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Abstract

We analyze the evolution of macroeconomic uncertainty in the United States,
based on the forecast errors of consensus survey forecasts of various economic indica-
tors. Comprehensive information contained in the survey forecasts enables us to cap-
ture a real-time subjective measure of uncertainty in a simple framework. We jointly
model and estimate macroeconomic (common) and indicator-specific uncertainties
of four indicators, using a factor stochastic volatility model. Our macroeconomic
uncertainty has three major spikes aligned with the 1973–75, 1980, and 2007–09 re-
cessions, while other recessions were characterized by increases in indicator-specific
uncertainties. We also show that the selection of data vintages affects the estimates
and relative size of jumps in estimated uncertainty series. Finally, our macroeconomic
uncertainty has a persistent negative impact on real economic activity, rather than
producing “wait-and-see” dynamics.
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1 Introduction

The literature on the impacts of uncertainty on real economic activity has expanded rapidly

following the Great Recession.1 Many studies have aimed at empirically quantifying the

effect of uncertainty. Central to them is a need for a measure of time-varying uncer-

tainty, since uncertainty is not directly observable. Accordingly, a number of proxies for

uncertainty have been used. Bloom (2009) has pioneered the use of the VIX, the implied

stock market volatility based on the S&P index. Alternatively, Bloom et al. (2012) use

the cross-sectional dispersion of total factor productivity shocks. Another popular proxy

is the cross-sectional disagreement of individual forecasts, as in Bachmann et al. (2013).

Finally, the Baker et al. (2013) Economic Policy Uncertainty index combines news article

counts with the number of federal tax code provisions set to expire in additional to forecast

disagreement.

This paper uses consensus survey forecasts to analyze the evolution of macroeconomic

uncertainty in the United States as perceived by professional forecasters. We define macroe-

conomic uncertainty as the conditional time-varying standard deviation of a factor that is

common to the forecast errors for various macroeconomic indicators from the Survey of

Professional Forecasters (SPF). An increase in macroeconomic uncertainty thus implies a

higher probability that various economic variables simultaneously deviate from their condi-

tional consensus forecasts. This idea is effectively captured by a factor stochastic volatility

(FSV) model, first developed by Pitt and Shephard (1999).2 In our application, we use

stochastic volatility processes in a factor model structure to provide time-varying common

(macroeconomic) and indicator-specific uncertainty indexes, which are jointly modeled and

consistently estimated in one step.

A long strand of literature uses survey forecasts to quantify uncertainty; many studies

have focused on ex-ante uncertainty measures that draw on dispersions of point forecasts

or subjective probability distributions of individual forecasters. In contrast, we introduce a

1See, for example, Bloom (2009), Jurado et al. (2015), Caldara et al. (2016) Caggiano et al. (2014),
Carriero et al. (2016), among many others.

2The stochastic volatility process has been widely adopted in finance literature (e.g., Collin-Dufresne
and Goldstein 2002, Heston 1993, and Kim et al. 1998) and more recently in macroeconomic analysis to
model the time-varying volatility of macroeconomic variables, (e.g, Caldara et al. 2012, Jo 2014, Mumtaz
and Zanetti 2013, Primiceri 2005, and Justiniano and Primiceri 2008, among others).
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new framework for measuring ex-post uncertainty from forecast errors calculated using the

first (and a few other later) data releases and the median of participants’ point forecasts.

Hence, we differ from studies that identify key sources of forecast disagreement (e.g., Pat-

ton and Timmermann 2010), consider individual forecasters’ subjective probabilities as a

measure of uncertainty (Boero et al. 2015), or investigate the relationship between ex-ante

and ex-post forecast uncertainty (e.g., Clements 2014 and Lahiri and Sheng 2010).

Using survey forecasts provides several advantages for measuring subjective and real-

time uncertainty. First, the forecasts are not tied to any particular econometric models,

and thus can flexibly capture perceived uncertainty surrounding agents’ expectations. The

perceived uncertainty likely matters for the agents’ decision making process more than

model-based objective uncertainty that agents cannot directly observe, as Scotti (2016)

points out. Economic agents, in particular, professional forecasters, base their forecasts on

various econometric models, leading indicators and surveys, as well as on a variety of avail-

able macroeconomic and financial data, encompassing a wide range of information sources

(see Zarnowitz and Braun 1993). Consequently, survey forecasts naturally incorporate

necessary time-variations and/or any potential structural changes in the economy. They,

hence, reflect uncertainty perceived by the agents at the time of the survey more closely

than forecasts formed by an econometric model. Second, subjective forecasts have often

been found to be more accurate than the forecasts from econometric models.3 Therefore,

survey forecasts provide an effective way of removing expected variations in macroeco-

nomic series. As emphasized by Jurado et al. (2015), it is crucial to remove the foreseeable

component of macroeconomic series when estimating uncertainty so as not to attribute

some of the predictable variability to unpredictable shocks. Finally, survey forecasts sim-

plify the overall uncertainty estimation procedure to a great extent, since the selection and

estimation of a specific forecasting model to obtain forecast errors are not necessary.

Our baseline macroeconomic uncertainty estimated from one-step-ahead forecast (i.e.,

nowcast) errors for four economic indicators from the SPF (GDP, unemployment rate, in-

dustrial production and housing starts) is significantly more persistent than traditional

3For example, Ang et al. (2007) and Faust and Wright (2013) document the advantage of surveys over
forecasting models for inflation. Aiolfi et al. (2011) study the optimal combinations of survey and model-
based forecasts, and find that while the combinations always improve over model-based forecasts, they do
not systematically do so over the survey forecasts.
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proxies of uncertainty (e.g., the VIX).4 In particular, all major spikes of uncertainty are

associated with episodes of economic recessions, i.e., the 1973–75, 1980, and 2007–09 re-

cessions, similar to the findings in Jurado et al. (2015) and Carriero et al. (2016). Other

recessions (i.e., the 1990–91 and 2001 recessions) are still notable in the dynamics of some

of the idiosyncratic uncertainty, but were not picked up by the macroeconomic uncer-

tainty series. This suggests that increases in uncertainty during these periods were not as

broad-based as during the 1973–75, 1980, and 2007–09 recessions. By contrast, uncertainty

estimated using forecast errors of longer-run horizons show increases associated with most

recessions in the sample to higher levels than the baseline index. In addition, recursive

estimates of our macroeconomic uncertainty series, though certainly more volatile than full

sample estimates, are broadly in line with our baseline index.

A large literature has examined the importance of real-time data issues for evaluating

the forecasting power of econometric models. However, few papers have examined the

role data revisions play when estimating volatility. Similar in spirit to Clark (2012) and

Clements (2015), we also examine the impact of data revisions on the estimation of economic

uncertainty. As macroeconomic variables are constantly revised, uncertainty measures

based on the most recent data vintage use a different information set than was previously

available to professional forecasters. Our findings suggest that, while overall dynamics of

both macroeconomic and idiosyncratic uncertainties remain robust, they exhibit differences,

especially in the relative size of major peaks over time. For instance, macroeconomic

uncertainty based on the final vintage data likely underestimates the actual volatility faced

by professional forecasters in the 1970s and 1980s relative to the level during the Great

Recession.

