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THE WELFARE EFFECTS OF PAY-AS-YOU-GO RETIREMENT PROGRAMS: 
THE ROLE OF TAX AND BENEFIT TIMING 

 
 
Abstract: It is well known that pay-as-you-go retirement programs reduce steady-state 
welfare and the capital stock in dynamically efficient OLG economies. The common two-
period OLG model obscures, however, the dependence of these effects on the ages at 
which taxes are paid and benefits are received. Program changes that shift taxes to older 
workers or benefits to younger retirees have effects similar to reductions in program size, 
yielding steady-state welfare gains and increases in capital accumulation while imposing 
transition costs on current generations. This analysis has policy implications for both tax 
and benefit timing.  

 

I. INTRODUCTION 

The study of two-period OLG models has yielded important insights into the 

welfare effects of pay-as-you-go retirement programs in dynamically efficient economies. 

A pay-as-you-go program offers windfall gains during its start-up phase, but lowers 

steady-state utility because its steady-state rate of return equals the economy’s growth 

rate, which, under dynamic efficiency, is lower than the marginal product of capital. 

Shutting down or scaling back the program allows future generations to earn higher 

returns, but imposes transition costs on current generations who have paid into the 

program but have not yet received full benefits. The future generations’ gains and the 

transition costs are equal in present value. It is well known that these results extend to 

continuous-time and multi-period OLG models. 

I show, however, that the two-period model fails to capture the role of one 

important factor. The welfare effects of a pay-as-you-go program depend upon its life-

cycle timing – the average ages at which each cohort pays taxes and receives benefits. In 

the two-period model, taxes must be paid in “period one” and benefits must be received 

in “period two.” In contrast, actual programs have flexibility in the allocation of taxes 
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within the working lifetime and benefits within the retirement years. I show that the 

program’s steady-state welfare loss is smaller when taxes are paid at later ages or benefits 

are received at earlier ages. 

These effects arise because the pay-as-you-go program’s rate-of-return shortfall is 

less harmful to each cohort when compounded over a shorter or later time period. 

Shifting taxes to older ages or benefits to younger ages therefore aids future generations 

in a manner similar to reducing the size of the pay-as-you-go program. Like a reduction 

in program size, though, such a timing shift imposes a transition cost on current 

generations, equal in present value to future generations’ gains. Specifically, shifting 

taxes to older workers boosts lifetime taxes for some of the cohorts working at the time of 

implementation, while shifting benefits to younger retirees reduces lifetime benefits for 

some of the cohorts retired at that time.  

In a simple calibration of the U.S. Social Security program, a payroll tax 

exemption during the first 10 years of working life (with a revenue-neutral tax increase 

on older workers) reduces the program’s steady-state welfare loss by about one-sixth. 

This policy raises lifetime taxes for most of the cohorts working at the time of 

implementation. Policy changes that raise benefits for younger retirees (with a budget-

neutral benefit reduction for older retirees) also generate steady-state welfare gains and 

transition costs, but of smaller magnitudes.  

In section II, I review the familiar analysis of pay-as-you-go retirement programs 

in two-period OLG models. In section III, I explain the role of tax and benefit timing in a 

continuous-time OLG model under the assumption that all taxes are paid at a single age 

and all benefits received at a single age. In section IV, I show that these results generalize 
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to the more realistic case in which taxes and benefits are paid at multiple ages. I examine 

the implications for tax timing in section V and those for benefit timing in section VI. 

Section VII concludes.  

II. REVIEW OF TWO-PERIOD MODELS 

 I begin by reviewing the basic properties of pay-as-you-go retirement programs in 

the familiar two-period OLG model. Technology is linear, implying fixed factor prices, 

and labor supply is inelastic. In each period t, the number of workers is  and the per-

worker wage is . The gross-of-principal one-period marginal product of capital is R. I 

assume R > NG, so that the economy is dynamically efficient.  

tN

tG

Consider a simple pay-as-you-go retirement program. In period t, each of the 

workers pays lump-sum tax  and each of the retirees receives lump-sum 

benefit .

tN tGτ 1−tN

tNGτ 1 The lifetime present-value net burden on each period-t worker is 

(1) . { })/(1 RNGGt −τ

The money’s worth ratio, the present value of benefits divided by the present value of 

taxes, equals (NG/R). 

