ) ( )8 Jfor 0=1,2,....
0 0
Model — can be equivalently written as
®; (L) zit = c; + uyy,
fori=1,2,...,n and t = 1,2, ..., T, where ¢; = (¢;,0),
P, (L)=1,— P,L, (A.2)

and I is a 2 x 2 identity matrix. The lag polynomial ®; (L) can be re-written in the following (error
correcting) form
P, (L)=-1,L+ (1 - L)1, (A.3)

where

I =-(LL—-®)= ( _géi aéﬁ > (A4)

The VAR model (A.5)) can be also rewritten in the following form
B, (L) (210 — 1;) = i, (A.5)

where ¢; = —IT;u; = (¢;,0)’, namely ¢; = Qi1 — B o
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Using Granger representation theorem, the process z;; under the assumptions has representation

Yie =ty Bsi+ Y (1—00) (i — Bugii—r), (A.6)
£=0
Tit = fhy; T Sits (A7)

where

t
Sit = Zux,ita (A~8)
/=1

is the stochastic trend.

A.2 Lemmas: Statements and proofs

. . ~ ~ ~ ~ ! ~ —
Lemma A.1 Suppose Assumptzons@ and@ hold, and consider X; = (%1, %2, .-, Ti,1) , where Ty = Tip—T4,
t — —1 T
Tit = ) gy Unyit, and Ty =T 3wy Then

nogrg 2
XX, o
—1 Ui 2 _ Yz
n g Tz TpWo = o asn,T — oo, (A.9)
=1

9 1 -1y 2
where 07, = lim,, oon™' > 1", 03,

Proof. Recall M, = Iy — 707/, where Iy is T x T identity matrix and 77 is T x 1 vector of ones.
Since %X; = M,x;, and M, is symmetric and idempotent (M, M, = M, = M.) we can write X,X; as
X%, = x;M.M,x; = x;M.x; = X/x;. Denote S; r = X/x;/T*. We have

1zxxz:nflzn:5i7T=n71iE(SiT 1Zn: zT_ zT)]- (A.IO)
1=1 =1

i=1
Consider E (S;r) first. Noting that &; = 22:1 Ugit — Ty Ty = T71 Zle (T —s+1)ug, and x4 =

t .
D 1 Ua,its Si,7 can be written as

3
[M]=

Sir =

TitLit

w
Il
—

I
3~
M=

t 2 t
§ Ug,is - E Uz, is
s=1 s=1

~~
Il
-

~~
Il
-

I
3=
M=

s=1

t 2 t t
<Z ’sz,is> - Z %Uw,is . Zux,is
s=1 s=1

Taking expectations, we obtain

zt: —-s+1

s=1

-HE |

Using Y0, Tt =S (1 —s/T+1)T) =t — (t+ 1)t/ (2T) + t/T, we have

i[ttJrHl) t} it+1 t'
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Finally, noting that 3>, (¢ + 1)t = (T +2) (T'+ 1) T/3, and 3./_, t = (T + 1) T/2, we obtain
E (Si,T) = O'iiJ{T < K < o0, (All)

for all T' > 0, where

%T:[(T+2)(T+1)T_(T+1)T} *12)

613 273

In addition, 37 — 1/6, as T' — oo, and

1 & 1 & o2
=Y E(Sir)=sr—) o2, — =%,
n; (Sir) %Tngffm—’ 5

as n,T — oo. This establishes the limit of the first term on the right side of (A.10). Consider the second

term next. Since E [S; 7 — E (S; )] =0, and S; 7 is independent over i, we have

2
n 1 n 1 n
pfat S isr - Bsl| = 3B (st - 3 ES
i=1 =1 =1

But it follows from that there exist finite positive constant K7 < oo (which does not depend on n, T)
such that [E (S;7)]° < K. In addition, due to existence of uniformly bounded fourth moments of 1, ;,
it also can be shown that F (SLT) < Ky < co. Hence, E{n= "> " | [Sir — E(Si7T)]}2 = O (n™'), which
implies n=* Y"1 | [Sir — E(Si,7)] —p 0, as n, T — oo. This completes the proof. m

Lemma A.2 Suppose Assumptions hold. Then there exists finite positive constant K that does mot
depend on i and/or T such that

T 4
1 -
E (T ; uz,itxit> < K, (A].?))
and

T o
1 Z .
FE (T £ Aynl’n) < K, (A14)

~ _ t — -1 T
for 0 = 4, where Ty = Typ — Ti, Tip = D o Uzit, Ti = T Y, Tit, and Ay = gt + Ve —

a0 (1 =) wise + (85 — B) s iy o)

Proof. Consider Zthl uitdie/T and ¢ = 2 first, and note that & = Y.._, usis — T, Where 7; =
! 23:1 (T'— 54 1) uy,s. We have

1 i
= Z Ug it Tit
<T t=1 )

T
E Ug it Ug, ’Lt/xltx’bt/

N>
s

T t t'
§ U4t Usgt! § Uy js — T § Uy js — Tjg
— s=1 s=1

= Airq+ Az’,T,2 —Air3— Aira,
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where

T T t
1
Ai,T,l = ﬁ § E Ug it Ug it § Ug,is § Ug,is
t=1t'=1 s=1
T T
1 =2
Ai,T,2 = ﬁ E E Ug it Uz, it’ Ty,
t=1t'=1
T T
1
Ai,T,B = ﬁ § E Ug 5t Uy 1t’x1 § Ug,isy
t=1¢=1
T T
1
Ai,T,4 = ﬁ E E Ug, it U, it' L5 E Ug,is-

t=1t'=1

Taking expectations and noting that u, ;+ is independent of u, ;4 for any ¢ # t/, we have

T t—1 T t—1
E(Ale (ZZUI.L+ZE th +ZZG$L>

t=11t'=1 t=11¢'=1
Under Asbumptlonl 2 there exists a finite constant K that does not depend on i and/or ¢, such that 0%, < K
and E (uj ;) < K. Hence |E (A;1,1)| < K. Similarly, we can bound the remaining elements, |E (A Z$T’j)| <