Finally, vector autoregressions (VAR) show that innovations to macroeconomic uncer-

tainty generate negative effects on real economic activity. The impact is fairly sizable and

persistent, in line with the evidence in Jurado et al. (2015) and Carriero et al. (2016). This

is in contrast to VAR analysis using traditional proxies for macroeconomic uncertainty,

such as the VIX in Bloom (2009) and Caggiano et al. (2014), where the negative effects of

uncertainty dissipate quickly.

4In subsection 4.5, we show that enlarging our panel of forecast errors with other real activity indicators
added to the SPF in the early 1980’s does not have a material impact on our estimates.
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Our paper shares similarities with recent studies focusing on estimating macroeconomic

uncertainty. For example, Jurado et al. (2015) employ a factor model setup for a large cross-

section of variables to generate forecasts; the volatilities of individual forecast errors then

follow univariate stochastic volatility process, whose average becomes macroeconomic un-

certainty. Carriero et al. (2016) explicitly fit a factor model to the stochastic volatilities of

forecast errors from a large VAR, where two unobservable factors drive comovements across

individual volatilities. Rossi and Sekhposyan (2015) use forecast surveys and econometric

models for GDP and inflation to construct an uncertainty index from the unconditional

historical distribution of forecast errors. Scotti (2016) exploits survey forecasts and creates

an uncertainty index as the weighted sum of the squared forecast errors for different indica-

tors. Our approach complements this literature by combining survey forecasts of different

indicators in a factor model structure with stochastic volatility.

Our paper is also related to the literature that applies FSV models to financial and

macroeconomic analysis. The FSV model has been widely used in the finance literature

as it parsimoniously captures the variance and covariance of various financial time series

using a low-dimensional common factor (Kastner et al. 2014).5 On the macroeconomic

side, Mumtaz and Theodoridis (2015) estimate a dynamic factor model with stochastic

volatility with a panel of OECD countries to decompose the time-varying volatilities of

macro and financial variables to internationally-common, country-specific and variable-

specific uncertainties. Del Negro and Otrok (2008) develop a dynamic factor model with

time-varying factor loadings and stochastic volatility to study international business cycles.

One common feature in the previous studies is that the evolution of the conditional means of

the variables is parametrically linked to the factors. In contrast, our approach fits the FSV

model directly to survey forecast errors without jointly modeling the conditional mean

along with conditional volatilities, for the first time in the literature, to the best of our

knowledge. We instead outsource the modelling of the conditional mean to professional

forecasters. Hence, we provide an estimate of common and idiosyncratic uncertainties

through the perspective of professional forecasters.

The rest of the paper is organized as follows. Section 2 introduces the data set. Section

5See, e.g., Aguilar and West (2000) and Chib et al. (2009).
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3 provides an exposition of our econometric model. The next section presents results. A

VAR analysis in Section 5 shows the responses of real economic activity to innovations in

our uncertainty measure. Finally, Section 6 concludes.

2 Data

We use data from the SPF, the oldest quarterly survey of macroeconomic forecasts in the

U.S. The National Bureau of Economic Research and the American Statistical Association

initially introduced the survey in 1968. The Federal Reserve Bank of Philadelphia took it

over in June 1990. Survey panelists include forecasters from large corporations, Wall Street

financial firms, economic consulting firms, and university research centers. We use four

variables that have been part of the survey since its inception: real GDP, unemployment

rate, industrial production (IP) and housing starts. With the selected variables, we obtain

a long time-series of uncertainty from 1968Q4 to 2016Q1.

Forecasters are surveyed on a quarterly basis; the most recent quarter of data in their

information set is the previous quarter. Survey questionnaires are sent after the Bureau

of Economic Analysis (BEA) advance report of the national income and product accounts

(NIPA), which contains the first estimates of the previous quarter’s GDP. The survey’s

forecast submission deadline tends to occur around the second to third week of the middle

month of a quarter. Thus, before the survey is submitted, forecasters may have access to

the first month’s of data for initial quarter of the survey.6 We use their one-step-ahead

forecasts, namely, their nowcasts, to construct the forecast errors.

The calculation of forecast errors at any point in time is contingent on the realized value

of the series, and thus, data revisions can ultimately affect our measurement of uncertainty

through revisions to the forecast errors. We use the first release and revised data available

in one and five quarters after the initial release, as well as the final 2016Q1 vintage data

to compute four possible values of forecast errors. It is worthwhile to note here that the

6For instance, the Bureau of Labor Statistics releases the unemployment rate in the first week of a month;
hence, it will be in the survey respondant’s information set. By comparison, housing starts compiled by the
Census Bureau have been released during the third week of each month in recent years. It then becomes
less clear whether the first month’s value in each quarter is included. Similarly, IP has been released near
mid-month by the Federal Reserve System Board of Governors during our sample period, and, thus, the
inclusion of the first month’s value may not occur depending on particular dates in each month.
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degree of the revisions may differ across variables. For example, while revisions to the

unemployment rate are known to be relatively small and confined to changes in seasonal

factors, other indicators may be revised substantially reflecting newly available related data

series, late-arriving or revised values, and updated measurement methodology. In addition,

other than the first release, each variable from the same vintage may have been revised a

different number of times.7

When obtaining forecast errors, we use the consensus forecasts, i.e., the median across

forecasters, to minimize potential influences from individual forecasting biases.8

3 Factor Stochastic Volatility Model

We use the FSV model of Pitt and Shephard (1999) to estimate macroeconomic as well

as idiosyncratic uncertainty indexes. First, we define the forecast error of a variable i in

period t, denoted as εi,t, as follows:

εi,t = xi,t −median{E1[xi,t|It], · · · , EJ [xi,t|It]}, (1)

where xi,t is the realization of variable i in time t, Ej[xi,t|It] is forecaster j’s expectation of

variable i for quarter t, and median{E1[xi,t|It], · · · , EJ [xi,t|It]} captures the median forecast

across total J forecasters in each quarter. Again, a key difference of our measure from other

uncertainty indexes based on a particular forecasting model is that we obtain E[xi,t|It]

from subjective consensus survey forecasts instead of a specific econometric model. The

information set (It) also has the same time-subscript t, as it contains information obtained

to the middle of quarter t. That is, It includes the first NIPA estimate of GDP in t − 1,

7For instance, BEA releases three vintages of the current quarterly estimate for GDP, while the Board
of Governors of the Federal Reserve System announces each month a preliminary estimate of the previous
month’s IP and revised estimates of five proceeding months. In one quarter after the first release, GDP
would be revised twice after the first “advance” estimate, while the first month value of IP in the previous
quarter may have gone through four to five revisions.