Since the present value (1) would equal zero if R equaled NG, the program’s 

internal rate of return is NG, the economy’s growth rate.2 With R > NG, the continued 

operation of the pay-as-you-go program places a burden on each future generation.3 The 

period-t closed-group liability is the period-t present value of the aggregate burden that 

                                                           
1 As befits a pure pay-as-you-go program, budget balance is assumed to hold in each period. This 
assumption rules out the temporary surpluses and deficits often posted by (essentially) pay-as-you-go 
programs, such as the post-1983 U.S. Social Security surpluses. 
2 This result was derived by Samuelson (1958) and Aaron (1966). Also, see Lindbeck and Persson (2003, 
79), Feldstein and Liebman (2002, 2257-2258), Geanakoplos, Mitchell and Zeldes (1999, 84), and 
Auerbach and Kotlikoff (1987, 147-148). 
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continuation imposes on period-t workers and later generations (equivalently, their gain 

from ending the program). Multiplying { })/(1 RNGGs −τ , the burden on each period-s 

worker, by cohort size  and discount factor sN stR − and summing across s from t to 

infinity yields, 

(2) . ( )tt NGCGL τ=

Although abruptly ending the program at the beginning of period t benefits 

period-t workers and later generations, it imposes a “transition cost” on the period-t 

retirees, who have already paid taxes, but lose benefits of ( )tNGτ . The transition cost is 

equal to CGLt, the present value of future generations’ gains. This present-value equality 

also applies to the initial creation of the program – the present value of the program’s 

burden on future generations equal the start-up gains of the initial retirees, who receive 

benefits without paying taxes. It can be shown that the equality also applies to gradual 

and phased-in changes.4

As discussed by Lindbeck and Persson (2003, 82), Kotlikoff (2002, 1878-1886) 

and Auerbach and Kotlikoff (1987, 148), the pay-as-you-go program also depresses 

capital accumulation. With endogenous factor prices, the reduction in the capital stock 

results in lower wages and a higher marginal product of capital.  

It is well known that the two-period model’s basic insights extend to continuous-

time models: the program’s steady-state return equals the economy’s growth rate, the 

program lowers steady-state welfare (under dynamic efficiency), and ending the program 

                                                                                                                                                                             
3 In contrast, if R < NG (the economy is dynamically inefficient), the pay-as-you-go retirement program 
increases all generations’ wellbeing. Auerbach, Mankiw, Summers and Zeldes (1989) provide evidence, 
though, that the U.S. economy is dynamically efficient. 
4 For further discussion, see Lindbeck and Persson (2003, 80-81), Kotlikoff (2002, 1881-1882), Feldstein 
and Leibman (2002, 2258-2259), and Geanakopolis, Mitchell and Zeldes (1999, 86-87).  
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imposes a transition cost on current generations equal to the closed-group liability. I now 

show, however, that continuous-time models also provide an important role for life-cycle 

timing effects that are suppressed in the two-period model. 

III. TWO-AGE PROGRAMS IN CONTINUOUS TIME 

I examine a continuous-time overlapping-generations economy with linear 

technology. At date t,  people begin economic life, the age-a population is , and 

total population is , where 

nte )( atne −

Pent

n
eP

nL−−
≡

1  and L is the length of economic life. At date 

t, the per-capita wage equals and national labor income equals . The marginal 

product of capital is r > n+g, so the economy is dynamically efficient. 

gte Pe tgn )( +

Consider a simple “two-age” pay-as-you-go retirement program that collects taxes 

solely at age  and pays benefits solely at age . Transfers are equal to a fixed 

fraction τ of national labor income. At date t, each of the individuals aged  pays 

tax of and each of the individuals aged  receives benefit . 

Each individual entering the economy at date s then faces a net lifetime burden with a 

date-s present value of , where 

TA TB AA >

)( TAtne −
TA

TnAgtPe +τ )( BAtne −
BA BnAgtPe +τ

)( PVBPVTegs −

(3) . BT ArgnArgn PePVBPePVT )()( , −+−+ ≡≡ ττ

A. Steady State Effects of Tax and Benefit Timing 

As in the two-period model, the steady-state burden is proportional to the 

program’s size τ and is increasing in the rate-of-return shortfall r-n-g. But, the burden is 

also greater if the tax age is lower and the benefit age  is higher. These tax and 

benefit timing effects, which are the focus of this paper, are not captured by the two-

TA BA
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period model, in which tax payment and benefit receipt must occur in “period one” and 

“period two,” respectively. 

