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Abstract

We show that rational inattention theory of Sims (2003) provides a
rationalization of choice models a la Luce and gives a structural interpre-
tation to probability curvature parameters as reflecting costs of processing
information. We use data from a behavioral experiment to show that peo-
ple behave according to predictions of the theory. We estimate attitudes
to risk and costs of information for individual participants and document
overwhelming heterogeneity in these parameters among a relatively ho-
mogeneous sample of people. We characterize, both theoretically and em-
pirically, the aggregation biases this heterogeneity implies and find these
biases to be substantial.
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1 Introduction

When a problem is so involved that no rational formulation is
available, then some quantification is still possible by the coefficients
of correlation of contingency and the like. But such statistical pro-
cedures constitute an acknowledgement of failure to rationalize the
problem and to establish functions that underlie the data.

— Louis Leon Thurstone (1929), p. 224

There has been a long standing divide between rational choice theory and
behavioral decision theory. Rational choice theory postulates that people are
rational optimizing agents capable of making decisions quickly and precisely
even in an uncertain environment. Behavioral decision theory describes people’s
behavior by documenting empirically observed choices. Oftentimes, behavioral
decision literature has challenged the predictions of rational choice literature.
In particular, behavioral experiments seem to contradict the view that every
time and everywhere people optimally choose their actions. In a classical study
Mosteller and Nogee (1951) showed that people are not as consistent in their
choice as rational choice theory would predict.! To model this phenomenon
several theories have been proposed.

Louis Thurstone’s (1927) discriminal process theory explains the apparent
behavioral variations by associating a response strength to each choice option
and by assuming that response strength oscillates over time leading to variations
in observed behavior. Similarly, a generalization of this approach to more than
two alternatives, random utility theory, developed among others by Block and
Marschak (1960), Yellott (1977) and Falmagne (1978), states that people change
their attitude towards alternatives in a random fashion. We can infer from
the epigraph above that Thurstone thought of it as somewhat unsatisfatory
since it characterizes statistical properties of observed behavior without really
explaining why such behavior took place.

Another prominent theory proposed by Duncan Luce (1959) assumes that
response strengths are constant while there is variability in the choice process.
Luce’s choice theory postulates a relationship between response strength and
the corresponding probability of choice based on the property of independence
from irrelevant alternatives. While leading to parsimonious functions describing
choice probabilities, this approach has been criticized on several grounds. The
two main objections are that the predicted probabilities are very sensitive to the
order in which possible irrelevant alternatives are eliminated (see Saari (2005)),
and that the implied curvature parameters are hard to interpret. Nonetheless,
this second theory has been extensively used for modeling various microeco-
nomic phenomena, from choice of geographical location in McFadden (1978) to
choice under risk in Holt and Laury (2002) and Birnbaum (2008) among oth-
ers. There are numerous examples in the psychology and economics literatures

1 For discussions of these issues see among others Block and Marschak (1960), Barbera and
Pattanaik (1986), Simon (1986), Rieskamp, Busemeyer and Mellers (2006), and Regenwetter
et. al. (2010).



that highlight the need for a theoretical framework capable of rationalizing the
empirical finding that outcomes of discrete choice are probabilistic.?

The aim of this paper is to fill the void left by the theory in explaining
these experimental results. In particular, this paper proposes a way to reconcile
the predictions of rational choice theory with the observed choices described by
the behavioral decision literature. The theory we propose is based on Rational
Inattention Theory of Sims (2003). At the core of rational inattention is the idea
that people have limited cognitive capacity to process information. Knowing
that they have limited ability to process information useful for decision-making,
they choose to pay attention to those pieces of information that are most relevant
to their utility and disregard the rest. The selection of useful information is
dictated by their utility.

To measure the amount of information that people can process in a given
unit of time, we use the analogy that people’s brains and their cognitive ability
of processing information can be thought of as akin to an information processing
device, such as a computer or a telephone line. These devices can bring a limited
amount of information from a sender to a receiver in a finite period of time. For
instance, we rely on the transmission rate of the computer to load the content
of an email. Similarly, we rely on our brain to understand the content of the
email and, possibly, produce a reply. As most information processing devices,
the human brain cannot absorb nor react to information infinitely quickly and
precisely. Hence, people’s choices are prone to error. By error we mean that
given two alternatives, A and B, the person might choose alternative A over
alternative B even though B yields higher value than A.

We model a person’s limited ability to process information using Shannon’s
(1948) information theory and, in particular, Shannon’s channel capacity.®> In
our model, people choose their preferred amount of information and allocation
of attention (jointly called information structure) under the constraint that they
have limited capacity to process information. We capture the idea that choosing
an information structure is costly by associating a utility cost to the capacity
of the channel, measured by the amount of information intrinsic to the chosen
information structure.

This cost represents the effort that people put in processing the chosen in-
formation structure. For instance, in the example with an email, a person may
want to select how carefully and precisely he wants to respond to an email de-
pending on how important the email is. The more he cares about producing a
well crafted response, the more attention he needs to pay to the content of the
email. Thus, the person chooses how much information in the email he wants
to process to map it into his email response.

2A by no means comprehensive list of applications of Luce’s choice model and related
random utility models includes choices of geographical location, migration, housing, college,
occupation, labor force participation, number of children, number and brand of automobile,
shopping location, recreation location, means of travel and travel destination. For a lengthy
discussion of these models and their use see Cramer (2003).

3For a discussion of uses of information and knowledge and other related issues see Section
7.



Given that processing information is costly, a rational decision-maker faces a
trade-off between the costs and the benefits of processing pieces of information.
He selects the bits of information that are the most relevant for his utility and
ignores the rest, accepting potential errors stemming from this disregard of
information. So long as these errors are taken into account when choosing the
optimal information structure, a rationally inattentive agent lives comfortably
in the optimizing framework postulated by rational choice theory. Furthermore,
he may behave in a way that is consistent with the choices documented by the
behavioral decision literature.

From a theoretical standpoint, we find that rational inattention theory (1)
provides a rationalization of choice models & la Luce;* (2) provides a structural
interpretation to probability curvature parameters as reflecting costs of process-
ing information; (3) augmented by a theory of value, allows for joint structural
estimation of attitude to risk and costs of processing information using experi-
mental data.

These theoretical results are important for at least two reasons. First, when
applied to experimental data they make it possible to establish a direct link
between microeconomic estimates of costs of information processing and macro-
economic predictions of models with rationally inattentive agents. These esti-
mates could be useful for calibrating macroeconomic models based on rational
inattention theory. Since to date rational inattention theory has been lack-
ing direct empirical evidence, our estimates themselves constitute an empirical
contribution.