8We use the median, and not the mean forecast across survey respondents to minimize the effect of
outliers, especially in the earlier part of the sample. A number of previous studies consider the median
as standard consensus projections. See Engelberg et al. (2009) and Croushore (2010), for example. Un-
certainty indexes based on the 25th-percentile, mean, and 75th-percentile forecasts are very close to the
benchmark estimated using the median, with the average correlation coefficient of 0.93, as shown in the
Appendix.
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while for the other monthly indicators, the first month’s value in quarter t may also be

included in It in addition to all monthly values in the previous quarter.

Next, we postulate that the forecast error of a macroeconomic series i has a factor

structure:

εt = λft + ut, (2)

where εi,t = [ε1,t, · · · , εn,t]′ is a (n×1) vector of forecast errors; λ = [λ1, · · · , λn]′ is a vector

of factor loadings; ft is a common factor across different i’s; and ut = [u1,t, · · · , un,t]′ is a

vector of idiosyncratic errors, capturing indicator-specific variations.9 Equation (2) implies

a common factor that drives a shock to all n economic indicators and, thus, affects the size

of forecast errors. The remaining indicator-specific variations is captured by ut.
10

As in a standard FSV model (e.g., Pitt and Shephard 1999 and Chib et al. 2006), we

further assume that ut and ft are conditionally independent Gaussian random vectors. ut

ft

 | It ∼ N

0,

 Σt 0

0 hf,t

 , (3)

where Σt are a n × n diagonal matrix of time-varying idiosyncratic volatilities and It is

information available in time t. In other words,

Σn,t =


h1,t 0 · · · 0

0 h2,t · · · 0
...

...
. . .

...

0 0 · · · hn,t

 .

The common as well as indicator-specific volatilities follow independent stochastic volatility

9The first principal component explains 52% of the variability in forecast errors, supporting such a
factor structure. We provide various statistical information regarding the comovements in forecast errors
as well as their volatilities in the Appendix.

10Some previous studies used density forecasts of variables such as GDP and inflation in the SPF to
quantify uncertainty (see, for example, Lahiri and Liu (2006), Lahiri and Sheng (2010), and Clements
(2014), among others). In comparison to the studies where individual forecast errors are decomposed into
common and idiosyncratic errors, our model decomposes consensus forecast errors of the four variables into
economy-wide and variable-specific errors.
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processes:

log hf,t = log hf,t−1 + σfηf,t

log hi,t = log hi,t−1 + σiηi,t, (4)

where σf and σi’s are time-invariant parameters determining the variability of the volatil-

ities, and ηf,t and ηi,t capture innovations to volatility. One reason that the stochastic

volatility model has been widely adopted in literature is its flexibility due to the innovation

term in the volatility process in addition to that of the first moment. Applied to our set-up,

it is possible to examine shocks to the volatility process, which can be uncorrelated with

unexpected variations in the level of forecast errors.11

The key estimate of interest is the time-varying standard deviations of the factor, i.e.,

{
√
hf,t }, which we define as a measure of the macroeconomic uncertainty: The time

series of macroeconomic uncertainty captures the volatility of a common driver that simul-

taneously affects the magnitude of forecast errors across different real activity indicators.

Other important estimates are the time-varying standard deviations of idiosyncratic errors,

i.e., {
√
hi,t }. These idiosyncratic volatility series will capture the size of indicator-specific

shocks, which are orthogonal to the common factor by construction. It is worthwhile to note

again that our framework yields both common and indicator-specific uncertainty indexes,

which are consistently modeled and estimated in one step. In addition, the estimation

procedure generates the posterior distribution of uncertainties, through which we can infer

the size of the uncertainty surrounding uncertainty estimates. Another point to note: Our

current framework further implies a factor structure in the volatility processes of forecasts

errors as well. That is, squaring both sides of equation (2) and taking expectations yields

var(ε) = E(ε2) = E(λft + ut)
2 = E(λ2f 2

t ) + E(u2t ), as we assume the factor and idiosyn-

cratic errors are independent from each other. Here E(f 2
t ) can be viewed as a factor of

volatilities. With additional modeling assumptions, such as a static factor and unit root

SV process, the squared factor estimates ({f̂ 2
t }Tt=1) and the estimated common (macroeco-

nomic) uncertainty ({ĥf,t}Tt=1 do not precisely overlap, yet are quite highly correlated (with

11The resulting shock processes can be included in a univariate regression framework to gauge the effects
of uncertainty shocks in a straightforward way. For example, the shock processes can be used to obtain
impulse responses to an uncertainty shock by local projections à la Jordà (2005).
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the correlation coefficient of 0.68).

The model is estimated using Bayesian methods, since it features high dimensionality as

well as non-linearity. Bayesian methods deal with such features by separating parameters

into several blocks, which greatly simplifies the estimation process. In particular, the

Markov Chain Monte Carlo (MCMC) algorithm groups the parameters into several blocks

and repeatedly draws from their conditional posterior distributions in order to simulate the

joint posterior distribution. We collect 5, 000 draws by storing every 10th draw in order

to avoid potential autocorrelation across draws, after discarding the first 30, 000 draws of

parameters. We follow the common identification scheme of a factor model that sets the

first factor loading (of GDP) equal to unity. The choice of prior distributions and their

parameter values is very similar to that of Pitt and Shephard (1999). We provide a detailed

description of the prior distribution setup and the MCMC algorithm in the Appendix.

4 Results

4.1 Estimated Macroeconomic and Idiosyncratic Uncertainties

We plot our baseline macroeconomic uncertainty series in Figure 1: the solid line is the

median posterior draw ({
√
hf,t }Tt=1) and the shaded area represents the 95 percent posterior

credible set. For our baseline estimates, we use the first data release to calculate the

forecast errors.12 In line with Carriero et al. (2016), the posterior credible set is fairly wide,

suggesting that the uncertainty around uncertainty estimates is large.

There are three main spikes in macroeconomic uncertainty, all associated with deep

recessions. The first spike was observed during the 1973–75 recession, the second during

the 1980 recession, and the last one during the recent Great Recession. The greatest

increase in macroeconomic uncertainty occurred during the 1980 recession. It is also clear

from the figure that, in general, the level of macroeconomic uncertainty was significantly

higher in the 1968–85 period than from 1985 until the Great Recession, consistent with the

findings in Kim and Nelson (1999) and McConnell and Perez-Quiros (2000). The index

shows some increase around the 1991 recession, but it is a small one in comparison with

12We assess the effect of data revisions on our uncertainty measure in Section 4.3.
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Figure 1: Estimated Macroeconomic Uncertainty Series
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Note: Figure plots the baseline macroeconomic uncertainty series estimated using the first-released data.
The solid black line is the median posterior draws of the time-varying standard deviation of a common
factor across forecast errors of four macroeconomic indicators. The shaded area is the 95 percent posterior
credible set.

the three critical spikes. The 2001 recession was also accompanied by very mild increases

in uncertainty.

