

# The Zero Lower Bound and Estimation Accuracy

Tyler Atkinson, Alexander W. Richter and Nathaniel A. Throckmorton

## Working Paper 1804

**Research Department** 

https://doi.org/10.24149/wp1804r1

Working papers from the Federal Reserve Bank of Dallas are preliminary drafts circulated for professional comment. The views in this paper are those of the authors and do not necessarily reflect the views of the Federal Reserve Bank of Dallas or the Federal Reserve System. Any errors or omissions are the responsibility of the authors.

## The Zero Lower Bound and Estimation Accuracy<sup>\*</sup>

Tyler Atkinson<sup>†</sup>, Alexander W. Richter<sup>‡</sup>, and Nathaniel A. Throckmorton<sup>§</sup>

First Draft: May 7, 2018 This Draft: February 1, 2019

## Abstract

During the Great Recession, many central banks lowered their policy rate to its zero lower bound (ZLB), creating a kink in the policy rule and calling into question linear estimation methods. There are two promising alternatives: estimate a fully nonlinear model that accounts for precautionary savings effects of the ZLB or a piecewise linear model that is much faster but ignores the precautionary savings effects. Repeated estimation with artificial datasets reveals some advantages of the nonlinear model, but they are not large enough to justify the longer estimation time, regardless of the ZLB duration in the data. Misspecification of the estimated models has a much larger impact on accuracy. It biases the parameter estimates and creates significant differences between the predictions of the models and the data generating process.

**Keywords:** Bayesian Estimation; Projection Methods; Particle Filter; OccBin; Inversion Filter

JEL Classifications: C11; C32; C51; E43

tyler.atkinson@dal.frb.org.

alex.richter@dal.frb.org.

<sup>&</sup>lt;sup>\*</sup>We thank Boragan Aruoba, Alex Chudik, Marc Giannoni, Matthias Hartmann, Rob Hicks, Ben Johannsen, Giorgio Primiceri, Sanjay Singh, Kei-Mu Yi, and an anonymous referee for useful suggestions that improved the paper. We also thank Chris Stackpole and Eric Walter for supporting the supercomputers at our institutions. A previous version of this paper circulated with the title: "The Accuracy of Linear and Nonlinear Estimation in the Presence of the Zero Lower Bound." This research was completed with supercomputing resources provided by the Federal Reserve Bank of Kansas City, William & Mary, Auburn University, the University of Texas at Dallas, the Texas Advanced Computing Center, and Southern Methodist University. The views expressed in this paper are those of the authors and do not necessarily reflect the views of the Federal Reserve Bank of Dallas or the Federal Reserve System.

<sup>&</sup>lt;sup>†</sup>Tyler Atkinson, Research Department, Federal Reserve Bank of Dallas, 2200 N. Pearl Street, Dallas, TX 75201,

<sup>&</sup>lt;sup>‡</sup>Alexander W. Richter, Research Department, Federal Reserve Bank of Dallas, 2200 N. Pearl Street, Dallas, TX 75201,

<sup>&</sup>lt;sup>§</sup>Nathaniel A. Throckmorton, Department of Economics, William & Mary, P.O. Box 8795, Williamsburg, VA 23187, <u>nat@wm.edu</u>.

## **1** INTRODUCTION

Using Bayesian methods to estimate linear dynamic stochastic general equilibrium (DSGE) models has become common practice in the literature over the last 20 years. Many central banks also use these models for forecasting and counterfactual simulations. The estimation procedure sequentially draws parameters from a proposal distribution, solves the model given that draw, and then evaluates the likelihood function. With linearity and normally distributed shocks, the model solves in a fraction of a second and it is easy to exactly evaluate the likelihood function with a Kalman filter.<sup>1</sup>

The financial crisis and subsequent recession compelled many central banks to take unprecedented action to reduce their policy rate to its zero lower bound (ZLB), calling into question linear estimation methods. The ZLB constraint presents a challenge for empirical work because it creates a kink in the central bank's policy rule. The constraint has always existed, but when policy rates were well above zero and the likelihood of hitting the constraint was negligible, it was reasonable to ignore it. The lengthy period of near zero policy rates over the last decade and the increased likelihood of future ZLB events due to estimates of a lower natural rate has forced researchers to think more carefully about the ZLB constraint and its implications (e.g., Laubach and Williams, 2016).

There are two promising estimation methods used in the literature that account for the ZLB constraint in DSGE models. The first method estimates a fully nonlinear model with an occasionally binding ZLB constraint (e.g., Gust et al., 2017; Plante et al., 2018; Richter and Throckmorton, 2016). This method provides the most comprehensive treatment of the ZLB constraint but is numerically intensive. It uses projection methods to solve the nonlinear model and a particle filter to evaluate the likelihood function for each draw from the posterior distribution (henceforth, NL-PF).<sup>2</sup>

The second method estimates a piecewise linear version of the nonlinear model (e.g., Guerrieri and Iacoviello, 2017). The model is solved using the OccBin toolbox developed by Guerrieri and Iacoviello (2015). The likelihood is evaluated using an inversion filter, which solves for the shocks that minimize the distance between the data and the model predictions each period. The benefit of this method (henceforth, PW-IF) is that it is nearly as fast as estimating a linear model with a Kalman filter while still capturing the kink in the decision rules created by the ZLB constraint. However, PW-IF differs from NL-PF in two ways. One, households do not account for the possibility that the ZLB may bind in the future if it does not bind in the current period, which is inconsistent with survey data. Two, the inversion filter removes the interest rate as an observable and sets the monetary policy shock to zero when the ZLB binds, whereas the particle filter estimates those shocks given the data. The question is whether PW-IF is an adequate substitute for NL-PF.

<sup>&</sup>lt;sup>1</sup>Schorfheide (2000) and Otrok (2001) were the first to use these methods to generate draws from the posterior distribution of a linear DSGE model. See An and Schorfheide (2007) and Herbst and Schorfheide (2016) for examples.

<sup>&</sup>lt;sup>2</sup>Several papers examine the effects of the ZLB constraint in a *calibrated* nonlinear model using projection methods similar to ours (e.g., Aruoba et al., 2018; Fernández-Villaverde et al., 2015; Gavin et al., 2015; Keen et al., 2017; Mertens and Ravn, 2014; Nakata, 2017; Nakov, 2008; Ngo, 2014; Richter and Throckmorton, 2015; Wolman, 2005).

This paper compares the accuracy of the two estimation methods. We specify a true parameterization of a medium-scale nonlinear model with an occasionally binding ZLB constraint, solve the model with a projection method, and generate a large sample of datasets. The datasets either contain no ZLB events or a single event with various durations to understand the influence of the ZLB on the posterior estimates. For each dataset, we use NL-PF and PW-IF to estimate a small-scale, but nested, version of the medium-scale model that generates the data. We also estimate the linear model with a Kalman filter (henceforth, Lin-KF), since it was the most common method before the Great Recession. The small-scale model excludes features of the medium-scale model that others have shown are empirically important. The difference between the two models—referred to as misspecification—account for the practical reality that all models are misspecified. It also sheds light on the merits of estimating a simpler, more misspecified, model with NL-PF, versus a richer, less misspecified, model with PW-IF that is numerically too costly with fully nonlinear methods.

We measure accuracy by comparing the parameter estimates, predictions of the notional interest rate, expected frequency and duration of the ZLB, simulated responses to a severe recession, and forecasting performance. While our posterior estimates reveal some advantages of NL-PF, they are not large enough to justify the significantly longer estimation time, regardless of the ZLB duration in the data. This key finding holds because the precautionary savings effects of the ZLB and the effects of other nonlinearities, independent of the ZLB, are small in canonical models. Model misspecification has a larger impact. It biases the parameter estimates and creates significant differences between the predictions of the two estimated models and the data generating process.

Since there is not a large advantage to estimating the fully nonlinear model over an equally misspecified piecewise linear model, our results indicate that researchers are better off reducing misspecification by estimating a richer piecewise linear model than a simpler but computationally feasible nonlinear model when the ZLB binds in the data. This important finding opens the door to promising new research on the implications of the ZLB constraint. The results also provide a useful benchmark for future research that explores other nonlinear features or estimation methods.

Our paper is the first to compare different estimation methods that account for the ZLB constraint. Others compare nonlinear estimation methods to linear methods. Fernández-Villaverde and Rubio-Ramírez (2005) show that a neoclassical growth model estimated with NL-PF predicts moments closer to the true moments than the estimates from Lin-KF using two artificial datasets and actual data. The primary source of nonlinearity in their model is high risk aversion. Hirose and Inoue (2016) generate artificial datasets from a linear model where the ZLB constraint is imposed using anticipated monetary policy shocks and then apply Lin-KF to estimate the model without the constraint. They find the estimated parameters, impulse responses, and structural shocks become less accurate as the frequency and duration of ZLB events increase in the data. Hirose and Sunakawa (2015) extend that work by generating data from a nonlinear model and reexamine the bias. None of these papers introduce misspecification, which is an important aspect of our analysis.

We also build on recent empirical work that analyzes the implications of the ZLB constraint (e.g., Gust et al., 2017; Iiboshi et al., 2018; Plante et al., 2018; Richter and Throckmorton, 2016). These papers use NL-PF to estimate a nonlinear model similar to ours using actual data from the U.S. or Japan that includes the ZLB period. Our contribution is to examine the accuracy of these nonlinear estimation methods and show under what conditions they outperform other approaches.

The measurement error (ME) in the observation equation of the filter is a key aspect of the estimation procedure that could potentially affect the accuracy of the parameter estimates. Unlike the inversion filter, the particle filter requires positive ME variances to prevent degeneracy—a situation when the likelihood is inaccurate. The literature has used a wide range of different values, with limited investigation on how they impact accuracy. Canova et al. (2014) show the downside of introducing ME is that the posterior distributions of some parameters do not contain the truth in a DSGE model estimated with Lin-KF. Cuba-Borda et al. (2017) show that ME in the particle filter reduces the accuracy of the likelihood function using a calibrated model with an occasionally binding borrowing constraint. Our analysis provides a potentially important role for ME because it includes model misspecification. We find larger ME variances improve the accuracy of some parameters, but the benefits are more than offset by decreases in the accuracy of other parameters.<sup>3</sup>

The paper proceeds as follows. Section 2 describes our data generating process and artificial datasets. Section 3 outlines the estimated model and numerical methods. Section 4 shows our posterior estimates and several measures of accuracy for each estimation method. Section 5 concludes.

## 2 DATA GENERATING PROCESS

To test the accuracy of recent estimation methods, we generate a large number of artificial datasets from a canonical New Keynesian model with capital and an occasionally binding ZLB constraint.

2.1 FIRMS The production sector consists of a continuum of monopolistically competitive intermediate goods firms and a final goods firm. Intermediate firm  $f \in [0, 1]$  produces a differentiated good, y(f), according to  $y_t(f) = (v_t k_{t-1}(f))^{\alpha} (z_t n_t(f))^{1-\alpha}$ , where n(f) is the labor hired by firm f and k(f) is the capital rented by firm f.  $z_t = g_t z_{t-1}$  is technology and v is the capital utilization rate, which are both common across firms. Deviations from the steady-state growth rate,  $\bar{g}$ , follow

$$g_t = \bar{g} + \sigma_g \varepsilon_{g,t}, \ \varepsilon_g \sim \mathbb{N}(0,1). \tag{1}$$

The final goods firm purchases output from each intermediate firm to produce the final good,  $y_t \equiv [\int_0^1 y_t(f)^{(\theta_p-1)/\theta_p} df]^{\theta_p/(\theta_p-1)}$ , where  $\theta_p > 1$  is the elasticity of substitution. Dividend max-

<sup>&</sup>lt;sup>3</sup>Herbst and Schorfheide (2018) develop a tempered particle filter that sequentially reduces the ME variances. They assess accuracy against the Kalman filter on U.S. data with a linear model and find it outperforms the untempered filter.

imization determines the demand for intermediate good f,  $y_t(f) = (p_t(f)/p_t)^{-\theta_p}y_t$ , where  $p_t = [\int_0^1 p_t(f)^{1-\theta_p} df]^{1/(1-\theta_p)}$  is the price level. Following Rotemberg (1982), intermediate firms pay a price adjustment cost,  $adj_t^p(f) \equiv \varphi_p(p_t(f)/(\bar{\pi}p_{t-1}(f))-1)^2y_t/2$ , where  $\varphi_p > 0$  scales the cost and  $\bar{\pi}$  is the steady-state gross inflation rate. Given this cost, firm f chooses  $n_t(f)$ ,  $k_{t-1}(f)$ , and  $p_t(f)$  to maximize the expected discounted present value of future dividends,  $E_t \sum_{k=t}^{\infty} q_{t,k}d_k(f)$ , subject to its production function and the demand for its product, where  $q_{t,t} \equiv 1$ ,  $q_{t,t+1} \equiv \beta(\lambda_t/\lambda_{t+1})$  is the pricing kernel between periods t and t+1,  $q_{t,k} \equiv \prod_{j=t+1}^{k>t} q_{j-1,j}$ , and  $d_t(f) = p_t(f)y_t(f)/p_t - w_t n_t(f) - r_t^k v_t k_{t-1}(f) - adj_t^p(f)$ . In symmetric equilibrium, the optimality conditions reduce to

$$y_t = (v_t k_{t-1})^{\alpha} (z_t n_t)^{1-\alpha}, \tag{2}$$

$$w_t = (1 - \alpha)mc_t y_t / n_t, \tag{3}$$

$$r_t^k = \alpha m c_t y_t / (v_t k_{t-1}), \tag{4}$$

$$\varphi_p(\pi_t/\bar{\pi} - 1)(\pi_t/\bar{\pi}) = 1 - \theta_p + \theta_p m c_t + \beta \varphi_p E_t[(\lambda_t/\lambda_{t+1})(\pi_{t+1}/\bar{\pi} - 1)(\pi_{t+1}/\bar{\pi})y_{t+1}/y_t], \quad (5)$$

where  $\pi_t = p_t/p_{t-1}$  is the gross inflation rate. If  $\varphi_p = 0$ , the real marginal cost of producing a unit of output  $(mc_t)$  equals  $(\theta_p - 1)/\theta_p$ , which is the inverse of the markup of price over marginal cost.