K, for j = 2,3,4. It now follows that F (% Zthl Uz,itfit)2 < K, where the upper bound K does not depend
on i or T. This establishes hold for ¢ = 2. Sufficient condition for to hold for p =4 arem
E (A%,T, j) < K for j =1,2,3,4. These conditions follow from uniformly bounded eights moments of u ;.
This completes the proof of . Result can be established in the same way by using the first
difference of representation (A.G). m

Lemma A.3 Suppose Assumptions [l hold, and consider s;r given by

where P; is given by , and %; and AZ; are defined below (@ Then,

— = SiT
n Yy 2 (A.16)
i=1
Proof. Consider s; v/T, which can be written as
Sir <al B rar, (A.17)
where ~
AZx, AZx;
T = T - T (A]'S)
and ~ -
AZ/P,AZ
B,r = # (A.19)

9For the cross-product terms, note that |E (Asr;Airs)| < \/E (A?,T,j)\/E (A?,). Hence, E (A7 ;) < K, for
7 =1,2,3,4, is sufficient.
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Using these notations, we have
n T2

i=1

E

1 - l -1
S ﬁ ZIE ‘aiTBiT a;T| -
i=

Using |a}; B, aZT| < )\mm (Bir) alpa;r, and Cauchy-Schwarz inequality, we obtain

< LS B [(@an?] VB P (B

i=1

Lemma |A.2) n implies the fourth moments of the individual elements of a; v are uniformly bounded in ¢ and
T, which is sufficient for £ [( iTazT)Q] < K. In addition, E [A\;}, (Bir)] < K by Assumptlon Hence,

min

there exists K < oo, which does not depend on (n,T) such that

nol 5” 7, (A.20)
and result follows. m
Lemma A.4 Suppose Assumptions hold. Then
*1ZXMX1 5:06—926, as n,T — oo, (A.21)

where 02 = lim,_oon™ ' Y1 02, M; is defined in (ﬂ) and X; 1s defined below (@)

Proof. Noting that X; is one of the column vectors of H;, we have P;X; = X;, and X;M;X; can be written
as

I ~ —y~

XiMiXi = Xixi — Si,T7 (A22)

where s; 7 is given by (A.15). Sufficient conditions for result (A.21) are:

nogrg. 2
n~t Z % —p w2 = %, as n, T — oo, (A.23)
and
nt Z 5,7 —, 0, a8 n, T — o0, (A.24)

Condition (A.23) is established by Lemma[A 1] and condition (A.24) is established by Lemma ]

Lemma A.5 Let Assumptions[I{3 hold. Then

where w? = lim ,,_,oon ™! Z?zl o2.0 /(Ga ), and X; and v; are defined below (@)

v

xx

‘HdN Ow),asn,THoo, (A.25)

Tt ’U’L
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Proof. Recall M, = Iy — 7p7/, where Ir is T x T identity matrix and 7 is T x 1 vector of ones. Since
M/ M, = M/, we have

T

ool / ! R ! / R
x;v; =x,M_.M,v;, = x;M v, =x;Vv;

Let C; = Z=%vi and Q;r = Cfliévf. We have F (Q;r) = 0, and (under independence of v;; over ¢t and
@ s . Tay ’

independence of v;; and wu ;- for any ¢,¢)

i/-Vi 2
(72)
where E (vZ) = ¢2,. In addition, established that =5 23:1 E (&%) = 02,5cp, where sop is given by
(A.12). Hence,

Xiv; 2
(72

E( ?,T) = M7

E

2 2

g, 0.
E lQIZ%T = C?%T
i

It follows that

where 2¢p — 1/6 < oco. Finite fourth moments of u, ;4 and v imply Q;{T is uniformly bounded in 7', and
therefore Q7 ;- is uniformly integrable in 7. We can apply Theorem 3 of |Phillips and Moon (1999) to obtain

IR IR AL )
%;CzQz,T—%;Ti%ﬁdN(O,wv),asn,T—)oo

2 s 2, i —1yn 2 2 2
where w? = lim,, oo C22¢0 = lim oon™ ' Y1, 02,02,/ (6a7). =

Lemma A.6 Suppose Assumptions hold, and consider q;r = a;lAZQPi\?i/\/T. Then,
Elair|; < K, (A.26)

and
1B ()| < (A27)
iT \/T .
Proof. Denote the individual elements of 2 x 1 vector q;r as ¢;7,j, j = 1,2. Sufficient conditions for (A.26)
to hold are

E (qir;)' < K, for j =1,2. (A.28)
We establish (A.26]) for j = 1 first. We have

o A%Pi{/i
q’LT,l az\/T J

where Ay; can be written as
AY; = —aid; 1 + 6% + Vi, (A.29)

~ ~ ~ o~ 1. ~
where éi,—l = 5’1‘,—1 - ii,—l- Note that Pi = Hz (H;HZ) H; and Hl = (5’,’7_175(1',)21‘7_1). Hence Ai;PZ =

~/ ~/ ~
AX! and &, _P; =€, 4, since AX; and €; _; can be both obtained as a linear combinations of the column
% i,—1 i,—1 i,—1
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vectors of H;. Hence

~/ - )~
& _1vi  AXv,  VIP;v;

T = — =g +< + Se,iTs
qiT,1 \/T Oéi\/T \/— a,iT b,iT c,iT

(A.30)

~/
where we simplified notations by introducing <, 7 = 751-7_1\71-/\/?, SbT = a;lAi;\?i/\/T and Sq ;7 =

a;lAff' P,v;/ VT to denote the individual terms in the expression 1) for g;r,1. Sufficient conditions for
E(qfnl) < K are E (¢} ;7) < K for s € {a,b,c}.
For s = a, we have

=/ ~ T T
& 1V 1 - 1 _
SayiT = —— :*75 it—1 —&i_ Ui*@‘i*fg it—1vit +VITE; 10,
4T \/T \/Ti:1(§,tl 5,1)(t ) \/Ti:1€,tl t 671

- 1T
where §; ;=T DD &it—1, and

l
(1= i) (uyit—e — Puaii—r)

NE

fit =

£=0

(1= ) (0 = B tmiv—e+ Y (1 — ) vir.