Specifically, the money’s worth ratio, the present-value ratio of benefits to taxes, 

is . This ratio has a straightforward interpretation. If an individual were 

required to invest in an asset paying n+g rather than the market return r for an interval of 

length , this would be ratio of the present value of the payout to the present value 

of the initial investment outlay. The same effects arise when an individual participates in 

a pay-as-you-go program with return n+g. In either context, a rate-of-return shortfall is 

more harmful when compounded over a longer interval.  

))(( TB AArgne −−+

TB AA −

To be more concrete, set n+g equal to .03 (reflecting 1 percent population growth 

and 2 percent productivity growth) and r equal to .05 (a conservative estimate of the 

marginal product of capital). Investing at 3 percent rather than 5 percent over a one-year 

interval is only slightly harmful; the money’s worth ratio equals or .98, so only 2 

percent of the investment is lost due to the below-market return. But, investing at such 

returns over a 10-year interval is considerably more harmful; the money’s worth ratio 

equals or .82 and the loss is 18 percent. Over a 30-year period, the harm is much 

greater, with a money’s worth ratio of or .55 and a 45 percent loss. 

02.−e

2.−e

6.−e

A pay-as-you-go program imposes similarly small steady-state welfare losses if 

there is only a one-year gap between taxes and benefits; if, say, Social Security taxes 

were paid at age 50 and benefits received at age 51, there would be little loss from the 

below-market returns. The losses are much greater if taxes are paid at age 40 and benefits 

are received at age 70. 
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Expression (3) also reveals that, holding fixed the interval TB AA −  and the 

program size τ, the absolute burden is smaller if the tax and benefit ages are later.  

Delaying both the tax and the benefit ages by one year reduces each present value by 2 

percent, which leaves the money’s worth ratio unchanged, but reduces the size of the net 

burden by 2 percent. The beginning-of-life present value of the burden is therefore 2 

percent smaller if taxes are paid at age 41 and benefits received at age 51 than if taxes are 

paid at age 40 and benefits are received at age 50. This result can also be understood by 

considering the investment analogy. The beginning-of-life present value burden of a 

required below-market investment depends upon the beginning-of-life present value of 

the amount invested. In this case, delaying each individual’s tax by one year while 

holding τ fixed reduces the beginning-of-life present value of the tax by 2 percent. The 

one-year delay raises the size of the tax payment by 3 percent (since revenue remains a 

fixed fraction τ of national labor income, which grows 3 percent each year); the present 

value of the tax then falls by 2 percent because it is discounted an additional 5 percent.  

B. Present-Value Equality Continues to Hold  

As is well known, the present-value equality also holds in continuous-time 

models. In this two-age case, abruptly shutting down the program imposes a transition 

cost on individuals aged between and , who are denied their benefit despite having 

paid their tax. Of course, individuals younger than  gain (in the same manner as future 

generations), so their gains must be subtracted to obtain the net transition cost on current 

generations. As shown in section A of the appendix, the closed-group liability (the 

welfare gain to future generations) and the net transition cost are both equal to 

TA BA

TA
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gnr
PVBPVTe tgn

−−
−+ )(  for a date-t shutdown. It can be shown that, as before, the equality 

also holds for gradual and phased-in changes.  

The application of the present-value equality to the two-age program makes 

intuitive sense. As discussed above, if there is only a one-year gap between the tax and 

benefit ages, the gains to future generations from a shutdown are small because they are 

spared only one year of below-market returns. It can readily be seen that the transition 

cost on current generations is then also small, since only one annual cohort suffers such a 

cost. Conversely, if the tax and benefit ages are 30 years apart, abolition offers large 

gains to future generations who are spared 30 years of below-market returns. But, the 

transition cost is also large because 30 annual cohorts are harmed. 

As in the two-period model, the present-value equality also applies to program 

start-up; the present value of the program’s burden on future generations equal the start-

up gains of the initial cohorts who receive benefits without paying taxes. The burden 

imposed on future generations by a program that collects taxes at age 50 and pays 

benefits at age 51 is small; the start-up bonus offered by its abrupt introduction is also 

small, because only those aged between 50 and 51 receive benefits without paying taxes. 

For a program that collects taxes at age 40 and pays benefits at age 70, the future burden 

is large; the start-up bonus is also large, with everyone aged between 40 and 70 receiving 

benefits without having paid taxes.  