While our baseline index is estimated using one-step-ahead forecasts, namely the now-

casts, the SPF also collects forecasts for longer horizons, e.g., h-step-ahead quarterly fore-

casts for h = 2, 3, 4 and 5. These longer-run forecasts can be used as a basis for measuring

long-run macroeconomic uncertainty under our framework. Figure 2 plots median poste-

rior draws of all h-step-ahead uncertainty along with the baseline measure.13 A couple

of differences are noticeable. The size of the uncertainty spikes increase with the forecast

horizon h, suggesting that greater perceived uncertainty encompass longer-run survey fore-

casts. Additionally, the 1991 and 2001 recessions as well as their interim period are more

pronounced in the longer-horizon estimates relative to the baseline index. However, since

the overall dynamics of these longer horizon macroeconomic uncertainties are very similar

to nowcast uncertainty, we focus on our baseline index below.

Table 1 reports the median posterior draws of factor loadings. For identification, loading

13The five-step-ahead uncertainty series starts in 1975Q3 due to some missing values in earlier periods.
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Figure 2: Uncertainty Estimated using Longer-Run Forecasts
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Note: Figure plots estimated longer-run uncertainty series. We use two- to five-step-ahead forecasts (h =
2, 3, 4 and 5) from the SPF to calculate forecast errors to attain corresponding longer-run uncertainty
estimates, and compare those to our baseline nowcast uncertainty series based on nowcasts.

Table 1: Summary Statistics of Posterior Draws of Factor Loadings

GDP IP UR HS

Median 1 1.25 −0.96 0.41
Std. Dev. - 0.25 0.20 0.14

Note: Table shows the median and standard deviations calculated from the posterior draws of four factor
loadings. Since our identification strategy is to set the loading of GDP to unity, the standard deviation is
not reported for GDP.

of GDP is set to unity, as mentioned in the previous section. However, the relative sizes

of the factor loadings and subsequently the estimated series of uncertainty are robust to

different normalization.14 We find that housing starts load least on the common factor,

while the loadings of the other three variables are in a comparable range.

Using the median posterior draws, we further examine how much of the total variation in

the forecast errors of each indicator is driven by the common versus idiosyncratic volatilities.

14In addition, while the medians change depending on which vintage is used to calculate forecast errors,
the relative sizes of most factor loadings are also robust to the choice of data vintage. The factor loading
estimates based on different data vintages are available upon request.
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This is calculated by using the factor structure of our model. In particular, our model

implies a total variance of each variable in each period, var(εi,t), to be

var(εi,t) = var(λift + ui,t)

= λ2i var(ft) + var(ui,t)

= λ2ihf,t + hi,t, (5)

as the factor and idiosyncratic error terms are assumed to be uncorrelated. We then

measure the size of the total common variation driven by macroeconomic uncertainty in

each period as λ2i var(ft) = λ2ihf,t, incorporating the heterogeneity due to the difference in

factor loadings. Next, we compare
√
var(εi,t) and λi

√
hf,t to investigate the contributions

of the common and idiosyncratic uncertainties.

Figure 3 plots the estimated total variation and the share explained by macroeconomic

uncertainty for each indicator. For most variables except housing starts, the most notable

spikes in the total variation are largerly driven by macroeconomic uncertainty. Moreover,

recessions that were not accompanied by distinct increases in macroeconomic uncertainty,

as in the 1991 and 2001 recessions, show up in the total variations of unemployment and,

to a lesser extent, GDP and industrial production.

During the period of 1985 to 2007, when the baseline macroeconomic uncertainty in-

dex was relatively subdued, idiosyncratic volatilities explain a large fraction of the total

volatilities of the different series. In the case of GDP, the share of idiosyncratic volatility

takes more than 50 percent of the total variation of GDP forecast errors during this period.

Finally, it is interesting to note that the variation of housing starts contributes the least

to the macroeconomic uncertainty, and it leads the total volatility of the other indicators.

Interestingly, the idiosyncratic uncertainty of housing starts was on an increasing trend

from the mid-1990s to the Great Recession.

4.2 Macroeconomic Uncertainty from a Larger Panel

Our baseline index is based on the forecast errors for four economic indicators that have

been part of the SPF since its inception in 1968Q4. This is intended to recover uncertainty

13



Figure 3: Total Variation versus Macro Variation

1970 1975 1980 1985 1990 1995 2000 2005 2010 2015

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Total Variation

Macro Variation

1970 1975 1980 1985 1990 1995 2000 2005 2010 2015

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Total Variation

Macro Variation

(a) GDP (b) IP

1970 1975 1980 1985 1990 1995 2000 2005 2010 2015

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Total Variation

Macro Variation

1970 1975 1980 1985 1990 1995 2000 2005 2010 2015

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Total Variation

Macro Variation

(c) Unemployment (d) Housing Starts

Note: This figure shows how much of total variation of each variable is explained by the macroeconomic
uncertainty. The blue dashed line is the total variation of one variable (defined as standard deviation),
and the black line is the macroeconomic uncertainty multiplied by a factor loading. All calculations are
based on the median posterior draws.
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Figure 4: Uncertainty with a Larger Panel of Indicators

1970 1975 1980 1985 1990 1995 2000 2005 2010 2015

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Baseline

Extended Panel

Note: Figure plots the uncertainty series estimated from a panel of nine economic indicators (blue-dotted
line) starting in 1981Q3. The benchmark uncertainty estimate (black line) is shown for comparison.

estimates for the longest period possible. However, the SPF has increased its coverage

over time; for instance, it included forecasts for various components of GDP (e.g., real

personal consumption expenditures and real residential investment) and financial variables

(three-month Treasury bill rate and Moody’s AAA corporate bond yield) in 1981Q3, and

continued to expand in subsequent years. To see how our index changes once we include

more variables, we add the forecast errors of five economic indicators to the vector εt

in equation (1) and re-estimate our macroeconomic uncertainty series. In particular, we

add forecast errors for real personal consumption, real residential fixed investment, real

nonresidential fixed investment (i.e., business fixed investment), real federal government

consumption and gross investment, and real state and local government consumption and

gross investment, and re-estimate the model from 1981Q3 onward.15

Figure 4 plots the estimates of macroeconomic uncertainty based on the large panel of

real economic variables since 1981Q3, as well as our main estimates based on the smaller

set of forecast errors starting in 1968Q4. It is clear from the figure that both series co-

15We restrict ourselves in this paper to the modelling of the volatility of real activity indicators, in the
same spirit as Aruoba et al. (2012) and Scotti (2016). We thus leave the joint modelling of real and nominal
volatilities for future work.
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Figure 5: Uncertainty Estimated Recursively in Real Time with Expanding Samples
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Note: This figure plots the uncertainty series estimated recursively after the first 20 quarters with expanding
sample periods (in red) along with the baseline uncertainty index (in black) based on the first data release
and the index using the final vintage data (in blue).

move very closely. The results show that our four variables chosen for the baseline model

summarizes information well regarding the state of macroeconomic uncertainty.