Second, it may seem that choice models a la Luce have a vast body of
empirical support and thus parameter estimates from existing microeconomic
studies could be routinely used in macroeconomic models. However, a caveat is
in order. In the overwhelming majority of empirical studies, theories of choice
have been studied by analyzing responses pooled across subjects.” In principle,
this approach cannot distinguish between two cases. On the one hand, all people
might face costs of processing information and individually behave according to
the predictions of rational inattention theory. On the other hand, the same
data could be generated by people with different preferences all facing no cost
of processing information whatsoever. When pooling responses across subjects
one could equally well get an aggregate response reminiscent of that predicted
by Luce’s choice model. Thus, it is nearly impossible to distinguish between
these two extreme cases when only pooled responses are observed.

This possibility calls for a test of predictions of rational inattention theory
at the individual level. To experimentally test the predictions of rational inat-
tention theory and measure costs of processing information, experiments should

4The relationship between rational inattention theory and the logit model of discrete choice
has been recently independently discovered by Matéjka and McKay (2011). They study a
special case of our setup with non-stochastic choice options. Our results apply to a more
general set of probabilistic choice options such as gambles.

5Hey and Orme (1994), Harless and Camerer (1994), Holt and Laury (2002) and Birnbaum
(2008) are prominent examples among this majority, while Regenwetter et. al. (2011) belongs
to rare exceptions.



be deliberately designed to set people in identical situations repeatedly, allow-
ing the researcher to check whether the predicted choice frequencies can explain
behavior at the individual level.

The empirical contribution of this paper is to use such a behavioral experi-
ment to measure costs of processing information at the individual level. We use
data collected in Michel Regenwetter’s laboratory at the University of Illinois at
Urbana Champain to provide empirical support to our theoretical predictions
that individuals: a) behave probabilistically; b) pay less attention and are thus
more prone to error when differences between choice options are smaller.

The experimental design allows us to jointly estimate people’s attitude to
risk and costs of information processing at the individual level using likelihood
methods. It allows us to characterize the role played by information-processing
constraints and across-person heterogeneity in explaining variations in behavior
at the aggregate level. We document a striking amount of heterogeneity in both
dimensions. Both the cost of information processing and attitude to risk vary
by orders of magnitude within a relatively homogeneous sample of participants.

Using our estimates, we document how heterogeneity leads to a substantial
aggregation bias, i.e. a difference in the behavioral response of an average
agent from our sample and the properties of a fictional "representative agent",
characterized by the behavioral response aggregated across all subjects in our
sample. We use Jensen’s inequality to prove theoretically that we should expect
this "representative agent" to be characterized by more inattentive behavior
than the average individual. This suggests that the direction of aggregation
bias in the cost of information observed in the laboratory is a consequence of
heterogeneity over costs of processing information.

Recently, Luce (2010) has emphasized heterogeneity in risk aversion as a
pivotal link between theoretical and empirical findings. Drawing from a vast
literature in psychology and economics,’® Luce (2010) makes the case for par-
titioning individuals into different risk types. He argues that such a partition
might be useful to empirically evaluate and compare the theoretical predictions
of models of utility representation, in particular cumulative prospect theory
of Tversky and Kahnemann (1992). Our model based on rational inattention
theory delivers structural forms for probability distributions that we use to as-
sess and compare theories of value such as expected utility (EU), cumulative
prospect theory (CPT) and the transfer of attention exchange (TAX) model.

The paper is organized as follows. Section 2 provides a discussion of rational
inattention as a theory of choices. A simple numerical example illustrates how
the theory works. Section 3 introduces our model and characterizes the optimal
choice probability. Section 4 describes the experiment and the methodology
applied to experimental data. Section 5 shows the results and compares different
theories of values. Section 6 characterizes, both empirically and theoretically,
the aggregation bias resulting from observed heterogeneity. Section 7 discusses
alternative approaches to modeling information in behavioral decision theory

6See, for instance, Tversky and Kahneman (1992), Marley and Luce (2005) and Birnbaum
(2008), Regenwetter et al. (2011).



and in the context of our model. Section 8 concludes.

2 Rational Inattention as a Theory of Error

Consider a choice between two options, A and B. Figure 1 displays on the
vertical axis the probability of choosing option A whereas on the horizontal
axis it displays the value differential between the two options. The dashed line
shows the predictions of the model according to existing rational choice theories
and the solid line represents a typical observed mean response averaged across
a sample population in an experimental setting approximated by Luce’s choice
model.
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Figure 1. Data averages and rational theory predictions.

The observed frequency of choosing option A is at odds with predictions of
existing rational theories: in reality, people do make errors. The frequency of
making an error depends on the difference in values of the two options. The
bigger this difference, the more consistent are people in their choices. The goal
of this paper is to construct a model where the observed frequency of choosing
option A can be fully taken into account as an outcome of rational choice.

To explain the observed choice frequencies we use insights from the rational
inattention literature of Sims (2003), (2006), Tutino (2011)." We think that
this framework can help explain individual and aggregate deviations from the
rational choice paradigm documented by the behavioral decision literature.

7An early description of the ideas behind rational inattention theory can be found in Sims
(1998). An accessible exposition of rational inattention theory can be found in Wiederholt
(2010).



Rational inattention theory is based on (1) a statistical measure of uncer-
tainty intrinsic to choice between options and (2) people’s value of those op-
tions as determined by their utility. The measure of uncertainty of the options
is based on Shannon’s (1948) entropy. Entropy is measured in bits of infor-
mation. This measure is parsimonious, yet general, as it depends solely on
the probabilistic nature of the options. Shannon’s channel capacity (1948) is
used to measure the amount of information processed when choosing between
options. The amount of information processed through the channel, equal to
the reduction in uncertainty achieved through the choice process, depends only
on the joint distribution between the choice options presented to the decision
maker and his behavior. This reduction in uncertainty is also measured in bits
of information.

The idea that processing information is costly is captured in rational inat-
tention theory by associating a utility cost to the capacity of the channel. This
cost represents the effort that people put in processing information. Thus, ratio-
nal inattention theory augments the standard theory of value, which attributes
utilities to different choices, with a utility cost associated with processing infor-
mation.

According to rational inattention theory, the decision maker faces a trade-
off between the benefits of choosing the best option precisely and the costs of
identifying the best option. The key difference from previous rational theories
comes from the fact that rational inattention theory allows the decision maker to
rationally choose how much information to process and maps this choice into his
choice frequency. The decision maker is able to select the pieces of information
that are the most relevant for his utility and ignore the rest. So long as potential
errors stemming from this disregard of information are taken into account by
the decision-maker, inattentive behavior is a natural outcome of the optimizing
framework postulated by rational choice theory.