£=0

I
M8

4

I
o

Noting that sup; (1 — a;) < 1 under Assumption [1} and fourth moments of u, ; ; and eights moments of v;

1 « !
= Zgi,tlvit> <K,
<\/T i=1

T2.E(5‘.1

are bounded, we obtain

and
—1U4) S K7

which are sufficient conditions for F ( Sy zT) <K.

For s = b, we have

P>

%%, T
SbiT = O[i\/T \/» Z Ug it — Ug: z) (Uzt Z Ug,itVit — uz iU

Using Assumption [2| we obtain the following upper bound
1
E (spir) < o[ D B (ugi) B (vi) + o7 | TE (ug,) B (v)) < K, (A.31)

where |a;*| < K, E (ul ;) <K, E (v},) <K, E (u},) < K/T? and E (v}) < K/T?.
For s = ¢, we have
AV/H, (HH) 3,
Seil = Oéi\/T B Oéi\/T
Consider H? = (ii, Aiiuéi,71> and note that

~ ~
ViPiVi

H; = (§i_1,%,% 1) = B'H,
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where

~ ~ ~ \—1 ~ -~ 1
is nonsingular (for any ). Hence P; = H; (H;HZ) H, =H! (Hf’Hf) H', and we can write g, ;7 as

~ ~ o~ \—1 .
VI (ijHj) '3,
SciT =
o Oti\/T
Consider the scaling matrix
T-1 0 0
Ar = 0o T2 0 . (A.32)

0 0o T2
We have

1 ~ILT* SCAE ] -1 T+ =~
Soir = QT/TVQHZ. Ar (ATHZ-’HZ- AT) ArHYT; > 0.

Using the inequality x’ A~'x < Apin (A) [|x]|*, we have

AT (A YA )HA 05,
al\/T min T 1 1 T T 1 V 2

Using Cauchy-Schwarz inequality, we obtain

0 S Se,iT S

1 B - -8
B(ctir) < o[ by (s BB A o [, |

But ozi_4 < K under Assumption and F {)\_4

min

K E
E(stir) < 75\ B HATH;‘/VZ' §

Let ATﬁ;” Vi = h,;r and consider the individual elements of h,;r, denoted as h,;r ; for j =1,2,3,

(ATITI;-” ﬁjAT)} < K under Assumption It follows

1 T ~ =~
hoit,1 T D11 Tt Vit
il 1T -~ -
hyir = ArH'V; = | hyire | = JT Do UirUi
1 T £ ~
hvir,3 7 2ot=1 $it—10it

Under Assumption [2] it can be shown that

E (h$p,;) <K, for j =1,2,3,

- 8
which is sufficient for HATH;” \Z , < K. It follows that

K
E(stir) < 77 (A.33)

This completes the proof of (A.26) for j = 1.
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Consider next (A.26) for j = 2, and note g;r 2 is the same as ¢ ;7, namely

AXPV;, AR,
qiT,2 = = = SbiT-
[67RY/ T [67RY/ T

But E (gﬁﬂ-T) < K, see (|A.31). This completes the proof of (A.26]).
We establish (|A.27]) next. As before we consider the individual elements of 2 x 1 vector q;r, denoted as
gir,s for s = 1,2, separately. For s =1 we have (using the individual terms in expression (A.30]))

\E(QiT,1)| =

<|E (Sair)| + |1 E (Spi7)| + |E (Seir)] - (A.34)

o ¥ ART | AVP,
VT T aVT

For the first term in (A.34]), we obtain

|E (SaiT)] =

T
< % ; 1B (& p—1vie) | + VTE €171 -

But E (§i7t71vit) =0and B |§i7,117i| < K/T under Assumptions Hence,

K

|E (Sqi1)| < Wi

For the second term in (A.34)), we obtain

|E (sp,i7)]

T
1 VT
E Ug it Vit — —Ug,iV;

T

1

7 > IE (tgirvie)| + KVT | E (t1z,7)]
t=1

IN

K

But E (ug+vi) = 0 and E (@ ,;7;) = 0 under Assumption [2l Hence
|E (Sp,i7)| = 0.

Finally, for the last term we note that

B (ser)| < Blsearl <4/E (Sir),

and using result (A.33)), we obtain
K
|E (Se,ir)| < Wik

It now follows that |E (gir.1)| < K/VT, as desired.
Consider |E (gir,s)| for s = 2 next. We have

|E(QiT,2)| = |E (<b,iT)| =0.

This completes the proof of result (A.27). =
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Lemma A.7 Let Assumptions hold, and consider B;r defined by (@) Then we have

T2 || Bir — Bi|| —p 0 as T — oo, for any a < 1/2, (A.35)
where
2F (€2) + 6%02, 602,
B, = p]im B;r = ( o (gzt) 2+ i Ozi 0212 ) (A36)
T—oo 610—9“ Oz

and &, =32, (1— ;) (Uy,i,t—0 — Bg,i—r)-

Proof. We have

& T T T\ ARPAy;, AXPAX;

:AZ;'PiAZi_ 1 [ Ay;P;Ay; AyP,AX; _ bir11 bir12
biT21  biT22

Consider the element b7 2o first. Since AX;P; = AX], and AZ;; = ug i1 — Uy, We have

T
1
2 9
biT 12 = (T E Ug it | — Uz 4-
=1

Under Assumption 2} wg 3 ~ I1D (O, aii) with finite fourth order moments, and therefore
1 X
- (T Zuizt - 03:1) 20, for any o < 1/2.
t=1