4.3 Recursively-Estimated Uncertainty with Expanding Samples

Although forecast errors used to estimate the FSV model are calculated in real time, we

obtain our baseline index by estimating the above model once, after collecting the errors for

the entire sample. Hence, the macroeconomic index is smoothed full-sample estimates and

model parameters and state variables, such as factor loadings and factors, are not updated

with each additional observation. In this section, we instead run another set of estimation

with expanding samples. In other words, we add one set of observations (i.e., real-time

quarterly forecast errors for the four indicators) at a time after the first 20 quarters, and

re-estimate the factor loadings and other parameters recursively. We then retain the median

draw of macroeconomic uncertainty for the latest period added to the sample.

Figure 5 plots the resulting recursive uncertainty estimates along with the baseline in-

dex, as well as the one based on the final-vintage data. Not surprisingly, the recursive
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estimates of uncertainty are more volatile than the other two series. Except for a large un-

certainty jump following the 2001 recession that is rather muted by the other two measures,

the recursive uncertainty series closely follows the dynamics of the other two. The correla-

tion coefficient after the first 20 quarters is higher between the recursively-estimated index

and the baseline series (0.71) than that with the final-vintage estimates (0.56). In sum,

the recursive estimates of uncertainty are largely consistent with the smoothed full-sample

estimates of macroeconomic uncertainty.

4.4 The Impact of Data Revisions

Macroeconomic data go through substantial revisions after initial release.16 Likewise,

macroeconometric analysis using latest available vintage data often results in different

conclusions from work that takes real-time issues into account (Orphanides 2001 and Or-

phanides and Van Norden 2002, for example). A large body of papers has also shown

that real-time data issues are particularly important for evaluating the forecasting power

of econometric models (Diebold and Rudebusch 1991, Faust et al. 2003, and Ghysels et al.

2014, among many others). However, previous studies focus on the effects on point forecasts

(i.e., the conditional mean); likewise, not much attention has been paid to the effect of data

revision on the estimation of conditional second moments.17 Nonetheless, data revisions

can also have a potentially important impact on the measurement of volatility, since they

directly affect the magnitude of forecast errors. Our baseline measure is estimated with

forecast errors computed using the first data release; in this section, we also examine to

what extent our macroeconomic uncertainty index differs if we use vintages available in one

and five quarter(s) after the initial release as well as the final 2016Q1 vintage to calculate

the forecast errors.

Figure 6 shows the macro uncertainty indexes based on the first-released data (the

baseline measure), the data revised in one and five quarter(s) after the initial release, and

16See Faust et al. (2005) and Aruoba (2008) for more details on the empirical properties of data revisions
in GDP as well as other macroeconomic data, respectively.

17Clark (2012) is one of few exceptions documenting nontrivial variations in volatility estimates due to
data revisions, based on a VAR model with SV. Using survey forecasts, Clements (2015) also demonstrates
how the accuracy of forecast intervals is affected by the revisions and how such problems can be resolved
if one uses real-time vintage data when estimating a forecasting model.
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Figure 6: Macroeconomic Uncertainty Based on the Different Vintages
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Note: Figure compares the baseline macroeconomic uncertainty factor (based on the first release) with the
uncertainty factor estimated with data from different vintages. The black line with circles is our baseline
uncertainty index; the red dotted line is the one where forecast errors of each variable are computed using
the revised data available in one quarter after the initial release; the cyan dash line, the 6th vintage, and
the blue solid line, the final vintage data.

the final vintage data. The final vintage data differ from others, as each data point has

gone through different numbers of revisions. That is, data from the more distant past

have been revised multiple times, while more recent data may have undergone only a few

revisions.

The correlations among all four indexes are high, peaking substantially at the same

periods as the baseline index, i.e., the 1973–75, 1980, and 2008–09 recessions. Therefore,

we find that the estimated series of uncertainty using different data vintages largely coincide

under our framework. Nonetheless, we find quantitative differences across the four series.

First, when we focus on the estimates based on the initial release and the second vintage, the

overall level of the second vintage-based index is lower than that of the first release-based

index, although the difference is rather small. One factor contributing to the difference may

be that professional forecasters are well-aware of issues associated with the first, preliminary

release such as noise and mismeasurement, and they may accordingly target revised values.

Second, the relative size of the peaks changes depending on the data vintage used to
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calculate forecast errors. In other words, with the forecast errors based on the initial

release and the sixth vintage, the uncertainty hikes during the recessions in the pre-Great

Moderation periods, i.e., the 1973–75 and 1980 recessions, are comparable to each other.

In contrast, the uncertainty based on the second vintage during the 1980 recession reaches

the highest level, pushing the peak during the 1973–75 recession downward. Finally, the

difference is most stark when the final vintage data are used to compare relative levels of

uncertainty in the Great Recession and the two recessions in the pre-Great Moderation

periods. With the final vintage data, the Great Recession is associated with the largest

jump in uncertainty since the beginning of the series, more in line with the dynamics of

uncertainty captured by the VIX and the Jurado et al. (2015) index. However, uncertainty

during the recessions in the pre-Great Moderation periods are higher than that in the Great

Recession by the other three measures.

We further investigate how data revisions affect the long-horizon uncertainty estimates

for two- and five-period-ahead forecasts. Similar to Figure 6, Figure 7 shows the long-

horizon macroeconomic uncertainty indexes based on the first-released data, the data re-

vised in one and five quarter(s) after the initial release, and the final vintage data. We find

that the size of differences across the indexes is much smaller for both longer-run horizons

than nowcasts. Although the impacts of data revision is less pronounced, the key findings

based on the nowcast uncertainty indexes still apply. In other words, the level of the second

vintage-based index tends to be slightly lower than that of the first release-based index,

and the relative size of the peaks changes depending on the data vintage.

In sum, our findings suggest that, while overall dynamics of both macroeconomic and id-

iosyncratic uncertainties remain robust, they exhibit differences, particularly in the relative

size of major peaks over time, depending on a particular data vintage chosen. For instance,

macroeconomic uncertainty based on the final vintage data will likely underestimate the

actual volatility faced by professional forecasters in the 1970s and 1980s in comparison with

the level during the Great Recession.
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Figure 7: Effects of Data Revisions on Uncertainties of Longer-Run Horizons
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Note: Figure compares estimated h-step-ahead macroeconomic uncertainty factor based on the first release
with those based on data from different vintages, for h = 2, and 5. The black line with circles is the
uncertainty index based on the initial release, the red dotted line is the one where forecast errors of each
variable are computed using the revised data available in one quarter after the initial release, the cyan
dashed line, the 6th vintage, and the blue solid line, the final vintage data.