As discussed above, holding TB AA −  fixed, delaying both ages reduces the 

program’s burden on future generations and hence their gains from its abolition. It can 

readily be seen that such a delay also reduces the net transition cost on current 

generations. As previously noted, cohorts younger than gain from abolition; if  is TA TA
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higher, then a larger number of current cohorts have such gains. Because their gains are 

subtracted in computing the net transition cost on current generations, that cost is smaller.  

The present-value equality has another important implication. Because the 

equality holds for any pair of tax and benefit ages, it also holds for any change from one 

pair to another. By raising the tax age or lowering the benefit age, policymakers can 

reduce the program’s steady state burden without reducing its size. But, they cannot 

avoid the transition cost. Abruptly raising the tax age from 40 to 50 imposes a transition 

cost on workers then aged between 40 and 50; they are taxed again at age 50 under the 

new rules, after having been taxed at age 40 under the old rules. Abruptly lowering the 

benefit age from, say, 70 to 60 imposes a transition cost on retirees then aged between 60 

and 70; they were too young to receive benefits under the old rules, but are too old to 

receive benefits under the new rules. As before, the transition cost also arises from 

gradual and phased-in changes. As in the two-period model, there is no free lunch. 

IV. GENERAL CASE 

The above analysis assumes that taxes are paid at a single age and benefits are 

received at another single age. I now show that the conclusions also apply to programs 

that collect taxes and pay benefits at a variety of ages.5  

Assume that, at each date t, each of the  individuals aged a pays  

or receives , subject to the budget constraint 

)( atne − )()( atgeaT −

)()( atgeaB −

                                                           
5 Section B of the appendix confirms that the present-value equality holds in this general case. 
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τ==∫ ∫ +−−+−− L L agnagn daaBePdaaTeP
0 0

)(1)(1 )()( .6 Then, the present-value burden for an 

individual entering the economy at date t is , where )( PVBPVTegt −

(4) . ∫∫ −− ≡≡
L raL ra daaBePVBdaaTePVT

00
)(,)(

Taking a first-order Taylor approximation to the logs of PVT and PVB with 

respect to r, evaluated at r equal to n+g, and using the budget constraint yields  

(5) BT AgnrPPVBAgnrPPVT )()ln(ln,)()ln(ln −−−≈−−−≈ ττ , 

where 
∫
∫

∫
∫

+−

+−

+−

+−

≡≡ L agn

L agn

BL agn

L agn

T
daeaB

daeaaB
A

daeaT

daeaaT
A

0

)(

0

)(

0

)(

0

)(

)(

)(
,

)(

)(
. (From the budget constraint, 

the denominators of the  and  expressions both equalTA BA Pτ ). 

Taking the exponential of (5) and substituting into (4) yields an expression 

identical to (3). Up to a Taylor approximation error, the analysis is unchanged from the 

two-age case, except that  and are now weighted average ages of tax payment and 

benefit receipt rather than the single ages previously considered.  

TA BA

In the weighted averages that define  and , each age is weighted by the 

present value of taxes or benefits at that age, using the discount rate n+g (the value 

around which the Taylor approximation is taken). These weighted averages are 

algebraically identical to the bond duration measure of Macaulay (1938, 48-50), which is 

prominent in the bond pricing literature. Macaulay duration is a weighted average of the 

time remaining until a bond’s future payments, with weights given by the present value 

of each payment. The economic interpretation is the same in both contexts; just as a 

TA BA

                                                           
6 In the two-age case, T(a) is  at  and zero elsewhere while B(a) is  at and 
zero elsewhere.  

TAgnPe )( +τ TA BAgnPe )( +τ BA
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bond’s duration governs the sensitivity of its present value (price) to the interest rate, so 

these weighted average ages govern the sensitivity of the present values PVT and PVB to 

the discount rate r.  

 To obtain more specific results and to avoid reliance on a Taylor approximation, I 

calibrate a stylized representation of the U.S. Social Security old-age and survivor (but 

not disability) program, as further detailed in section C of the appendix. I continue to set 

n to .01, g to .02, and r to .05. I assume that individuals work from economic ages 0 to X 

and are retired from economic ages X to L. I set X equal to 42 and L equal to 60, 

corresponding to work from biological ages 20 to 62 and retirement from biological ages 

62 to 80. The population parameter P is then 45.1. 