We use these ideas from rational inattention theory to model choices between
discrete probabilistic options. The main prediction of our model is that decision
makers with limited ability to process information choose information about
options according to how much they care about each specific option. If they
perceive that the difference between the options is so small that it is not worth to
pay close attention, they will be indifferent between the two options and choose
randomly. The more they care about one option over another -say, option A
over option B-, the more attention they will pay. As a result, they will more
frequently choose option A over option B. In this respect, one can think of
rational inattention as a rationale for people’s errors. Our model predicts that
people pay less attention and, thus, make errors more frequently when they care
less about the options.

To see the intuition behind our application of rational inattention theory,
consider an illustrative example. Two cards are randomly drawn from a deck
and placed on the table. A player’s payoff is determined by the dollar values
written on the cards and by his decision of which of the two cards to pick up.
The player is allowed to pick up only one of the cards, the one on the left or
the one on the right, which will determine his payoff. For simplicity we assume



that the player is risk-neutral.

We can interpret the idea that the player does not know the values of the
cards ex ante by thinking of them in a probabilistic sense. For instance, consider
a deck with an equal number of three types of cards with payoffs of $18, $9 and
$0 respectively written on them. We assume that the player knows the payoffs
and the probability distribution of the cards. We can interpret the idea that
the player needs to process information before making his decision, as if before
processing information he perceives the cards to be face down.

Before picking up a card, he can choose to process some information about
the outcome by flipping some of the cards. He can take a look at none of
the cards (strategy S=0), or just at one card (strategy S=1), or at both cards
(strategy S=2). The more cards he flips the larger the amount of information
he will be processing.

We define the amount of information processed as the reduction in uncer-
tainty associated with the probability distribution over the potential payoffs.
As we shall see, each of the strategies S € {0,1,2} is associated with a proba-
bility distribution over payoffs [18,9,0]. We denote this probability distribution
[p18, P9, po], where all probabilities are non-negative and sum up to one. Note
that each strategy S implies different probability distributions. The uncertainty
associated with each strategy S is equal to the entropy, denoted H (S), of the
corresponding probability distribution. Entropy is computed as follows:

H (S) = p1glogs p1s + po log, pe + po log, po-

Ex ante uncertainty, equivalent to strategy S = 0, is represented by a uniform
distribution. When all cards have the same probability % the corresponding
value of entropy equals H (0) = log, % The amount of information processed
for each strategy S equals the reduction in uncertainty associated with strategy
S net of ex ante uncertainty, H (0). We denote I (S) the amount of information
processed when playing strategy S. It is computed as follows:

1
I(S)=H(S)— H(0) = piglog, p1s + pg logy pg + po logy po — log, 3

We assume that the player faces a cost of 6 dollars per bit of information to
process. The player ex-ante plans which card (left or right) to pick up condi-
tional on his strategy S and the corresponding amount of information that he
gets. Thus, the player faces a tradeoff between the expected payoff and the cost
of processing information. His optimal strategy reflects the optimal amount of
information to process and may result in not always picking the card with the
highest payoff.

Following the rational inattention literature, we define the expected value
associated with strategy S as the difference between the expected payoff and
the cost of information:

V (S) = 18p1s + 9pg + Opo — 01 ().
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Figure 2. Decision Tree of the Game.

Let us consider each potential strategy in turn, derive the corresponding
probability distribution and use it to compute the expected value of the strategy.
Figure 2 describes the tree of consequences for each strategy illustrating the
corresponding outcomes and potential payoffs. Strategies are denoted S=0, S=1
and S=2 on the left. In each case the card which is picked up is highlighted by
a box. Columns on the right represent final payoffs ($18, $9 and $0 at the top)
and pairs of cards which would lead to those payoffs under each strategy. For
instance, under strategy S=0 the card on the left® is picked up (highlighted).
For example, if the card on the left is 0, and the card on the right is 0, 9 or 18,
the player gets $0 (right-most column). Outcomes when the card with a strictly
lower payoff is picked up are marked with stars in Figure 2.

We shall start with two extremes. First, consider the strategy of flipping
none of the cards (strategy S=0). In this case the player can randomly pick one
of the cards, which gives him a uniform distribution over payoffs [%, %, %] . In
this case the probability of making an error, i.e. picking the card which yields
a strictly lower payoff is % The associated amount of information is zero, and
the expected value of this strategy is:

8We could assume either left or right here, without loss of generality.



1 1 1
V(0) = 318+ 39—i— 30 00 = 9.

Second, consider the other extreme of flipping both cards (strategy S=2). In
this case the player can always pick up the better one of the two. The probability
of making an error is zero. This strategy gives the player $18 in 5 cases out of
9, $9 in 3 cases out of nine, and leaves him with $0 only if both cards contain
$0. Therefore, the associated expected value is:

503 1 5 5 3 3 1
V(2) = 2184204060 ( 2logy > + > logy o + =1
(2) = 5l8+59+;5 <9°g29+9°g29+9

08y % — log, ;) = 13-0.236.

Finally, consider the strategy of flipping only one of the cards (strategy S=1)
and the associated conditional choices. Without loss of generality, let the card
be the one of the left. In case this card is $18, it is always better to pick it up
and get $18 for sure. In case the card on the left is $0, it is better to pick up
the other card, as the prospect of getting something is better than the prospect
of getting nothing for sure.” In case the card on the left gives $9, the expected
payoffs on the left and on the right are equal, but picking up the card on the
right is associated with higher uncertainty. This implies a lower amount of
information processed, and hence a higher expected value. As a result, in case
the card on the left gives $9, it is better to pick up the card on the right.

By multiplying the probabilities of getting each of the cards on the left by
the conditional probabilities associated with picking left or right in each case,
we arrive at the probability distribution [3,2, 2] associated with the strategy
of looking at just one card:

1 1111 1111 52 2
N e e e g el I
3[’O’O]+3[3’3’3]+3{3’3’3] { }

The expected value of strategy S = 1 is then:

V()= gl8+%9+§0—0 (g log, g + glogz % + glog2 % —log, ;) =12-0.156.

Figure 3 compares the expected values associated with each of the strategies.
It makes clear that different values of information cost will lead to different
optimal strategies. Table 1 summarizes for each of the three strategies, the
corresponding probability distribution over payoffs, the expected value of the
strategy, the range of costs of information when the strategy is optimal and the
probability of picking the wrong card.

9Note that in case the cost of information is so high that the extra uncertainty associated
with a gamble on the right is higher than the incremental expected payoff of $9 on the left,
strategy S=0 also strictly dominates strategy S=1.