In addition, E (@2 ;) < K/T, which implies T2 20, for any a < 1/2. Tt follows

T (bir20 — 02;) 2 0, for any o < 1/2. (A.37)

Consider the element b;7 11 next. We will use similar arguments as in the proof of Lemma In particular,
Ay; can be written as in 1} and, since Piéi,—l = éi,—l and P;Ax; = AX;, we have

Ay;P;Ay;
bira1 = Z# = Caa,it T Cobir + Cecim + 2Capir + 2Cacim + 2Che.iT> (A.38)
where
£ &
i, —184,—1
Caa,iT = azz - T )
AXIAX
o= g2
gbb,zT 7 T )
VPV,
Ccc,iT T
and the cross-product terms are
~/ A"
. X
) _ i(si 3,—1 7
Cab,zT « T
~ _
S 1V,
Cac,iT = o 62’711 ’ and
AXV
o=
Cbc,zT LT



We consider these individual terms ¢ next. Note that

M8

§ir = (1 — i) (wyii—e — Bg,iu—)
£=0
o0 o0
= > (=) v+ (0 =B (1= ) ugii—e,
=0 =0

where sup, (1 — a;) < 1 under Assumption [I} and innovations v;; and u.;+ have finite fourth order moments
under Assumption Hence, T [T’l Zle f?,t—1 —FE (5?,15—1)} —, 0, E (53_1) < K/T, and we obtain

T {Caa,n —&2E (Ei_l)} —, 0, for any o < 1/2. (A.39)
Noting that (pp, ;7 = 5?1)1-7112, and using result 1) we have
T [Copir — 6702;] = 0, for any o < 1/2. (A.40)

K2 i

Consider (. ;r and note that (.., = %gc,iq«, where ¢ ;7 = o; 'AVP;¥;/v/T was introduced in |D in

proof of Lemma But E (¢2,7) < & by , and it follows

T%Coeir —p 0, for any a < 1/2. (A.41)

ce,t

Using similar arguments, we obtain for the cross-product terms,

TCopir —» 0, T“Cac’iT —p 0, and TC. ;7 — 0, for any o < 1/2, a8 T — oo. (A.42)

Using (A.39)-(A.42)) in (A.38]), we obtain

T (bira1 — G F (5”) — 80 2) 2,0, for any a < 1/2. (A.43)
Using the same arguments for the last term b; 712 = b; 7,21, we obtain

T (bir12 — 6i0%;) 20, for any a < 1/2.

This completes the proof of (A.35]). m

Lemma A.8 Let Assumptions hold, and consider B;r defined by and B; = plimy_, . B;r defined

by (@) Then we have

T2 |Bit = B! =5 0 as T — oo, for any o < 1/2. (A.44)

Proof. This proof closely follows proof of Lemma A.8 in |Chudik and Pesaran (2013)l Let p = ||Bi_1||,
¢=|Bir -
understood that the terms p,q,r depend on (¢,7T"). Using the triangle inequality and the submultiplicative

.7 — Bil|. We suppressed subscripts 4,7 to simplify the notations, but it is
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property of matrix norm ||.||, we have

¢ = By (Bi-Bir)B7|,
< Bz lrp,
< [[(By =B +B ! rp,
< (p+qrp

Subtracting rpq from both sides and multiplying by T%/2, we have, for any o < 1/2,

(1—rp) (T“/Qq) <p? (T"‘/Qr) :

(A.45)

Note that 7%/2r 2 0 by Lemma and |p| < K since B; is invertible and Ay, (B;) is bounded away from

zerdl Tt follows
(1—rp) 1,

and
p? (T“/2r> 2.

— imply 7%/2¢ 2 0. This establishes result . [

Lemma A.9 Let Assumptions[I{{] hold, and consider &;1 defined by

where P; is given by , and X; and AZ; are defined below (@ Then

1 n
- = 0,
— ;:1 §ir —p
asn, T — 0o such that sup,, 7 /n/T'~¢ < K for some € > 0.

Proof. Term &, can be written as
Sir = airBir air,
where a;r is given by (A.18), B;r is given by (A.19)), and
oy AZP:
! ozi\/T

We have

1 & 1 &, ey oy 1 = not
_ = .~ (B.» — B; i — By i
m;fz,T ﬁnTi:ZIazT( T % )qT+ ﬁnT;aT qQir

~ ~ ~ —1 ~
% AZ,; (AZQPZ»AZZ) AZ!P¥;

(A.46)

(A.47)

(A.48)

(A.49)

(A.50)

(A.51)

Consider the two terms on the right side of (A.51)) in turn. Lemma[A.2|established fourth moments of a;r are
bounded, which is sufficient for ||a;r|| = O, (1). Result (A.26) of Lemma established second moments
of individual elements of q;r are bounded, which is sufficient for ||q,r| = O, (1). In addition, Lemma

"' This follows from observing that both ¢2; and F (g?t) as well as o in 1) are bounded away from zero.
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established
T |B;7 —B; || =5 0as T — oo, for any o < 1/2.

Let e = (1 — ) /2 so that 1 — e = 1/2 + /2. Then we obtain

1 & B B n 1 1« N _ _
e Za;T By —B;air = :/fTTQ/Qn Za/iT [T /?(Bir —B; 1)} QT
i=1 =1

vn 1 ¢ a/2 -1 -1
2D il (T2 BE ~ B ) llaurll | =, 0 (A.52)
1=1

IN

as n, T — oo such that sup,, v TlL? < K for some € > 0.
Consider next the second term on the right side of (A.51)). Let pj, = E (a’iTBflqiT), and consider the

. —1/2 — . _ .
variance of (nT) / S alyB; 'qir. By independence of aiB; ' q;r across i,

1 n
Var | — ) a,.B 'q;
( ﬁnT; T4 qT)