4.5 How Important Is the Information in the Survey?

It is important to remove predictable components from the economic indicators when es-

timating macroeconomic uncertainty so as not to attribute the predictable variation to

unpredictable shocks. As highlighted by Jurado et al. (2015), the most-commonly used

proxies of uncertainty —such as stock market volatility (i.e., VIX) and forecast dispersions

—do not account for this fact.

Several papers have documented that the predictive ability of survey forecasts is a diffi-

cult benchmark for econometric forecasting models to beat, especially at short horizons (see

Ang et al. 2007; Faust and Wright 2013; Aiolfi et al. 2011). Consequently, survey forecasts

efficiently control for predictable variation in the economic indicators.18 To examine the

effects of using survey forecasts to remove predictable variations, we re-estimate our FSV

18It is worthwhile to note that the forecast ability, and thus information content, of the SPF may vary
conditional on forecasting horizons. For instance, Rudebusch and Williams (2009) and Lahiri et al. (2013)
document that professional forecasters do not appear to incorporate information from the yield curve,
and thus do worse at predicting economic downturns than model-based forecasts a few quarters out. In
addition, Carriero et al. (2015) find that a mixed-frequency forecast model with stochastic volatility, which
combines within-the-quarter observations of monthly indicators and financial variables, can generate GDP
growth nowcasts comparable to survey forecasts. In sum, the analysis in this section may not be directly
extendable to SPFs of all forecast horizons particularly compared to state-of-the-art forecast models.
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Figure 8: Macroeconomic Uncertainty: Forecast Errors from AR Models
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Figure compares the baseline macroeconomic uncertainty index (estimated with survey forecast

errors) with the ones estimated using errors obtained from AR models. The black solid line is the

baseline index, and the blue dashed and red dotted lines are the index based on forecast errors

from the regime-switching and mixed-frequency AR models, respectively.

model using forecast errors from two different autoregressive (AR) models:

(AR1) yi,t = αi +

p∑
j=1

βi,jyi,t−j + γ1y
1
i,t + γ2y

2
i,t−1 + γ3y

3
i,t−1 + εAR1

i,t , (6)

(AR2) yi,t = αi(st) + βiyi,t−1 + εAR2
i,t . (7)

AR1 is an unrestricted mixed-frequency model. The lag length p is chosen based on the

Akaike information criterion with a rolling fixed window of 60 observations. For the vari-

ables released at a monthly frequency, the monthly values reported, i.e., the second- and

third-month values of quarter t−1 (y2i,t−1 and y3i,t−1), and the first-month value in quarter t

(y1i,t, only if the release date is before the survey deadline) are augmented, to closely mimic

information available to professional forecasters at the time of the survey.19 It is important

to note that the real-time data available in each quarter t are used to match our baseline

index closely. In addition, AR2 is an expanding-sample Markov-switching model where the

19The forecast errors from AR1 are available at the Federal Reserve Bank of Philadelphia website. Stark
(2010) provides a detailed description regarding the model and real-time available information sets.
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regime-switching feature shows up in the intercept that may better capture nonlinearities

associated with business cycles.20 Forecasts are made using a pseudo-real-time quarterly

data set: for indicators that are available monthly, we take a quarterly average, as soon as

a third-month value in a quarter is released.21

We then estimate stochastic volatility of a common factor using ε̂AR1
i,t and ε̂AR2

i,t , the

forecast errors from the above AR models for each of our four variables. Figure 8 plots the

estimated macroeconomic uncertainty with forecast errors from both AR models. The AR-

based macroeconomic uncertainty indexes are considerably higher throughout the whole

sample period and more volatile than our baseline index based on survey forecasts. Al-

though regime-switching models move more closely with our baseline uncertainty measure

during the Great Moderation period, the difference between the two AR models is rather

small. The result implies that a significant share of the forecast errors from the AR models

are indeed captured by consensus forecasts, especially during recessions. Similarly, sta-

tistical models such as AR that have larger and volatile forecast errors likely attribute

predictable variations to higher macroeconomic uncertainty. More importantly, this anal-

ysis shows that using a consensus survey forecast is a parsimonious and effective way of

eliminating the predictable variations from economic variables, thereby providing a more

accurate measure of uncertainty faced by economic agents.

5 Innovations to Uncertainty and Macro Dynamics

In this section, we examine the dynamic relationship between our measure of macroeco-

nomic uncertainty and macroeconomic indicators using a standard recursively-identified

VAR model proposed by Christiano et al. (2005), augmented with our macroeconomic un-

certainty estimates. Previous studies using proxies for macroeconomic uncertainty, such as

the VIX in Bloom (2009), tend to find a significantly negative, but short-lived impact of

uncertainty on economic activity, followed by an overshoot. In contrast, studies that esti-

mate macroeconomic uncertainty, such as Jurado et al. (2015) and Carriero et al. (2016),

20We choose the specification based on its superior forecast ability compared with models with a regime-
switching slope and/or regime-switching variance.

21For housing starts, some vintages have missing observations in the early period of the sample. Where
this occurs, we replace the missing values by observations from the next vintage.
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find a much more persistent effect and no evidence of a strong rebound or overshoot.22

Our VAR comprises 11 variables in the following order: GDP, employment, consump-

tion, investment, wages, hours, the fed funds rate, profits, M2 and our baseline macroeco-

nomic uncertainty index. The VAR is estimated in levels with three lags. All variables,

except the fed funds rate and our uncertainty index, are in logs. A natural choice of the

ordering of variables is not clear, as our uncertainty measure should react to real activity

shocks within a quarter, while it is also possible that other real variables respond to un-

certainty during the same quarter. By placing the uncertainty series last, these estimates

should be viewed as a lower bound.

Figure 9: Responses to Innovations to Macroeconomic Uncertainty
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Note: Figure shows the response of GDP and Nonfarm Payroll Employment to a four-standard-deviation
shock to macroeconomic uncertainty. The shaded area represents one standard deviation bands using
Kilian (1998)’s bootstrap-after-bootstrap method.

Figure 9 presents the estimated dynamic responses of GDP and employment to a four-

standard-deviation innovation to macroeconomic uncertainty, following Bloom (2009) and

Jurado et al. (2015). Both variables show significant and persistent declines following the

shock, supporting the findings of long-lived negative effects of uncertainty as in Jurado

et al. (2015), and Carriero et al. (2016). In contrast to Bloom (2009), we find no evidence

of overshooting in economic activity as the uncertainty shock dissipates.

22Caldara et al. (2016) provides a detailed comparative analysis of the impact of different uncertainty
measures on economic activity.
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Table 2: Variance Decomposition

Quarters 2 4 8 20
GDP 2.34 2.57 3.79 4.28
Employment 1.39 2.14 3.41 4.80

Note: Table shows forecast error variance decomposition for our baseline 11-variable VAR with macroeco-
nomic uncertainty ordered last.

