Decomposition of Feedback Between Time Series in a Bivariate Error-Correction Model

Jahyeong Koo

And

Paul A. Johnson

December 1997

Research Department

Working Paper

97-12

Federal Reserve Bank of Dallas
Decomposition of Feedback Between Time Series
in a Bivariate Error-Correction Model

by

Jahyeong Koo
Research Department
Federal Reserve Bank of Dallas
220 N. Pearl St.
Dallas, TX 75201
jahyeong.koo@dai.frb.org

and

Paul A. Johnson
Department of Economic
Vassar College
Poughkeepsie, NY 12064-0324
pajohnson@vassar.edu

Revised December 1997

We thank Nathan Balke and Baoyuan Wang for comments on an earlier draft. All errors are ours. The views expressed herein do not necessarily represent the views of the Federal Reserve Bank of Dallas nor the Federal Reserve System.
Abstract

This paper adapts Geweke's [1982] method of decomposing the feedback between time series by frequency to the case of \(I(1) \) time series generated by a bivariate error-correction model. The method is applied to long-run data on US and UK price levels with the finding that most of the feedback between the two time series occurs at very low frequencies.
1. Introduction

Geweke [1982] proposes a method of decomposing by frequency the feedback or Granger-causality between time series.\footnote{The phenomenon described by Geweke as “feedback” from one time series to another is precisely that known as Granger-causality from the one to the other. As Pierce [1982] points out, it is not the same usage as in control theory where “feedback” connotes a bidirectional relationship. Throughout this paper we use “feedback” in Geweke’s sense so that unidirectional “feedback” is possible.} This technique enables the researcher to determine at which frequencies one time series causes another so that one may learn, for example, whether the causality from one time series to another represents an influence of the former which is important in the seasonal, business cycle, or permanent evolution of the latter. Koo [1996] shows that such feedback decomposition may be interpreted as the frequency domain counterpart of variance decomposition in the time domain.\footnote{Cochrane [1990] shows how to compute variance decompositions in the case of a bivariate error-correction model.}

Implementation of Geweke’s method requires that a finite vector autoregression (VAR) be an accurate approximation to the vector moving average (VMA) representation of the time series. This is not the case for data generated by an error-correction model as the VAR is overdifferenced inducing a unit root in the error term of the VMA and preventing its approximation by a finite VAR. Interest in data generated by error-correction models arises because all cointegrated time series can be represented this way.

In this paper we show how to adapt Geweke’s methods to the case of I(1) time series generated by a bivariate error-correction model. We apply our adaptation to data on US and UK exchange rates and price levels over the period 1791 to 1990. We find that most of the feedback between the two time series occurs at frequencies associated with cycles having periods exceeding 12 years. This finding provides some insight into the rejections of the purchasing power parity (PPP) hypothesis typically found in those studies testing the stationary of the log of the real exchange rate using data from the most recent experience with floating exchange rates. Moreover, it provides a reconciliation of those rejections with the speeds of adjustment implied
by half-life calculations - the intuition about adjustment speeds developed by such calculations severely understates the time taken to eliminate deviations from PPP.

2. Feedback Decomposition in a Bivariate Error–Correction Model

Let \((x_{1,t}, x_{2,t})'\) be a bivariate stochastic process with both \(x_{1,t}\) and \(x_{2,t}\) being \(I(1)\). Suppose that \(x_{1,t}\) and \(x_{2,t}\) are cointegrated so that there is a number, \(\alpha\), such that \(z_t = x_{2,t} - \alpha x_{1,t}\) is \(I(0)\). There then exists [Engle and Granger, 1987] an error-correction representation for \((x_{1,t}, x_{2,t})'\) which we write as

\[
\begin{pmatrix}
\Delta x_{1,t} \\
\Delta x_{2,t}
\end{pmatrix} = \begin{pmatrix}
\beta_1 \\
\beta_2
\end{pmatrix} z_{t-1} + \begin{bmatrix}
\gamma_{11}(L) & \gamma_{12}(L) \\
\gamma_{21}(L) & \gamma_{22}(L)
\end{bmatrix} \begin{pmatrix}
\Delta x_{1,t-1} \\
\Delta x_{2,t-1}
\end{pmatrix} + \begin{pmatrix}
\epsilon_{1,t} \\
\epsilon_{2,t}
\end{pmatrix}
\] (1)

with \(\beta_1 \neq 0\) or \(\beta_1 \neq 0\) or both. Here \(\Delta\) is the first difference operator; \(\gamma_{kj}(L)\) for \(k, j = 1, 2\) are scalar polynomials in the lag operator, \(L\); \(E\varepsilon_{k,t} = 0\) for \(k = 1, 2\); \(E\varepsilon_{k,t}\varepsilon_{j,s} = \sigma_k^2\) for \(k = j\) and \(s = t\); \(E\varepsilon_{k,t}\varepsilon_{j,s} = \sigma_{kj}\) for \(k \neq j\) and \(s = t\); and, \(E\varepsilon_{k,t}\varepsilon_{j,s} = 0\) for \(k \neq j\) and \(s \neq t\). Note that \(\Delta x_1\) does not Granger-cause \(\Delta x_2\) if and only if both \(\beta_2\) and \(\gamma_{21}(L)\) are zero.

Equation (1) implies that \((x_{1,t}, x_{2,t})'\) has the VAR representation

\[
\begin{align*}
[(1 - L)(1 - \gamma_{11}(L)L) + \alpha \beta_1 L]x_{1,t} - ((1 - L)\gamma_{12}(L) + \beta_1)Lx_{2,t} &= \epsilon_{1,t} \\
(2a)
\end{align*}
\]

and

\[
[(1 - L)(1 - \gamma_{22}(L)L) - \beta_2 L]x_{2,t} - ((1 - L)\gamma_{21}(L) - \alpha \beta_2)Lx_{1,t} &= \epsilon_{2,t} \\
(2b)
\]

Subtracting \(\sigma_{12}/\sigma_2^2\) times equation (2b) from equation (2a) and rearranging yields

\[
\begin{align*}
{\{(1 - L)(1 - \gamma_{11}(L)L) + \alpha \beta_1 L\}x_{1,t}} - \{((1 - L)\gamma_{12}(L) + \beta_1)L + (\sigma_{12}/\sigma_2^2)((1 - L)\gamma_{21}(L) - \alpha \beta_2)L\}x_{2,t} &= \eta_{1,t}
\end{align*}
\] (3)
where \(\eta_{1,t} = \epsilon_{1,t} - (\sigma_{12}/\sigma_2^2)\epsilon_{2,t} \), and has variance \(\nu_1^2 = \sigma_1^2 - \sigma_{12}^2/\sigma_2^2 \). Observe that \(\eta_{1,t} \) is uncorrelated with \(\epsilon_{2,t} \) and so is uncorrelated with \(x_{2,t} \) as well as with \(x_{1,t-\tau} \) and \(x_{2,t-\tau} \) for \(\tau > 0 \). Equation (2b) expresses \(x_{2,t} \) as a linear function of \(x_{1,t-\tau} \) and \(x_{2,t-\tau} \) for \(\tau > 0 \), while equation (3) expresses \(x_{1,t} \) as a linear function of \(x_{1,t-\tau} \) for \(\tau > 0 \) and \(x_{2,t-\tau} \) for \(\tau \geq 0 \). This representation puts all of the instantaneous feedback between \(x_1 \) and \(x_2 \) into equation (3) while equation (2b) captures only the noninstantaneous feedback from \(x_1 \) to \(x_2 \).