1 n
T Z Var (aj;:B; 'qr)
i=1

1 & _ 2
< n—TZE(aQTBi 'air)” . (A.53)
i=1
Denoting individual elements of Bi_1 as b; o individual elements of a;r as a;r,;, and individual elements of
diT as giT,s, for 5,7 =1,2, we have
2 2
ajrB lqir = ZzbgsjaiT,s(ZiT,j
s=1 j=1
= b 1@ir1qiry + b 010 2qir1 + b5 1900im1Gim 2 + b; 900iT, 25,2, (A.54)
where
1 & 1 &
air1 = 5 > i Agiy = T > (@i — ) Ayar, (A.55)
t=1 t=1
1 & 1«
air2 =5 D & Ady = T > (wie = ) v i, (A.56)
t=1 t=1
AYiP¥;
T = ——— A57
qu,l O[i\/T 9 ( )
and

1 Uy 1 Vst
T = —— E ’ . A58
4iT,2 \/T 2o ( )

Note that sup, HB; ! || < K{**|and therefore ‘(b; R j)2 < K. Using this result and Cauchy-Schwarz inequality
‘

for the individual summands on the right side of (A.54)), we obtain

E (al;B  qir)” < Ki i \/E (afT,s) \/E (quyj) <K, (A.59)

s=1j=1

128, is invertible and inf; Amin (B;) is bounded away from zero. This follows from observing that both Uii and

E (fft) as well as a? in 1' are bounded away from zero.
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where E( TS) < K by Lemma and F (qug) < K by result of Lemma Using in

7 it follows that
1 . ot K
NG By < —,
r(m;aﬁ l qT) T
1

— Z (@l By i — pir) —gm. 0 as n, T — oo. (A.60)
i=1

and therefore

=

We establish an upper bound for || next. We have (using 1) and noting that |bZ_ Sj| < K)

2 2
il < K-> |E (airsqir )] -

s=1j=1
It follows that if we can show that i
|E (it sqir,j)| < ﬁ, (A.61)
holds for all s,5 =1, 2, then
irl < = (A.62)

hold. We establish (A.61]) for s = j = 2, first, which is the most convenient case to consider. We have

T T
1 1 Ug it Vit
E(air2qiT2) = E (T ; (Tit — Ti) Uit - Noa Z - ) (A.63)

t=1

~

since v;; is independently distributed of u, ;4 for any ¢,¢'. Consider next s =1, j = 2. We have

T
1 1 Ug it Vit
E (azT 14T, 2 ( E xzt - Ayzt E o > (A64)
T — \/T Q;

t=1

where (first-differencing (A.6) and substituting (3)))

o0

Ay = Oiugzt + Vit — Z (1- Oéz‘)hl [Vit—e + (0; — B) um,t,g] ,
=1
Nu,it T Mot (A.65)
in which .
Nuyit = Oilla,it — Z (1= ) ™ (85 — B) Uait—t, (A.66)
=1
and .
Nyit = Vit — Z (1 - Oéi)e_l Vit—0- (Aﬁ?)
=1

Hence, E (a;r,1¢i7,2) can be written as

1 L 1 L UitV
E (azT 19:T, 2 = F ( Z Tit — nu it * .t Zt)
T — \/T o
1 r Ug 51V
+E< Z Ty — nvlt Z it 1t>.
t=1 f Qi
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The first term is equal to 0, since v is independently distributed of u, ;v for any ¢,¢'. Consider the second
term. Noting that F [(z — Z;) ugs) < K and |a;1| < K for any i,t, s, we obtain

1 < 1 g i 1
x, it Vit — _
( ;::1 Tt — 77v it 7T Z o ) = T3/ Z Z a; g [(xzt - xi) ’ux,is] E (nu,isvit) ,

t=1 t=1s=1
x LT
S e YD E(nyisvie) -
t=1 s=1
But
0, for s < ¢,
E (nv,isvit) = 012”- < K, for s =t,

< Kp*7t, for s > t,

where p = sup, (1 — ;) <1 by Assumption Hence ‘23:1 E (nmsvit)‘ < K for any t =1,2,...T, and

i LE 1 d uw it Vit < £ (A 68)
T i) st \/T Qv VT '

as desired. This establish (A.61) hold for s =1, j = 2.
Consider next (A.61) for s € {1,2} and j = 1. Using expression (A.30), we can write a;r g7 1, for
s=1,2, as

T,sQiT,1 = QiT,sSa,iT T QiT,sSbiT + QiT,sSc,iT» (A.69)

where as in the proofofLemmaga,,-T = 7527_1%/\/T, SpiT = ozi_lAiﬁi/\/T and ¢ ;7 = ozi_lAfngi\?i/\/T.
Using similar arguments as in establishing (A.68]), we obtain

K
|E (aiT,5Sa,iT)| < ﬁ, for s =1,2.
Noting next that ¢, ;7 = a;lqi7T,2, it directly follows from results l) and l) that
K
|E(aiT7s§b7iT)\ < —, for s = 1,2.

VT

Consider the last term, a; 1 sSc i1, for s = 1,2. Using Cauchy-Schwarz inequality we have

|E (@it sScir)| < \/E (afT’s) \/E ( “T) for s =1,2.

But E (a sz) < K, for s =1,2 by Lemma and E (s HT) < K/T is implied by (A . Hence

K
|E(a7,T sSec ’LT)| \/T for s = ]_ 2.

This completes the proof of (A.61]) for all s,j = 1,2, and therefore (A.62)) holds. Using (A.62)), we

1 & K vn
— il < — < —) ——==KY- -0, A.70
TT;M ﬁ;““ gﬁ = (A.70)
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as n,T — oo such that \/n/T — 0. Results (A.60) and (A.70) imply
L zn:a;TBzﬂQiT —p 0, (A.71)
vl =

as n, T — oo such that \/n/T — 0. Finally, using and | in , we obtain , as desired.