Under the benchmark policy, the program is financed by an age-uniform payroll 

tax of rate τ, so the timing of tax payments matches the timing of wages. I fit a quadratic 

cross-sectional age-earnings profile to recent data. Also, under the benchmark policy, 

benefits are paid from ages X to L and remain unchanged in real terms for each cohort 

throughout retirement.  

In this benchmark case, PVT equals 29.89τ and PVB equals 16.62τ. These values 

are the same as those in a two-age program with  equal to 20.6 (roughly the midpoint 

of working life) and  equal to 49.9 (close to the midpoint of the retirement period). 

The money’s worth ratio is .556. The closed-group liability is 14.7 times annual benefit 

payments, or about $6.4 trillion in 2005.  

TA

BA

Starting from the benchmark policy, I first examine reforms that alter the timing 

of taxes and then turn to reforms that change the timing of benefits.  
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V. TAX TIMING CHANGES 

Consider a revenue-neutral replacement of the age-uniform payroll tax with a 

young-worker exemption policy. As detailed in section D of the appendix, such a policy 

imposes no tax on the earnings of workers below economic age Y and maintains revenue 

neutrality by taxing earnings from ages Y through X at a rate higher than τ. Figure 1 

depicts the steady-state tax burden PVT for exemption ages from zero (the benchmark 

policy) to 42 (the extreme policy in which each worker pays her lifetime taxes in a single 

payment right before retirement). As the exemption age rises, the lifetime present value 

of the tax burden falls, in accordance with the above analysis.  

FIGURE 1
Present Value of Taxes with Young-Worker Exemption

(multiple of annual per-capita tax at date of labor force entry)
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Consider Y equal to 10, so that workers are exempt from taxes during the first 10 

years of working life (biological ages 20 through 30), with a revenue-neutral increase in 

the tax rate on older workers to 1.21τ. Then, PVT is reduced from 29.89τ to 27.72τ, 
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which is equivalent to raising  from 20.6 to 24.4 in a two-age program. Since PVB still 

equals 16.62τ, the net lifetime loss from the pay-as-you-go system falls from 13.27τ to 

11.10τ, a reduction of more than 16 percent. In other words, the steady-state gain from 

this young-worker exemption is equal to that attained by scaling back the system by one-

sixth across the board. The reduction in the 2005 closed-group liability is about $1.0 

trillion. 

TA

In accord with the present-value equality, however, the gain to future generations 

is accompanied by a transition cost of the same size on current generations. If exempting 

workers from taxes during their first 10 working years yields the same future gains as 

shrinking the program by one-sixth, then it must impose the same aggregate transition 

costs on current generations. The costs are allocated differently; under the young-worker 

exemption, the cost is borne solely by current workers, rather than current retirees.  

FIGURE 2
Individuals' Net Losses from Young-Worker Exemptions
(multiple of annual per-capita tax at implementation date)
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Figure 2 plots the present-value loss (negative if gain) borne by each member of 

the various working cohorts from the abrupt introduction of young-worker exemptions 

with exemption ages of 5, 10, 15, and 20. For Y equal to 10, workers aged 0 through 4.0 

are net winners and older workers are net losers. In general, the loss is greatest for 

workers around the exemption age, who obtain no gain from the exemption and who have 

the longest exposure to the higher rate.  

By assuming particular utility and production functions (as detailed in section E 

of the appendix), it is possible to compute the effects on capital accumulation. For this 

purpose, I set τ equal to .056, the 2005 ratio of old-age and survivor benefits to national 

labor income. Figure 3 plots the increases in the steady-state capital stock resulting from 

young-worker exemptions for ages 0 through 42. For comparison, the chart shows the 8.0 

percent increase that would arise from abolition of the pay-as-you-go program.  
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FIGURE 3 
Increase in Steady-State Capital Stock from Young-Worker Exemption

Increase in Steady-State Capital Stock from Abolition of Pay-As-You-Go Program
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The relative effects of different policies are virtually unchanged from the partial-

equilibrium framework. For example, an exemption age of 10 increases the steady-state 

capital stock by 1.2 percent, which is 15 percent of the increase attained from abolition of 

the program; recall that this policy yielded 16 percent of the partial-equilibrium steady-

state welfare gains offered by abolition.  