The feedback from \(\Delta x_1 \) to \(\Delta x_2 \) may be measured by \(F_{\Delta x_1 \to \Delta x_2} = \log \kappa_2^2/\sigma_2^2 \) where \(\kappa_2^2 \) is the variance of the one-step-ahead error when \(\Delta x_{2,t} \) is predicted from its own past. As \(\sigma_2^2 = \kappa_2^2 \) is necessary and sufficient for \(\Delta x_1 \) not to Granger-cause \(\Delta x_2 \), \(F_{\Delta x_1 \to \Delta x_2} > 0 \) is necessary and sufficient for \(\Delta x_1 \) to Granger-cause \(\Delta x_2 \). The feedback from \(\Delta x_2 \) to \(\Delta x_1 \), \(F_{\Delta x_2 \to \Delta x_1} \), may be measured in an analogous manner. The instantaneous feedback between \(\Delta x_1 \) and \(\Delta x_2 \) may be measured by \(F_{\Delta x_1 \Delta x_2} = \log \sigma_1^2/\nu_1^2 = \log \sigma_1^2\sigma_2^2/\Sigma \) where \(\cdot | \Sigma \) denotes the determinant and \(\Sigma = \begin{bmatrix} \sigma_1^2 & \sigma_1 \sigma_2 \\ \sigma_1 \sigma_2 & \sigma_2^2 \end{bmatrix} \). The linear dependence between \(\Delta x_1 \) and \(\Delta x_2 \) denoted \(F_{\Delta x_1 \Delta x_2} \), is given by the sum of the three linear feedback measures, so that \(F_{\Delta x_1 \Delta x_2} = F_{\Delta x_1 \to \Delta x_2} + F_{\Delta x_2 \to \Delta x_1} + F_{\Delta x_1 \Delta x_2} \).

To decompose the feedback from \(\Delta x_1 \) to \(\Delta x_2 \) by frequency, multiply equation (3) by \(((1 - L)\gamma_{21}(L) - \alpha \beta_2)L \), use equation (2b) to substitute for \(((1 - L)\gamma_{22}(L)L)(1 - \gamma_{11}(L)L) + \alpha \beta_2L + (\sigma_{12}/\sigma_2^2)((1 - L)\gamma_{21}(L) - \alpha \beta_2)L \} \epsilon_{2,t} \) and rearrange to give

\[
\psi(L) \Delta x_{2,t} = \left((1 - L)\gamma_{21}(L) - \alpha \beta_2 \right) L \eta_{1,t} \\
+ \left([(1 - L)\gamma_{11}(L)L - \alpha \beta_1 L + (\sigma_{12}/\sigma_2^2)((1 - L)\gamma_{21}(L) - \alpha \beta_2)L \} \right) \epsilon_{2,t}
\]

where

\[
\psi(L) = (1 - L)[(1 - \gamma_{22}(L)L)(1 - \gamma_{11}(L)L) - \gamma_{12}(L)\gamma_{21}(L)L^2] \\
- [(1 - \gamma_{11}(L)L) + \alpha \gamma_{12}(L)L] \beta_2L + [(\alpha - \gamma_{22}(L)L) + \gamma_{21}(L)L] \beta_1L
\]

Using the mutual orthogonality of the \(\{ \eta_{1,t} \} \) and \(\{ \epsilon_{2,t} \} \) processes, it follows that, \(h_{\Delta x_2}(\omega) \), the spectral density of \(\Delta x_2 \), is given by

\[
h_{\Delta x_2}(\omega) = \frac{1}{2\pi} \frac{(\sigma_1^2 - \sigma_{12}^2/\sigma_2^2) \| \xi(\omega) \|^2 + \sigma_2^2 \| (\sigma_{12}/\sigma_2^2)\xi(\omega) + \phi(\omega) \|^2}{\| \psi(e^{-\omega}) \|^2}
\]
where

\[\xi(\omega) = ((1 - e^{-i\omega})\gamma_{21}(e^{-i\omega}) - \alpha\beta_2)e^{-i\omega}. \]

(4)

\[\phi(\omega) = (1 - e^{-i\omega})(1 - \gamma_{11}(e^{-i\omega})e^{-i\omega}) + \alpha\beta_1e^{-i\omega}. \]

(5)

and \(\| \cdot \| \) denotes the modulus. That part of the variance of \(\Delta x_{2,t} \) at frequency \(\omega \) due to variation in that part of \(\Delta x_{1,t-\tau} \) for \(\tau > 0 \) uncorrelated with \(\Delta x_{2,t-\tau} \) for \(\tau > 0 \) is given by

\[g_{\Delta x_1 \rightarrow \Delta x_2}(\omega) = \frac{1}{2\pi} \frac{(\sigma_1^2 - \sigma_{12}^2/\sigma_2^2) \| \xi(\omega) \|^2}{\| \psi(e^{-i\omega}) \|^2}. \]

(6)

This is the part of the spectral density of \(\Delta x_2 \) due to feedback from \(\Delta x_1 \). The ratio of \(g_{\Delta x_1 \rightarrow \Delta x_2}(\omega) \) to \(h_{\Delta x_2}(\omega) \),

\[\mu_{\Delta x_1 \rightarrow \Delta x_2}(\omega) = \frac{(\sigma_1^2 - \sigma_{12}^2/\sigma_2^2) \| \xi(\omega) \|^2}{(\sigma_1^2 - \sigma_{12}^2/\sigma_2^2) \| \xi(\omega) \|^2 + \sigma_2^2 \| (\sigma_{12}/\sigma_2^2)\xi(\omega) + \phi(\omega) \|^2}. \]

(7)

measures that fraction of the variance of \(\Delta x_2 \) at frequency \(\omega \) due to feedback from \(\Delta x_1 \). In other words, as Pierce [1982] notes, \(\mu_{\Delta x_1 \rightarrow \Delta x_2}(\omega) \) can be interpreted as the coefficient of determination in the regression of the \(\omega \)-frequency component of \(\Delta x_2 \) on the \(\omega \)-frequency component of \(\Delta x_1 \) after both have been regressed on lagged values of \(\Delta x_2 \).