A.3 Proof of Theorem

Proof of Theorem Substituting y; = x;8 + Azid;i + a;lfli in , and using M;X; = X;, and
M;AZ; = 0, we have

ra(s-0) - (AL ) (). s

=1

Consider the first term on the right side of (A.72) first. Lemma [A 4] establishes

n o o~y ~
1 X, MiXi
n T2

i=1

—p w2 >0, asn,T — oo, (A.73)

where w? = 02 /6, 02 = lim,_.oon~ ' > ;" 02,. Consider the second term on the right side of (A.72] m Noting
that X;P; = X}, we have

~)~

noz = n
% Z; XZCIZ[’_ZI"VI = % Z " VL \/7 Zgz T (A74)

where

~ ~ ~ —1 ~
XIAZ; [ AZPAZ;\  AZP;
X ( i ) it iVi (A.75)

Using Lemma (for the first term on the right side of (A.74])), and Lemma (for the second term on
the right side of (A.74))), we obtain

1 = XM,v,
NG Z W —a N (0,w2), (A.76)
i=1 v

asn,T — oo and supan/Tl ¢ < K, for some € > 0, where w? = lim ,, oon™ ' Y1 | 02,02,/ (6a2). Using

and (| in (A.72) establishes (14]). m
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This online supplement describes implementation of the Pooled Mean Group (PMG) estima-
tor, which we compute iteratively, in Section S-1. Section S-2 discusses implementation of bias-
correction methods and bootstrapping of critical values for the PMG, PDOLS and FMOLS estima-
tors. Section S-3 provides tables with Monte Carlo findings for experiments with cross-sectionally

dependent errors.

S-1 Computation of PMG estimator

Consider the same illustrative panel ARDL model as in the paper, namely the model given by
equations (1] . PMG estimator of the long-run coefficient , as originally proposed by Pesaran,
Shin and Smith (1999), is computed by solving the following equations iteratively:

Bpue = — (Z 2% in> Z @ —5xHy (AYi - &Z-Yi,—l) , (S.1)

A ~1 ~\—1 . )
¢i = (£sz,Z£z> Esz,szla 1= 17 27 "'777’7 (82>

and

‘312 =7 (AYi - gbzéz)/Hw,Z (AYi - &zéz) ,i=1,2,....n, (S.3)

where &; = yi 1 — XiBpuyg, Xi = (i1, 202, wir) ) AY1 =¥i = ¥i-1, ¥i = (¥i1,%i2, - %.1)
Vi1 = (Y0 Yl - Yir—1)'s Hai = Ir—Ax; (Ax[AX;) 1 AX), Ax; = x;—%;,-1, and X; 1= (T30, Ti 1, oo Ti7-1) -

To solve - iteratively, we set B pPMG,(0) to the pooled Engle-Granger estimator, and
given the initial estimate Spysq (), We compute §; ) = yi,—1 — Xz,BPMG’ ey .0y and 52 i.(0) for

S.1



1 =1,2,...,n using —. Next we compute BPMQ(D using 1’ and given values (Aﬁ%)(o) and
6?7(0). Then we iterate - for a given value of 3 PMG,(¢) We compute éi,(f)’ (%i,(é) and 6}?7(5); and for
given values of qAbZ-,(Z) and &?,(Z) we compute f3 PMG,(e+1)- I convergence is not achieved, we increase
¢ by one and repeat. We define convergence by ‘/BPMG,(ZH) - BPMG,(E)‘ < 10_4

Inference is conducted using equation (17) of Pesaran, Shin and Smith (1999). In particular,

Tvn (BPMG - 50) ~ N (0,8puc)

where
n

-1
1 bio
3 - -2/
Qpye = (n E 2 Ta;a; s and 7, 4 = plimr oo T “x;Hy X,

Standard error of BPM(;, denoted as se (BPMG>, is estimated as

se (3PMG) =T 2 Qpya,

where

1 Z” é -
A 4,0 . A —2 1
Qpyc = n 2 Twim and 7y, o, = T "3 Hy i (5.4)
: (o
i=1 "~ %0

S-2 Simulation-based bias-corrected PMG, PDOLS and FMOLS

estimators, and bootstrapping critical values

Similarly to the simulation-based bias-corrected PB estimator, we consider the following bias-
corrected PMG, PDOLS and FMOLS estimators. Let the original (uncorrected) estimators be
denoted as Be fore= PMG,PDOLS, and FMOLS, respectively. Simulation-based bias corrected

version of these estimators is given by

/662136_667 (Sl)

for e = PMG,PDOLS, and FMOLS, where be an estimate of the bias obtained by the fol-
lowing stochastic simulation algorithm, which resembles the algorithm in Subsection For
e= PMG,PDOLS, and FMOLS :

1. Compute Be. Given Be, estimate the remaining unknown coefficients of — by least

e ~

squares, and compute residuals Uy g5 U

e
x,it"

e(r) _ (") qe e
gt — At Uy e and Uy it

(7) (r) e

2. For each r = 1,2, ..., R, generate new draws for 4 = a; "u; ;, where
b

131f convergence does not occur within the first 500 iterations, we stop and report potential divergence. This event
did not happen in any of the simulations in this paper. Convergence of the PMG procedure above is typically fast.
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ay) are randomly drawn from Rademacher distribution (Liu, 1988) namely
() —1, with probability 1/2
a =
! 1, with probability 1/2

Given the estimated parameters of — from Step 1, and initial values y;1, ;1 generate
simulated data yfg(r),xfgm for t = 2,3,...,7 and 7 = 1,2,...,n. Using the generated data
)

compute B g .