2.2 HOUSEHOLDS Each household consists of a unit mass of members who supply differentiated types of labor,  $n(\ell)$ , at real wage rate  $w(\ell)$ . A perfectly competitive labor union bundles the labor types to produce an aggregate labor product,  $n_t \equiv [\int_0^1 n_t(\ell)^{(\theta_w-1)/\theta_w} d\ell]^{\theta_w/(\theta_w-1)}$ , where  $\theta_w > 1$  is the elasticity of substitution. Dividend maximization determines the demand for labor type  $\ell$ ,  $n_t(\ell) = (w_t(\ell)/w_t)^{-\theta_w} n_t$ , where  $w_t = [\int_0^1 w_t(\ell)^{1-\theta_w} d\ell]^{1/(1-\theta_w)}$  is the aggregate real wage.

The households choose  $\{c_t, n_t, b_t, x_t, k_t, v_t\}_{t=0}^{\infty}$  to maximize expected lifetime utility given by  $E_0 \sum_{t=0}^{\infty} \beta^t [\log(c_t - hc_{t-1}^a) - \chi \int_0^1 n_t(\ell)^{1+\eta} d\ell/(1+\eta)]$ , where  $\beta$  is the discount factor,  $\chi$  determines steady-state labor,  $1/\eta$  is the Frisch labor supply elasticity, c is consumption,  $c^a$  is aggregate consumption, h is the degree of external habit persistence, b is the real value of a privately-issued 1-period nominal bond, x is investment, and  $E_0$  is an expectation operator conditional on information available in period 0. Following Chugh (2006), the nominal wage rate for each labor type is subject to an adjustment cost,  $adj_t^w(\ell) = \varphi_w(w_t^g(\ell) - 1)^2 y_t/2$ , where  $w_t^g(\ell) = \pi_t w_t(\ell)/(\bar{\pi}\bar{g}w_{t-1}(\ell))$  is nominal wage growth relative its steady-state. The cost of utilizing the capital shock, u, is given by

$$u_t = \overline{r}^k (\exp(\sigma_v(v_t - 1)) - 1) / \sigma_v, \tag{6}$$

where  $\sigma_v \ge 0$  scales the cost. Given the two costs, the household's budget constraint is given by

$$c_t + x_t + b_t / (s_t i_t) + u_t k_{t-1} + \int_0^1 a dj_t^w(\ell) d\ell = \int_0^1 w_t(\ell) n_t(\ell) d\ell + r_t^k v_t k_{t-1} + b_{t-1} / \pi_t + d_t,$$

where i is the gross nominal interest rate,  $r^k$  is the capital rental rate, and d is a real dividend from

ownership of intermediate firms. The nominal bond, b, is subject to a risk premium, s, that follows

$$s_t = (1 - \rho_s)\bar{s} + \rho_s s_{t-1} + \sigma_s \varepsilon_{s,t}, \ 0 \le \rho_s < 1, \ \varepsilon_s \sim \mathbb{N}(0, 1),$$
(7)

where  $\bar{s}$  is the steady-state value. An increase in  $s_t$  boosts saving, which lowers period-t demand.

Households also face an investment adjustment cost, so the law of motion for capital is given by

$$k_t = (1 - \delta)k_{t-1} + x_t(1 - \nu(x_t^g - 1)^2/2), \ 0 \le \delta \le 1,$$
(8)

where  $x_t^g = x_t/(\bar{g}x_{t-1})$  is investment growth relative to its steady-state and  $\nu \ge 0$  scales the cost. The first order conditions to each household's constrained entimization problem are given by

The first order conditions to each household's constrained optimization problem are given by

$$r_t^k = \bar{r}^k \exp(\sigma_v(v_t - 1)),\tag{9}$$

$$\lambda_t = c_t - hc_{t-1}^a,\tag{10}$$

$$w_t^f = \chi n_t^\eta \lambda_t,\tag{11}$$

$$1 = \beta E_t[(\lambda_t / \lambda_{t+1})(s_t i_t / \pi_{t+1})],$$
(12)

$$q_t = \beta E_t[(\lambda_t/\lambda_{t+1})(r_{t+1}^k v_{t+1} - u_{t+1} + (1-\delta)q_{t+1})],$$
(13)

$$1 = q_t [1 - \nu (x_t^g - 1)^2 / 2 - \nu (x_t^g - 1) x_t^g] + \beta \nu \bar{g} E_t [(\lambda_t / \lambda_{t+1}) q_{t+1} (x_{t+1}^g)^2 (x_{t+1}^g - 1)], \quad (14)$$

$$\varphi_w(w_t^g - 1)w_t^g = [(1 - \theta_w)w_t + \theta_w w_t^f]n_t/y_t + \beta\varphi_w E_t[(\lambda_t/\lambda_{t+1})(w_{t+1}^g - 1)w_{t+1}^g y_{t+1}/y_t], \quad (15)$$

where  $1/\lambda$  is the marginal utility of consumption, q is Tobin's q, and  $w^f$  is the flexible wage rate.

Monetary Policy The central bank sets the gross nominal interest rate, *i*, according to

$$i_t = \max\{1, i_t^n\},\tag{16}$$

$$i_t^n = (i_{t-1}^n)^{\rho_i} (\bar{\imath}(\pi_t/\bar{\pi})^{\phi_\pi} (y_t^{gdp}/(y_{t-1}^{gdp}\bar{g}))^{\phi_y})^{1-\rho_i} \exp(\sigma_i \varepsilon_{i,t}), \ 0 \le \rho_i < 1, \ \varepsilon_i \sim \mathbb{N}(0,1),$$
(17)

where  $y^{gdp}$  is real GDP (i.e., output, y, minus the resources lost due to adjustment costs,  $adj^p$  and  $adj^w$ , and utilization costs),  $i^n$  is the gross notional interest rate,  $\bar{i}$  and  $\bar{\pi}$  are the target values of the inflation and nominal interest rates, and  $\phi_{\pi}$  and  $\phi_{y}$  are the responses to the inflation and output growth gaps. A more negative net notional rate indicates that the central bank is more constrained.

Competitive Equilibrium The aggregate resource constraint and real GDP definition are given by

$$c_t + x_t = y_t^{gdp},\tag{18}$$

$$y_t^{gdp} = \left[1 - \varphi_p (\pi_t/\bar{\pi} - 1)^2/2 - \varphi_w (w_t^g - 1)^2/2\right] y_t - u_t k_{t-1}.$$
(19)

The model does not have a steady-state due to the unit root in technology,  $z_t$ . Therefore, we define the variables with a trend in terms of technology (i.e.,  $\tilde{x}_t \equiv x_t/z_t$ ). The detrended equilibrium system is provided in Appendix A. A competitive equilibrium consists of sequences of quantities,  $\{\tilde{c}_t, \tilde{y}_t, \tilde{y}_t^{gdp}, x_t^g, y_t^g, n_t, \tilde{k}_t, \tilde{x}_t\}_{t=0}^{\infty}$ , prices,  $\{\tilde{w}_t, \tilde{w}_t^f, \tilde{w}_t^g, i_t, i_t^n, \pi_t, \tilde{\lambda}_t, v_t, u_t, q_t, r_t^k, mc_t\}_{t=0}^{\infty}$ , and exogenous variables,  $\{s_t, g_t\}_{t=0}^{\infty}$ , that satisfy the detrended equilibrium system, given the initial conditions,  $\{\tilde{c}_{-1}, i_{-1}^n, \tilde{k}_{-1}, \tilde{x}_{-1}, \tilde{w}_{-1}, s_0, g_0, \varepsilon_{i,0}\}$ , and three sequences of shocks,  $\{\varepsilon_{g,t}, \varepsilon_{s,t}, \varepsilon_{i,t}\}_{t=1}^{\infty}$ .

| Subjective Discount Factor       | $\beta$         | 0.9949 | Rotemberg Price Adjustment Cost | $\varphi_p$       | 100   |
|----------------------------------|-----------------|--------|---------------------------------|-------------------|-------|
| Frisch Labor Supply Elasticity   | $1/\eta$        | 3      | Rotemberg Wage Adjustment Cost  | $\hat{\varphi_w}$ | 100   |
| Price Elasticity of Substitution | $\theta_p$      | 6      | Capital Utilization Curvature   | $\sigma_v$        | 5     |
| Wage Elasticity of Substitution  | $\hat{	heta_w}$ | 6      | Inflation Gap Response          | $\phi_{\pi}$      | 2     |
| Steady-State Labor Hours         | $\bar{n}$       | 0.3333 | Output Growth Gap Response      | $\phi_y$          | 0.5   |
| Steady-State Risk Premium        | $\overline{s}$  | 1.0058 | Habit Persistence               | $\check{h}$       | 0.8   |
| Steady-State Growth Rate         | $\bar{g}$       | 1.0034 | <b>Risk Premium Persistence</b> | $ ho_s$           | 0.8   |
| Steady-State Inflation Rate      | $\bar{\pi}$     | 1.0053 | Notional Rate Persistence       | $ ho_i$           | 0.8   |
| Capital Share of Income          | $\alpha$        | 0.35   | Technology Growth Shock SD      | $\sigma_g$        | 0.005 |
| Capital Depreciation Rate        | $\delta$        | 0.025  | Risk Premium Shock SD           | $\sigma_s$        | 0.005 |
| Investment Adjustment Cost       | ν               | 4      | Notional Interest Rate Shock SD | $\sigma_i$        | 0.002 |

Table 1: Parameter values for the data generating process.

2.3 PARAMETER VALUES Table 1 shows the true model parameters. The parameters were chosen so our data generating process is characteristic of U.S. data. The steady-state growth rate  $(\bar{g})$ , inflation rate  $(\bar{\pi})$ , risk-premium  $(\bar{s})$ , and capital share of income  $(\alpha)$  are equal to the time averages of per capita real GDP growth, the percent change in the GDP implicit price deflator, the Baa corporate bond yield relative to the yield on the 10-Year Treasury, and the Fernald (2012) utilization-adjusted quarterly-TFP estimates of the capital share of income from 1988Q1-2017Q4.

The subjective discount factor,  $\beta$ , is set to 0.9949, which is the time average of the values implied by the steady-state consumption Euler equation and the federal funds rate. The corresponding annualized steady-state nominal interest rate is 3.3%, which is consistent with the sample average and current long-run estimates of the federal funds rate. The leisure preference parameter,  $\chi$ , is set so steady-state labor equals 1/3 of the available time. The elasticities of substitution between intermediate goods and labor types,  $\theta_p$  and  $\theta_w$ , are set to 6, which correspond to a 20% average markup in each sector and match the values used in Gust et al. (2017). The Frisch elasticity of labor supply,  $1/\eta$ , is set to 3 to match the macro estimate in Peterman (2016). The remaining parameters are set to round numbers that are in line with the posterior estimates from similar models in the literature.

2.4 SOLUTION AND SIMULATION METHODS We solve the nonlinear model with the policy function iteration algorithm described in Richter et al. (2014), which is based on the theoretical work on monotone operators in Coleman (1991). We discretize the endogenous state variables and approximate the exogenous states,  $s_t$ ,  $g_t$ , and  $\varepsilon_{i,t}$  using the *N*-state Markov chain in Rouwenhorst (1995). The Rouwenhorst method is attractive because it only requires us to interpolate along the dimensions of the endogenous state variables, which makes the solution more accurate and faster than quadrature methods. To obtain initial conjectures for the nonlinear policy functions, we solve the level-linear analogue of our nonlinear model with Sims's (2002) gensys algorithm. Then we minimize the Euler equation errors on every node in the state space and compute the maximum distance between the updated policy functions and the initial conjectures. Finally, we replace the initial conjectures with the updated policy functions and iterate until the maximum distance is below the tolerance level. See Appendix B for a more detailed description of the solution method.

We generate data for output growth, the inflation rate, and the nominal interest rate by simulating the model using the nonlinear policy functions, so the observables are given by  $\mathbf{x}_t = [y_t^g, \pi_t, i_t]$ . Each simulation is initialized with a draw from the ergodic distribution and contains 120 quarters, which is similar to what is typically used when estimating models with actual data. We use samples from the data generating process that either have no ZLB events or a singular ZLB event that makes up 5%, 10%, 15%, 20%, and 25% of the sample. Since our sample is 120 quarters, the ZLB events are either 6, 12, 18, 24, or 30 quarters long. The longest ZLB events reflect the experiences of some advanced economies, such as the U.S. since the Great Recession or Japan. We create 50 datasets for each ZLB duration and then report measures of accuracy based on the posterior mean estimates.