In the case at hand, the measure of the feedback from \(\Delta x_1 \) to \(\Delta x_2 \) at frequency \(\omega \) defined by Geweke [1982] is given by

\[f_{\Delta x_1 \rightarrow \Delta x_2}(\omega) = \log \left(\frac{(\sigma_1^2 - \sigma_{12}^2/\sigma_2^2) \| \xi(\omega) \|^2 + \sigma_2^2 \| (\sigma_{12}/\sigma_2^2)\xi(\omega) + \phi(\omega) \|^2}{\sigma_2^2 \| (\sigma_{12}/\sigma_2^2)\xi(\omega) + \phi(\omega) \|^2} \right). \]

(8)

From equations (7) and (8) we have \(\mu_{\Delta x_1 \rightarrow \Delta x_2}(\omega) = 1 - e^{-f_{\Delta x_1 \rightarrow \Delta x_2}(\omega)} \) so that \(g_{\Delta x_1 \rightarrow \Delta x_2}(\omega) = h_{\Delta x_2}(\omega)[1 - e^{-f_{\Delta x_1 \rightarrow \Delta x_2}(\omega)}] \). In the next section we analyze the feedback from
\[\Delta x_1 \text{ to } \Delta x_2 \text{ using plots of } h_{\Delta x_2}(\omega) \text{ and } g_{\Delta x_1 \to \Delta x_2}(\omega) \text{ against } \omega \text{ rather than plots of } f_{\Delta x_1 \to \Delta x_2}(\omega) \text{ as the latter can become very large at frequencies where the variance of } \Delta x_2 \text{ is dominated by the feedback from } \Delta x_1. \]

The feedback from \(\Delta x_2 \) to \(\Delta x_1 \) at frequency \(\omega \), can be similarly decomposed by expressions analogous to those developed above for feedback from \(\Delta x_1 \) to \(\Delta x_2 \).

Observe that the statements "\(f_{\Delta x_1 \to \Delta x_2}(\omega) = 0 \)”, "\(g_{\Delta x_1 \to \Delta x_2}(\omega) = 0 \)”, and "\(\mu_{\Delta x_1 \to \Delta x_2}(\omega) = 0 \)" are equivalent as are their respective converses. From equation (4) it is evident that \(\xi(\omega) = 0 \) and hence \(g_{\Delta x_1 \to \Delta x_2}(\omega) = 0 \) if \(\beta_2 = 0 \) and \(\gamma_{21}(e^{-i\omega}) = 0 \). The converse is also true.\(^4\) Thus, \(g_{\Delta x_1 \to \Delta x_2}(\omega) \neq 0 \) implies the presence of feedback from \(\Delta x_1 \) to \(\Delta x_2 \) at frequency \(\omega \), while \(g_{\Delta x_1 \to \Delta x_2}(\omega) = 0 \) implies the absence of feedback at frequency \(\omega \).

It is evident from equations (4), (5) and (7) that, as \(\omega \to 0 \), the feedback from \(\Delta x_1 \) to \(\Delta x_2 \) at frequency \(\omega \) is dominated by the terms due to the error-correction mechanism because the other parts of \(\xi(\omega) \) are \(\phi(\omega) \) are eliminated as \(1 - e^{-i\omega} \to 0 \). In fact, we have that

\[
\mu_{\Delta x_1 \to \Delta x_2}(0) = \frac{(\sigma_1^2 - \sigma_{12}^2/\sigma_2^2)\beta_2^2}{\sigma_1^2 \beta_2^2 - 2\sigma_1 \sigma_2 \beta_1 \beta_2 + \sigma_2^2 \beta_1^2}
\]

so that, if \(\beta_2 = 0 \) we have \(\mu_{\Delta x_1 \to \Delta x_2}(0) = 0 \) regardless of \(\gamma_{11}(L) \) or \(\gamma_{21}(L) \) provided that \(\beta_1 \neq 0 \). Moreover, provided \(\Sigma \) is not singular, if \(\mu_{\Delta x_1 \to \Delta x_2}(0) = 0 \) then \(\beta_2 = 0 \). If \(\beta_1 = 0 \) we have \(\mu_{\Delta x_1 \to \Delta x_2}(0) = 1 - \sigma_{12}^2/\sigma_2^2 \) provided that \(\beta_2 \neq 0 \). As the assumption that \(x_1 \) and \(x_2 \) are cointegrated implies that at least one of \(\beta_1 \) and \(\beta_2 \) are nonzero, there must be feedback in at least one direction at the zero frequency so that at least one of \(\mu_{\Delta x_1 \to \Delta x_2}(0) \) and \(\mu_{\Delta x_2 \to \Delta x_1}(0) \) are nonzero. Indeed, this is the only implication of the cointegration of \(x_1 \) and \(x_2 \) for the feedback between \(\Delta x_1 \) and \(\Delta x_2 \).

\(^3\)Geweke [1982] shows that \(\frac{1}{2\pi} \int_{-\pi}^{\pi} f_{\Delta x_1 \to \Delta x_2}(\omega)d\omega \leq F_{\Delta x_1 \to \Delta x_2} \) with equality if, in this case, the roots of the lag polynomial on \(x_{1,2} \) in equation (3) lie outside the unit circle.

\(^4\) If \(g_{\Delta x_1 \to \Delta x_2}(\omega) = 0 \) with \(\gamma_{21}(e^{-i\omega}) \neq 0 \) and \(\beta_2 \neq 0 \) then \(\gamma_{21}(e^{-i\omega})(1 - e^{-i\omega}) = \alpha \beta_2 \) requires that \(\gamma_{21}(e^{-i\omega}) \) be the conjugate of \((1 - e^{-i\omega}) \), a possibility ruled out by the specification of the model. If \(g_{\Delta x_1 \to \Delta x_2}(\omega) = 0 \) with \(\gamma_{21}(e^{-i\omega}) \neq 0 \) and \(\beta_2 = 0 \) then \(\gamma_{21}(e^{-i\omega})(1 - e^{-i\omega}) = 0 \) also requires that \(\gamma_{21}(e^{-i\omega}) \) be the conjugate of \((1 - e^{-i\omega}) \) except at \(\omega = 0 \) but \(\beta_2 = 0 \) implies \(g_{\Delta x_1 \to \Delta x_2}(0) = 0 \) anyway. If \(g_{\Delta x_1 \to \Delta x_2}(\omega) = 0 \) with \(\gamma_{21}(e^{-i\omega}) = 0 \) and \(\beta_2 \neq 0 \) then \(\gamma_{21}(e^{-i\omega})(1 - e^{-i\omega}) = \alpha \beta_2 \) cannot hold.
3. Analysis of the Feedback between US and UK Prices

In this section we apply the method derived in the previous section to the analysis of the feedback between US and (exchange rate adjusted) UK prices over the period 1791 to 1990 using the data on the US and UK wholesale price indices and the dollar-sterling exchange rate used by Lothian and Taylor [1996].