10
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Figure 3. Expected Values of the Strategies
Strategy | Prob Dist | Info | Value Cost of Info P(error)

0 3,52 0 9 6 >20.1 3
1 5,2,2] 015 [ 12-0.150 [ 11.9 < 6 < 20.1 5
2 5:5.5] [023]130230] 0<6<119 0

Table 1. Properties of the Strategies

Our example illustrates three points. First, a lower cost of processing in-
formation leads to more information being processed. Second, a lower cost of
information is associated with a lower probability of making an error. Third,
even when it is feasible to eliminate errors completely and make a fully informed
choice, it may be optimal to leave room for error if information processing is
costly.

The behavior of the player in our example illustrates a way a person could
process information about any two options. He could be playing a mind game
of asking himself questions about the two options, which will give him pieces of
information necessary to make the choice. Oftentimes, the person would be able
to economize on time and effort instead of determining precisely which option
is better. He would economize more in situations when the outcomes are closer
to each other.

Note that in our example by asking himself other types of questions like
"is the left card 18$?" or, more generally, by optimally choosing the perceived
distribution of payoffs written on the cards, the player is in principle able to
break available information into even finer pieces. A more general cognitive
process which could represent decision making in this case could be described
as follows.

11



Before processing any information about choice options, the decision maker
represents uncertainty about the options in the form of some probability distrib-
ution over payoffs. He evaluates the options starting with this prior distribution.
One can think of the process of evaluation as a randomly drawn sequence of at-
tributes that the person pays attention to. Evaluation using each attribute gives
the decision maker new information about the options. He uses this information
to update his prior and obtain a tighter posterior at each step.

Paying attention to every next attribute involves as much effort. Meanwhile
each attribute makes the posterior tighter lowering the information gain from
the next attribute. At some step the decision maker will feel that thinking more
about the options is counterproductive. This will happen when the benefit from
drawing another attribute and tightening the posterior even further is not worth
the cognitive effort of thinking of another attribute. At this point the person
will stop and pick the option with the highest weight in his current posterior.

Of course, the cognitive representation we just described is by no means
unique. However, our example illustrates that the brain works as an information
processing device. Independent of the particular cognitive process, it will have
the features of Shannon’s channel and will be subject to constraints placed by
Shannon’s information theory.

We use rational inattention theory, which relies on the analogy with Shan-
non’s channel to describe the observed outcome without going into the details of
particular representations of gambles and attributes and their optimal choice in
the mind of a person. We follow the rational inattention literature in adopting
the assumption that coding of information is done efficiently, while process-
ing information through the channel is costly. By coding we mean the process
through which people 'read’ the information presented to them. We expand on
coding issues in Section 7.

Rational inattention theory provides a general framework for describing
choices when processing information is costly. It does so abstracting from the
details of coding information through specific questions and payoff distributions.
In the next section we use rational inattention theory to describe a general model
of discrete choice among gambles and derive the optimal choice probabilities.

12



3 Theoretical Framework

This section formally establishes the theoretical environment of the paper. Con-
sider a decision-maker faced with a choice among K gambles. Each gamble
k e {1,..., K} has J;, possible outcomes with X}, representing payoffs and py;
respective probabilities:

J)C
J) .
koo {Xkpetit, Yop=1,  je{l,.. L}
j=1

Following rational inattention theory, we allow the decision-maker to choose
a probability distribution {s;} over options, where s; denotes his probability of
choosing gamble k:

K
{sehie,  Yosi=1,  ke{l. K}
k=1

We also allow the decision-maker to have a prior bias towards one option
against any other, which may stem from the way these gambles are presented.
We denote the decision-maker’s prior distribution over options, {sxo}, defined
in the same way as {si}.

The amount of information processed by the decision-maker reflected in his
choice of sy, is captured by Shannon’s relative entropy, which captures the dis-
tance between the prior distribution over payoffs, {syopk;}, and the posterior
distribion over payoffs, {sxpg;}. We denote the amount of information, I, which
is an implicit function of the chosen probability distribution. The amount of
information measured by the relative entropy is computed as follows:

F) =303 sep logs (22 ) 1)

s )
k1 =1 kOPkj

Shannon’s relative entropy can be interpreted as a reduction of uncertainty
about the gambles that the decision-maker can achieve by choosing s;. The
more information he is able to process, the larger the reduction of uncertainty.

Lemma 1 The amount of information, I, is independent of gamble probabilities
DPkj-

Proof.
K Ji

K
Sk Sk
I(sg) = Z Z SkPrj logy <> = Z sk log, <> .
k=1j=1 Sk0 k=1 Sk0
J

Derivation of this result relies on the assumption that the decision-maker is
unable to alter the objective probabilities of events, py;, and that these proba-
bilities are well-defined for each gamble in a Kolmogorov sense.

We assume that the decision maker has a cost associated with processing
information. We model it using a cost function, C (I), which is an increasing

13



function of the amount of information, I. We assume that the cost enters ad-
ditively into the objective function. Then, the objective is to maximize the
expected value of the gambles, V' (k), k € {1, ..., K}, net of the cost of informa-
tion, C (I). The decision-maker’s problem amounts to:

K
maxz sV (k) —C(I(sk)),
=
K
st I(sp) =) sklog, <> , (2)
k=1
K
s.t. Zsk <1, sk = 0.
k=1

Theorem 2 If the cost of information, C (I), is a differentiable increasing con-
vex function of the amount of information, then the optimal choice probabilities

are given by:
V (k)
SkLo €Xp (7/ 1n2)
Yo smoexp (7755
ac(I)

where 0 = =51~ is the derivative of the cost function with respect to the amount
of information, evaluated at the chosen amount of information.

S —

. (3)
)

Proof. First, note that information, I (sg) is a strictly convex function of the
probability distribution {sy}. This follows from the fact that this function is
twice differentiable, and its Hessian is a diagonal matrix which contains only
non-negative elements.

Second, since C (I) is increasing and convex in I, convexity of informa-
tion with respect to probabilities {s;} guarantees that the composite function
C (I (sg)) is also a convex function of the probability distribution {sj}. This in
turn implies that the objective function of the decision-maker is concave in the
choice variable {sy}.

Maximization of a concave function with respect to a linear constraint with
a non-zero gradient and a set of non-negativity constraints leads to a unique
solution satisfying the first-order condition:

0 Sk
Vk)——|In—+1)-A=0
(k) In2 <nsk0 * )
where 6 = %y) is the derivative of the cost function and A is the Lagrange

multiplier associated with the constraint that probabilities sum up to one. Note
that this equation holds for all k € {1,..., K}. We can combine first-order
conditions for any pair of k£ and m to obtain:

Sk SO oen (V (ke)/_lnv2 (m)> .