3. Compute be = [R_l Zle Bg) - Be]

Possibility of iterating the algorithm above by using the bias-corrected estimate Be in Step 1 is
not considered in this paper.
We conduct inference by using the 1 — « confidence interval C1_, (Be) = Be + kese (B€> =
Be + T 1n=1/ 215696, where k. is computed by stochastic simulation. In particular, ke is the 1 — o
R ~ N ~ N ~ N ~
(r) } :1’ where tgr) — (r)/g\e (6,(;)) — T—ln—l/QﬁgT)/Q((iT)’ g") _ Bir) _ be

€ e

is the bias-corrected PMQ estimate of B in the r-th draw of the simulated data in the algorithm
(r)

above, and O is estimated standard error using the simulated data.

percent quantile of { t

S-2.1 Jackknife bias-corrections

We consider similar jackknife bias correction for PMG, PDOLS and FMOLS estimator as for the
PB estimator in Section In particular,

Bjk,e = /Bjk,e (H) = Be -k (W - Be) ’

fore= PMG,PDOLS, and FMOLS, where Be is the full sample estimator, B&a and Be7b are the
first and the second half sub-sample estimators, and x = 1/3 is the same weighting parameter as
in Section 2.2

We conduct inference by using the 1—a confidence interval C_, (Bjkﬁ) = Bjk’e:tl%jkﬁ?e (Be> =

Bjk,e + I%jk’eTflnfl/QQe, where /:;jkg is computed by stochastic simulation. In particular, kj; is the
)~ (A1) —1,-1/23") ¢ H(r) .
oy where i, = B0 5o (B) = 1t 2B0 1000, B s
the jackknife bias-corrected estimate of 3 using the r-th draw of the simulated data generated using
the same algorithm as in Subsection and QO is estimated standard error using the simulated

data.

(r)
tjk,e

1 — « percent quantile of {

S-3 Monte Carlo results for experiments with cross-sectionally

dependent errors
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Table S1: MC findings for the estimation of long-run coefficient 8 in experiments with
cross-sectionally dependent errors.

Estimators without bias correction and inference conducted using standard critical values.

Bias (x 100) RMSE (x 100) Size (5% level) Power (5% level)
n\T 20 30 40 50 20 30 40 50 20 30 40 50 20 30 40 50
PB
20 -3.83 -1.93 -1.01 -0.66 7.58 4.92 3.57 2.78 28.00 21.95 17.55 16.80 37.30 64.50 86.90 96.85
30 -3.57 -1.98 -1.17 -0.69 6.67 4.43 3.32 2.46 28.95 23.55 22.10 18.80 45.10 75.25 92.70 99.00
40 -3.94 -2.04 -1.10 -0.74 6.58 4.20 3.08 2.37 33.60 27.25 23.75 22.90 46.60 82.00 96.70 99.65
50 -3.88 -1.99 -1.10 -0.76 6.35 4.01 2.89 2.23 38.30 29.55 25.30 23.30 50.70 85.60 97.75 99.95
PMG
20 -1.96 -0.90 -0.40 -0.26 9.05 5.49 3.86 3.00 45.75 34.00 26.30 23.90 62.45 78.50 92.45 98.15
30 -1.60 -1.05 -0.56 -0.31 7.76 4.83 3.54 2.58 46.35 37.25 32.75 27.35 70.50 85.25 95.60 99.65
40 -1.79 -1.02 -0.50 -0.32 7.07 4.51 3.27 2.44 49.40 40.80 35.00 29.90 73.05 90.25 97.65 99.85
50 -1.76 -0.89 -0.46 -0.32 6.70 4.21 3.00 2.28 54.30 42.95 34.20 31.55 76.40 93.90 98.90 100.00
PDOLS
20 -6.20 -4.10 -3.08 -2.40 9.50 6.31 4.67 3.67 31.40 27.30 25.70 26.30 22.35 39.95 65.20 85.80
30 -5.76 -4.15 -3.08 -2.37 8.65 5.89 4.39 3.41 34.85 33.45 32.15 33.35 27.95 48.60 77.05 93.55
40 -6.29 -4.24 -3.12 -2.44 8.67 5.82 4.27 3.35 42.95 41.85 38.60 38.80 26.95 52.35 82.15 97.05
50 -6.12 -4.19 -3.09 -2.47 8.46 5.62 4.16 3.27 47.90 45.45 45.15 45.05 31.50 59.55 88.25 98.65
FMOLS

20 -10.89 -7.25 -5.42 -4.20 13.27 9.09 6.79 5.37 85.10 76.30 68.35 63.05 54.40 54.40 73.30 88.35
30 -10.32 -7.26 -5.29 -4.06 12.28 8.70 6.45 5.04 88.60 82.70 76.00 71.35 57.00 60.70 82.20 95.25
40 -10.94 -7.60 -5.45 -4.29 12.57 8.76 6.41 5.10 91.90 88.20 82.85 77.50 60.10 61.75 84.95 96.65
50 -10.72 -7.42 -5.38 -4.30 12.26 8.52 6.28 5.00 93.50 89.15 85.40 82.35 63.55 68.15 89.30 98.80

Notes: DGP is given by Ayir = ¢; — o (Yi,t—1 — BTi,t—1) + Uyt and Ay = ug i, for i =1,2,..,n, T =1,2,...,T,
with 8 =1 and a; ~ IIDU [0.2,0.3]. Errors wuy,st, uz,:¢ are cross-sectionally dependent, heteroskedastic over i, and
also correlated over y & z equations. See Section [3.1] for complete description of the DGP. The pooled Bewley
estimator is given by 7 with variance estimated using . PMG is the Pooled Mean Group estimator proposed
by [Pesaran, Shin, and Smith (1999), PDOLS is panel dynamic OLS estimator by [Mark and Sul (2003), FMOLS is
the group-mean fully modified OLS estimator by |Pedroni (1996} 2001b)). The size and power findings are computed

using 5% nominal level and the reported power is the rejection frequency for testing the hypothesis 8 = 0.9.
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Table S2: MC findings for the estimation of long-run coefficient 5 in experiments with

cross-sectionally dependent errors.

Bias corrected estimators and inference conducted using bootstrapped critical values.