To verify the quantitative importance of an uncertainty shock, Table 2 reports the

forecast error variance decomposition for the two variables. The decomposition shows that

an uncertainty shock can explain a maximum of 4.28 percent and 4.80 percent of GDP and

employment, respectively, within five years following the shock. These numbers are smaller

than those reported by Bachmann et al. (2013) and Jurado et al. (2015).

6 Conclusion

This paper analyzes the evolution of economic uncertainty in the United States from 1968Q4

to 2016Q1 as perceived by professional forecasters. Using a FSV framework proposed by

Pitt and Shephard (1999), we jointly model and estimate time-varying macroeconomic and

indicator-specific uncertainties from the consensus forecast errors of different economic in-

dicators. Our baseline macroeconomic uncertainty index is persistent with all major spikes

associated with deep economic recessions (the 1973–75, 1980, and 2007–09 recessions), con-

sistent with Jurado et al. (2015). Other recessions (i.e., the 1990–91 and 2001 recessions)

are still notable in the dynamics of some idiosyncratic uncertainties but were not picked

up by the macroeconomic uncertainty. By contrast, the macroeconomic uncertainty se-

ries estimated using longer-run horizon forecast errors show additional peaks aligned with

the other recessions. Recursive estimates of our macroeconomic series from an expanding

sample are more volatile, yet broadly in line with our baseline index.

Using survey forecasts enables us to gauge subjective and real-time macroeconomic un-

certainty as perceived by professional forecasters. In addition, they incorporate extensive

information, and flexibly account for potential time variations and structural breaks, keep-

ing our framework simple and straightforward. Our baseline macroeconomic uncertainty

index shows dynamics similar to Jurado et al. (2015), despite the substantial differences

24



in the number of underlying series. In addition, when we add into the benchmark model

more real economic activity indicators that have been included in the SPF since 1981,

they did not materially impact our macroeconomic uncertainty estimates. A comparison

with objective, model-based uncertainty indexes also confirms the efficiency of using survey

forecasts.

We also document how data revisions affect the estimated evolution of macroeconomic

uncertainty. In particular, we show that the relative size of major uncertainty peaks changes

depending on a specific vintage chosen to calculate forecast errors.

Finally, a VAR analysis demonstrates that a positive innovation to our baseline index as

well as longer-run uncertainty indexes results in significant decreases in GDP and employ-

ment, in line with the findings in Jurado et al. (2015) and Carriero et al. (2016). However,

this evidence is at odds with the short-lived negative impact followed by a strong rebound,

as suggested by Bloom (2009).

Appendix

A Prior Distributions and Starting Values

Our choice of prior distributions and their parameter values is very similar to Pitt and

Shephard (1999). The prior for factor loadings is the Normal distribution, i.e., λi ∼

N(λ0,Λ0) with λ0 = 1 and Λ0 = 25, as in Pitt and Shephard (1999). The choice of large

Λ0 represents a fair degree of uncertainty around the factor loadings. The initial value of

the factor loadings is the OLS estimates of forecast errors on the first principal component

as a proxy. Since the factor and loadings are not fully identified in a factor model, we set

the loading of the first variable (i.e., GDP) equal to one, a common identification strategy

for a factor model. A diffuse Normal prior is used as the prior for the factor conditional

on {hf,t}Tt=1, consistent with (3) (i.e., ft ∼ N(θ0,Θ0) where θ0 = 0 and Θ0 = hf,t).

The prior for the variability of volatilities is the inverse Gamma, i.e., σ2
f and σ2

i

∼ IG(v0
2
, δ0

2
). We set v0 = 1 and δ0 = 1, which makes the conditional prior distribution

flatter than that in Pitt and Shephard (1999) and more so than those in other recent studies

applying SV (see, e.g., Primiceri 2005; Baumeister et al. 2013) to allow for a large time
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variation for volatilities a priori. Compared with the above studies, the total number of

parameters is substantially smaller in our case. Thus, we use a more diffuse prior and put

a larger weight on data. The prior of each time-varying volatility is the log-Normal.

For the initial period’s stochastic volatility, we have log h0 ∼ N(µh0 , V
h
0 ), where µh0 = 1 and

V h
0 = 10 to allow a good chance for the data to determine the posterior distribution.

B Posterior Distribution Simulation

The MCMC algorithm for the estimation of the joint posterior distribution of an FSV model

closely follows Pitt and Shephard (1999). We divide the parameters into four blocks: (a)

the factor loadings (λ); (b) the time series of the factor ({ft}Tt=1); (c) the hyperparameters

for volatilities (σf ; and σi for all i); and (d) the volatility states ( {hf,t}Tt=1 and {hi,t}Tt=1 for

all i). The conditional independence across t and i as well as of ft and ui,t’s further breaks

down most steps in the Gibbs sampler, i.e., drawing factor loadings {λ}, volatility states

{h} and the variance of volatilities {σ} to drawing from a univariate process. Finally, the

volatility states are drawn via Metropolis methods within the Gibbs sampler. Denoting by

zT the time series of a variable z from t = 1 to T , we describe the algorithm below.

Factor loadings. Conditional on all other parameters, this step becomes a sim-

ple Bayesian regression of forecast errors on the factor with known heteroskedastic er-

ror structures. Moreover, because all correlations are by definition captured by the fac-

tor, this step further decomposes into the n sub-steps of drawing each i-th loading sep-

arately from λi|εT , fT , σf , σi, hTf , hTi ∼ N(λ1,Λ1), given the history of variable i, where

Λ1 = (Λ−10 +
∑T

t=1 f
2
t /(hi,t))

−1 and λ1 = Λ1(Λ
−1
0 λ0 +

∑T
t=1 ft · εi,t/(hi,t)).

Factor. Conditional independence also simplifies this step. Given all other parameter

values, this step again becomes a Bayesian regression of available forecast errors on factor

loadings with known heteroskedasticity for each period t. That is, ft|εT , λi, σf , σi, hTf , hTi ∼

N(θ1,Θ1), where Θ1 = {h−1f,t +
∑n

i=1 λ
2
i (hi,t)}−1, and θ1 = Θ1(

∑n
i=1 λi · εi,t/(hf,t)).

Innovation variance of volatilities. Since we model each stochastic volatility to

follow a unit-root process without a drift, σ2 is drawn from σ|εT , fT , hTf , hTi ∼ IG(v1
2
, δ1

2
),

where v1 = v0 + T, and δ1 = δ0 +
∑T

t=1(hi,t − hi,t−1)2.

Volatility states. This step further decomposes to the n + 1 sub-steps of univariate
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stochastic volatility draws, based on the Markovian property of stochastic volatility. Fol-

lowing the algorithm by Jacquier et al. (2002) as used in Cogley and Sargent (2005), for

each volatility series of an idiosyncratic error i or of the factor, we draws the exponential of

volatility (h2i,t) one by one for each t = 1, . . . , T , based on f(hi,t|hi,t−1, hi,t+1, y
T
i , λ, f

T , σ).