Sm Sm0
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By further rearranging and summing up over s,, we obtain the optimal
probability (3). =

This result is a generalization of the choice model of Luce (1994). To see
this, assume no prior bias regarding the gambles,'? suppose that K = 2 and the
two gambles considered are labeled A and B. Then the formula reduces to:

1

SA = . (4)
o (M50

However, our result is more general since it can account for the fact that
people can have a prior bias towards one option against the other which stems
from the way gambles are presented to the decision-maker. In this paper we
do not specify a particular theory of inefficient coding which could lead to a
prior bias. Instead, we assume that coding is efficient and take the prior as
given. The design of the experiment we use in our empirical analysis allows
us to eliminate any prior bias and thus abstract from concerns associated with
possibly inefficient coding of information by participants of the experiment.

Rational inattention theory predicts that the decision maker should flip a
biased coin when making his choice. The bias of the coin is endogenous. It de-
pends on the trade-off between the marginal benefit of being more attentive and
the marginal cost of processing more information, captured by the expression
9= 29U 1 the empirical part of the paper we make the assumption that the
cost function, C (I), is linear in the amount of information, I. This transforms
0 into a preference parameter which fully characterizes the costs of processing
information of the decision-maker.

Note that the structural forms (3) and (4) are derived from first principles.
Thus, rational inattention theory provides a micro-foundation for the logit spec-
ification of Luce’s choice model, widely used in the literature. It also predicts
that individuals should behave as described by these curves when faced with re-
peated choices. Our model also gives an intuitive interpretation to the curvature
parameters of Luce’s choice model as reflecting costs of processing information.

Our theory complements the theory of value, which determines valuations of
gambles V (k) depending on the payoffs Xj; and their objective probabilities,
Dr;- In this paper we estimate individual information costs considering several
theories of value for two-branch gambles. We follow the literature in assuming
that individual valuations of sure outcomes are given by the utility function
with constant relative risk aversion:

Xt
— (5)

where « is a positive constant, v € R represents risk-aversion of the decision-
maker. Expected utility theory assumes that values of gambles are computed
by weighting these utilities with objective probabilities of payoffs:

UX) =«

10That is, assume that {sgo} is uniform and equals {%}
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Another theory of value, cumulative prospect theory (CPT), developed in
Kahneman and Tversky (1979) and Tversky and Kahneman (1992), assumes
that subjective probabilities are not equal to objective probabilities, but linked
to them through a probability weighting function. We use the following speci-
fication of the weighting function in our empirical analysis:

(1-196)p?
((1 -0)p®+(1 —p)d))5

where ¢ > 0 and 0 < § < 1 are behavioral parameters. In the case of two
gambles, the weight w (p) corresponds to the outcome with a higher payoff,
while the weight 1 — w (p) is attached to the lower payoff. Then, values of
gambles are determined by:

w(p) = (7)

Ji
V (k)= Zw(pk.j) U (Xyj) - (8)

A prominent alternative weighting theory is the transfer of attention ex-
change (TAX) theory developed by Birnbaum (1974) and Birnbaum and Chavez
(1997). The special version of this theory assumes that the weight of the higher
valued outcome is computed as follows:

_ (1=35)p°
P+ (1—-p)?
where ¢ > 0 and 0 < § < 3 are also behavioral parameters. Both of these
theories boil down to expected utility when ¢ = 1, and § = 0. Also, when v =0
agents are risk-neutral. Thus, we have 3 parameters {y, ¢, §} which characterize
various theories of value, and a single cost parameter 6 that summarizes agent’s
limited ability to process information.

In order to convert the cost of information 6 from utils per bit to dollars
per bit we use the conversion factor: Zszl Sko 88‘/)§f) for each gamble. This
conversion factor makes the parameter « irrelevant, as it scales both the utility
function and the cost of information. This is consistent with intuition, as the
individual scale of utility affects the absolute cost of information in utils per bit,
but does not affect the relative cost measured in dollars per bit.

)
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4 Methodology

4.1 Experimental Setup

In order to assess the relevance of the cost of information and compare the
models described in the previous section, we use experimental data collected in
Michel Regenwetter’s laboratory at the University of Illinois at Urbana Cham-
pain in the summer of 2009. The main property of the experimental setup useful
to us is that each participant was asked the same question repeatedly a large
number of times. The collected experimental data contains observed frequencies
with which each subject chose from each pair of gambles. This data allows us
to test rational inattention theory at the individual level.

Experimental data available to us contains answers of N individuals who
were repeatedly asked to compare M pairs of gambles. Each individual faced
each gamble £ times. The M x L overall gambles per individual were shuffled
to make sure that the experiment is not plagued by memory effects.

N X,8 px Xo,8| V1,8 py Y2,8
1 12938 065 1.19 | 18.00 0.68 3.21
2 12798 0.42 18.89 | 2544 0.47 3.90
3 |26.44 052 192 | 26.03 0.34 5.77
4 | 25.060 0.24 24.01 | 25.32 0.66 10.56
5 123.64 0.71 10.78 | 25.03 0.98 6.86
6 | 20.76 0.80 11.61 | 12.42 0.93 8.14
7 11938 0.23 246 | 1257 0.96 0.73
8 | 18.02 0.39 497 | 15.01 0.49 14.26
9 | 16.66 0.60 9.03 16.32 0.19 10.87

10 | 19.58 0.48 15.17 | 26.39 0.45 10.07
11 | 13.88 041 5.05 | 891 0.70 8.67
12 1 29.83 0.38 1247 | 25.10 0.85 22.74
13 1 21.78 0.72 11.16 | 21.30 0.66 20.91
14 | 9.61 0.17 6.49 | 987 031 4.17
15 | 16.11 0.20 8.10 | 22.75 0.13 6.18
16 | 6.88 0.53 6.69 | 13.86 0.90 0.96
17 1 24.08 0.90 5.02 | 23.74 0.07 14.41
18 | 1856 0.99 1.70 | 27.68 0.97 2.16
19 | 22,51 0.88 0.00 | 19.30 0.71 0.73
20 | 22,57 0.70 0.12 | 11.53 0.79 2.81
Table 2. Gamble payoffs and probabilities.

Each question contained two gambles, A and B, with parameters { X1, px, Xo,
1 —px} and {Y1,py,Ys,1 —py}.!! Gambles were randomly uniformly drawn
from the whole domain of potential gambles following the procedure proposed
by Rieskamp (2008). One advantage of this procedure is that it does not favor
any particular theory by construction. Thus, the gamble space generates no a

ITn the dataset N = 40, M = 20, £ = 60.
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priori bias to the estimates of the parameters.'> Second, this gamble selection
procedure guarantees that costs associated with coding information about the
gambles to be processes are roughly the same for all gambles. This puts all
choices on equal grounds and eliminates any bias associated with the possibility
of inefficient coding.