Interest in this feedback arises from its relationship to the long-run version of the PPP hypothesis. This hypothesis holds that, while shocks to nominal exchange rates and prices may result in deviations from PPP at a point in time, eventually PPP will be restored as prices and/or exchange rates respond to the deviation of the real exchange rate from its long-run value. This implies that the (log of the) real exchange rate ought to follow a mean-reverting stochastic process so that, if (the logs of) the nominal exchange rate and the relevant price levels obey integrated processes (of the same order), they will be cointegrated.

To fix ideas, let p_t be the log of the US WPI in year t, p_t^* be the log of the UK WPI in year t, and e_t be the log of the dollar-sterling nominal exchange rate in year t. In the notation of the previous section, define $x_{1,t} = p_t$ and $x_{2,t} = p_t^* + e_t$, the log of the dollar equivalent of the UK WPI, so that, with $\alpha = 1$, $z_t = x_{2,t} - \alpha x_{1,t} = p_t^* + e_t - p_t = \pi_t$ is the log of the dollar-sterling real exchange rate.

Lothian and Taylor reject the unit-root hypothesis for π_t over the period 1791 to 1990 implying that the real exchange rate reverts to its mean eliminating short-run deviations from PPP. ADF tests for p_t and $p_t^* + e_t$ reveal that the unit root hypothesis cannot be rejected for the

5 This data was generously supplied to us by James Lothian.
6 For a recent survey of long-run approaches to testing purchasing power parity see Froot and Rogoff [1995].
7 An alternative specification of the model would be to set $x_{1,t} = p_t^* - p_t$ and $x_{2,t} = e_t$, so that, with $\alpha = -1$, $z_t = x_{2,t} - \alpha x_{1,t} = p_t^* + e_t - p_t = \pi_t$ is again the log of the dollar-sterling real exchange rate. With this specification, the feedback at issue is that between Δe_t and $\Delta (p_t^* - p_t)$. This is an arguably more interesting case than that studied here, particularly if purchasing power parity is viewed as (part of) a theory of exchange rate determination. However, interpretation of the empirical results is substantially more problematic than for the specification used here due to the different nominal exchange rate regimes prevailing during the sample period. See Lothian and Taylor [1996] for a discussion of the possible empirical implications of the multiple regimes.
levels but can be rejected for the first differences. We conclude that the data are consistent with the view that the \((p_t, p_t^* + e_t)\)' process has an error-correction representation. Our estimate of that model is:

\[
\begin{align*}
\Delta p_t &= .006 + .345 \Delta(p_{t-1}^* + e_{t-1}) + \epsilon_{1,t} \\
\Delta(p_t^* + e_t) &= .183 - .110 \pi_{t-1} + .341 \Delta(p_{t-1}^* + e_{t-1}) - .125 \Delta(p_{t-2}^* + e_{t-2}) + \epsilon_{2,t}
\end{align*}
\]

with error covariance matrix

\[
\Sigma = \begin{bmatrix}
.00666 & .00500 \\
.00500 & .00808
\end{bmatrix}.
\]

Note that the lagged real exchange rate term enters only the equation for \(\Delta(p_t^* + e_t)\) implying that deviations of \(\pi_t\) from its long-run value result initially in movements in the dollar-denominated UK inflation rate but not in the US inflation rate. So, for example, if \(\pi_t\) exceeds

8 Estimating the model \(\Delta x_t = \alpha + \beta t + (\rho - 1)x_{t-1} + \sum_{i=1}^{k-1} \delta_i \Delta x_{t-i} + u_t\) yields t-ratios for the hypothesis that \(\rho = 1\) of \(-.94, -10.4, .01, -10.1, \) and \(-3.63\) for \(p_t, \Delta p_t, p_t^* + e_t, \Delta(p_t^* + e_t), \) and \(\pi_t\) respectively. Comparison with the 5% critical value of \(-3.43\) from Fuller [1976] produces rejections of the hypothesis for \(\Delta p_t, \Delta(p_t^* + e_t), \) and \(\pi_t\). For \(p_t\) and \(p_t^* + e_t\), the t-ratios for the hypothesis that \(\beta = 0\) are \(1.85\) and \(1.75\) respectively. Comparison with the 5% critical value of \(2.79\) from Fuller fails to reject the null for either variable. Estimating the model \(\Delta x_t = \alpha + (\rho - 1)x_{t-1} + \sum_{i=1}^{k-1} \delta_i \Delta x_{t-i} + u_t\) yields t-ratios for the hypothesis that \(\rho = 1\) of \(.31\) and \(1.02\) for \(p_t\) and \(p_t^* + e_t\) respectively. Comparison with the 5% critical value of \(-2.88\) from Fuller fails to reject the null for either variable. In each case, the lag length, \(k,\) was selected by, beginning with \(k = 10,\) reducing \(k\) by one until the coefficient on \(\Delta x_{t-k+1}\) was significantly different from zero at the 5% level. For the model with the trend term, this method selects \(k\) of \(10,\) \(9,\) \(3,\) \(2,\) and \(1\) for \(p_t, \Delta p_t, p_t^* + e_t, \Delta(p_t^* + e_t), \) and \(\pi_t\) respectively. For the model without the trend term, this method selects \(k\) of \(2, 3,\) \(2,\) and \(3\) for \(p_t\) and \(p_t^* + e_t\) respectively.

9 The numbers beneath each estimated coefficient are absolute t-ratios for the hypothesis that the true value is zero. The lag lengths in the model are chosen by allowing each of the four lag lengths to vary independently from zero to ten in models including the \(\pi_{t-1}\) term in one, or the other, or both equations, and selecting that model minimizing the AIC calculated for the model as a whole. As each equation is thus permitted to have a different set of regressors, each candidate model, as well as the results presented in the text, is estimated by SUR with each equation including a constant term to allow for nonzero means. The AIC is known to have a nonzero asymptotic probability of selecting a lag length longer than the true lag length [Geweke and Meese, 1981]. However, the selection criteria studied by Geweke and Meese that asymptotically select the correct lag length with probability one tend to select lag lengths shorter than the true length in finite samples. We have chosen to err on the side of selecting lag lengths that are too long rather than too short due to Geweke's [1982] concerns about the effects of inappropriately short lag lengths on the feedback decompositions.

