The Political Economy of Endogenous Taxation and Redistribution

Jim Dolmas

and

Gregory W. Huffman

April 1997

Research Department

Working Paper

97-04

Federal Reserve Bank of Dallas
The political economy of endogenous taxation and redistribution*

Jim Dolmas Gregory W. Huffman

April 30, 1997

Abstract

This paper examines a simple dynamic model in which agents vote over capital income taxation and redistributive transfers. We show that in equilibrium the typical agent's preferences over the tax rate are single-peaked and derive a closed-form solution for the majority-rule tax rate. We also show that high levels of initial wealth inequality can place the economy on the "wrong side of the Laffer curve".

JEL classification: E60, E62, D72

Keywords: Voting, political economy, redistributive taxation

* The authors' affiliations are: Dolmas, Department of Economics, Southern Methodist University; Huffman, Department of Economics, Southern Methodist University, and Federal Reserve Bank of Dallas. The views expressed here are solely those of the authors and do not reflect those of the Federal Reserve Bank of Dallas, or the Federal Reserve System. Address correspondence to: Jim Dolmas, Department of Economics, Southern Methodist University, Dallas, TX 75275. Telephone: 214-768-3806. Fax: 214-768-1821. E-mail: j.dolmas@mail.smu.edu.
1. Introduction

This note presents a simple dynamic model of voting over redistributive taxes and transfers. An interesting feature of the model is the closed form solution which we obtain for a typical individual's most-preferred tax rate. We show that induced preferences over the tax rate are single-peaked. We apply the median voter theorem to characterize the political equilibrium tax rate and transfer. We also show that for high levels of wealth inequality, measured as the deviation of the median from the mean of the initial wealth distribution, the median voter may choose a tax rate which is on the "wrong side of the Laffer curve".

This article is a contribution to the growing literature which seeks to characterize the relationship between the distribution of wealth and the endogenous determination of policy parameters, such as tax rates, within the context of dynamic economies. Krusell, Quadrini and Rios-Rull (1994) show how the initial distribution of wealth would influence the resulting long-run distribution, as well as other variables such as tax rates and consumption levels, within the context of a model in which the median voter is assumed to determine the equilibrium tax rate. Huffman (1996) also shows how the labor and capital tax rates would fluctuate when a majority voting scheme determines these parameters.

2. The model

Individuals in the economy live for two periods. The economic decisions which a typical individual makes are sequenced as follows. Each individual begins with some initial wealth $y \in Y \subset \mathcal{R}_+$. In period one, an individual divides his or her initial wealth into consumption and savings. Savings earn an after-tax return of $(1 - \theta) R$, where R is constant and θ is the tax rate. In period two, the individual consumes after-tax income from savings plus a per capita lump-sum transfer τ. The tax rate and transfer are identical across agents, and the transfer is financed with revenue collected from the tax on savings income. Individuals have identical preferences over consumption in the two periods, and these preferences are assumed to take the
logarithmic, time-additive form

\[u(c_1, c_2) = \log(c_1) + \beta \log(c_2). \]

Prior to the period-one consumption-savings decision, individuals vote over tax-and-transfer schemes. The imposition of a balanced government budget, together with second-period general equilibrium, means the issue space can be reduced to the one-dimensional choice of tax rate. The political equilibrium concept is assumed to be majority rule in a standard two-party competition over the single issue \(\theta \).

An individual with initial wealth \(y \)—individual \(y \), for short—thus solves the following problem:

\[
\max_s \{ \log(y - s) + \beta \log[(1 - \theta) Rs + \tau] \},
\]
given \(y, \theta \) and \(\tau \). The solution for savings, \(s \), is:

\[
s = \frac{\beta}{1 + \beta} y - \frac{\tau}{(1 - \theta) R (1 + \beta)}.
\]

Consumption in the two periods is given by

\[
c_1 = y - s = \frac{1}{1 + \beta} \left[y + \frac{\tau}{(1 - \theta) R} \right],
\]

and

\[
c_2 = (1 - \theta) Rs + \tau = \frac{\beta}{1 + \beta} (1 - \theta) R \left[y + \frac{\tau}{(1 - \theta) R} \right].
\]