## **3** ESTIMATION METHODS

Every model contains some form of misspecification. To account for this reality, we test the accuracy of different estimation methods on a small-scale model that does not include capital or sticky wages. The medium-scale model that generates our data collapses to the small-scale model when  $\alpha = \varphi_w = 0$  and  $\theta_w \to \infty$ . The equilibrium system includes (1), (5), (7), (10), (12), (16), (17), and

$$y_t = z_t n_t, \tag{20}$$

$$w_t = mc_t y_t / n_t, \tag{21}$$

$$w_t = \chi n_t^\eta \lambda_t, \tag{22}$$

$$c_t = y_t^{gdp},\tag{23}$$

$$y_t^{gdp} = [1 - \varphi_p (\pi_t / \bar{\pi} - 1)^2 / 2] y_t.$$
(24)

Once again, we remove the trend in technology and provide the detrended equilibrium system in Appendix A. The competitive equilibrium includes sequences of quantities,  $\{\tilde{c}_t, \tilde{y}_t, \tilde{y}_t^{gdp}, y_t^g, n_t\}_{t=0}^{\infty}$ , prices,  $\{\tilde{w}_t, i_t, i_t^n, \pi_t, \tilde{\lambda}_t, mc_t\}_{t=0}^{\infty}$ , and exogenous variables,  $\{s_t, g_t\}_{t=0}^{\infty}$ , that satisfy the detrended system, given the initial conditions,  $\{\tilde{c}_{-1}, i_{-1}^n, s_0, g_0, \varepsilon_{i,0}\}$ , and shock sequences,  $\{\varepsilon_{g,t}, \varepsilon_{s,t}, \varepsilon_{i,t}\}_{t=1}^{\infty}$ .

The medium-scale model used to generate the data should exhibit greater endogenous persistence due to the inclusion of capital and sticky wages. Another important difference between the two models is the aggregate resource constraint. In the small-scale model, deviations of  $y^{gdp}$  from y must be explained by inflation, as it does not contain wage adjustment or capital utilization costs.

We estimate the small-scale model with Bayesian methods. For each dataset, we draw parameters from a proposal distribution, solve the model conditional on the draw, and filter the data to evaluate the likelihood function within a random walk Metropolis-Hastings algorithm. Within this framework, we test the accuracy of two promising estimation methods that account for the ZLB.

The first method estimates the fully nonlinear model with a particle filter (NL-PF). We solve the model with the same algorithm we used to generate our data sets. To filter the data, we follow Algorithm 14 in Herbst and Schorfheide (2016) and adapt the basic bootstrap particle filter described in Fernández-Villaverde and Rubio-Ramírez (2007) to include the information contained in the current observation, so the model better matches extreme outliers in the data. NL-PF is wellequipped to handle the nonlinearities in the data, but it is also the most computationally intensive. NL-PF requires solving the fully nonlinear model and performing a large number of simulations to evaluate the likelihood function for each draw in the random walk Metropolis-Hastings algorithm. Appendix C provides a more detailed description of the estimation algorithm and the particle filter.

The second method estimates a piecewise linear version of the nonlinear model with an inversion filter. To solve the model, we use the OccBin toolbox developed by Guerrieri and Iacoviello (2015). The algorithm separates the model into two regimes. In one regime, the ZLB constraint is slack, and the decision rules from the unconstrained linear model are used. In the other regime, the ZLB binds and backwards induction within a guess and verify method solves for the decision rules. For example, if the ZLB binds in the current period, an initial conjecture is made for how many quarters the nominal interest rate will remain at the ZLB. Starting far enough in the future, the algorithm uses the decision rules for when the ZLB does not bind and iterates backward to the current period. The algorithm switches to the decision rules for the ZLB regime when the simulated nominal interest rate indicates that the ZLB binds. The simulation implies a new guess for the ZLB duration. The algorithm iterates until the implied ZLB duration equals the previous guess.

The advantage of using the piecewise linear model is that it solves very quickly. Furthermore, the nonlinear solution time exponentially increases with the size of the model, whereas the size of the model has little effect on the solution time in the piecewise linear model. However, it is numerically too costly to apply a particle filter to the piecewise linear model. For each particle, the piecewise linear solution requires a long enough simulation to return to the regime where the ZLB does not bind, whereas only a 1-period update is needed with the nonlinear solution. To speed up the filter, Guerrieri and Iacoviello (2017) follow Fair and Taylor (1983) and use an inversion filter that requires only one simulation, rather than a simulation for each particle. The inversion filter solves for the shocks that minimize the distance between the observables and the equivalent model predictions each period. While it is not as fast as the Kalman filter, the time it takes to execute the piecewise linear solution embedded in the inversion filter is insignificant relative to using NL-PF.

The piecewise linear model estimated with the inversion filter (PW-IF) makes two simplifica-

tions. One, households do not account for the possibility that the ZLB may bind in the future when it does not bind in the current period. That means households ignore the effects of the constraint in states of the economy where the ZLB is likely to bind in the near future because the algorithm uses the unconstrained linear decision rules. Two, the algorithm removes the nominal interest rate as an observable and sets the monetary policy shock to zero when the ZLB binds.<sup>4</sup> This simplification removes a source of volatility at the ZLB and a feature of the model that could help identify the parameters of the monetary policy rule. With NL-PF, households form expectations about going to the ZLB and the policy shocks influence the duration of the ZLB period. The question is whether the differences in the two methods are large enough to justify the higher estimation time of NL-PF.

As a benchmark, we estimate the linear analogue of the nonlinear model using Sims's (2002) gensys algorithm to solve the model and a Kalman filter to evaluate the likelihood function (Lin-KF). Unlike the other two methods, this method ignores the ZLB constraint, but it is much easier to implement and was the most common method used in the literature before the Great Recession.

For each estimation method, the observation equation is given by  $\mathbf{x}_t = H\mathbf{s}_t + \xi_t$ , where  $\mathbf{s}_t$  is a vector of variables, H is an observable selection matrix, and  $\xi$  is a vector of measurement errors (MEs). The inversion filter solves for the shocks that minimize the distance between the observables,  $\mathbf{x}_t$ , and their model predictions,  $H\mathbf{s}_t$ , so there is no ME up to a numerical tolerance. With a Kalman filter or particle filter,  $\xi \sim \mathbb{N}(0, R)$ , where R is a diagonal matrix of ME variances.<sup>5</sup> We are free to set the ME variances to zero when we use the Kalman filter, since the number of observables is equal to the number of shocks. The particle filter, however, always requires positive ME variances to avoid degeneracy—a situation when only a small number of particles fit the data well. Unfortunately, there is no consensus on how to set these values, despite their potentially large effect on the estimates. We consider three different values for the ME variances: 2%, 5%, and 10% of the variance in the data. These values encompass the wide range of values used in the literature.<sup>6</sup>

Table 2 displays information about the prior distributions of the estimated parameters. All other parameter values are fixed at their true values. The prior means are set to the true parameter values to isolate the influence of other aspects of the estimation procedure, such as the solution method and filter. Different prior means would most likely affect the accuracy of the estimation

<sup>&</sup>lt;sup>4</sup>In the special case where the notional rate implied by the model is positive, the observable and shock are reinstated.

<sup>&</sup>lt;sup>5</sup>Ireland (2004) allows for correlated MEs, but he finds a real business cycle model's out-of-sample forecasts improve when the ME covariance matrix is diagonal. Guerrón-Quintana (2010) finds that introducing i.i.d. MEs and fixing the variances to 10% or 20% of the standard deviation of the data improves the empirical fit and forecasting properties of a New Keynesian model. Fernández-Villaverde and Rubio-Ramírez (2007) estimate the ME variances, but Doh (2011) argues that approach can lead to complications because the ME variances are similar to bandwidths in nonparameteric estimation. Given those findings, we use a diagonal ME covariance matrix and fix the ME variances.

<sup>&</sup>lt;sup>6</sup>Some papers set the ME *standard deviations* to 20% or 25% of the sample standard deviations, which is equivalent to setting the ME *variances* to 4% or 6.25% of the sample variances (e.g., An and Schorfheide, 2007; Doh, 2011; Herbst and Schorfheide, 2016; van Binsbergen et al., 2012). Other work directly sets the ME variances to 10% or 25% of the sample variances (e.g., Bocola, 2016; Gust et al., 2017; Plante et al., 2018; Richter and Throckmorton, 2016).

| Parameter    | Dist. | Mean (SD)                                                | Parameter | Dist. | Mean (SD)    | Parameter  | Dist. | Mean (SD)                                         |
|--------------|-------|----------------------------------------------------------|-----------|-------|--------------|------------|-------|---------------------------------------------------|
| $arphi_p$    | Norm  | $   \begin{array}{c}     100 \\     (25)   \end{array} $ | h         | Beta  | 0.8<br>(0.1) | $\sigma_g$ | IGam  | $0.005 \\ (0.005)$                                |
| $\phi_{\pi}$ | Norm  | 2.0<br>(0.25)                                            | $ ho_s$   | Beta  | 0.8<br>(0.1) | $\sigma_s$ | IGam  | $0.005 \\ (0.005)$                                |
| $\phi_y$     | Norm  | 0.5<br>(0.25)                                            | $ ho_i$   | Beta  | 0.8<br>(0.1) | $\sigma_i$ | IGam  | $ \begin{array}{c} 0.002 \\ (0.002) \end{array} $ |

Table 2: Prior distributions, means, and standard deviations of the estimated parameters.

and contaminate our results. The prior standard deviations, which are consistent with the values in the literature, are relatively diffuse to give the algorithm flexibility to search the parameter space.

Our estimation procedure has three stages. First, we conduct a mode search to create an initial variance-covariance matrix for the estimated parameters. The covariance matrix is based on the parameters corresponding to the 90th percentile of the likelihoods from 5,000 draws. Second, we perform an initial run of the Metropolis-Hastings algorithm with 25,000 draws from the posterior distribution. We burn off the first 5,000 draws and use the remaining draws to update the variance-covariance matrix from the mode search. Third, we conduct a final run of the Metropolis-Hastings algorithm. We obtain 50,000 draws from the posterior distribution and then record the mean draw.

The algorithm is programmed in Fortran using Open MPI. We run the datasets in parallel across several supercomputers. When estimating PW-IF and Lin-KF, each dataset uses a single core. To estimate NL-PF, each dataset uses 16 cores because we parallelize the nonlinear solution across the nodes in the state space. For example, a supercomputer with 80 cores can simultaneously run 80 PW-IF datasets but only 5 NL-PF datasets. To increase the accuracy of the particle filter, we evaluate the likelihood function on each core. Since each NL-PF dataset uses 16 cores, we obtain 16 likelihoods and determine whether to accept or reject a draw based on the median likelihood. This step reduces the variance of the likelihoods from seed effects. The filter uses 40,000 particles.

|                   | NL-PF (16 Cores)          |                           | PW-IF                                                  | (1 Core)                | Lin-KF (1 Core)         |                         |
|-------------------|---------------------------|---------------------------|--------------------------------------------------------|-------------------------|-------------------------|-------------------------|
|                   | 0Q                        | 30Q                       | 0Q                                                     | 30Q                     | 0Q                      | 30Q                     |
| Seconds per draw  | 6.7<br>(6.1, 7.9)         | 8.4<br>(7.5, 9.5)         | 0.035<br>(0.031, 0.040)                                | 0.096<br>(0.051, 0.135) | 0.002<br>(0.002, 0.004) | 0.002<br>(0.001, 0.003) |
| Hours per dataset | $148.8 \\ (134.9, 176.5)$ | $186.4 \\ (167.6, 210.7)$ | $\begin{array}{c} 0.781 \\ (0.689, 0.889) \end{array}$ | 2.137<br>(1.133, 3.000) | 0.052<br>(0.044, 0.089) | 0.049<br>(0.022, 0.067) |

Table 3: Average and (5, 95) percentiles of the estimation times by method and ZLB duration in the data.

Table 3 shows the computing times for each estimation method. We approximate the times by calculating the solution and filter time across the datasets given the parameter estimates. We also show hours per dataset, which are extrapolated by multiplying seconds per draw by 80,000 draws and dividing by 3,600 seconds per hour. We report times for NL-PF, PW-IF, and Lin-KF in datasets where the ZLB never binds and datasets with one 30 quarter ZLB event. NL-PF is run on 16 cores

and the other two methods use a single core. The estimation times depend on the hardware, but there are two interesting takeaways. One, PW-IF is slightly slower than Lin-KF, but it only takes a few hours to run on a single core. Two, NL-PF requires orders of magnitude more time than PW-IF, which is hard to justify unless there are significant differences in accuracy. However, NL-PF ran in about a week with 16 cores, so it is possible to estimate the fully nonlinear model on a workstation.

## 4 POSTERIOR ESTIMATES AND ACCURACY

The section begins by showing the accuracy of the parameter estimates for each estimation method. We then compare the filtered estimates of the notional interest rate, expected frequency and duration of the ZLB, responses to a severe recession, and forecasting performance across the methods.

4.1 PARAMETER ESTIMATES We measure parameter accuracy by calculating the normalized root-mean square-error (NRMSE) for each estimated parameter. For parameter j and estimation method h, the error is the difference between the parameter estimate for dataset k,  $\hat{\theta}_{j,h,k}$ , and the true parameter,  $\tilde{\theta}_j$ . Therefore, the NRMSE for parameter j and estimation method h is given by

NRMSE<sub>h</sub><sup>j</sup> = 
$$\frac{1}{\tilde{\theta}_j} \sqrt{\frac{1}{N} \sum_{k=1}^{N} (\hat{\theta}_{j,h,k} - \tilde{\theta}_j)^2},$$

where N is the number of datasets. The RMSE is normalized by  $\tilde{\theta}_j$  to remove the scale differences.

|                  | 0Q   | 6Q   | 12Q  | 18Q  | 24Q  | 30Q  |
|------------------|------|------|------|------|------|------|
| NL-PF-5%         | 1.90 | 1.96 | 1.99 | 2.12 | 2.09 | 2.08 |
| <b>PW-IF-</b> 0% | 1.53 | 1.63 | 1.71 | 2.01 | 1.99 | 1.91 |
| Lin-KF-0%        | 1.49 | 1.62 | 1.89 | 2.10 | 2.30 | 2.24 |
| Lin-KF-5%        | 1.88 | 2.01 | 2.11 | 2.27 | 2.28 | 2.28 |

Table 4: Sum of the NRMSE across the estimated parameters. Columns denote the ZLB duration in the data.