Outcomes of the gambles were selected from a uniform distribution over
[0,30] in 0.01 increments. Probabilities were selected from a uniform distribution
over [0,1] in 0.01 increments. About 59% of these gambles were screened because
either one gamble showed first-order stochastic dominance over the other or one
gamble had at least double the expected value of the other. 20 pairs were
randomly selected from the remaining gambles. Table 2 presents the gambles
used in the experiment.

The experiment was conducted on laptop computers in a laboratory space
at the University of Illinois at Urbana-Champaign. Forty individuals partici-
pated in the study, split roughly half-half by gender and all approximately of
college-age. The experiment was conducted over two sessions, separated by at
least four days for each participant. Each session was not restricted in time and
took roughly one hour to complete. At the beginning of each session a clear
description was given of what to expect from the experiment and several prac-
tice gambles were played. The participants were also warned that each pair of
gambles could be selected at the end of the session to be played for real, making
clear that their choice in each pair of gambles could affect their final payoff.

Participants were presented with a sequence of gamble pairs, one pair at
a time. Probabilities were displayed in the form of pie charts. Participants
could choose only one gamble from each pair. Gamble pairs were ordered by
the computer quasi-randomly, with the condition that the same pair was never
presented twice in succession. Over the course of a session, each gamble pair was
presented 30 times, so participants made 600 choices in each of the two sessions.
At the end of each session, one gamble out of 600 chosen by the participant
was randomly selected by the computer and played for real. The outcome of
the chosen gamble was paid to the participant together with a $5 flat payment.
The average payment was $20.97 per session.

4.2 Estimation of Parameters

This experimental data allows us to estimate jointly the values of all four para-
meters {6,, ¢, 0} for each of NV individuals, or any subset of parameters for any
restricted version of the theory. To correctly jointly estimate the parameters we
need to write down a likelihood function. The likelihood function of the data is
the density of a binomial distribution with s4 being the binomial probability.
The likelihood of option A being chosen x times and option B being chosen y

12This setup is important. For instance, consider the classical Experiment I from Tversky
(1969). The gambles for that experiment were selected in a subspace of all gambles which
have almost the same expected payoff. Using such a set of gambles in our experimental setup
would give us no ability to identify parameters characterizing costs of information.
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times given the deep parameters w = {6,+, ¢,d} and parameters of the question
¢ ={X1,Xa,px,Y1,Y2,py} is given by:

Lo, = (5 ) a7 (1= 500"

Hence, the log likelihood of the data is given by:

g L (r e ) =g (1 )+ lomsa (6.0) + ylog(1 = 54 (.0). (10

where
1

11
V<A>—V(B>> ’ ()

SA ((U7 C) =
1 +exp (_ 0/1n2

We use this specification to estimate w by maximizing the sum of log likeli-
hoods defined as:

M
Ao =) log L (i, yilwa, ;) - (12)

i=1
To evaluate model fit it is also useful to compute the likelihood of an "unre-
stricted" model which allows for individual parameters s, ; for each question i
for each participant a. This model has as many parameters as data points. Es-
timates of parameters of this model will be equal to the observed probabilities,
ie. 844 = ;”Ty Therefore, log likelihood of the unrestricted model is computed

as follows:

: (13)

log LYE (2,y) = lo 4 +zlo L—l— lo
gL”" (z,y) g<w+y &, tvles T

where 0log0 is always replaced by 0.

To compare models we sum up individual likelihoods, and then penalize the

joint likelihood for over-parameterization using the Bayes Information Criterion
(BIC):

N
BIC =-2)% Ay +nhO. (14)

a=1

where n is the total number of estimated parameters, and O is the total number
of observations.
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5 Results

We apply our estimation procedure to 8 statistical models all based on three
theories of value described earlier. The estimation results are presented in Ta-
ble 3. The first row (EU) represents the Expected Utility model, where pa-
rameters {6,v} were estimated for each participant individually, and then the
joint likelihood was computed for this model by summing individual likelihoods.
Similarly, CPT stands for Cumulative Prospect Theory with three parameters
{0,7, ¢} when 6 = 0 while CPT+ stands for an extended version of this theory
with four parameters {6,, ¢,d} . TAX stands for the Transfer of Attention Ex-
change model which also has four parameters. Each row describes the support
of each estimated parameter and the restriction on each parameter which was
not estimated.

We also estimate versions of EU and CPT+ with restricted values of the
cost of processing information. Rows 5 (EU n) and 6 (CPT+ n) of Table 3
represent cases when costs are made very low. Rows 7 (EU r) and 8 (CPT+
r) represent cases when costs were fixed at 3 bits per cent.!® Finally, row 9
(UR) of Table 3 shows the likelihood of the unrestricted model. We restrict the
support for parameters {¢,d} to ranges commonly assumed in the literature.
The cost of processing information is restricted to be non-negative, while the
parameter of risk aversion can take any real value. Using likelihoods for each of
the specifications we compute the Bayes Information Criterion statistic for each
specification.

Estimates of these nine statistical models allow us to answer several im-
portant empirical questions. First, we can test whether our model is a better
approximation of the data compared to other rational choice models. Compar-
ison of lines 1-4 to lines 5-6 illustrates the overwhelming support by the data
of rational inattention theory. Models with low information costs (for instance,
when the inverse cost is fixed to be above 20 bits per cent) are strongly rejected
by the data compared to models with higher costs. Models of deterministic
choice, a particular case of our model when the cost of processing information
is zero, have log likelihood of minus infinity. This means that models based on
rational inattention theory are a much better description of individual choices
in this experimental setup compared to models of deterministic rational choice.
The data favors the intuition that agents process only part of the available
information and, thus, rationally choose to make errors from time to time.

Second, we can assess the role played by heterogeneity in information costs.
Comparing lines 1-4 to 7-8 reveals that the assumption of identical shadow cost
across participants is strongly dominated by models which allow for hetero-
geneity in costs of processing information. Thus, heterogeneity is a statistically
significant outcome of our exercise.

Third, comparing lines 1-4 with each other allows us to compare different
theories of value. Table 3 reveals that more parsimonious models are subse-
quently dominated by less parsimonious models in spite of the fact that less

13 This value characterizes the average response aggregated across subjects.
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parsimonious specifications are penalized for over-parametrization. Among the
least parsimonious models, the TAX model of Birnbaum and Chavez (1997)
seems to fit the data better than the extended version of cumulative prospect
theory. Column 9 in Table 3 shows the numbers of participants of the experi-
ment, best described by each of 8 theories. It shows that the TAX model best
describes 23 out of 40 participants of the experiment, CPT+ best describes 7
participants, CPT best describes 6, and EU best describes 4.