Given \(\theta \) and \(\tau \), let \(s(y) \) denote savings of someone with income \(y \). Then, aggregate tax revenue is \(\theta \) times

\[\text{Note we impose no nonnegativity constraint on } s. \]
aggregate period-two income from savings, and the per capita transfer in equilibrium satisfies

\[\tau = \frac{\theta R \int_y s(y) \mu(dy)}{M}, \]

where \(\mu \) is the distribution of agents according to initial wealth levels, and \(M = \int_y \mu(dy) \) is the total measure of agents. Substituting in \(s(y) \) gives

\[\tau = \frac{\theta R}{M} \int_y \left[\frac{\beta}{1 + \beta} y - \frac{\tau}{(1 - \theta) R (1 + \beta)} \right] \mu(dy) \]

\[= \frac{\theta R \beta}{1 + \beta} \bar{y} - \frac{\theta \tau}{(1 - \theta) (1 + \beta)} \]

where \(\bar{y} \equiv \int_y y \mu(dy) / M \) is average initial wealth. Then

\[\tau = \frac{\theta R \beta (1 - \theta)}{(1 - \theta) (1 + \beta) + \theta \bar{y}}. \]

(2.1)

Remembering the expressions for individuals' consumption, a little algebra reveals that individual \(y \)'s consumption in the two periods is given by

\[c_1 = \frac{1}{1 + \beta} \left[y + \frac{\tau}{(1 - \theta) R} \right] \]

\[= \frac{1}{1 + \beta} \left[(1 + \beta) y + \theta \beta (\bar{y} - y) \right] \]

\[= \frac{\bar{y}}{1 + \beta} \left[(1 + \beta) \frac{y}{\bar{y}} + \theta \beta \left(1 - \frac{y}{\bar{y}} \right) \right] \]

and

\[c_2 = \frac{\beta}{1 + \beta} (1 - \theta) R \left[y + \frac{\tau}{(1 - \theta) R} \right] \]

\[= \frac{\beta}{1 + \beta} (1 - \theta) R \bar{y} \left[(1 + \beta) \frac{y}{\bar{y}} + \theta \beta \left(1 - \frac{y}{\bar{y}} \right) \right]. \]
Then, individual y's 'indirect' utility function—maximized utility as a function of \(y/\bar{y}, \theta \) and other parameters has the form

\[
w(\theta; y/\bar{y}) = \text{constant} + (1 + \beta) \log \left(\frac{(1 + \beta) \frac{y}{\bar{y}} + \theta \beta \left(1 - \frac{y}{\bar{y}}\right)}{1 + \beta - \theta \beta} \right) + \beta \log (1 - \theta). \tag{2.2}
\]

The constant involves \(\beta \) and \(R \), of course, as well as a term of the form \((1 + \beta) \log (\bar{y})\).

Consider the problem of maximizing \(w(\theta; y/\bar{y}) \) with respect to \(\theta, \theta \in [0, 1] \). The constraint \(\theta \leq 1 \) will not be binding, of course, as \(w(1; y/\bar{y}) = -\infty \) when \(\theta = 1 \). The constraint \(\theta \geq 0 \) will be binding, however, for individuals with \(y/\bar{y} \geq 1 \). It's straightforward to show that for \(y/\bar{y} \geq 1 \)—that is, for individuals whose initial wealth is greater than average—\(w(\theta; y/\bar{y}) \) is decreasing in \(\theta \) over the interval \([0, 1]\) and is maximized at \(\theta = 0 \).

For the relatively poor—those individuals with \(y/\bar{y} < 1 \)—one can show that \(w(\theta; y/\bar{y}) \) is concave and attains a unique maximum at a \(\theta \in (0, 1) \) which depends on \(y/\bar{y} \). As one would expect, the maximizing value of \(\theta \) rises as \(y/\bar{y} \) falls: poorer individuals prefer higher taxes and transfers.