The capital-accumulation effects follow straightforwardly from the analysis of 

Seidman and Lewis (2003), who show that any revenue-neutral shift of the tax burden 

from young to old increases the steady-state capital stock. As they note, a similar point 

has been made by authors studying the choice between consumption and wage taxation, 

including Auerbach and Kotlikoff (1987, 58-60) and Summers (1981). The present 

analysis applies this general insight to payroll taxation, thereby linking the analysis to the 

literature on pay-as-you-go retirement programs and permitting an extension to benefit 

timing. This analysis, like much of the pay-as-you-go literature, emphasizes the partial-

equilibrium welfare effects, with less attention to the capital-accumulation effects 

emphasized by Seidman and Lewis. This difference in emphasis is largely a matter of 

taste, since the two effects are inextricably linked. 

Hubbard and Judd (1987) present a separate argument for a young-worker payroll 

tax exemption based on borrowing restrictions. (Also, see Hurst and Willen (2004)). 

Hubbard and Judd assume a pre-funded Social Security system that pays the market 

return r. They note that, if young workers face binding borrowing restrictions, their 

shadow interest rates exceed r and it is then desirable to delay tax payments. In contrast, 

the present analysis assumes no borrowing restrictions, so that workers’ shadow interest 

rate equals r, but considers a pay-as-you-go system that pays rate of return n+g < r. If 
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these complementary analyses are combined, the steady-state welfare gain from a young 

worker exemption is even larger, as borrowing restrictions push workers’ shadow rate 

above r while the pay-as-you-go system offers a return, n+g, lower than r. 

VI. CHANGES IN BENEFIT TIMING 

The analysis in the preceding section considered the steady-state gains and 

transition costs associated with delaying tax payments. As discussed earlier, qualitatively 

similar effects can be achieved by accelerating benefit receipt. Although benefit timing 

changes generally have smaller effects than tax timing changes, the effects can still be 

significant. I consider three policies to alter benefit timing, with full details in section F 

of the appendix. 

The easiest way to compare the effects of tax and benefit timing changes is to 

consider the (unrealistic) policy that is analytically parallel to the young-worker 

exemption; an old-retiree cutoff that eliminates benefits for retirees above age J with a 

budget-neutral benefit increase for younger retirees. The old-retiree cutoff has much 

smaller effects than the young-worker exemption. For example, the extreme policy of 

paying all lifetime benefits at the onset of retirement (J equal to 42) raises PVB only from 

16.62τ to 19.48τ, a gain of 2.86τ; the corresponding extreme policy of collecting all 

lifetime taxes at that same age (Y equal to 42) lowers PVT from 29.89τ to 19.48τ, a gain 

of 10.41τ, over three times larger.7 Similarly, denying benefits during the second half of 

retirement (J equal to 51) raises PVB by 1.28τ, while eliminating taxes during the first 

half of working life (Y equal to 21) lowers PVT by 5.25τ. 

                                                           
7 The combination of the two extreme policies equates PVB to PVT at 19.48τ, eliminating the steady-state 
welfare loss. Indeed, this combination shuts down the program, since there are no real effects from paying 
taxes that are immediately and fully refunded in the form of benefits.   
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The smaller impact of benefit timing changes is easily explained. Raising  by 

one year and lowering  by one year have the same proportional effects, reducing PVT 

by 2 percent and increasing PVB by 2 percent. But, since PVT is almost twice as large as 

PVB under the benchmark policy, the tax change has the larger absolute effect. Also, 

because working life is longer than retirement (here, 42 versus 18 years), the tax changes 

in the above comparisons alter  by more than the benefit changes alter . For 

example, the extreme tax timing policy raises  by 21.6 years, from 20.4 to 42, while 

the extreme benefit timing policy lowers  by only 7.9 years, from 49.9 to 42.  

TA

BA

TA BA

TA

BA

I next consider changes in the benefit growth rate during retirement. Under the 

benchmark policy (as in the actual Social Security system), each individual’s real benefits 

remain constant throughout retirement. A budget-neutral change that hikes initial benefits 

but then lets benefits fall 4 percent per year throughout retirement raises PVB from 

16.62τ to 16.96τ. Conversely, a budget-neutral change that reduces initial benefits and 

then lets them rise 4 percent per year lowers PVB to 16.27τ. 

Finally, I consider a policy parameter that has been changed in past Social 

Security reforms, the benefit eligibility age. Relative to leaving the program unchanged, 

an eligibility-age increase obviously shrinks the program and reduces the steady-state 

welfare loss. Because the eligibility-age increase delays benefit receipt, however, it 

reduces the steady-state burden by less than a budget-equivalent across-the-board benefit 

reduction.  