Fourth, comparison of lines 1-4 to line 9 of Table 3 demonstrates that the
TAX model comes relatively close to the unrestricted model in terms of fit.
Column 10 of Table 3 shows that for 10 participants out of 40 the TAX model
fits the data better than the unrestricted model. In fact, for 2 participants out
of 40 the EU model seems to be the best description of the data. We conclude
from these observations that the rational inattention model we develop in this
paper overall fits the data relatively well.

Note, that we do not focus on comparing models within individuals as it
appears not important for our main results. Because careful comparison of
value theories within subjects is not the goal of this paper, we leave this as an
avenue for future research. In what follows, we restrict our analysis to estimates
from three most likely specifications each with a different number of parameters:
EU, CPT and TAX.

Cross-sectional estimates of the parameters of these three models are pre-
sented in Figures 4, 5 and 6 in the form of histograms and non-parametric
density curves. Means, medians and standard deviations of the cross-sectional
distributions of parameters are also presented in each graph.

These estimates enable us to obtain robust measures of costs of processing
information. Independently of the theory of value, the inverse cost of processing
information of most participants of the experiment falls in the region between
1 and 15 bits per cent, with the mean in the vicinity of 5-8 bits per cent and a
standard deviation of approximately 4 bits per cent. Our estimates also show
that people are extremely heterogeneous not only in costs of processing infor-
mation but also in attitudes to risk. Risk aversion consistently varies across
individuals from as high as +2, which is a relatively high value of aversion to
risk compared to other experimental studies,' to as low as -4, which is a very
high value of risk loving attitude.

There are similarly large variations in all other parameter estimates. Esti-
mates of the curvatures of likelihood functions as well as estimates of restricted
versions of each model indicate that only a tiny fraction of variation in these
parameters across subjects can be attributed to measurement error. Most point
estimates are relatively precise with relatively small standard errors.

From the same figures we can see that this heterogeneity results in a sig-
nificant aggregation bias when aggregating across subjects. We define a repre-
sentative agent to be the fictional agent representing responses pooled across
the sample population as if represented by a single agent. Parameter estimates

4 The standard estimates of Holt and Laury (2002), who aggregate across subjects, are in
the range of positive 0.3-0.5.
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of this representative agent (RA) are also depicted in Figures 4, 5 and 6. The
inverse cost of information characterizing the representative agent is around 3
bits per cent in each case, which is roughly half that of either an average or
a median agent in the sample. Similarly, although the average agent is risk
loving in both CPT and TAX models, the representative agent is characterized
by substantial aversion to risk.

Distribution of 1/, bits/cent Distribution of ~y
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Figure 4. Estimates of parameters under EU.
Distribution of 1/6, bits/cent Distribution of v
RA
119RA =3.70
E(/o) =6.13
1E(0) =355
med(6) =5.69
_ s(160) =339
N Tea =027
\ E(y) =-095
med(y) =-0.60
\ oly) =199
‘m‘
0 2 4 6 8 10 1‘2 1‘4 16 18 20 4 6 8 10 12
Distribution of ¢
RA
gy =065
E(¢) =1.05
med(¢) = 0.62
olp) =095
0.‘5 ’; 1.‘5 é 2.‘5 :": 3.‘5 ‘ ll 4.5 5

Figure 5. Estimates of parameters under CPT
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Figure 6. Estimates of parameters under TAX
# of participants
Model 0 ~ 10} ) LL n BIC - [1-§] ~ UR
1. EU Rt | R 1 0 -9916 80 20693* 3 2
2. CPT Rt | R| Rt 0 -7565 120 | 16424* 6 2
3. CPT+ RT™ | R| RT | [0,1] | -6382 160 | 14490 7 3
4. TAX RT | R| RT|[0,3] | -5631 160 | 12986* 23 10
5.EU =n |1/25 | R 1 0 -45380 | 40 91191 0 0
6. CPT+n | 1/25 | R | RT | [0,1] | -36920 | 120 | 75133 0 0
7.EU r 1/3 | R 1 0 -12729 | 40 25890 1 2
8 CPT+r | 1/3 | R| R | [0,1] | -9127 120 | 19978 0 2
9. UR - - - - -1368 800 | 11360 30 40

Table 3. Likelihood analysis of alternative models.
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6 Aggregation

We start with a novel theoretical result about aggregation of rationally inatten-
tive agents.

Theorem 3 When agents differ (only) in their cost of information 6;, the in-
verse cost of information of the representative agent is always biased downwards
compared to the average across inverse costs of information of individual agents:

-
A
2|~
N
=
S

Proof. Consider a pair of gambles which gives each agent a value differential
T € R Denote parameter of the gamble pair a = e™*™2 > (0 and inverse cost
¥; = 5= > 0. According to predictions of rational inattention theory, the choice
probablhty of agent i over gamble pair x is given by

1

yi:l "=l = 1+a‘¢’1
+e G
The representative agent’s choice probability is computed by averaging across

agents:

_1yvN , _ 1yN
YrA = NUi1 Vi = UL 1@-
His inverse cost of information is then computed inverting the function:
YRA = 1+a+RA‘

Consider the function f(z) = 14-% on z > 0. This function is strictly in-
creasing and concave for a < 1, strictly decreasing and convex for a > 1, equals
% when a = 1. This last case happens only when when x = 0, when both sides
are % 80 O 4 is undefined. Consider the case a < 1 first. By Jensen’s inequality
for any (unequal) values z; in the domain and for any strictly positive weights
a; a concave function f (z) satisfies:

Sia;z; Sia;f(z;
£ () > Bl

1 — E < 1

1+a¥RA i=1 1+a’/’ Tta M v’
Since the function f (z) is btrlctly 1ncreablng in z it follows that
9— < ZZ 1 9
Similarly, when a > 1 the function —f(z)is strictly increasing and concave.
Hence,

Hence,

1 _ 1vN 1 1
l+a¥RA Zz 114a®i = 1+a%25\1=1’4"i.