For individuals with \(y/\bar{y} < 1 \), given our specification of preferences, one can say even more. Tėdious algebra shows that the first-order condition for an interior maximum of (2.2) reduces to the following quadratic equation in \(\theta \):

\[
\beta^2 (1 - \Omega) \theta^2 - (1 + \beta) [1 + 2\beta (1 - \Omega)] \theta + (1 + \beta)^2 (1 - \Omega) = 0,
\]

where \(\Omega \equiv \frac{y}{\bar{y}} \). The appropriate solution to this quadratic equation is

\[
\theta^* (\Omega) = \frac{1 + \beta}{\beta} \frac{1 + 2\beta (1 - \Omega)}{2\beta (1 - \Omega)} - \frac{1 + \beta \sqrt{1 + 4\beta (1 - \Omega)}}{2\beta (1 - \Omega)}.
\]

For \(0 \leq \Omega < 1 \), \(\theta^* (\Omega) \) is strictly between zero and one, and increases as \(\Omega \) falls. Figure 1 plots \(\theta^* \) against values of \(y/\bar{y} = \Omega \leq 1 \) for various values of the preference parameter \(\beta \). Although the tax rate is monotonically decreasing in \(\Omega \), it is not monotonic in \(\beta \).

Let \(\theta (y/\bar{y}) \) denote the preferred tax rate of an individual with initial wealth relative to the average given
by y/\bar{y}. The above considerations imply that

$$
\theta(y/\bar{y}) = \begin{cases}
0 & \text{if } y/\bar{y} \geq 1 \\
\theta^*(y/\bar{y}) & \text{if } y/\bar{y} < 1
\end{cases}
$$

Since each individual y's preferences over θ are single peaked, the median voter theorem applies. Let y_m denote the median of the distribution of initial wealth—i.e., y_m is defined by $\int_0^{y_m} \mu(dy) = \frac{1}{2}$. If $y_m \geq \bar{y}$, then the majority-rule equilibrium tax rate is zero. If $y_m < \bar{y}$, the equilibrium tax rate is given by $\theta^*(y_m/\bar{y})$.

Since the equilibrium tax rate depends only on y_m/\bar{y}, any change in the distribution of initial wealth which changed both the median and mean in the same proportion would leave the equilibrium tax rate unaffected. On the other hand, if we take, as seems natural, a decrease in y_m/\bar{y} to indicate a greater level of wealth inequality, then greater inequality will be associated with higher rates of taxation. One can also compare the equilibrium tax rate to the tax rate, call it θ_r, which would maximize the per capita transfer r. As one can tell from the expression above for r in terms of θ, equation (2.1), the model indeed has a 'Laffer curve', and a unique revenue-maximizing tax rate. In political equilibrium, though, if the median voter's level of income is such that

$$
\frac{y_m}{\bar{y}} < \frac{\sqrt{1+\beta} - 1}{\beta}
$$

then the majority-rule tax rate exceeds θ_r—that is, the economy ends up on the 'wrong' side of the Laffer curve.

References

Figure 1: $\delta^*(\Omega)$ for various values of β
Please check the titles of the Research Papers you would like to receive:

9201 Are Deep Recessions Followed by Strong Recoveries? (Mark A. Wynne and Nathan S. Balke)
9202 The Case of the "Missing M2" (John V. Duca)
9203 Immigrant Links to the Home Country: Implications for Trade, Welfare and Factor Rewards (David M. Gould)
9204 Does Aggregate Output Have a Unit Root? (Mark A. Wynne)
9205 Inflation and Its Variability: A Note (Kenneth M. Emery)
9207 The Effects of Credit Availability, Nonbank Competition, and Tax Reform on Bank Consumer Lending (John V. Duca and Bonnie Garrett)
9208 On the Future Erosion of the North American Free Trade Agreement (William C. Gruben)
9209 Threshold Cointegration (Nathan S. Balke and Thomas B. Fomby)
9210 Cointegration and Tests of a Classical Model of Inflation in Argentina, Bolivia, Brazil, Mexico, and Peru (Raul Anibal Feliz and John H. Welch)
9211 Nominal Feedback Rules for Monetary Policy: Some Comments (Evan F. Koenig)
9212 The Analysis of Fiscal Policy in Neoclassical Models (Mark Wynne)
9213 Measuring the Value of School Quality (Lori Taylor)
9214 Forecasting Turning Points: Is a Two-State Characterization of the Business Cycle Appropriate? (Kenneth M. Emery & Evan F. Koenig)
9216 An Analysis of the Impact of Two Fiscal Policies on the Behavior of a Dynamic Asset Market (Gregory W. Huffman)
9301 Human Capital Externalities, Trade, and Economic Growth (David Gould and Roy J. Ruffin)
9302 The New Face of Latin America: Financial Flows, Markets, and Institutions in the 1990s (John Welch)
9303 A General Two Sector Model of Endogenous Growth with Human and Physical Capital (Eric Bond, Ping Wang, and Chong K. Yip)
9304 The Political Economy of School Reform (S. Grosskopf, K. Hayes, L. Taylor, and W. Weber)
9305 Money, Output, and Income Velocity (Theodore Palivos and Ping Wang)
9306 Constructing an Alternative Measure of Changes in Reserve Requirement Ratios (Joseph H. Haslag and Scott E. Hein)
9307 Money Demand and Relative Prices During Episodes of Hyperinflation (Ellis W. Tallman and Ping Wang)
9308 On Quantity Theory Restrictions and the Signalling Value of the Money Multiplier (Joseph Haslag)
9309 The Algebra of Price Stability (Nathan S. Balke and Kenneth M. Emery)
9310 Does It Matter How Monetary Policy is Implemented? (Joseph H. Haslag and Scott Hein)
9311 Real Effects of Money and Welfare Costs of Inflation in an Endogenously Growing Economy with Transactions Costs (Ping Wang and Chong K. Yip)
9312 Borrowing Constraints, Household Debt, and Racial Discrimination in Loan Markets (John V. Duca and Stuart Rosenthal)
9313 Default Risk, Dollarization, and Currency Substitution in Mexico (William Gruben and John Welch)
9314 Technological Unemployment (W. Michael Cox)
9315 Output, Inflation, and Stabilization in a Small Open Economy: Evidence from Mexico (John H. Rogers and Ping Wang)
9316 Price Stabilization, Output Stabilization and Coordinated Monetary Policy Actions (Joseph H. Haslag)
9317 An Alternative Neo-Classical Growth Model with Closed-Form Decision Rules (Gregory W. Huffman)
9318 Why the Composite Index of Leading Indicators Doesn't Lead (Evan F. Koenig and Kenneth M. Emery)
9319 Allocative Inefficiency and Local Government: Evidence Rejecting the Tiebout Hypothesis (Lori L. Taylor)
9320 The Output Effects of Government Consumption: A Note (Mark A. Wynne)
9321 Should Bond Funds be Included in M2? (John V. Duca)
9322 Recessions and Recoveries in Real Business Cycle Models: Do Real Business Cycle Models Generate Cyclical Behavior? (Mark A. Wynne)
9323* Retaliation, Liberalization, and Trade Wars: The Political Economy of Nonstrategic Trade Policy (David M. Gould and Graeme L. Woodbridge)
9325 Growth and Equity with Endogenous Human Capital: Taiwan's Economic Miracle Revisited (Maw-Lin Lee, Ben-Chieh Liu, and Ping Wang)
9326 Clearinghouse Banks and Banknote Over-issue (Scott Freeman)
9327 Coal, Natural Gas and Oil Markets after World War II: What's Old, What's New? (Mine K. Yücel and Shengyi Guo)
9328 On the Optimality of Interest-Bearing Reserves in Economies of Overlapping Generations (Scott Freeman and Joseph Haslag)
9329* Retaliation, Liberalization, and Trade Wars: The Political Economy of Nonstrategic Trade Policy (David M. Gould and Graeme L. Woodbridge) (Reprint of 9323 in error)
9330 On the Existence of Nonoptimal Equilibria in Dynamic Stochastic Economies (Jeremy Greenwood and Gregory W. Huffman)
9331 The Credibility and Performance of Unilateral Target Zones: A Comparison of the Mexican and Chilean Cases (Raul A. Feliz and John H. Welch)
9332 Endogenous Growth and International Trade (Roy J. Ruffin)
9333 Wealth Effects, Heterogeneity and Dynamic Fiscal Policy (Zsolt Becsi)
9334 The Inefficiency of Seigniorage from Required Reserves (Scott Freeman)
9335 Problems of Testing Fiscal Solvency in High Inflation Economies: Evidence from Argentina, Brazil, and Mexico (John H. Welch)
9336 Income Taxes as Reciprocal Tariffs (W. Michael Cox, David M. Gould, and Roy J. Ruffin)
9337 Assessing the Economic Cost of Unilateral Oil Conservation (Stephen P.A. Brown and Hillard G. Huntington)
9338 Exchange Rate Uncertainty and Economic Growth in Latin America (Darryl McLeod and John H. Welch)
9339 Searching for a Stable M2-Demand Equation (Evan F. Koenig)
9340 A Survey of Measurement Biases in Price Indexes (Mark A. Wynne and Fiona Sigalla)
9341 Are Net Discount Rates Stationary?: Some Further Evidence (Joseph H. Haslag, Michael Nieswiadomy, and D. J. Slottje)
9342 On the Fluctuations Induced by Majority Voting (Gregory W. Huffman)
9401 Adding Bond Funds to M2 in the P-Star Model of Inflation (Zsolt Becsi and John Duca)
9402 Capacity Utilization and the Evolution of Manufacturing Output: A Closer Look at the "Bounce-Back Effect" (Evan F. Koenig)
9403 The Disappearing January Blip and Other State Employment Mysteries (Frank Berger and Keith R. Phillips)
9404 Energy Policy: Does it Achieve its Intended Goals? (Mine Yücel and Shengyi Guo)
9405 Protecting Social Interest in Free Invention (Stephen P.A. Brown and William C. Gruben)
9406 The Dynamics of Recoveries (Nathan S. Balke and Mark A. Wynne)
9407 Fiscal Policy in More General Equilibrium (Jim Dolman and Mark Wynne)
9408 On the Political Economy of School Deregulation (Shawna Grosskopf, Kathy Hayes, Lori Taylor, and William Weber)
9409 The Role of Intellectual Property Rights in Economic Growth (David M. Gould and William C. Gruben)
What's Good for GM...? Using Auto Industry Stock Returns to Forecast Business Cycles and Test the Q-Theory of Investment (Gregory R. Duffee and Stephen Prowse)