To examine this issue, consider a budget-neutral eligibility-age increase in which 

benefits are delayed until V > X and are increased for older retirees. As shown in Figure 

4, denying benefits during the first three years of retirement (V equal to 45) lowers PVB 
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from 16.62τ to 16.03τ. Although changes in benefit timing have smaller impacts than 

changes in tax timing, the effects can still be significant. In 2005, a three-year eligibility-

age increase would result in a present-value aggregate loss for future generations of 

almost $300 billion, compared to across-the-board cuts that lowered aggregate benefits 

by the same amount. 

FIGURE 4
Present Value of Benefits, Under Various Eligibility Ages

(multiple of annual per-capita tax at date of labor force entry)
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This analysis has assumed known lifetimes. In a world with uncertain lifetimes 

and imperfect annuitization, the policies considered in this section, particularly the old-

retiree cutoff, would harm individuals who enjoy unexpectedly long lifetimes. Such 

effects would have to be considered in a more complete analysis.8 Like the smaller 

impact of benefit timing changes, these effects may suggest that tax timing changes are of 

greater policy relevance.  

                                                           
8 Feldstein (1990) considers the choice of benefit growth rates in a four-period OLG model, analyzing both 
the effects considered here and the effects of uncertain lifetimes and imperfect annuitization.  
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VII. CONCLUSION 

In a continuous-time OLG model, a pay-as-you-go retirement program’s steady-

state welfare loss is higher when taxes are paid earlier or benefits are received later. The 

larger loss arises because the pay-as-you-go program’s rate-of-return shortfall is more 

harmful to each cohort when compounded over a longer or earlier time period. Policy 

changes that exempt younger workers from payroll taxes (with a revenue-neutral tax 

increase on older workers) increase steady-state welfare, but impose transition costs on 

older workers when implemented. Policy changes that increase benefits for younger 

retirees (with a budget-neutral benefit cut for older retirees) have similar, but smaller, 

effects. Policy analyses of proposed changes in pay-as-you-go retirement programs 

should consider how the changes affect tax and benefit timing. 
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APPENDIX 
 
Section A: Closed-Group Liability and Transition Cost in Two-Age Model 

To obtain the date-t closed-group liability, multiply the burden on each date-s 

entrant from (3) by the number of such entrants  and the discount factor and 

integrate across s from t to infinity, yielding 

nse rse−

gnr
eePe

BT ArgnArgn
tgn

−−
− −+−+

+
)()(

)(τ .    

The net transition cost is computed as follows. For each age a between and , 

individuals lose at date

TA BA

)( atne − BAgnatgPe )()( ++−τ aAt B −+ ; the cohort’s payments have date-

t present value . Integrating across a from to yields gross 

transition cost 

))(()( aArgntgn BPe −−+++τ TA BA

ngr
ePe

TB AArgn
tgn

−−
− −−+

+
))((

)( 1τ . For each age a less than , individuals 

avoid a burden with date-t present value 

TA )( atne −

{ }BT ArgnArgnraatg eePe )()()( −+−++− −τ  . Integrating 

across a from zero to yields TA { }
ngr

eeePe
T

BT

Agnr
ArgnArgntgn

−−
−

−
−−

−+−++ 1)(
)()()(τ  or 

ngr
eeePe

TTBB ArgnAArgnAgnr
tgn

−−
−−+ −+−−+−−

+
)())(()(

)( 1τ . Subtracting from the gross transition 

cost yields 
gnr

eePe
BT ArgnArgn

tgn

−−
− −+−+

+
)()(

)(τ . 

Section B: Closed-Group Liability and Transition Cost in General Case 

To obtain the date-t closed group liability, apply discount factor to the 

burden  on each of the  date-s entrants and integrate across s from t 

to infinity to obtain 

)( stre −

)( PVBPVTegs − nse

gnr
PVBPVTe tgn

−−
−+ )( . 
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The transition cost is computed as follows. The combined date-t present-value 

loss of the cohorts aged 0 through L as of date t equals 

, which equals 

 or 

[ ]∫ ∫ ⎟
⎠
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⎛ −−+−+ L L

x
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Since from the budget constraint and 

, this expression can be rewritten as 
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0
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Section C: Calibration of Social Security System 