Since the function f (z) is now strlctly decreasing in z it again follows that
E < Ez 1 0
Note that the bias disappears only 1f all agents have identical costs of infor-
mation (0; = 6,) or when the two options being compared are identical (¢ — 1).
]

The key implication of Theorem 3 is that we should expect aggregate behav-
ior to appear as if produced by a much more inattentive representative agent
compared to the average individual. Thus, we should expect to encounter seem-
ingly even more inattentive behavior in the aggregate than in the laboratory.
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Parameter Rep Agent | Mean Agent | Cluster I | Cluster 11
inv cost of info, é 3.1 5.64 9.3 3.2
Risk aversion, vy 0.67 0.86 1.80 0.23
N agents 1 40 16 24
Table 4. Parameters by cluster under EU.
Parameter Rep Agent | Mean Agent | Main | Gambler
inv cost of info, % 3.7 6.1 6.6 2.3
Risk aversion, ~y 0.27 -0.95 -0.23 | -3.8
CPT parameter, ¢ | 0.65 1.05 0.59 | 2.37
N agents 1 40 32 8
Table 5. Parameters by cluster under CPT.
Parameter Rep Agent | Mean Agent | Main | Gambler
inv cost of info, 5 | 3.7 7.9 72 |17
Risk aversion, y 0.02 -0.32 -0.04 | -1.87
CPT param, ¢ 1.20 1.35 1.17 | 4.0
TAX param, ¢ 0.85 0.69 0.54 | 0.01
N agents 1 40 37 3
Table 6. Parameters by cluster under TAX.
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Our empirical analysis allows us to assess the amount of heterogeneity and
the associated aggregation bias. For illustrative purposes we sub-divide 40
agents in our dataset into 2 clusters by k-means using estimates of parame-
ters {6,, ¢} for each of the three models considered earlier. These clusters are
presented in circles and stars in Figures 7, 8 and 9. Tables 4, 5 and 6 present
the parameters of groups of agents for all three models considered.

Such classification is particularly stark for the CPT model and the TAX
model. In each of these models the first cluster (circles) represents the main
body of agents, roughly consistent with standard theories of value. The second
group (stars), consisting of just a few agents, could be called gamblers. They
are characterized by a lot of randomization (high cost of information) and a
passion for risk taking. They also tend to put more weight on lower outcomes
compared to objective probabilities (¢ > 1). In the same figures, we plot the
average agent in our sample and the representative agent, meaning the pooled
response across the sample population.

Results in this section demonstrate that, when responses are pooled across
subjects, heterogeneity introduces a significant aggregation bias into the esti-
mates of preferences. To illustrate how this bias works we plot in Figures 10,
11 and 12 the predicted choice probabilities as functions of gamble-specific ex-
pected payoff differentials and participant-specific expected value differentials.
It is easy to see from these figures that in each model the probabilistic curve de-
scribing the representative agent (dash-dotted line) is shifted out substantially
from the response of the average agent in the population (dotted line) towards
the response of a small group of the most inattentive agents (dashed). These
figures confirm the intuition obtained from our theoretical result and illustrate
the size of the bias.

7 Coding, knowledge and models of heuristics

Our model based on rational inattention theory focuses on a decision maker’s
ability to act in an uncertain environment with limited processing capacity. Our
model postulates that the decision maker, aware of his limited processing ca-
pacity, selects the information structure that conveys the highest utility. As a
result, our model predicts that a rationally inattentive decision maker optimally
chooses the amount of uncertainty that he is willing to tolerate by evaluating
costs and benefits of processing information. This section makes three observa-
tions on the rational inattention model we proposed.

First, one important assumption of our model is that the only source of un-
certainty faced by the decision maker is in the distribution of options ("states
of the world"). We do not address any form of cognitive bias that might emerge
from presenting the options as made of different numbers of branches (e.g. three
instead of two) or of different probability representations (e.g. pie charts as
opposite to percentages). These cognitive biases are treated in Shannon’s in-
formation theory as coding and decoding problems. That is, when evaluating
the capacity of a channel -human brain, in our case-, a prominent branch of
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information theory is concerned about the optimal design and compression of
inputs and outputs of the channel. Albeit we recognize that such a cognitive
bias may be sizeable in experimental studies, we choose not to model this bias
explicitly and assume that the coding is always efficient.

Second, we want to highlight the difference between information and knowl-
edge in our model. Some studies have interpreted information as equivalent to
knowledge. For instance, Gigerenzer and Goldstein (2011) describe recognition
and evaluation as the two processes that constitute information use for decision
making. They describe recognition as the process of accessing memory, -i.e.,
previous knowledge-, and evaluation as the process of comparing choice options
to objects in the knowledge base. The decision maker does not acquire new in-
formation or produce new knowledge when using this heuristic process. In our
model, recognition corresponds to the prior of the participant about the gamble
he faces. Before processing any information, this prior knowledge is measured
by the uncertainty (or entropy) of the gambles. Then, evaluation corresponds to
processing information about the gambles in order to reduce uncertainty. Thus,
in our model, evaluation is the process of acquiring information and forming
new knowledge.

Third, we want to emphasize the difference between rational inattention
models and models of heuristics as advocated by, inter alia, Cokely, Schooler
and Gigerenzer (2010), as well as models based on Decision Field Theory, as
advocated by Busemeyer and Johnson (2004). The reason why we use rational
inattention theory to describe people’s behavior is due to the fact that its statis-
tical foundations make the model general and universally applicable. So long as
we can characterize the distribution of the state variables, we can measure ex-
ante uncertainty. So long as we can postulate a theory of value, we can predict
and measure the optimal reduction of uncertainty of the decision maker. We are
concerned about the ability of the model to produce predictions consistent with
observed behavior. We do not take a stand on whether this modeling strategy
replicates the cognitive process that occurs in people’s brains when they make
decisions. This area of research goes beyond the scope of our paper.

8 Conclusion

In this paper we propose rational inattention theory of Sims (2003) as an ex-
planation to probabilistic outcomes of discrete choices. We show that rational
inattention theory provides a rationalization of choice models & la Luce and
gives a structural interpretation to probability curvature parameters as reflect-
ing costs of processing information. We use data from a behavioral experiment
to test the predictions of our theory. Experimental evidence strongly supports
the predictions of our model that: (a) individual people behave probabilistically
when repeatedly faced with the same choices; (b) the larger the difference in
valuations between options, the smaller the frequency of erroneous choice.

Our theoretical model allows us to estimate jointly parameters of attitude to
risk and cost of information for individual participants of the experiment. We
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provide microeconomic evidence for rational inattention theory and obtain the
first set of microeconomic estimates of its parameters. Our estimation procedure
allows us to obtain direct estimates of costs of processing information from the
laboratory, which could be used as guidance to calibrate macroeconomic models
with rationally inattentive agents.

In addition, we document an overwhelming degree of heterogeneity among a
relatively homogeneous sample of participants of the experiment, both in their
attitude to risk and in their costs of processing information. We characterize,
both theoretically and empirically, the aggregation biases resulting from this
heterogeneity and find them to be substantial. We formally show that in an
economy populated by rationally inattentive agents the fictional representative
agent’ would be much more inattentive than the average agent.

Our results and methodology are directly applicable to any setup involving
discrete choices. The corresponding model, with or without a rational expla-
nation, has been widely and successfully used in many fields of social science
including economics, psychology, finance, marketing, political science. In light
of these findings, it seems worth to augment theories of value with rational inat-
tention theory and broaden its applications in different fields of social sciences.
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