Does the Choice of Nominal Anchor Matter? (David M. Gould)

The Policy Sensitivity of Industries and Regions (Lori L. Taylor and Mine K. Yücel)

Oil Prices and Aggregate Economic Activity: A Study of Eight OECD Countries (Stephen P.A. Brown, David B. Oppedahl and Mine K. Yücel)

The Effect of the Minimum Wage on Hours of Work (Madeline Zavodny)

Aggregate Price Adjustment: The Fischerian Alternative (Evan F. Koenig)

Nonlinear Dynamics and Covered Interest Rate Parity (Nathan S. Balke and Mark E. Wohar)

More on Optimal Denominations for Coins and Currency (Mark A. Wynne)

Specialization and the Effects of Transactions Costs on Equilibrium Exchange (James Dolmas and Joseph H. Haslag)

The Political Economy of Endogenous Taxation and Redistribution (Jim Dolmas and Gregory W. Huffman)
Research Papers Presented at the
1994 Texas Conference on Monetary Economics
April 23-24, 1994
held at the Federal Reserve Bank of Dallas, Dallas, Texas

Available, at no charge, from the Research Department
Federal Reserve Bank of Dallas, P. O. Box 655906
Dallas, Texas 75265-5906

Please check the titles of the Research Papers you would like to receive:

____ 1 A Sticky-Price Manifesto (Laurence Ball and N. Gregory Mankiw)
____ 2 Sequential Markets and the Suboptimality of the Friedman Rule (Stephen D. Williamson)
____ 3 Sources of Real Exchange Rate Fluctuations: How Important Are Nominal Shocks? (Richard Clarida and Jordi Gali)
____ 4 On Leading Indicators: Getting It Straight (Mark A. Thoma and Jo Anna Gray)
____ 5 The Effects of Monetary Policy Shocks: Evidence From the Flow of Funds (Lawrence J. Christiano, Martin Eichenbaum and Charles Evans)

Name: ____________________________ Organization: ____________________________

Address: ____________________________ City, State and Zip Code: ____________________________

Please add me to your mailing list to receive future Research Papers: Yes ______ No ______