An individual of age a (from 0 to X) at date t receives earnings 

),0,(
1 2

21

XgnZ
awawPegt

+
++ , where Z(n+g,0,X) is a scaling factor. For any discount rate ρ, any 

starting age α, and any ending age ω, the scalar ),,( ωαρZ  is the age-zero present value 

(at discount rate ρ) of ( )2
211 awawega ++  between the specified ages, 
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The Z(n+g,0,X) term in the denominator of the earnings function scales wages to keep the 

per-capita wage equal to . So, gte
),0,(

1)(
2

21

XgnZ
awawPeaT ga

+
++

= τ  and PVT  then equals 

),0,(
),0,(
XgnZ

XrZP
+

τ .  
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Using Social Security Administration worker and earnings data and Census 

population data for 2003, I constructed a proxy for per-capita earnings (number of 

workers multiplied by median earnings divided by population) for each five-year age 

cohort between ages 20 and 60 and for the two-year cohort aged 61 to 62. I regressed this 

proxy on a constant, the midpoint economic age of each group (treating biological age 20 

as economic age zero), and age squared and rescaled the coefficients to set the intercept 

to one, obtaining  equal to .2608 and  equal to -.00511. 1w 2w

The budget constraint then requires that  LgnXgn ee
gnPaB )()()( +−+− −

+
=τ  for a from X 

to L. Then, PVB equals LgnXgn

rLrX

ee
ee

r
gnP )()( +−+−

−−

−
−+τ .  

Section D: Young-Worker Exemption 

The young-worker exemption taxes ages Y through X at rate 
),,(
),0,(

XYgnZ
XgnZ

+
+τ . 

Under this policy, T(a) equals zero for a less than Y and equals  
),,(

1 2
21

XYgnZ
awawPega

+
++τ  for 

a from Y through X. Then, PVT equals 
),,(

),,(
XYgnZ

XYrZP
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τ .  

At date t, for each a between Y and X, each of  workers suffers a loss with 

present value 
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+−+ τ  from the higher tax rate. For 

each a between 0 and Y, each of  workers of age a suffers a loss with present value )( atne −
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+−+ τ  from the higher tax rate they will face after 
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attaining age Y, but has a gain with present value 
),0,(

),,()(

XgnZ
YarZPe atgra

+
−+ τ  from the 

exemption enjoyed until age Y.  

Section E: Equilibrium Capital Stock 

Letting K denote the capital stock divided by national labor income, the steady 

state values of K and r satisfy two conditions. First, 
))(1( δκ

κ
+−

=
r

K , where κ is the 

capital share in a Cobb-Douglas production function for gross-of-deprecation output and 

δ is the deprecation rate. Second, K equals the aggregate stock of national saving, which 

is the present value of future consumption minus the present value of future disposable 

non-capital income, 

{ } [ ]{ }dhadaTaBaWaCeedhadaKeeK
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where K(a), C(a) and W(a) are capital holdings, consumption, and pretax labor income of 

each worker at age a. (Like B(a) and T(a), they are expressed as a fraction of the per-

capita wage when the individual is of economic age zero.) If the consumer maximizes 

, then ∫ −L a daaCe
0

))(log(λ [∫ −+
−

= −
−

− L rh
L

ar

dhxTxBxWe
e

eaC
0

)(

)()()(
1

)( λ

λλ ] . Setting κ to .35, δ 

to .04, and τ equal to .056, I solved backwards to find that a time preference rate λ of .018 

yields a capital stock consistent r equal to .05 under the age-uniform benchmark policy. 

(In 2005, old-age and survivor benefits were 5.6 percent of national labor income, 

defined as employee compensation plus two-thirds of proprietors’ income). I then 

computed the equilibrium values of K and r under program abolition and the young-

worker exemptions.  

Section F: Changes in Benefit Timing 
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A budget-neutral old-retiree cutoff with cutoff age J sets B(a) equal to 

JgnXgn ee
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+τ  for a from X through J and zero for a from J through L. Then, PVB 
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rJrX

ee
ee

r
gnP )()( +−+−

−−

−
−+τ .  

A budget-neutral change that lets each cohort’s real benefit grow at rate q sets 

B(a) equal to LgnqXgnq
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A budget-neutral increase in the eligibility age to V sets B(a) equal to zero for a 

from X through V and equal to LgnVgn ee
gnP )()( +−+− −

+τ  for a from V through L. Then, PVB 

equals LgnVgn
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