Bias (x 100)

RMSE (x 100)

Size (5% level)

Power (5% level)

n\T 20 30 40 50 20 30 40 50 20 30 40 50 20 30 40 50
Jackknife bias-corrected estimators
PB
20 -1.57 -0.54 -0.11 -0.01 7.83 5.24 3.92 3.04 7.65 6.55 5.55 4.65 20.55 41.35 65.35 83.50
30 -1.29 -0.67 -0.34 -0.05 6.76 4.63 3.59 2.72 6.30 6.60 6.40 5.25 25.80 51.35 73.90 91.45
40 -1.67 -0.62 -0.20 -0.06 6.48 4.35 3.36 2.58 6.75 6.15 6.20 5.40 25.55 54.30 80.25 94.45
50 -1.54 -0.58 -0.21 -0.09 6.16 4.12 3.15 2.43 6.80 6.20 5.85 4.65 27.65 59.40 84.95 96.70
PMG
20 -0.54 -0.15 0.02 0.06 10.66 6.26 4.45 3.44 16.05 10.80 8.55 7.90 29.10 45.05 69.15 84.75
30 -0.25 -0.39 -0.19 0.03 9.10 5.50 4.02 2.94 14.80 10.40 9.05 6.90 36.30 53.85 76.40 93.40
40 -0.57 -0.27 -0.08 0.03 8.25 5.13 3.78 2.78 14.10 10.50 9.15 7.80 35.10 59.50 81.25 95.55
50 -0.41 -0.10 -0.06 0.03 7.81 4.81 3.44 2.63 14.85 11.05 8.65 7.65 39.55 64.65 85.90 97.15
PDOLS
20 -4.61 -2.84 -2.06 -1.54 9.89 6.23 4.51 3.51 8.75 7.50 6.45 4.95 10.05 21.55 39.00 63.80
30 -4.09 -2.96 -2.15 -1.55 8.86 5.72 4.21 3.20 8.70 7.30 6.55 5.40 12.20 24.05 46.10 73.10
40 -4.66 -2.94 -2.13 -1.57 8.62 5.53 4.00 3.06 8.80 6.55 6.45 4.55 10.00 23.90 47.70 77.80
50 -4.41 -2.91 -2.11 -1.63 8.30 5.29 3.84 2.95 9.85 6.50 6.25 5.10 11.95 24.40 52.10 80.80
FMOLS
20 -8.65 -5.12 -3.61 -2.69 12.18 7.99 5.79 4.56 11.25 5.65 4.20 3.85 2.00 4.55 9.50 25.50
30 -8.06 -5.27 -3.57 -2.55 11.00 7.43 5.42 4.14 9.65 6.85 5.20 3.35 2.10 3.95 12.65 31.60
40 -8.65 -5.53 -3.70 -2.74 11.08 7.35 5.25 4.08 11.50 6.50 4.55 3.85 1.45 3.35 12.25 32.05
50 -8.44 -5.36 -3.63 -2.78 10.72 7.07 5.07 3.94 12.45 6.70 4.55 3.40 1.75 4.40 13.70 34.30
Stochastic simulation bias-corrected estimators
PB
20 -1.26 -0.43 -0.05 -0.01 7.34 4.80 3.56 2.78 10.10 7.95 6.45 5.85 29.35 52.15 76.10 90.15
30 -1.04 -0.51 -0.23 -0.05 6.29 4.21 3.24 2.42 10.20 7.35 7.20 5.40 37.20 64.30 85.00 95.90
40 -1.31 -0.51 -0.12 -0.08 5.98 3.93 3.01 2.32 10.15 7.50 6.75 5.80 39.00 69.80 89.80 98.15
50 -1.26 -0.45 -0.12 -0.09 5.78 3.72 2.78 2.17 10.20 7.85 7.05 6.00 42.90 75.25 93.50 99.20
PMG
20 -1.23 -0.44 -0.09 -0.03 9.24 5.54 3.91 3.03 16.00 10.50 7.60 6.70 31.35 51.80 76.10 90.80
30 -0.92 -0.60 -0.27 -0.10 7.89 4.84 3.57 2.59 14.70  9.95 8.45 5.85 38.20 60.85 83.80 97.10
40 -1.10 -0.56 -0.19 -0.11 7.14 4.51 3.30 2.45 14.80 10.00 8.90 7.00 39.35 67.05 88.90 98.10
50 -1.06 -0.45 -0.16 -0.10 6.77 4.23 3.02 2.29 14.90 10.45 8.25 6.00 44.90 71.40 91.75 99.15
PDOLS
20 -2.34 -1.13 -0.66 -0.37 8.73 5.46 3.92 3.05 12.05 10.05 7.75 6.90 22.40 45.25 71.30 87.75
30 -2.03 -1.29 -0.74 -0.41 7.73 4.85 3.53 2.68 12.15 8.60 8.45 7.65 26.95 51.50 79.30 94.15
40 -2.46 -1.28 -0.71 -0.41 7.40 4.68 3.31 2.54 12.65 10.20 9.05 7.75 26.15 55.55 84.05 96.90
50 -2.32 -1.22 -0.68 -0.44 7.28 4.41 3.15 2.39 15.00 9.60 8.40 7.40 30.15 59.85 88.40 98.55
FMOLS
20 -4.39 -2.01 -1.24 -0.77 10.37 6.73 4.85 3.83 18.45 10.90 7.80 6.85 17.80 31.75 50.55 70.75
30 -4.00 -2.25 -1.25 -0.71 9.02 6.02 4.42 3.43 17.25 12.00 9.60 7.70 20.95 37.25 61.40 82.55
40 -4.46 -2.44 -1.27 -0.84 8.82 5.67 4.11 3.21 19.35 12.10 9.60 9.05 20.10 38.50 67.65 85.95
50 -4.30 -2.27 -1.22 -0.86 8.48 5.41 3.92 3.02 21.20 13.90 10.10 7.80 22.85 44.85 72.20 90.40

Notes: See the

notes to Table S1. Bias-corrected versions of the PB estimator are described in Subsection 2.2

Bias-corrected versions of the PMG, PDOLS and FMOLS estimator are described in the online supplement.

Inference is conducted using bootstrapped critical values.
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