Before sampling the states, we first transform forecast errors to be ε∗i,t = εi,t − λi,tft.

Such transformation is unnecessary for the factor. Then, we apply the Jacquier et al. (2002)

algorithm for each date, i.e.,

f(hi,t|(hi)T−t, y∗Ti , σ) = f(hi,t|hi,t−1, hi,t+1, y
∗T
i , σ)

∝ f(y∗i,t|hi,t)f(hi,t|hi,t−1)f(hi,t+1|hi,t)

= (hi,t)
−1.5 exp

(−y∗i,t
2hi,t

)
exp

(
−(log hi,t − µt)2

2σ2
c

)
,

where µt and σ2
c are the conditional mean and variance of log hi,t, respectively. Under the

unit-root specification of this paper, they can be calculated as

µt =
(log hi,t−1 + log hi,t+1)

2
,

σ2
c =

σ2
i

2
,

for t = 1, · · ·, T − 1. Thus, a trial value of log hi,t is drawn from the Normal distribution

with mean µt and variance σ2
c . For the beginning and end periods of each series i, the

following conditional mean and variance are used instead:

t = 0 : σ2
c =

σiV
h
0

σi+V h
0
, µ = σ2

c

(
µh0
V h
0

+
log hi,t+1

σ2
i

)
,

t = T : σ2
c = σ2

i , µ = log hi,T−1.

After obtaining a draw, the acceptance probability is evaluate using the conditional likeli-

hood f(y∗i,t|hi,t), completing a Metropolis step (see Cogley and Sargent 2005 for details).

We can summarize the estimation procedure as follows:

1. Assign initial values for λ, fT , σf , σi for all i, hTf , and hTi for all i.

2. Draw λ from p(λ|εT , fT , σf , σi, hTf , hTi ).

3. Draw fT from p(fT |εT , λ, σf , σi, hTf , hTi ).
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4. Draw σf and σis from p(σ|εT , fT , hTf , hTi ).

5. Draw hTf , and hTi s from p(h|εT , fT , σf , σi).

6. Go to step 2.

We iterate over the Metropolis-within-Gibbs sampler a total of 80, 000 times, discarding

the first 30, 000 draws. Then we store every 10th draw in order to avoid potential autocor-

relation across draws, and finally obtain 5, 000 draws from the joint posterior distribution.

C Uncertainty Based on Different Measures of Cen-

tral Tendency and Quantiles of Survey Forecasts

When calculating the forecasting errors for the baseline model, we use the consensus fore-

casts, i.e., the median across forecasters, to minimize potential influences from individual

forecasting biases, as noted in Section 2 of the main paper. Capistrán and Timmermann

(2009) provide support for the use of the median; they show that means of survey forecasts

performs better than other methods of individual forecast combination when evaluated by

root-mean-squared errors. In the case of SPF, the mean and median forecasts are very close

to each other, as documented in Croushore (2010). In addition, Arai (2014) finds that the

SPF median forecasts for GDP growth present no systematic biases. Hence, a number of

previous studies consider the median as standard consensus projections.23

However, studies such as Gneiting (2011) show that quantiles might also be optimal

forecasts when the loss function is generalized piecewise linear. Therefore, we re-estimate

our FSV model using the 25th and 75th percentiles of the forecast error distribution, instead

of the median as reported in the main text. In addition, we use the means of forecasts

instead of the medians and reestimate the FSV model.

Figure 10 shows the resulting estimates. First, we find that the series based on the

mean and our baseline index are very close to each other, with a correlation coefficient of

0.99. This is in line with a notion that the mean and median are very close to each other

in the SPF. The uncertainty estimates based on the 25th and 75th percentiles of forecasts

have similar dynamics with our baseline index, with the correlation coefficients amounting

23See Engelberg et al. (2009) and Croushore (2010), for example.
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Figure 10: Uncertainty Based on Different Optimal Forecasts
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Note: Figure plots uncertainty estimates based on different quantiles in comparison with our baseline index
that is based on median forecast errors. The blue, cyan, and red dashed lines represent the estimates based
on the 25th percentile, mean, and 75th percentile forecasts, respectively.

to 0.95 and 0.84, respectively. The differences in index appear to be most notable in the

earlier period of the sample, supporting the use of the median as consensus to remove

idiosyncratic variations in individual forecasts.

D Evidence of a Factor Structure in Data

We provide more information about the presence of a factor structure in the forecast er-

rors of the four variables used for our benchmark index. First, Table 3 summarizes the

correlation coefficients among the forecast errors the four variables. The forecast errors are

calculated as the difference between the median of individual forecasts and the initial data

release. The correlations between GDP, IP and the unemployment rate forecast errors are

in the range of 40 to 57% (negative correlations for the unemployment rate). The corre-

lations are lower for housing, ranging from 8 to 28%. This smaller degree of comovement
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between housing and the remaining variables is reflected in our estimated factor loading

(see Table 1), as well as its higher share of idiosyncratic variance (see Figure 2). More for-

mally, we also estimate principal components and find that the first principal component

explains 52% of the variability in forecasting errors. Hence, we conclude that there is a fair

degree of co-movement across the forecasting errors of these four variables.

Table 3: Correlation Coefficients of Forecasting Errors

GDP IP UR HS
GDP 1
IP 0.57 1
UR −0.40 −0.54 1
HS 0.28 0.14 −0.09 1

In addition, we estimate a univariate Stochastic Volatility (SV) model separately for

the four forecasting error series. Our factor model is constructed under the assumption

that all comovement is captured by a factor and that innovations to the factor as well as

idiosyncratic errors are uncorrelated. Therefore, a factor structure in the levels of forecast-

ing errors implies the same factor structure in volatilities of forecasting errors. Hence, we

gauge if there is any similarity across the separately-estimated individual volatility series.

We first report in Table 4 the correlation coefficients across the four individually-estimated

SV series. The correlations range from 51 to 78%, reflecting close comovements as seen in

Figure 11. Moreover, we plot in Figure 11 the average of individually estimated volatility

series (in blue): This series shows very similar dynamics to our benchmark macroeconomic

uncertainty from the FSV model (in red), with the correlation coefficient of 0.94. The sim-

ilarity found in the four individually estimated SV series is again consistent with a factor

structure imposed in our baseline model.

Table 4: Correlation of Volatility Series Estimated Separately from Univariate SV Models

GDP IP UR HS
GDP 1
IP 0.78 1
UR 0.59 0.65 1
HS 0.70 0.68 0.51 1
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Figure 11: Volatilities from Univariate Stochastic Volatility Models
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Note: Figure shows volatility estimates from univariate SV models fitted to each forecasting error

of the four macroeconomic indicators (i.e., GDP, IP, unemployment, and housing starts) used in

our benchmark model. The blue line represents the average of the four univariate SV series, while

the red line plots the benchmark macroeconomic uncertainty index from a FSV model.
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