Table 4 shows the sum of the NRMSE across the parameters. These values provide an aggregate measure of parameter accuracy. The percentage appended to the name of each specification corresponds to the size of the ME variances. The estimates from datasets without a ZLB event show how well each specification performs without any influence from the ZLB constraint. With these datasets, PW-IF-0% and Lin-KF-0% have roughly the same accuracy since the solution methods are identical when the ZLB does not bind. Interestingly, both of those specifications are more accurate than NL-PF-5%. The results for Lin-KF-5% show the lower accuracy of NL-PF-5% is driven by positive ME variances and that the ZLB is the only important nonlinearity in the model.

Comparing the columns for each method shows the effects of the ZLB duration in the data. When the ZLB binds, it reduces the accuracy of every specification and accuracy typically diminishes as the ZLB event lengthens. Lengthening the ZLB event in the data has the smallest effect on the accuracy of NL-PF-5%. Datasets with a 30 quarter ZLB event reduce accuracy by 0.18 relative to datasets without a ZLB event. For comparison, the accuracy decreases by 0.38 with PW-IF-0% and by 0.75 with Lin-KF-0%. However, NL-PF-5% is less accurate than PW-IF-0% due to the positive ME variances. In other words, it is the best equipped to handle ZLB events in the data, but the loss in accuracy due to the positive ME variances in the particle filter outweighs those benefits.

| Ptr          | Truth | NL-P                                                                | PF-5%                                                               | PW-I                                                                | F-0%                                                                | Lin-KF-5%                                                           |                                                                     |  |
|--------------|-------|---------------------------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------------------|--|
|              |       | 0Q                                                                  | 30Q                                                                 | 0Q                                                                  | 30Q                                                                 | 0Q                                                                  | 30Q                                                                 |  |
| $\varphi_p$  | 100   | $151.1 \\ (134.2, 165.8) \\ [0.52]$                                 | $188.4 \\ (174.7, 202.7) \\ [0.89]$                                 | $\begin{array}{c} 142.6 \\ (121.1, 157.3) \\ [0.44] \end{array}$    | $183.4 \\ (169.2, 198.5) \\ [0.84]$                                 | $\begin{array}{c} 151.4 \\ (134.0, 165.7) \\ [0.52] \end{array}$    | $191.6 \\ (175.3, 204.1) \\ [0.92]$                                 |  |
| h            | 0.8   | $0.66 \\ (0.62, 0.70) \\ [0.18]$                                    | $0.68 \\ (0.64, 0.71) \\ [0.16]$                                    | $0.64 \\ (0.61, 0.67) \\ [0.20]$                                    | $0.63 \\ (0.60, 0.67) \\ [0.21]$                                    | $0.66 \\ (0.62, 0.69) \\ [0.18]$                                    | $0.67 \\ (0.63, 0.70) \\ [0.17]$                                    |  |
| $\rho_s$     | 0.8   | $0.76 \\ (0.72, 0.80) \\ [0.06]$                                    | $0.81 \\ (0.78, 0.84) \\ [0.03]$                                    | $0.76 \\ (0.73, 0.81) \\ [0.05]$                                    | $0.82 \\ (0.79, 0.86) \\ [0.04]$                                    | $0.76 \\ (0.72, 0.80) \\ [0.06]$                                    | $0.82 \\ (0.78, 0.86) \\ [0.04]$                                    |  |
| $\rho_i$     | 0.8   | $0.79 \\ (0.75, 0.82) \\ [0.03]$                                    | $0.80 \\ (0.75, 0.84) \\ [0.03]$                                    | $0.76 \\ (0.71, 0.79) \\ [0.06]$                                    | $0.77 \\ (0.73, 0.81) \\ [0.05]$                                    | $0.79 \\ (0.75, 0.82) \\ [0.03]$                                    | $0.84 \\ (0.80, 0.88) \\ [0.06]$                                    |  |
| $\sigma_g$   | 0.005 | $\begin{array}{c} 0.0032 \\ (0.0023, 0.0039) \\ [0.37] \end{array}$ | $\begin{array}{c} 0.0040 \\ (0.0030, 0.0052) \\ [0.23] \end{array}$ | $\begin{array}{c} 0.0051 \\ (0.0044, 0.0058) \\ [0.09] \end{array}$ | $\begin{array}{c} 0.0059 \\ (0.0050, 0.0069) \\ [0.22] \end{array}$ | $\begin{array}{c} 0.0032 \\ (0.0023, 0.0039) \\ [0.36] \end{array}$ | $\begin{array}{c} 0.0043 \\ (0.0030, 0.0057) \\ [0.20] \end{array}$ |  |
| $\sigma_s$   | 0.005 | $0.0052 \\ (0.0040, 0.0066) \\ [0.15]$                              | $\begin{array}{c} 0.0050 \\ (0.0039, 0.0062) \\ [0.13] \end{array}$ | $\begin{array}{c} 0.0051 \\ (0.0042, 0.0063) \\ [0.13] \end{array}$ | $\begin{array}{c} 0.0046 \\ (0.0036, 0.0056) \\ [0.15] \end{array}$ | $\begin{array}{c} 0.0053 \\ (0.0040, 0.0067) \\ [0.15] \end{array}$ | $\begin{array}{c} 0.0047 \\ (0.0037, 0.0061) \\ [0.15] \end{array}$ |  |
| $\sigma_i$   | 0.002 | $0.0017 \\ (0.0014, 0.0020) \\ [0.17]$                              | $\begin{array}{c} 0.0015 \\ (0.0013, 0.0019) \\ [0.24] \end{array}$ | $\begin{array}{c} 0.0020 \\ (0.0018, 0.0023) \\ [0.08] \end{array}$ | $0.0020 \\ (0.0019, 0.0024) \\ [0.09]$                              | $\begin{array}{c} 0.0017 \\ (0.0015, 0.0020) \\ [0.16] \end{array}$ | $0.0016 \\ (0.0014, 0.0019) \\ [0.20]$                              |  |
| $\phi_{\pi}$ | 2.0   | $2.04 \\ (1.88, 2.19) \\ [0.06]$                                    | $2.13 \\ (1.94, 2.31) \\ [0.09]$                                    | $2.01 \\ (1.84, 2.16) \\ [0.06]$                                    | $1.96 \\ (1.77, 2.14) \\ [0.06]$                                    | $2.04 \\ (1.88, 2.20) \\ [0.06]$                                    | $1.73 \\ (1.52, 1.91) \\ [0.15]$                                    |  |
| $\phi_y$     | 0.5   | $0.35 \\ (0.21, 0.54) \\ [0.36]$                                    | $0.42 \\ (0.27, 0.62) \\ [0.28]$                                    | $0.32 \\ (0.17, 0.48) \\ [0.41]$                                    | $0.44 \\ (0.27, 0.61) \\ [0.25]$                                    | $0.35 \\ (0.22, 0.54) \\ [0.35]$                                    | $0.32 \\ (0.17, 0.47) \\ [0.40]$                                    |  |

Table 5: Average, (5, 95) percentiles and [NRMSE] of the parameter estimates.

Table 5 breaks the results down by parameter. Each cell includes the average, (5, 95) percentiles and NRMSE of the parameter estimates across the datasets. For simplicity, we focus on datasets without a ZLB event and those with a 30 quarter event. The NRMSEs are comparable despite differences in the scales of the parameters, because the errors are weighted by the true parameters.

The Rotemberg price adjustment cost parameter  $(\varphi_p)$  is the least accurate and it becomes less accurate when the ZLB binds in the data. The bias is likely driven by misspecification in the aggregate resource constraint.<sup>7</sup> It does not include investment, a utilization cost, or a wage adjustment cost, so deviations of  $y_t^{gdp}$  from  $y_t$  must be driven by price adjustment costs. There is also downward bias in the estimates of habit persistence (h), risk premium persistence  $(\rho_s)$ , interest rate smoothing  $(\rho_i)$ , and the monetary response to the output growth gap  $(\phi_y)$  from the misspecification.

The ZLB duration has the opposite effect on  $\rho_s$ , so the downward bias disappears. The bias in

<sup>&</sup>lt;sup>7</sup>Appendix E.2 shows the estimates without misspecification (i.e., the data is generated with the small-scale model).

the NL-PF-5% estimates of the technology growth and monetary policy shock standard deviations ( $\sigma_g$  and  $\sigma_i$ ) is due to the positive ME variances in the filter, as Lin-KF-5% produces identical estimates. The importance of the ME variances is likely driven by the filter ascribing large shocks to ME rather than the structural shocks, reducing their estimated volatility. Therefore, it is notable that NL-PF-5% is the most accurate in estimating the parameters that drive the risk-premium shock ( $\rho_s$  and  $\sigma_s$ ), and long ZLB events do not make them less accurate. Overall, the decreases in accuracy due to the ZLB are largely driven by a single parameter ( $\varphi_p$ ) and for many of the parameters accuracy is higher in datasets with a 30 quarter ZLB event than datasets where the ZLB never binds.

| Ptr          | Truth | NL-P                                                                | F-2%                                                                | NL-P                                                                | PF-5%                                                               | NL-PF-10%                                                           |                                                                     |  |
|--------------|-------|---------------------------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------------------|--|
|              |       | 0Q                                                                  | 30Q                                                                 | 0Q                                                                  | 30Q                                                                 | 0Q                                                                  | 30Q                                                                 |  |
| $\varphi_p$  | 100   | $\begin{array}{c} 150.2 \\ (133.5, 165.3) \\ [0.51] \end{array}$    | $192.0 \\ (176.5, 207.1) \\ [0.93]$                                 | $151.1 \\ (134.2, 165.8) \\ [0.52]$                                 | $188.4 \\ (174.7, 202.7) \\ [0.89]$                                 | $149.5 \\ (132.6, 163.8) \\ [0.50]$                                 | $182.7 \\ (168.6, 197.3) \\ [0.83]$                                 |  |
| h            | 0.8   | $0.66 \\ (0.62, 0.69) \\ [0.18]$                                    | $0.67 \\ (0.64, 0.71) \\ [0.17]$                                    | $0.66 \\ (0.62, 0.70) \\ [0.18]$                                    | $0.68 \\ (0.64, 0.71) \\ [0.16]$                                    | $0.66 \\ (0.61, 0.70) \\ [0.17]$                                    | $0.68 \\ (0.65, 0.72) \\ [0.15]$                                    |  |
| $\rho_s$     | 0.8   | $0.76 \\ (0.71, 0.79) \\ [0.06]$                                    | $0.81 \\ (0.78, 0.84) \\ [0.03]$                                    | $0.76 \\ (0.72, 0.80) \\ [0.06]$                                    | $0.81 \\ (0.78, 0.84) \\ [0.03]$                                    | $0.76 \\ (0.72, 0.79) \\ [0.06]$                                    | $0.81 \\ (0.79, 0.85) \\ [0.03]$                                    |  |
| $\rho_i$     | 0.8   | $0.77 \\ (0.73, 0.80) \\ [0.05]$                                    | $0.79 \\ (0.75, 0.83) \\ [0.03]$                                    | $0.79 \\ (0.75, 0.82) \\ [0.03]$                                    | $0.80 \\ (0.75, 0.84) \\ [0.03]$                                    | $0.80 \\ (0.77, 0.84) \\ [0.03]$                                    | $0.81 \\ (0.76, 0.85) \\ [0.03]$                                    |  |
| $\sigma_g$   | 0.005 | $0.0038 \\ (0.0031, 0.0043) \\ [0.25]$                              | $\begin{array}{c} 0.0043 \\ (0.0035, 0.0052) \\ [0.18] \end{array}$ | $\begin{array}{c} 0.0032 \\ (0.0023, 0.0039) \\ [0.37] \end{array}$ | $\begin{array}{c} 0.0040 \\ (0.0030, 0.0052) \\ [0.23] \end{array}$ | $\begin{array}{c} 0.0027 \\ (0.0020, 0.0035) \\ [0.46] \end{array}$ | $\begin{array}{c} 0.0038 \\ (0.0025, 0.0050) \\ [0.28] \end{array}$ |  |
| $\sigma_s$   | 0.005 | $\begin{array}{c} 0.0052 \\ (0.0039, 0.0065) \\ [0.15] \end{array}$ | $0.0051 \\ (0.0040, 0.0061) \\ [0.13]$                              | $\begin{array}{c} 0.0052 \\ (0.0040, 0.0066) \\ [0.15] \end{array}$ | $\begin{array}{c} 0.0050 \\ (0.0039, 0.0062) \\ [0.13] \end{array}$ | $0.0051 \\ (0.0041, 0.0065) \\ [0.14]$                              | $\begin{array}{c} 0.0049 \\ (0.0037, 0.0061) \\ [0.14] \end{array}$ |  |
| $\sigma_i$   | 0.002 | $\begin{array}{c} 0.0019 \\ (0.0017, 0.0021) \\ [0.10] \end{array}$ | $\begin{array}{c} 0.0018 \\ (0.0016, 0.0021) \\ [0.14] \end{array}$ | $\begin{array}{c} 0.0017 \\ (0.0014, 0.0020) \\ [0.17] \end{array}$ | $\begin{array}{c} 0.0015 \\ (0.0013, 0.0019) \\ [0.24] \end{array}$ | $\begin{array}{c} 0.0015 \\ (0.0012, 0.0018) \\ [0.25] \end{array}$ | $\begin{array}{c} 0.0013 \\ (0.0011, 0.0017) \\ [0.34] \end{array}$ |  |
| $\phi_{\pi}$ | 2.0   | $2.01 \\ (1.84, 2.16) \\ [0.06]$                                    | $2.14 \\ (1.96, 2.31) \\ [0.09]$                                    | $2.04 \\ (1.88, 2.19) \\ [0.06]$                                    | $2.13 \\ (1.94, 2.31) \\ [0.09]$                                    | $2.06 \\ (1.89, 2.21) \\ [0.07]$                                    | $\begin{array}{c} 2.12\\ (1.92, 2.28)\\ [0.08]\end{array}$          |  |
| $\phi_y$     | 0.5   | $0.31 \\ (0.18, 0.48) \\ [0.42]$                                    | $\begin{array}{c} 0.39 \\ (0.24, 0.60) \\ [0.32] \end{array}$       | $0.35 \\ (0.21, 0.54) \\ [0.36]$                                    | $\begin{array}{c} 0.42 \\ (0.27, 0.62) \\ [0.28] \end{array}$       | $0.41 \\ (0.26, 0.59) \\ [0.27]$                                    | $0.46 \\ (0.30, 0.66) \\ [0.24]$                                    |  |
| Σ            |       | [1.79]                                                              | [2.01]                                                              | [1.90]                                                              | [2.08]                                                              | [1.95]                                                              | [2.13]                                                              |  |

Table 6: Average, (5, 95) percentiles and [NRMSE] of the parameter estimates.  $\Sigma$  is sum of the NRMSE.