10 Adding a \(\pi_{t-1}\) term to the \(\Delta p_t\) equation yields an estimated coefficient of \(-.009\) with an absolute t-ratio of \(.15\) while not changing any of the selected lag lengths and producing only minor changes in the estimates of the other parameters.
its long-run value (a real undervaluation of the dollar), there is no tendency for Δp_{t+1} to be higher than otherwise. Instead, there is a tendency for a fall in the dollar-denominated UK inflation rate, either because Δp^*_t or Δe_{t+1} or both tend to be lower than otherwise would be the case. The split into lower UK inflation or a nominal appreciation of the dollar will depend, in part at least, on the prevailing nominal exchange rate regime.

Figure 1 shows the estimated spectral density of Δp, $h_{\Delta p}(\omega)$, indicating that part due to feedback from $\Delta(p^* + e)$, $g_{\Delta(p^* + e) \to \Delta p}(\omega)$, while Figure 2 shows the estimated spectral density of $\Delta(p^* + e)$, $h_{\Delta(p^* + e)}(\omega)$, indicating that part due to feedback from Δp, $g_{\Delta p \to \Delta(p^* + e)}(\omega)$. Figure 1 reveals that the feedback from $\Delta(p^* + e)$ to Δp is zero at the zero frequency and accounts for only a small fraction of the feedback at other frequencies. Figure 2 shows that the feedback from Δp to $\Delta(p^* + e)$ accounts for about half the variation in $\Delta(p^* + e)$ at the zero frequency and that most of the feedback is due to that at low frequencies. The feedback at the zero frequency is, of course, responsible for the cointegration of Δp and $\Delta(p^* + e)$ and the stationarity of π.

Decomposition of the feedback between Δp and $\Delta(p^* + e)$ by frequency provides some insight into the usual results of cointegration approaches to testing the PPP hypothesis using data from the most recent experience with floating exchange rates among the major currencies. As this period spans about 24 years, data from it cannot contain information about any cycles with periods longer than 24 years - those associated with frequencies less than $\frac{\pi}{12}$. The estimate of $g_{\Delta p \to \Delta(p^* + e)}(\omega)$ in Figure 2 implies that about 60% of the feedback from Δp_t to $\Delta(p^*_t + e_t)$ occurs at such frequencies and about 80% occurs at frequencies less than $\frac{\pi}{6}$ - that part of the variation in the data due to cycles with periods greater than 12 years.11 In other words, data from the recent float contains little or no information about cycles at those frequencies contributing most of the feedback between the two time series.12

This claim may seem to be at odds with the sense of the speed of adjustment toward PPP given by the usual half-life calculation. For example, estimating the model $\pi_t = \gamma + \rho \pi_{t-1} + \nu_t$

11 That is, $\int_0^{\pi/12} g_{\Delta p \to \Delta(p^* + e)}(\omega) d\omega \simeq 6 \int_0^{\pi/12} g_{\Delta p \to \Delta(p^* + e)}(\omega) d\omega$ and $\int_0^{\pi/6} g_{\Delta p \to \Delta(p^* + e)}(\omega) d\omega \simeq 0.8 \int_0^{\pi} g_{\Delta p \to \Delta(p^* + e)}(\omega) d\omega$.

12 Abuaf and Jorion [1990] and Frankel [1990], among others, have made the same point.
using the data on \(\pi_t \) used in the feedback calculations above yields \(\hat{\rho} = .887 \) implying that deviations of \(\pi_t \) from its mean have a half-life of 5.8 years.\(^{13}\) However, integrating the spectral density of \(\pi_t \) implied by this estimate shows that about 73\% of its variance is due to cycles with periods greater than or equal to 24 years and about 86\% is due to cycles with periods greater than or equal to 12 years. As these numbers are consistent with those calculated from the feedback decomposition, the resolution of the two approaches seems to be that the half-life concept severely overstates the speed of return to long-run PPP.

4. Conclusions

We have shown how to adapt Geweke’s [1982] method of feedback decomposition by frequency to the case of \(I(1) \) time series generated by a bivariate error-correction model. This case is of interest because, while all cointegrated time series can be represented by an error-correction model, their data generating processes cannot be approximated by a finite VAR as Geweke’s method requires. This adaptation is applied to data on US and UK exchange rates and price levels over the period 1791 to 1990. We find that much of the feedback between the two time series occurs at frequencies associated with cycles having periods exceeding 24 years providing some insight into the rejections of the purchasing power parity hypothesis typically found in those studies testing the stationarity of the log of the real exchange rate using data from the most recent experience with floating exchange rates.

\(^{13}\)This is, of course, the same estimate and calculation reported by Lothian and Taylor [1996]. The AIC selects the AR(1) specification over all other AR models up to AR(10). For this process, the half-life is defined as \(n \) such that \(E(\pi_{t+n} - E\pi_t | \pi_t) = \frac{1}{2} (\pi_t - E\pi_t) \). As \(E(\pi_{t+n} - E\pi_t | \pi_t) = \rho^n (\pi_t - E\pi_t) \), \(\rho^n = \frac{1}{2} \) or \(n = -\log \frac{2}{\log \rho} \). In a study using GLS estimation on real exchange rate data from eight industrialized countries relative to the US over the 1901 to 1972 period, Abuaf and Jorion [1990] report an estimate implying a half-life of 3.7 years. Frankel [1990] uses data on the US and UK price levels and exchange rates over the 1869 to 1987 and reports an estimate implying a half-life of 4.1 years.
References

Figure 2: Spectral Density of $\Delta(\pi^*-\pi)$ and Products from Δ
<table>
<thead>
<tr>
<th>Paper Number</th>
<th>Title</th>
<th>Authors/Subjects</th>
</tr>
</thead>
<tbody>
<tr>
<td>9201</td>
<td>Are Deep Recessions Followed by Strong Recoveries?</td>
<td>(Mark A. Wynne and Nathan S. Balke)</td>
</tr>
<tr>
<td>9202</td>
<td>The Case of the "Missing M2"</td>
<td>(John V. Duca)</td>
</tr>
<tr>
<td>9203</td>
<td>Immigrant Links to the Home Country: Implications for Trade, Welfare and Factor Rewards</td>
<td>(David M. Gould)</td>
</tr>
<tr>
<td>9204</td>
<td>Does Aggregate Output Have a Unit Root?</td>
<td>(Mark A. Wynne)</td>
</tr>
<tr>
<td>9205</td>
<td>Inflation and Its Variability: A Note</td>
<td>(Kenneth M. Emery)</td>
</tr>
<tr>
<td>9207</td>
<td>The Effects of Credit Availability, Nonbank Competition, and Tax Reform on Bank Consumer</td>
<td>(John V. Duca and Bonnie Garrett)</td>
</tr>
<tr>
<td></td>
<td>Lending</td>
<td></td>
</tr>
<tr>
<td>9208</td>
<td>On the Future Erosion of the North American Free Trade Agreement</td>
<td>(William C. Gruben)</td>
</tr>
<tr>
<td>9209</td>
<td>Threshold Cointegration</td>
<td>(Nathan S. Balke and Thomas B. Fomby)</td>
</tr>
<tr>
<td>9210</td>
<td>Cointegration and Tests of a Classical Model of Inflation in Argentina, Bolivia, Brazil,</td>
<td>(Raul Anibal Feliz and John H. Welch)</td>
</tr>
<tr>
<td></td>
<td>Mexico, and Peru</td>
<td></td>
</tr>
<tr>
<td>9211</td>
<td>Nominal Feedback Rules for Monetary Policy: Some Comments</td>
<td>(Evan F. Koenig)</td>
</tr>
<tr>
<td>9212</td>
<td>The Analysis of Fiscal Policy in Neoclassical Models</td>
<td>(Mark Wynne)</td>
</tr>
<tr>
<td>9213</td>
<td>Measuring the Value of School Quality</td>
<td>(Lori Taylor)</td>
</tr>
<tr>
<td>9214</td>
<td>Forecasting Turning Points: Is a Two-State Characterization of the Business Cycle</td>
<td>(Kenneth M. Emery & Evan F. Koenig)</td>
</tr>
<tr>
<td></td>
<td>Appropriate?</td>
<td></td>
</tr>
<tr>
<td>9216</td>
<td>An Analysis of the Impact of Two Fiscal Policies on the Behavior of a Dynamic Asset Market</td>
<td>(Gregory W. Huffman)</td>
</tr>
<tr>
<td>9301</td>
<td>Human Capital Externalities, Trade, and Economic Growth</td>
<td>(David Gould and Roy J. Ruffin)</td>
</tr>
<tr>
<td>9302</td>
<td>The New Face of Latin America: Financial Flows, Markets, and Institutions in the 1990s</td>
<td>(John Welch)</td>
</tr>
<tr>
<td>9303</td>
<td>A General Two Sector Model of Endogenous Growth with Human and Physical Capital</td>
<td>(Eric Bond, Ping Wang, and Chong K. Yip)</td>
</tr>
<tr>
<td>9304</td>
<td>The Political Economy of School Reform</td>
<td>(S. Grosskopf, K. Hayes, L. Taylor, and W. Weber)</td>
</tr>
<tr>
<td>9305</td>
<td>Money, Output, and Income Velocity</td>
<td>(Theodore Palivos and Ping Wang)</td>
</tr>
<tr>
<td>9306</td>
<td>Constructing an Alternative Measure of Changes in Reserve Requirement Ratios</td>
<td>(Joseph H. Haslag and Scott E. Hein)</td>
</tr>
<tr>
<td>9307</td>
<td>Money Demand and Relative Prices During Episodes of Hyperinflation</td>
<td>(Ellis W. Tallman and Ping Wang)</td>
</tr>
<tr>
<td>9308</td>
<td>On Quantity Theory Restrictions and the Signalling Value of the Money Multiplier</td>
<td>(Joseph Haslag)</td>
</tr>
<tr>
<td>9309</td>
<td>The Algebra of Price Stability</td>
<td>(Nathan S. Balke and Kenneth M. Emery)</td>
</tr>
<tr>
<td>9310</td>
<td>Does It Matter How Monetary Policy is Implemented?</td>
<td>(Joseph H. Haslag and Scott Hein)</td>
</tr>
<tr>
<td>9311</td>
<td>Real Effects of Money and Welfare Costs of Inflation in an Endogenously Growing Economy</td>
<td>(Ping Wang and Chong K. Yip)</td>
</tr>
<tr>
<td></td>
<td>with Transactions Costs</td>
<td></td>
</tr>
<tr>
<td>9312</td>
<td>Borrowing Constraints, Household Debt, and Racial Discrimination in Loan Markets</td>
<td>(John V. Duca and Stuart Rosenthal)</td>
</tr>
<tr>
<td>9313</td>
<td>Default Risk, Dollarization, and Currency Substitution in Mexico</td>
<td>(William Gruben and John Welch)</td>
</tr>
<tr>
<td>9314</td>
<td>Technological Unemployment</td>
<td>(W. Michael Cox)</td>
</tr>
<tr>
<td>9315</td>
<td>Output, Inflation, and Stabilization in a Small Open Economy: Evidence from Mexico</td>
<td>(John H. Rogers and Ping Wang)</td>
</tr>
<tr>
<td>9316</td>
<td>Price Stabilization, Output Stabilization and Coordinated Monetary Policy Actions</td>
<td>(Joseph H. Haslag)</td>
</tr>
<tr>
<td>9317</td>
<td>An Alternative Neo-Classical Growth Model with Closed-Form Decision Rules</td>
<td>(Gregory W. Huffman)</td>
</tr>
<tr>
<td>9318</td>
<td>Why the Composite Index of Leading Indicators Doesn’t Lead</td>
<td>(Evan F. Koenig and Kenneth M. Emery)</td>
</tr>
<tr>
<td>9319</td>
<td>Allocative Inefficiency and Local Government: Evidence Rejecting the Tiebout Hypothesis</td>
<td>(Lori L. Taylor)</td>
</tr>
<tr>
<td>9320</td>
<td>The Output Effects of Government Consumption: A Note</td>
<td>(Mark A. Wynne)</td>
</tr>
<tr>
<td>9321</td>
<td>Should Bond Funds be Included in M2?</td>
<td>(John V. Duca)</td>
</tr>
<tr>
<td>Page</td>
<td>Title</td>
<td>Authors/Subjects</td>
</tr>
<tr>
<td>------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>9322</td>
<td>Recessions and Recoveries in Real Business Cycle Models: Do Real Business Cycle Models Generate Cyclical Behavior?</td>
<td>(Mark A. Wynne)</td>
</tr>
<tr>
<td>9323</td>