**ME Variances** Table 6 shows the parameter estimates and NRMSEs for NL-PF with three different ME variances: 2%, 5% (baseline), and 10%. If there was no misspecificiation, it would be obvious that lower ME variances would increase accuracy until the effective sample size in the particle filter became too small. In our setup, the presence of misspecification creates a potential tradeoff. On the one hand, lower ME variances force the model to match sharp swings in the data, which could help identify the parameters. On the other hand, higher ME variances give the model a degree of freedom to account for important discrepancies between the estimated model and the data generating process (e.g., the aggregate resource constraint), which could decrease parameter bias.

We find smaller ME variances reduce the sum of the NRMSE across the parameters. For  $\sigma_g$  and  $\sigma_i$ , higher ME variances push the estimates lower, away from the true value. Once again, this result is likely driven by the filter incorrectly ascribing movements in the data to ME rather than the structural shocks. This loss in accuracy as the ME variances increase is partially offset by the increase in the accuracy of most other parameters. Estimates of  $\phi_y$  with all datasets and estimates of  $\varphi_p$  with datasets where the ZLB binds for 30 quarters improve the most. These parameters are tightly linked to real GDP and the aggregate resource constraint, which is a key misspecification that is compensated for with higher ME. These results show that ME variances are important for accuracy. In some cases, they may compensate for model misspecification and enable use of the particle filter. In our setup, however, positive ME variances have a net negative effect on accuracy.

4.2 NOTIONAL INTEREST RATE ESTIMATES We measure the accuracy of the notional rate by calculating the average RMSE across periods when the ZLB binds. For period t and estimation method h, the error is the difference between the filtered notional rate based on the parameter estimates for dataset k,  $\hat{i}_{t,h,k}^n$ , and the true notional rate,  $\tilde{i}_t^n$ . The RMSE for method h is given by

$$\text{RMSE}_{h}^{i^{n}} = \sqrt{\frac{1}{N} \frac{1}{\tau} \sum_{k=1}^{N} \sum_{j=t}^{t+\tau-1} (\hat{i}_{j,h,k}^{n} - \tilde{i}_{j}^{n})^{2}},$$

where t is the first period the ZLB binds and  $\tau$  is the duration of the ZLB event. There is no reason to normalize the RMSE since the units are the same across periods and we do not sum across states.

Estimates of the notional interest rate are of keen interest to policymakers for two key reasons. One, they summarize the severity of the recession and the nominal interest rate policymakers would like to set in the absence of the ZLB, which help inform decisions about implementing unconventional monetary policy. Two, estimates of the notional rate help determine how long the ZLB is expected to bind, which is necessary to issue forward guidance. The notional rate is also the only latent endogenous state variable in the model that is not directly linked to an observable.

Figure 1 shows the accuracy of the notional rate for our baseline methods, NL-PF-5% and PW-IF-0%. We also show the how different ME variances in the particle filter affect accuracy. We do not present the results for Lin-KF because they are uninformative. Since the linear model does not distinguish between the notional and nominal rates and the nominal rate is an observable, the error in the linear model equals the absolute value of the notional rate when the ZLB binds in the data.

Regardless of the ZLB duration, NL-PF-5% provides more accurate estimates of the notional rate than PW-IF-0%. On average, the differences are about 0.25 percentage points per period. The magnitude of the differences is roughly the same when the ZLB binds for a long time in the data, so the cumulative differences are often large over the entire ZLB period. Nevertheless, the differences in the estimates are not big enough to have a meaningful impact on policy prescriptions. Increasing or decreasing the ME variances also has a fairly small effect, especially when the ZLB event is long.

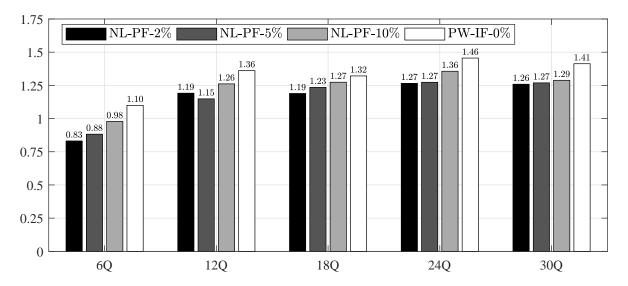


Figure 1: RMSE of the notional interest rate across ZLB durations in the data. Rates are net annualized percentages.

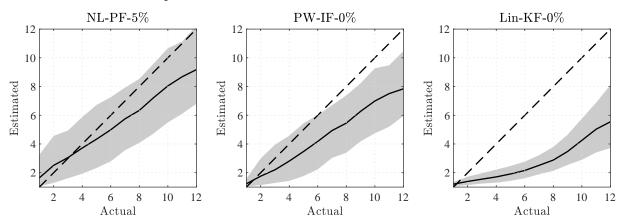
4.3 EXPECTED ZLB DURATION AND PROBABILITY In addition to estimates of the notional interest rate, two commonly referenced statistics in the literature are the expected duration and probability of the ZLB constraint. These statistics determine the impact of a ZLB event in the model and are frequently measured against survey data. Figure 2 shows the accuracy of the two statistics.

The top panel compares the expected ZLB durations given the parameter estimates from the small-scale model to the actual expected ZLB durations from the data generating process (DGP) given the true parameters. The expected ZLB durations are computed as the average across 10,000 simulations of a model initialized at the filtered states (or actual states for the DGP) where the ZLB binds. The solid lines are the mean expected ZLB durations in the small-scale model after pooling across the different ZLB states and datasets. The shaded areas are the (5,95) percentiles of the durations. The estimated expected ZLB duration equals the actual expected ZLB duration along the 45 degree line. The deviations from the 45 degree line quantify the bias in the estimated durations.

When the actual expected ZLB duration is relatively short, the NL-PF-5% and PW-IF-0% expected ZLB durations are close to the truth. As the actual expected duration lengthens, both estimates become less accurate. The NL-PF-5% 95th percentile continues to encompass the actual expected durations. However, once the actual value exceeds six quarters, there is a 95% chance or higher of underestimating the actual expected duration with PW-IF-0%. Furthermore, the PW-IF-0% mean expected duration is typically at least one quarter shorter than the NL-PF-5% mean estimate.<sup>8</sup> These results are likely driven by model misspecification, as the presence of capital and sticky wages in the DGP makes the ZLB more persistent than in the estimated small-scale model.

The Lin-KF-0% estimated ZLB durations are always significantly shorter since that method

<sup>&</sup>lt;sup>8</sup>Prior to instituting date-based forward guidance in 2011, Blue Chip consensus forecasts revealed that people expected the ZLB to bind for three quarters or less. After the forward guidance, the expectation rose to seven quarters.



#### (a) Estimated vs. Actual Expected ZLB Durations

(b) Estimated vs. Actual Probability of a 4 Quarter or Longer ZLB Event

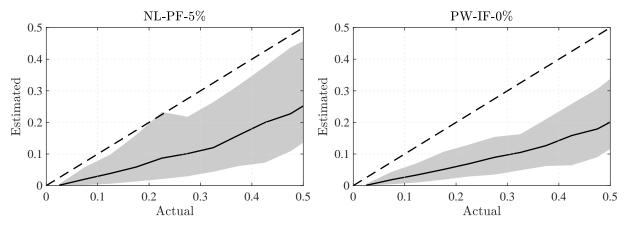


Figure 2: Estimated and actual ZLB statistics. The solid lines are mean estimates and the shaded areas capture the (5,95) percentiles across the datasets. The dashed line shows where the estimated values would equal the actual values.

does not permit a negative notional rate when filtering the data. The only instance when Lin-KF-0% produces an expected ZLB duration beyond one year is when the economy is in a severe downturn and the actual expected duration is extremely long. The Lin-KF-0% estimates are a lower bound on the PW-IF-0% estimates since the solutions are identical when the ZLB does not bind.

The bottom panel is constructed in a similar way as the top panel except the horizontal and vertical axes correspond to the actual and estimated probability of a ZLB event that lasts for at least four quarters. The probability is calculated in all periods where the ZLB does not bind in the data. We do not show the results for Lin-KF-0% because the probability of a four quarter ZLB event is always near zero. NL-PF-5% and PW-IF-0% underestimate the true probability, but the mean NL-PF-5% estimates are slightly closer to the actual probabilities and the 95th percentile almost encompasses the truth. These results illustrate the precautionary savings effects of the ZLB, which are not captured by PW-IF-0%. However, they do not provide overwhelming support for NL-PF-5%, and changing the ME variances in the particle filter has no discernable effect on the results.

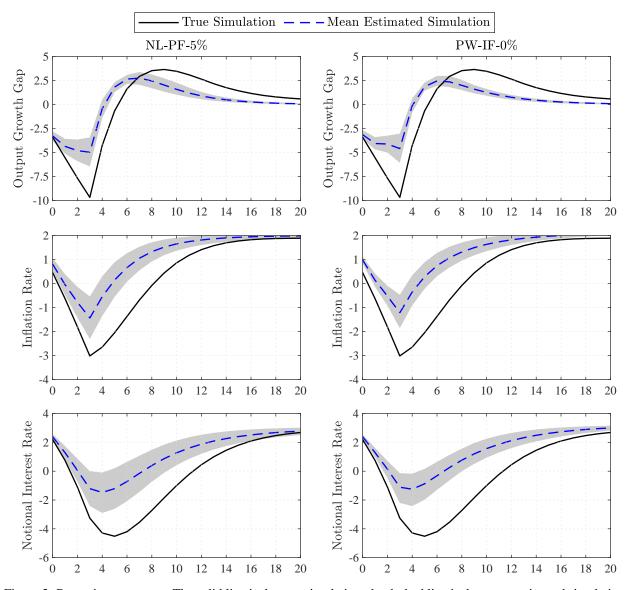


Figure 3: Recession responses. The solid line is the true simulation, the dashed line is the mean estimated simulation, and the shaded area contains the (5,95) percentiles across the datasets. The simulations are initialized in steady state and followed by four 1.5 standard deviation positive risk premium shocks. All values are net annualized percentages.

4.4 **RECESSION RESPONSES** To illustrate the economic implications of the differences in accuracy, we compare simulations of the small-scale model given our parameter estimates to simulations of the DGP given the true parameters. The simulations are initialized in steady state and followed by four consecutive 1.5 standard deviation positive risk premium shocks, which generates a 10 quarter ZLB event in the DGP.<sup>9</sup> A risk premium shock is a proxy for a change in demand because it affects households' consumption and saving decisions. Positive shocks cause households to postpone consumption to future periods, which reduces current output growth. We focus on this shock

<sup>&</sup>lt;sup>9</sup>The simulations are reflective of the Great Recession. The current Congressional Budget Office estimate of the output gap in 2009Q2 is -5.9%, roughly equivalent to the output (level) gap in the true simulation in the fourth period.

because it is the primary mechanism for generating ZLB events in the DGP and estimated models.<sup>10</sup>

Figure 3 shows the simulated paths of the output growth gap, inflation rate, and notional interest rate in annualized net percentages. The NL-PF-5% simulations are shown in the left column and the PW-IF-0% simulations are in the right column. The true simulation of the DGP (solid line) is compared to the mean estimated simulation of the small-scale model (dashed line). The (5, 95) percentiles account for differences in the simulations across the parameter estimates for each dataset.

Model misspecification leads to significantly muted responses relative to the true simulation.<sup>11</sup> None of the estimated simulations for NL-PF-5% or PW-IF-0% can replicate the size of the negative output growth gap, decline in inflation, or policy response at the beginning of the true simulation. Both estimation methods also underestimate the duration of the ZLB event. However, the NL-PF-5% mean simulations of the three variables and the ZLB duration are closer to the truth than the PW-IF-0% simulations. Unlike the piecewise linear solution, the fully nonlinear solution captures the expectational effects of going to the ZLB, which puts downward pressure on output and inflation and improves accuracy. Although NL-PF-5% is closer to the truth than PW-IF-0%, once again these differences are not large enough to justify the significantly longer estimation time.

4.5 FORECAST PERFORMANCE Another important aspect of any model is its ability to forecast. We examine the forecasting performance of each estimation method in the quarter immediately preceding a severe recession that causes the ZLB to bind. The point forecasts are inaccurate since severe recessions are rare. However, there are potentially important differences between the forecast distributions, which assign probabilities to the range of potential outcomes in a given period. The tails of the distribution are particularly important. To measure the accuracy of the forecast distribution of variable j, we compute the continuous rank probability score (CRPS) given by

$$CRPS_{m,k,t,\tau}^{j} = \int_{-\infty}^{\tilde{j}_{t+\tau}} [F_{m,k,t}(j_{t+\tau})]^2 dj_{t+\tau} + \int_{\tilde{j}_{t+\tau}}^{\infty} [1 - F_{m,k,t}(j_{t+\tau})]^2 dj_{t+\tau}$$

where m indicates whether the forecast distribution comes from the DGP or an estimated model, k is the dataset, t is the forecast date,  $F_{m,k,t}(j_{t+\tau})$  is the cumulative distribution function (CDF) of the  $\tau$ -quarter ahead forecast, and  $\tilde{j}_{t+\tau}$  is the true realization. The CRPS measures the accuracy of the forecast distribution by penalizing probabilities assigned to outcomes that are not realized. It also has the same units as the forecast distribution, which are net percentages, and reduces to the mean absolute error if the forecast is deterministic. A smaller CRPS indicates a more accurate forecast.<sup>12</sup>

For each dataset, we calculate a CRPS for the small-scale model given the parameter estimates and the medium-scale model that generates the data. To approximate the forecast distribution for a given model, we first initialize the forecasts at the filtered state (or actual state for the DGP) one

<sup>&</sup>lt;sup>10</sup>Appendix E.3 shows impulse responses to a technology growth and monetary policy shock in a severe recession.

<sup>&</sup>lt;sup>11</sup>Appendix E.2 reproduces the responses without misspecification to confirm it is the source of the muted responses.

<sup>&</sup>lt;sup>12</sup>Appendix D shows the CDF for a specific dataset to illustrate what each term represents in the CRPS calculation.

quarter before the ZLB binds in the data. Then we draw random shocks and simulate the model for 8 quarters, 10,000 times. Using the simulations, we approximate the CDF of the forecast distribution 8-quarters ahead.<sup>13</sup> Finally, we average the CRPS for a given model across the datasets.

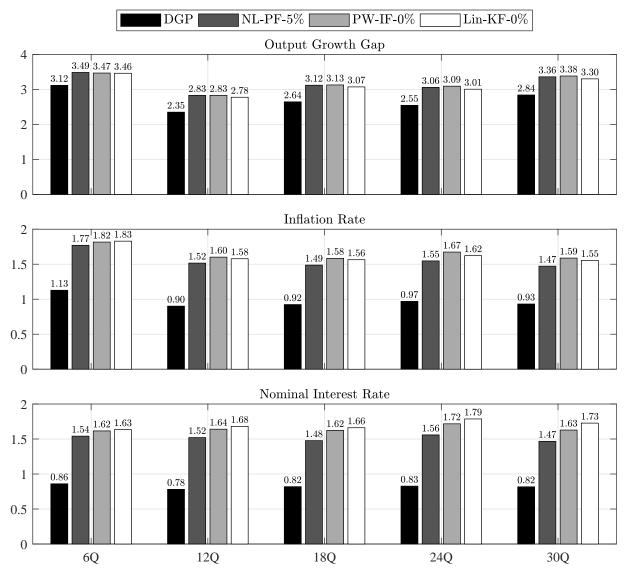


Figure 4: Mean CRPS of 8-quarter ahead forecasts. Forecasts are made one quarter before the ZLB binds in the data.

Figure 4 shows the mean CRPS across the datasets for the DGP and each estimation method. The horizontal axis denotes the ZLB duration in the data. Due to model misspecification, none of the estimation methods perform as well as the DGP. The DGP has at least a 0.5 percentage point advantage over the estimated models, regardless of the forecasted variable or ZLB duration in the data. Interestingly, the CRPS is similar across the estimation methods. The differences are most pronounced for the nominal interest rate forecasts in datasets where the ZLB binds for 30 quarters.

<sup>&</sup>lt;sup>13</sup>We obtain similar results with a four quarter forecast horizon, as well as with the RMSE of the point forecast.

The NL-PF-5% CRPS is only 179% of the DGP CRPS, compared to 199% for PW-IF-0% and 211% for Lin-KF-0%. The NL-PF-5% forecasts of the inflation rate are also consistently more accurate than the other estimation methods. However, in all cases the differences in accuracy are small relative to the DGP. These findings are consistent with our previous results. NL-PF-5% has an advantage over PW-IF-0%, but it is never large enough to justify the higher computational costs.

## 5 CONCLUSION

During the Great Recession, many central banks lowered their policy rate to its ZLB, creating a kink in their policy rule and calling into question linear estimation methods. There are two promising alternatives: estimate a fully nonlinear model that accounts for the expectational effects of going to the ZLB or a piecewise linear model that is faster but ignores the expectational effects. This paper examines whether the differences in accuracy justify the longer estimation time. Based on our estimates with both methods, we find the answer is no, regardless of the ZLB duration in the data. Model misspecification, however, biases the parameter estimates and creates significant differences between the predictions of the two estimated models and the data generating process.

Our results indicate that PW-IF is an excellent substitute for NL-PF and that it is more beneficial to reduce misspecification by estimating a richer piecewise linear model than a simpler but properly solved nonlinear model when examining the empirical implications of the ZLB constraint.<sup>14</sup> The nonlinear model has the advantage that it is more versatile. While the piecewise linear and nonlinear models can handle any combination of occasionally binding constraints, only the nonlinear model can account for other nonlinear features emphasized in the literature (e.g., stochastic volatility, asymmetric adjustment costs, non-Gaussian shocks, search frictions, time-varying policy rules, changes in steady states). Our results will also serve as an important starting point for research that explores these nonlinear features or makes advances in nonlinear estimation methods.

## REFERENCES

- AN, S. AND F. SCHORFHEIDE (2007): "Bayesian Analysis of DSGE Models," *Econometric Reviews*, 26, 113–172, https://doi.org/10.1080/07474930701220071.
- ARUOBA, S., P. CUBA-BORDA, AND F. SCHORFHEIDE (2018): "Macroeconomic Dynamics Near the ZLB: A Tale of Two Countries," *The Review of Economic Studies*, 85, 87–118, https://doi.org/10.1093/restud/rdx027.
- BOCOLA, L. (2016): "The Pass-Through of Sovereign Risk," *Journal of Political Economy*, 124, 879–926, https://doi.org/10.1086/686734.

<sup>&</sup>lt;sup>14</sup>Appendix E.1 shows the estimates from the piecewise linear model after reducing the amount of misspecification.

- CANOVA, F., F. FERRONI, AND C. MATTHES (2014): "Choosing The Variables To Estimate Singular Dsge Models," *Journal of Applied Econometrics*, 29, 1099–1117, https://doi.org/10.1002/jae.2414.
- CHUGH, S. K. (2006): "Optimal Fiscal and Monetary Policy with Sticky Wages and Sticky Prices," *Review of Economic Dynamics*, 9, 683–714, https://doi.org/10.1016/j.red.2006.07.001.
- COLEMAN, II, W. J. (1991): "Equilibrium in a Production Economy with an Income Tax," *Econometrica*, 59, 1091–1104, https://doi.org/10.2307/2938175.
- CUBA-BORDA, P., L. GUERRIERI, M. IACOVIELLO, AND M. ZHONG (2017): "Likelihood Evaluation of Models with Occasionally Binding Constraints," Federal Reserve Board.
- DOH, T. (2011): "Yield Curve in an Estimated Nonlinear Macro Model," *Journal of Economic Dynamics and Control*, 35, 1229 1244, https://doi.org/10.1016/j.jedc.2011.03.003.
- FAIR, R. C. AND J. B. TAYLOR (1983): "Solution and Maximum Likelihood Estimation of Dynamic Nonlinear Rational Expectations Models," *Econometrica*, 51, 1169–1185, https://doi.org/10.2307/1912057.
- FERNALD, J. G. (2012): "A Quarterly, Utilization-Adjusted Series on Total Factor Productivity," Federal Reserve Bank of San Francisco Working Paper 2012-19.

FERNÁNDEZ-VILLAVERDE, J., G. GORDON, P. GUERRÓN-QUINTANA, AND J. F. RUBIO-RAMÍREZ (2015): "Nonlinear Adventures at the Zero Lower Bound," *Journal of Economic Dynamics and Control*, 57, 182–204, https://doi.org/10.1016/j.jedc.2015.05.014.

- FERNÁNDEZ-VILLAVERDE, J. AND J. F. RUBIO-RAMÍREZ (2005): "Estimating Dynamic Equilibrium Economies: Linear versus Nonlinear Likelihood," *Journal of Applied Econometrics*, 20, 891–910, https://doi.org/10.1002/jae.814.
- (2007): "Estimating Macroeconomic Models: A Likelihood Approach," *The Review of Economic Studies*, 74, 1059–1087, https://doi.org/10.1111/j.1467-937X.2007.00437.x.
- GAVIN, W. T., B. D. KEEN, A. W. RICHTER, AND N. A. THROCKMORTON (2015): "The Zero Lower Bound, the Dual Mandate, and Unconventional Dynamics," *Journal of Economic Dynamics and Control*, 55, 14–38, https://doi.org/10.1016/j.jedc.2015.03.007.
- GORDON, N. J., D. J. SALMOND, AND A. F. M. SMITH (1993): "Novel Approach to Nonlinear/Non-Gaussian Bayesian State Estimation," *IEE Proceedings F - Radar and Signal Processing*, 140, 107–113, https://doi.org/10.1049/ip-f-2.1993.0015.
- GUERRIERI, L. AND M. IACOVIELLO (2015): "OccBin: A Toolkit for Solving Dynamic Models with Occasionally Binding Constraints Easily," *Journal of Monetary Economics*, 70, 22–38, https://doi.org/10.1016/j.jmoneco.2014.08.005.
- (2017): "Collateral Constraints and Macroeconomic Asymmetries," *Journal of Monetary Economics*, 90, 28–49, https://doi.org/10.1016/j.jmoneco.2017.06.004.
- GUERRÓN-QUINTANA, P. A. (2010): "What You Match Does Matter: The Effects of Data on DSGE Estimation," *Journal of Applied Econometrics*, 25, 774–804, https://doi.org/10.1002/jae.1106.

- GUST, C., E. HERBST, D. LÓPEZ-SALIDO, AND M. E. SMITH (2017): "The Empirical Implications of the Interest-Rate Lower Bound," *American Economic Review*, 107, 1971–2006, https://doi.org/10.1257/aer.20121437.
- HERBST, E. AND F. SCHORFHEIDE (2018): "Tempered Particle Filtering," *Journal of Econometrics*, forthcoming, https://doi.org/10.1016/j.jeconom.2018.11.003.
- HERBST, E. P. AND F. SCHORFHEIDE (2016): *Bayesian Estimation of DSGE Models*, Princeton, NJ: Princeton University Press.
- HIROSE, Y. AND A. INOUE (2016): "The Zero Lower Bound and Parameter Bias in an Estimated DSGE Model," *Journal of Applied Econometrics*, 31, 630–651, https://doi.org/10.1002/jae.2447.
- HIROSE, Y. AND T. SUNAKAWA (2015): "Parameter Bias in an Estimated DSGE Model: Does Nonlinearity Matter?" Centre for Applied Macroceonomic Analysis Working Paper 46/2015.
- IIBOSHI, H., M. SHINTANI, AND K. UEDA (2018): "Estimating a Nonlinear New Keynesian Model with a Zero Lower Bound for Japan," Tokyo Center for Economic Research Working Paper E-120.
- IRELAND, P. N. (2004): "A Method for Taking Models to the Data," *Journal of Economic Dynamics and Control*, 28, 1205–1226, https://doi.org/10.1016/S0165-1889(03)00080-0.
- KEEN, B. D., A. W. RICHTER, AND N. A. THROCKMORTON (2017): "Forward Guidance and the State of the Economy," *Economic Inquiry*, 55, 1593–1624, https://doi.org/10.1111/ecin.12466.
- KITAGAWA, G. (1996): "Monte Carlo Filter and Smoother for Non-Gaussian Nonlinear State Space Models," *Journal of Computational and Graphical Statistics*, 5, pp. 1–25, https://doi.org/10.2307/1390750.
- KOOP, G., M. H. PESARAN, AND S. M. POTTER (1996): "Impulse Response Analysis in Nonlinear Multivariate Models," *Journal of Econometrics*, 74, 119–147, https://doi.org/10.1016/0304-4076(95)01753-4.
- KOPECKY, K. AND R. SUEN (2010): "Finite State Markov-chain Approximations to Highly Persistent Processes," *Review of Economic Dynamics*, 13, 701–714, https://doi.org/10.1016/j.red.2010.02.002.
- LAUBACH, T. AND J. C. WILLIAMS (2016): "Measuring the Natural Rate of Interest Redux," Finance and Economics Discussion Series 2016-011.
- MERTENS, K. AND M. O. RAVN (2014): "Fiscal Policy in an Expectations Driven Liquidity Trap," *The Review of Economic Studies*, 81, 1637–1667, https://doi.org/10.1093/restud/rdu016.
- NAKATA, T. (2017): "Uncertainty at the Zero Lower Bound," *American Economic Journal: Macroeconomics*, 9, 186–221, https://doi.org/10.1257/mac.20140253.
- NAKOV, A. (2008): "Optimal and Simple Monetary Policy Rules with Zero Floor on the Nominal Interest Rate," *International Journal of Central Banking*, 4, 73–127.