<td>Retaliation, Liberalization, and Trade Wars: The Political Economy of Nonstrategic Trade Policy</td>
<td>(David M. Gould and Graeme L. Woodbridge)</td>
</tr>
<tr>
<td>9325</td>
<td>Growth and Equity with Endogenous Human Capital: Taiwan’s Economic Miracle Revisited</td>
<td>(Maw-Lin Lee, Ben-Chieh Liu, and Ping Wang)</td>
</tr>
<tr>
<td>9326</td>
<td>Clearinghouse Banks and Banknote Over-issue</td>
<td>(Scott Freeman)</td>
</tr>
<tr>
<td>9327</td>
<td>Coal, Natural Gas and Oil Markets after World War II: What’s Old, What’s New?</td>
<td>(Mine K. Yücel and Shengyi Guo)</td>
</tr>
<tr>
<td>9328</td>
<td>On the Optimality of Interest-Bearing Reserves in Economies of Overlapping Generations</td>
<td>(Scott Freeman and Joseph Haslag)</td>
</tr>
<tr>
<td>9329</td>
<td>Retaliation, Liberalization, and Trade Wars: The Political Economy of Nonstrategic Trade Policy</td>
<td>(David M. Gould and Graeme L. Woodbridge) (Reprint of 9323 in error)</td>
</tr>
<tr>
<td>9330</td>
<td>On the Existence of Nonoptimal Equilibria in Dynamic Stochastic Economies</td>
<td>(Jeremy Greenwood and Gregory W. Huffman)</td>
</tr>
<tr>
<td>9331</td>
<td>The Credibility and Performance of Unilateral Target Zones: A Comparison of the Mexican and Chilean Cases</td>
<td>(Raul A. Feliz and John H. Welch)</td>
</tr>
<tr>
<td>9332</td>
<td>Endogenous Growth and International Trade</td>
<td>(Roy J. Ruffin)</td>
</tr>
<tr>
<td>9333</td>
<td>Wealth Effects, Heterogeneity and Dynamic Fiscal Policy</td>
<td>(Zsolt Becsi)</td>
</tr>
<tr>
<td>9334</td>
<td>The Inefficiency of Seigniorage from Required Reserves</td>
<td>(Scott Freeman)</td>
</tr>
<tr>
<td>9335</td>
<td>Problems of Testing Fiscal Solvency in High Inflation Economies: Evidence from Argentina, Brazil, and Mexico</td>
<td>(John H. Welch)</td>
</tr>
<tr>
<td>9336</td>
<td>Income Taxes as Reciprocal Tariffs</td>
<td>(W. Michael Cox, David M. Gould, and Roy J. Ruffin)</td>
</tr>
<tr>
<td>9337</td>
<td>Assessing the Economic Cost of Unilateral Oil Conservation</td>
<td>(Stephen P.A. Brown and Hillard G. Huntington)</td>
</tr>
<tr>
<td>9338</td>
<td>Exchange Rate Uncertainty and Economic Growth in Latin America</td>
<td>(Darryl McLeod and John H. Welch)</td>
</tr>
<tr>
<td>9339</td>
<td>Searching for a Stable M2-Demand Equation</td>
<td>(Evan F. Koenig)</td>
</tr>
<tr>
<td>9340</td>
<td>A Survey of Measurement Biases in Price Indexes</td>
<td>(Mark A. Wynne and Fiona Sigalla)</td>
</tr>
<tr>
<td>9341</td>
<td>Are Net Discount Rates Stationary?: Some Further Evidence</td>
<td>(Joseph H. Haslag, Michael Nieswiadomy, and D. J. Slottje)</td>
</tr>
<tr>
<td>9342</td>
<td>On the Fluctuations Induced by Majority Voting</td>
<td>(Gregory W. Huffman)</td>
</tr>
<tr>
<td>9401</td>
<td>Adding Bond Funds to M2 in the P-Star Model of Inflation</td>
<td>(Zsolt Becsi and John Duca)</td>
</tr>
<tr>
<td>9402</td>
<td>Capacity Utilization and the Evolution of Manufacturing Output: A Closer Look at the "Bounce-Back Effect"</td>
<td>(Evan F. Koenig)</td>
</tr>
<tr>
<td>9403</td>
<td>The Disappearing January Blip and Other State Employment Mysteries</td>
<td>(Frank Berger and Keith R. Phillips)</td>
</tr>
<tr>
<td>9404</td>
<td>Energy Policy: Does it Achieve its Intended Goals?</td>
<td>(Mine Yücel and Shengyi Guo)</td>
</tr>
<tr>
<td>9405</td>
<td>Protecting Social Interest in Free Invention</td>
<td>(Stephen P.A. Brown and William C. Gruben)</td>
</tr>
<tr>
<td>9406</td>
<td>The Dynamics of Recoveries</td>
<td>(Nathan S. Balke and Mark A. Wynne)</td>
</tr>
<tr>
<td>9407</td>
<td>Fiscal Policy in More General Equilibrium</td>
<td>(Jim Dolman and Mark Wynne)</td>
</tr>
<tr>
<td>9408</td>
<td>On the Political Economy of School Deregulation</td>
<td>(Shawna Grosskopf, Kathy Hayes, Lori Taylor, and William Weber)</td>
</tr>
<tr>
<td>9409</td>
<td>The Role of Intellectual Property Rights in Economic Growth</td>
<td>(David M. Gould and William C. Gruben)</td>
</tr>
<tr>
<td>9411</td>
<td>Monetary Base Rules: The Currency Caveat</td>
<td>(R. W. Hafer, Joseph H. Haslag, and Scott E. Hein)</td>
</tr>
<tr>
<td>9412</td>
<td>The Information Content of the Paper-Bill Spread</td>
<td>(Kenneth M. Emery)</td>
</tr>
<tr>
<td>9413</td>
<td>The Role of Tax Policy in the Boom/Bust Cycle of the Texas Construction Sector</td>
<td>(D’Ann Petersen, Keith Phillips and Mine Yücel)</td>
</tr>
<tr>
<td>9414</td>
<td>The P* Model of Inflation, Revisited</td>
<td>(Evan F. Koenig)</td>
</tr>
<tr>
<td>9415</td>
<td>The Effects of Monetary Policy in a Model with Reserve Requirements</td>
<td>(Joseph H. Haslag)</td>
</tr>
<tr>
<td>9501</td>
<td>An Equilibrium Analysis of Central Bank Independence and Inflation</td>
<td>(Gregory W. Huffman)</td>
</tr>
<tr>
<td>9502</td>
<td>Inflation and Intermediation in a Model with Endogenous Growth</td>
<td>(Joseph H. Haslag)</td>
</tr>
<tr>
<td>9503</td>
<td>Country-Bashing Tariffs: Do Bilateral Trade Deficits Matter?</td>
<td>(W. Michael Cox and Roy J. Ruffin)</td>
</tr>
<tr>
<td>9504</td>
<td>Building a Regional Forecasting Model Utilizing Long-Term Relationships and Short-Term Indicators</td>
<td>(Keith R. Phillips and Chih-Ping Chang)</td>
</tr>
</tbody>
</table>
9505 Building Trade Barriers and Knocking Them Down: The Political Economy of Unilateral Trade Liberalizations (David M. Gould and Graeme L. Woodbridge)