- NGO, P. V. (2014): "Optimal Discretionary Monetary Policy in a Micro-Founded Model with a Zero Lower Bound on Nominal Interest Rate," *Journal of Economic Dynamics and Control*, 45, 44–65, https://doi.org/10.1016/j.jedc.2014.05.010.
- OTROK, C. (2001): "On Measuring the Welfare Cost of Business Cycles," *Journal of Monetary Economics*, 47, 61–92, https://doi.org/10.1016/S0304-3932(00)00052-0.
- PETERMAN, W. B. (2016): "Reconciling Micro and Macro Estimates of the Frisch Labor Supply Elasticity," *Economic Inquiry*, 54, 100–120, https://doi.org/10.1111/ecin.12252.
- PLANTE, M., A. W. RICHTER, AND N. A. THROCKMORTON (2018): "The Zero Lower Bound and Endogenous Uncertainty," *Economic Journal*, 128, 1730–1757, https://doi.org/10.1111/ecoj.12445.
- RICHTER, A. W. AND N. A. THROCKMORTON (2015): "The Zero Lower Bound: Frequency, Duration, and Numerical Convergence," *B.E. Journal of Macroeconomics*, 15, 157–182, https://doi.org/10.1515/bejm-2013-0185.
- (2016): "Is Rotemberg Pricing Justified by Macro Data?" *Economics Letters*, 149, 44–48, https://doi.org/10.1016/j.econlet.2016.10.011.
- RICHTER, A. W., N. A. THROCKMORTON, AND T. B. WALKER (2014): "Accuracy, Speed and Robustness of Policy Function Iteration," *Computational Economics*, 44, 445–476, https://doi.org/10.1007/s10614-013-9399-2.
- ROTEMBERG, J. J. (1982): "Sticky Prices in the United States," *Journal of Political Economy*, 90, 1187–1211, https://doi.org/10.1086/261117.
- ROUWENHORST, K. G. (1995): "Asset Pricing Implications of Equilibrium Business Cycle Models," in *Frontiers of Business Cycle Research*, ed. by T. F. Cooley, Princeton, NJ: Princeton University Press, 294–330.
- SCHORFHEIDE, F. (2000): "Loss Function-Based Evaluation of DSGE Models," *Journal of Applied Econometrics*, 15, 645–670, https://doi.org/10.1002/jae.582.
- SIMS, C. A. (2002): "Solving Linear Rational Expectations Models," *Computational Economics*, 20, 1–20, https://doi.org/10.1023/A:1020517101123.
- STEWART, L. AND P. MCCARTY, JR (1992): "Use of Bayesian Belief Networks to Fuse Continuous and Discrete Information for Target Recognition, Tracking, and Situation Assessment," *Proc. SPIE*, 1699, 177–185, https://doi.org/10.1117/12.138224.

VAN BINSBERGEN, J. H., J. FERNÁNDEZ-VILLAVERDE, R. S. KOIJEN, AND J. RUBIO-RAMÍREZ (2012): "The Term Structure of Interest Rates in a DSGE Model with Recursive Preferences," *Journal of Monetary Economics*, 59, 634–648, https://doi.org/10.1016/j.jmoneco.2012.09.002.

WOLMAN, A. L. (2005): "Real Implications of the Zero Bound on Nominal Interest Rates," *Journal of Money, Credit and Banking*, 37, 273–96.

## A DETRENDED EQUILIBRIUM SYSTEM

Medium-Scale Model The detrended system includes (1), (6), (7), (9), (16), (17) and

$$\tilde{y}_t = (v_t \tilde{k}_{t-1}/g_t)^{\alpha} n_t^{1-\alpha},$$
(25)

$$r_t^k = \alpha m c_t g_t \tilde{y}_t / (v_t \tilde{k}_{t-1}), \tag{26}$$

$$\tilde{w}_t = (1 - \alpha)mc_t \tilde{y}_t / n_t, \tag{27}$$

$$w_t^g = \pi_t g_t \tilde{w}_t / (\bar{\pi}\bar{g}\tilde{w}_{t-1}), \tag{28}$$

$$\tilde{y}_t^{gdp} = [1 - \varphi_p(\pi_t/\bar{\pi} - 1)^2/2 - \varphi_w(w_t^g - 1)^2/2]\tilde{y}_t - u_t\tilde{k}_{t-1}/g_t,$$
<sup>(29)</sup>

$$y_t^g = g_t \tilde{y}_t^{gdp} / (\bar{g} \tilde{y}_{t-1}^{gdp}), \tag{30}$$

$$\lambda_t = \tilde{c}_t - h\tilde{c}_{t-1}/g_t,\tag{31}$$

$$\tilde{w}_t^f = \chi n_t^\eta \tilde{\lambda}_t,\tag{32}$$

$$\tilde{c}_t + \tilde{x}_t = \tilde{y}_t,\tag{33}$$

$$x_t^g = g_t \tilde{x}_t / (\bar{g} \tilde{x}_{t-1}), \tag{34}$$

$$\tilde{k}_t = (1 - \delta)(\tilde{k}_{t-1}/g_t) + \tilde{x}_t(1 - \nu(x_t^g - 1)^2/2),$$
(35)

$$1 = \beta E_t[(\lambda_t/\lambda_{t+1})(s_t i_t/(g_{t+1}\pi_{t+1}))],$$
(36)

$$q_t = \beta E_t [(\tilde{\lambda}_t / \tilde{\lambda}_{t+1}) (r_{t+1}^k v_{t+1} - u_{t+1} + (1 - \delta) q_{t+1}) / g_{t+1}],$$
(37)

$$1 = q_t [1 - \nu (x_t^g - 1)^2 / 2 - \nu (x_t^g - 1) x_t^g] + \beta \nu \bar{g} E_t [q_{t+1} (\tilde{\lambda}_t / \tilde{\lambda}_{t+1}) (x_{t+1}^g)^2 (x_{t+1}^g - 1) / g_{t+1}],$$
(38)

$$\varphi_p(\pi_t/\bar{\pi}-1)(\pi_t/\bar{\pi}) = 1 - \theta_p + \theta_p m c_t + \beta \varphi_p E_t[(\lambda_t/\lambda_{t+1})(\pi_{t+1}/\bar{\pi}-1)(\pi_{t+1}/\bar{\pi})(\tilde{y}_{t+1}/\tilde{y}_t)], \quad (39)$$

$$\varphi_w(w_t^g - 1)w_t^g = [(1 - \theta_w)\tilde{w}_t + \theta_w\tilde{w}_t^f]n_t/\tilde{y}_t + \beta\varphi_w E_t[(\tilde{\lambda}_t/\tilde{\lambda}_{t+1})(w_{t+1}^g - 1)w_{t+1}^g(\tilde{y}_{t+1}/\tilde{y}_t)].$$
(40)

The variables are  $\tilde{c}, n, \tilde{x}, \tilde{k}, \tilde{y}, \tilde{y}^{gdp}, u, v, w^g, x^g, y^g, \tilde{w}^f, \tilde{w}, r^k, \pi, i, i^n, q, mc, \tilde{\lambda}, g$ , and s.

Small-Scale Model The detrended system includes (1), (7), (16), (17), (30), (31), (36), (39), and

$$\tilde{y}_t = n_t,\tag{41}$$

$$\tilde{w}_t = mc_t \tilde{y}_t / n_t, \tag{42}$$

$$\tilde{y}_t^{gdp} = [1 - \varphi_p (\pi_t/\bar{\pi} - 1)^2/2]\tilde{y}_t, \tag{43}$$

$$\tilde{w}_t = \chi n_t^\eta \tilde{\lambda}_t,\tag{44}$$

$$\tilde{c}_t = \tilde{y}_t^{gdp}.\tag{45}$$

The variables are  $\tilde{c}, n, \tilde{y}, \tilde{y}^{gdp}, y^g, \tilde{w}, \pi, i, i^n, mc, \tilde{\lambda}, g$ , and s.

## **B** NONLINEAR SOLUTION METHOD

We begin by compactly writing the detrended nonlinear equilibrium system as

$$E[f(\mathbf{s}_{t+1}, \mathbf{s}_t, \varepsilon_{t+1}) | \mathbf{z}_t, \vartheta] = 0,$$

where f is a vector-valued function,  $\mathbf{s}_t$  is a vector of variables,  $\varepsilon_t \equiv [\varepsilon_{s,t}, \varepsilon_{g,t}, \varepsilon_{i,t}]'$  is a vector of shocks,  $\mathbf{z}_t$  is a vector of states ( $\mathbf{z}_t \equiv [\tilde{c}_{t-1}, i_{t-1}^n, \tilde{k}_{t-1}, \tilde{x}_{t-1}, \tilde{w}_{t-1}, s_t, g_t, \varepsilon_{i,t}]'$  for the model with capital and  $\mathbf{z}_t \equiv [\tilde{c}_{t-1}, i_{t-1}^n, s_t, g_t, \varepsilon_{i,t}]'$  for the model without capital), and  $\vartheta$  is a vector of parameters.

There are many ways to discretize the exogenous state variables,  $s_t$ ,  $g_t$ , and  $\varepsilon_{i,t}$ . We use the Markov chain in Rouwenhorst (1995), which Kopecky and Suen (2010) show outperforms other methods for approximating autoregressive processes. The bounds on  $\tilde{c}_{t-1}$ ,  $i_{t-1}^n$ ,  $\tilde{k}_{t-1}$ ,  $\tilde{x}_{t-1}$ , and  $\tilde{w}_{t-1}$  are respectively set to  $\pm 2.5\%$ ,  $\pm 6\%$ ,  $\pm 8\%$ ,  $\pm 15\%$ ,  $\pm 4\%$  of their deterministic steady state. These bounds were chosen so the grids contain 99.9% of the simulated values for each state variable and ZLB duration. We discretize the states into 7 evenly-spaced points, except for capital and the risk premium which use 11 and 13 points, respectively. The product of the points in each dimension, D, represents the total nodes in the state space (D = 16,823,807 for the model with capital and D = 31,213 for the model without capital). The realization of  $\mathbf{z}_t$  on node d is denoted  $\mathbf{z}_t(d)$ . The Rouwenhorst method provides integration nodes, [ $s_{t+1}(m)$ ,  $g_{t+1}(m)$ ,  $\varepsilon_{i,t+1}(m)$ ], with weights,  $\phi(m)$ , for  $m \in \{1, \ldots, M\}$ . Since the exogenous variables evolve according to a Markov chain, the number of future realizations is the same as the state variables, (13, 7, 7) or M = 637.

The vector of policy functions is denoted  $\mathbf{pf}_t$  and the realization on node d is denoted  $\mathbf{pf}_t(d)$   $(\mathbf{pf}_t \equiv [\tilde{c}_t(\mathbf{z}_t), \pi_t^{gap}(\mathbf{z}_t), n_t(\mathbf{z}_t), q_t(\mathbf{z}_t), v_t(\mathbf{z}_t)]$  for the capital model and  $\mathbf{pf}_t \equiv [\tilde{c}_t(\mathbf{z}_t), \pi_t^{gap}(\mathbf{z}_t)]$  for the model without capital, where  $\pi_t^{gap}(\mathbf{z}_t) \equiv \pi_t(\mathbf{z}_t)/\bar{\pi}$ ). Our choice of policy functions, while not unique, simplifies solving for the other variables in the nonlinear system of equations given  $\mathbf{z}_t$ .

The following steps outline our global policy function iteration algorithm:

- 1. Use Sims's (2002) gensys algorithm to solve the level-linear model without the ZLB constraint. Then map the solution to the discretized state space to initialize the policy functions.
- 2. On iteration  $j \in \{1, 2, ...\}$  and each node  $d \in \{1, ..., D\}$ , use Chris Sims's csolve to find  $\mathbf{pf}_t(d)$  to satisfy  $E[f(\cdot)|\mathbf{z}_t(d), \vartheta] \approx 0$ . Guess  $\mathbf{pf}_t(d) = \mathbf{pf}_{j-1}(d)$ . Then apply the following:
  - (a) Solve for all variables dated at time t, given  $\mathbf{pf}_t(d)$  and  $\mathbf{z}_t(d)$ .
  - (b) Linearly interpolate the policy functions, pf<sub>j-1</sub>, at the updated state variables, z<sub>t+1</sub>(m), to obtain pf<sub>t+1</sub>(m) on every integration node, m ∈ {1,..., M}.
  - (c) Given  $\{\mathbf{pf}_{t+1}(m)\}_{m=1}^{M}$ , solve for the other elements of  $\mathbf{s}_{t+1}(m)$  and compute

$$\mathbb{E}[f(\mathbf{s}_{t+1}, \mathbf{s}_t(d), \varepsilon_{t+1}) | \mathbf{z}_t(d), \vartheta] \approx \sum_{m=1}^M \phi(m) f(\mathbf{s}_{t+1}(m), \mathbf{s}_t(d), \varepsilon_{t+1}(m))$$

When csolve converges, set  $\mathbf{pf}_i(d) = \mathbf{pf}_t(d)$ .

3. Repeat step 2 until  $\operatorname{maxdist}_j < 10^{-6}$ , where  $\operatorname{maxdist}_j \equiv \max\{|\mathbf{pf}_j - \mathbf{pf}_{j-1}|\}$ . When that criterion is satisfied, the algorithm has converged to an approximate nonlinear solution.

## **C** ESTIMATION ALGORITHM

We use a random walk Metropolis-Hastings algorithm to estimate the model in section 3 with artificial data of 120 quarters. To measure how well the model fits the data, we use either the adapted particle filter described in Algorithm 14 in Herbst and Schorfheide (2016), which modifies the basic bootstrap filter in Stewart and McCarty (1992) and Gordon et al. (1993) to better account for the outliers in the data, or the inversion filter recently used by Guerrieri and Iacoviello (2017).

- C.1 METROPOLIS-HASTINGS ALGORITHM The following steps outline the algorithm:
  - 1. Generate artificial data consisting of the output growth gap, the inflation rate, and the nominal interest rate,  $\mathbf{x}_t \equiv [y_t^g, \pi_t, i_t]'$ , where  $N_x = 3$  is the number of observable variables.
  - 2. Specify the prior distributions, means, variances, and bounds of each element of the vector of  $N_e$  estimated parameters,  $\theta \equiv [\varphi_p, \phi_\pi, \phi_y, h, \rho_s, \rho_i, \sigma_g, \sigma_s, \sigma_i]'$ .
  - 3. Find the posterior mode to initialize the preliminary Metropolis-Hastings step.
    - (a) For all  $i \in \{1, ..., N_m\}$ , where  $N_m = 5,000$ , apply the following steps:
      - i. Draw  $\hat{\theta}_i$  from the joint prior distribution and calculate its density value:

$$\log \ell_i^{prior} = \sum_{j=1}^{N_e} \log p(\hat{\theta}_{i,j} | \mu_j, \sigma_j^2),$$

where p is the prior density function of parameter j with mean  $\mu_j$  and variance  $\sigma_j^2$ .