9506 On Competition and School Efficiency (Shawna Grosskopf, Kathy Hayes, Lori L. Taylor and William L. Weber)

9507 Alternative Methods of Corporate Control in Commercial Banks (Stephen Prowse)

9508 The Role of Intratemporal Adjustment Costs in a Multi-Sector Economy (Gregory W. Huffman and Mark A. Wynne)

9509 Are Deep Recessions Followed By Strong Recoveries? Results for the G-7 Countries (Nathan S. Balke and Mark A. Wynne)

9510 Oil Prices and Inflation (Stephen P.A. Brown, David B. Oppedahl and Mine K. Yücel)

9511 A Comparison of Alternative Monetary Environments (Joseph H. Haslag)

9512 Regulatory Changes and Housing Coefficients (John V. Duca)

9513 The Interest Sensitivity of GDP and Accurate Reg Q Measures (John V. Duca)

9514 Credit Availability, Bank Consumer Lending, and Consumer Durables (John V. Duca and Bonnie Garrett)

9515 Monetary Policy, Banking, and Growth (Joseph H. Haslag)

9516 The Stock Market and Monetary Policy: The Role of Macroeconomic States (Chih-Ping Chang and Huan Zhang)

9517 Hyperinflations and Moral Hazard in the Appropriation of Seigniorage: An Empirical Implementation With A Calibration Approach (Carlos E. Zarazaga)

9518 Targeting Nominal Income: A Closer Look (Evan F. Koenig)

9519 Credit and Economic Activity: Shocks or Propagation Mechanism? (Nathan S. Balke and Chih-Ping Chang)

9601 The Monetary Policy Effects on Seignorage Revenue in a Simple Growth Model (Joseph H. Haslag)

9602 Regional Productivity and Efficiency in the U.S.: Effects of Business Cycles and Public Capital (Dale Boisso, Shawna Grosskopf and Kathy Hayes)

9603 Inflation, Unemployment, and Duration (John V. Duca)

9605 Endogenous Tax Determination and the Distribution of Wealth (Gregory W. Huffman)

9606 An Exploration into the Effects of Dynamic Economic Stabilization (Jim Dolmas and Gregory W. Huffman)

9607 Is Airline Price Dispersion the Result of Careful Planning or Competitive Forces? (Kathy J. Hayes and Leola B. Ross)

9608 Some Implications of Increased Cooperation in World Oil Conservation (Stephen P.A. Brown and Hillard G. Huntington)

9609 An Equilibrium Analysis of Relative Price Changes and Aggregate Inflation (Nathan S. Balke and Mark A. Wynne)

9610 What's Good for GM...? Using Auto Industry Stock Returns to Forecast Business Cycles and Test the Q-Theory of Investment (Gregory R. Duffee and Stephen Prowse)

9611 Does the Choice of Nominal Anchor Matter? (David M. Gould)

9612 The Policy Sensitivity of Industries and Regions (Lori L. Taylor and Mine K. Yücel)

9613 Oil Prices and Aggregate Economic Activity: A Study of Eight OECD Countries (Stephen P.A. Brown, David B. Oppedahl and Mine K. Yücel)

9614 The Effect of the Minimum Wage on Hours of Work (Madeline Zavodny)

9615 Aggregate Price Adjustment: The Fischerian Alternative (Evan F. Koenig)

9701 Nonlinear Dynamics and Covered Interest Rate Parity (Nathan S. Balke and Mark E. Wohar)

9702 More on Optimal Denominations for Coins and Currency (Mark A. Wynne)

9703 Specialization and the Effects of Transactions Costs on Equilibrium Exchange (James Dolmas and Joseph H. Haslag)

9704 The Political Economy of Endogenous Taxation and Redistribution (Jim Dolmas and Gregory W. Huffman)

9705 Inequality, Inflation, and Central Bank Independence (Jim Dolmas, Gregory W. Huffman, and Mark A. Wynne)

9706 On The Political Economy of Immigration (Jim Dolmas and Gregory W. Huffman)

9707 Business Cycles Under Monetary Union: EU and US Business Cycles Compared (Mark A. Wynne and Jahyeong Koo)

9708 Allocative Inefficiency and School Competition (Shawna Grosskopf, Kathy Hayes, Lori L. Taylor and William L. Weber)
9709 Goods-Market Competition and Profit Sharing: A Multisector Macro Approach (John V. Duca and David D. VanHoose)

9710 Real-Time GDP Growth Forecasts (Evan F. Koenig and Sheila Dolmas)

9711 Quasi-Specific Factors: Worker Comparative Advantage in the Two-Sector Production Model (Roy J. Ruffin)

9712 Decomposition of Feedback Between Time Series in a Bivariate Error-Correction Model (Jahyeong Koo and Paul A. Johnson)
Research Papers Presented at the 1994 Texas Conference on Monetary Economics April 23-24, 1994 held at the Federal Reserve Bank of Dallas, Dallas, Texas

Available, at no charge, from the Research Department Federal Reserve Bank of Dallas, P. O. Box 655906 Dallas, Texas 75265-5906

Please check the titles of the Research Papers you would like to receive:

___ 1 A Sticky-Price Manifesto (Laurence Ball and N. Gregory Mankiw)

___ 2 Sequential Markets and the Suboptimality of the Friedman Rule (Stephen D. Williamson)

___ 3 Sources of Real Exchange Rate Fluctuations: How Important Are Nominal Shocks? (Richard Clarida and Jordi Gali)

___ 4 On Leading Indicators: Getting It Straight (Mark A. Thoma and Jo Anna Gray)

___ 5 The Effects of Monetary Policy Shocks: Evidence From the Flow of Funds (Lawrence J. Christiano, Martin Eichenbaum and Charles Evans)

Name: __ Organization: ____________________________

Address: __ City, State and Zip Code: __________________________

Please add me to your mailing list to receive future Research Papers: __

Yes No