- ii. Solve the model given  $\hat{\theta}_i$ . Follow Appendix B for the nonlinear model and use OccBin for the PW linear model. Repeat 3(a)i if the algorithm does not converge.
- iii. Obtain the model log-likelihood,  $\log \ell_i^{model}$ . Apply the particle filter described in section C.2 to the nonlinear model and the inversion filter to the PW linear model.
- iv. The posterior log-likelihood is  $\log \ell_i^{post} = \log \ell_i^{prior} + \log \ell_i^{model}$
- (b) Calculate  $\max(\log \ell_1^{post}, \ldots, \log \ell_{N_m}^{post})$  and find the corresponding parameter vector,  $\hat{\theta}_0$ .
- 4. Approximate the covariance matrix for the joint posterior distribution of the parameters,  $\Sigma$ , which is used to obtain candidate draws during the preliminary Metropolis-Hastings step.
  - (a) Locate the draws with a likelihood in the top decile. Stack the  $N_{m,sub} = (1-p)N_m$  draws in a  $N_{m,sub} \times N_e$  matrix,  $\hat{\Theta}$ , and define  $\tilde{\Theta} = \hat{\Theta} \sum_{i=1}^{N_{m,sub}} \hat{\theta}_{i,j} / N_{m,sub}$ .
  - (b) Calculate  $\Sigma = \tilde{\Theta}' \tilde{\Theta} / N_{m,sub}$  and verify it is positive definite, otherwise repeat step 3.
- 5. Perform an initial run of the random walk Metropolis-Hastings algorithm.

- (a) For all  $i \in \{0, ..., N_d\}$ , where  $N_d = 25,000$ , perform the following steps:
  - i. Draw a candidate vector of parameters,  $\hat{\theta}_i^{cand}$ , where

$$\hat{\theta_i}^{cand} \sim \begin{cases} \mathbb{N}(\hat{\theta}_0, c_0 \Sigma) & \text{ for } i = 0, \\ \mathbb{N}(\hat{\theta}_{i-1}, c\Sigma) & \text{ for } i > 0. \end{cases}$$

We set  $c_0 = 0$  and tune c to target an overall acceptance rate of roughly 30%.

- ii. Calculate the prior density value,  $\log \ell_i^{prior}$ , of the candidate draw,  $\hat{\theta}_i^{cand}$ , as in 3(a)i.
- iii. Solve the model given  $\hat{\theta}_i^{cand}$ . If the algorithm does not converge repeat 5(a)i.
- iv. Obtain the model log-likelihood value,  $\log \ell_i^{model}$ , using the methods in 3(a)iii.
- v. Accept or reject the candidate draw according to

$$(\hat{\theta}_i, \log \ell_i) = \begin{cases} (\hat{\theta}_i^{cand}, \log \ell_i^{cand}) & \text{if } i = 0, \\ (\hat{\theta}_i^{cand}, \log \ell_i^{cand}) & \text{if } \min(1, \ell_i^{cand}/\ell_{i-1}) > \hat{u}, \\ (\hat{\theta}_{i-1}, \log \ell_{i-1}) & \text{otherwise}, \end{cases}$$

where  $\hat{u}$  is a draw from a uniform distribution,  $\mathbb{U}[0,1]$ , and the posterior loglikelihood associated with the candidate draw is  $\log \ell_i^{cand} = \log \ell_i^{prior} + \log \ell_i^{model}$ .

- (b) Burn the first  $N_b = 5000$  draws and use the remaining sample to calculate the mean draw,  $\hat{\theta}^{5(b)} = \sum_{i=N_b+1}^{N_d} \hat{\theta}_i / (N_d N_b)$ , and the covariance matrix,  $\Sigma^{5(b)}$ . We follow step 4 to calculate  $\Sigma^{5(b)}$  but use all  $N_d N_b$  draws instead of just the upper *p*th percentile.
- 6. Conduct a final run of the Metropolis-Hastings algorithm by repeating step 5, where  $N_d = 50,000$ ,  $\hat{\theta}_0 = \hat{\theta}^{5(b)}$ , and  $\Sigma = \Sigma^{5(b)}$ . The final posterior mean estimates are  $\hat{\theta} = \sum_{i=1}^{N_d} \hat{\theta}_i / N_d$ .

C.2 ADAPTED PARTICLE FILTER Henceforth, our definition of  $s_t$  from Appendix B is referred to as the state vector, which should not be confused with the state variables for the nonlinear model.

- 1. Initialize the filter by drawing  $\{\varepsilon_{t,p}\}_{t=-24}^{0}$  for all  $p \in \{0, \ldots, N_p\}$  and simulating the model, where  $N_p$  is the number of particles. We initialize the filter with the final state vector,  $\mathbf{s}_{0,p}$ , which is approximately a draw from the model's ergodic distribution. We set  $N_p = 40,000$ .
- 2. For  $t \in \{1, ..., T\}$ , sequentially filter the nonlinear model as follows:
  - (a) For  $p \in \{1, ..., N_p\}$ , draw shocks from an adapted distribution,  $\varepsilon_{t,p} \sim \mathbb{N}(\bar{\varepsilon}_t, I)$ , where  $\bar{\varepsilon}_t$  maximizes  $p(\xi_t | \mathbf{s}_t) p(\mathbf{s}_t | \bar{\mathbf{s}}_{t-1})$  and  $\bar{\mathbf{s}}_{t-1} = \sum_{p=1}^{N_p} \mathbf{s}_{t-1,p} / N_p$  is the mean state vector.
    - i. Use the model solution to update the state vector,  $\mathbf{s}_t$ , given  $\bar{\mathbf{s}}_{t-1}$  and a guess for  $\bar{\varepsilon}_t$ . Define  $\mathbf{s}_t^h \equiv H\mathbf{s}_t$ , where *H* selects the observable variables from the state vector.

- ii. Calculate the measurement error,  $\xi_t = \mathbf{s}_t^h \mathbf{x}_t$ , which is assumed to be multivariate normally distributed,  $p(\xi_t | \mathbf{s}_t) = (2\pi)^{-3/2} |R|^{-1/2} \exp(-\xi'_t R^{-1} \xi_t/2)$ , where  $R \equiv \text{diag}(\sigma_{me,y^g}^2, \sigma_{me,\pi}^2, \sigma_{me,i}^2)$  is a diagonal matrix of measurement error variances.
- iii. The probability of observing the current state,  $s_t$ , conditional on  $\bar{s}_{t-1}$ , is given by

$$p(\mathbf{s}_t|\bar{\mathbf{s}}_{t-1}) = (2\pi)^{-3/2} \exp(-\bar{\varepsilon}_t'\bar{\varepsilon}_t/2).$$

- iv. Maximize  $p(\xi_t|\mathbf{s}_t)p(\mathbf{s}_t|\bar{\mathbf{s}}_{t-1}) \propto \exp(-\xi'_t R^{-1}\xi_t/2) \exp(-\overline{\varepsilon}'_t \overline{\varepsilon}_t/2)$  by solving for the optimal  $\overline{\varepsilon}_t$ . We use MATLAB's fminsearch routine converted to Fortran.
- (b) Use the model solution to predict the state vector,  $\mathbf{s}_{t,p}$ , given  $\mathbf{s}_{t-1,p}$  and  $\varepsilon_{t,p}$ .
- (c) Calculate  $\xi_{t,p} = \mathbf{s}_{t,p}^h \mathbf{x}_t$ . The unnormalized weight on particle p is given by

$$\omega_{t,p} = \frac{p(\xi_t | \mathbf{s}_{t,p}) p(\mathbf{s}_{t,p} | \mathbf{s}_{t-1,p})}{g(\mathbf{s}_{t,p} | \mathbf{s}_{t-1,p}, \mathbf{x}_t)} \propto \frac{\exp(-\xi'_{t,p} R^{-1} \xi_{t,p}/2) \exp(-\varepsilon'_{t,p} \varepsilon_{t,p}/2)}{\exp(-(\varepsilon_{t,p} - \bar{\varepsilon}_t)' (\varepsilon_{t,p} - \bar{\varepsilon}_t)/2)}.$$

Without adaptation,  $\bar{\varepsilon}_t = 0$  and  $\omega_{t,p} = p(\xi_t | \mathbf{s}_{t,p})$ , as in a basic bootstrap particle filter. The time-*t* contribution to the model log-likelihood is  $\ell_t^{model} = \sum_{p=1}^{N_p} \omega_{t,p} / N_p$ .

- (d) Normalize the weights,  $W_{t,p} = \omega_{t,p} / \sum_{p=1}^{N_p} \omega_{t,p}$ . Then use systematic resampling with replacement from the swarm of particles as described in Kitagawa (1996) to get a set of particles that represents the filter distribution and reshuffle  $\{\mathbf{s}_{t,p}\}_{p=1}^{N_p}$  accordingly.
- 3. The model log-likelihood is  $\log \ell^{model} = \sum_{t=1}^{T} \log \ell_t^{model}$ .

Aruoba et al. (2018) apply the same methodology to a New Keynesian model with sunspot shocks. See Herbst and Schorfheide (2016) for a comprehensive discussion of the different particle filters.

## D CONTINUOUS RANK PROBABILITY SCORE (CRPS) EXAMPLE

Figure 5 shows an example of the 8-quarter ahead forecast distribution of the nominal interest rate given the parameter estimates from NL-PF-5%. We picked a dataset where the ZLB binds for six quarters, from period 90 to 95 in the sample. The forecasts are initialized at the filtered state in period 89, immediately before the ZLB first binds, and the forecast distribution is approximated based on 10,000 simulations. Due to a strong tendency for the forecasts to revert to the stochastic steady state, the mean forecast for the nominal interest rate is 2.32%. However, the probability density function (PDF) in the left panel shows a significant number of forecasts remain near or at the ZLB, even after 8 quarters. The true realization equals 1.94%, which means there is significant probability mass under the PDF above and below the true value. The right panel shows the cumulative distribution function (CDF) of the forecasts. The CRPS for this dataset and estimation method is closely related to the shaded area, which has the same units as the forecasted variable.

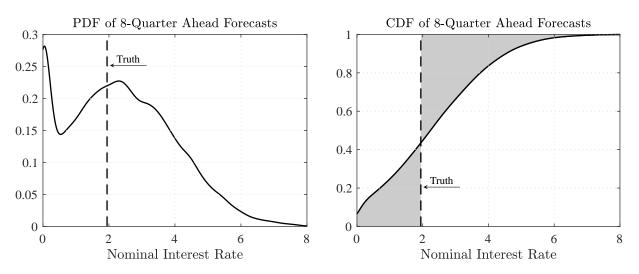


Figure 5: Example forecast distribution in the period before the ZLB binds in the data.

## **E** ADDITIONAL RESULTS

The section provides additional results. First, we show the effects of reducing misspecification by estimating a richer piecewise linear model. Second, we show how misspecification affects the parameter estimates and recession responses by generating data from our small-scale model. Third, we plot impulse responses to a technology growth and monetary policy shock when the ZLB binds.

E.1 LARGER ESTIMATED MODEL Table 7 shows how the PW-IF-0% parameter estimates are affected when sticky wages are included in the estimated model to reduce the amount of model misspecification. The equilibrium system is the same as the original small-scale model, except (43) and (44) are replaced with (28), (32), (40), and a definition of real GDP that accounts for the resources lost due to sticky wages (i.e.,  $\tilde{y}_t^{gdp} = [1 - \varphi_p(\pi_t/\bar{\pi} - 1)^2/2 - \varphi_w(w_t^g - 1)^2/2]\tilde{y}_t)$ ). Sticky wages would add another state variable and substantially increase the computational cost of NL-PF-5%. In particular, the new state variable would increase the solution time by the percent increase in the state space plus the additional time it takes on each node to interpolate in that dimension. The first two columns show the NL-PF-5% and PW-IF-0% estimates using the original estimated model and the last column shows the PW-IF-0% estimates in the less misspecified model.

In datasets with a 30 quarter ZLB event, introducing sticky wages reduces the sum of the NRMSE from 1.91 to 1.59, creating a clear advantage over NL-PF-5%. This result is driven by more accurate estimates of  $\varphi_p$  and h, which dominate the lower accuracy of  $\sigma_s$ . Our other accuracy measures also improve. Estimates of the expected ZLB duration and probability of a 4-quarter ZLB event become more accurate and essentially unbiased. The PW-IF-0% CRPS is now lower than the NL-PF-5% CRPS at a 4-quarter horizon and the NL-PF-5% advantage at an 8-quarter horizon is smaller. These results suggest it is better to apply PW-IF-0% to a less misspecified model than

| Ptr          | Truth | NL-P                                                                | PF-5%                                                               | PW-I                                                                | F-0%                                                                | PW-IF-0%-Sticky Wages                                               |                                                                     |  |
|--------------|-------|---------------------------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------------------|--|
|              |       | 0Q                                                                  | 30Q                                                                 | 0Q                                                                  | 30Q                                                                 | 0Q                                                                  | 30Q                                                                 |  |
| $\varphi_p$  | 100   | $151.1 \\ (134.2, 165.8) \\ [0.52]$                                 | $188.4 \\ (174.7, 202.7) \\ [0.89]$                                 | $142.6 \\ (121.1, 157.3) \\ [0.44]$                                 | $183.4 \\ (169.2, 198.5) \\ [0.84]$                                 | $\begin{array}{c} 100.1 \\ (76.9, 119.6) \\ [0.13] \end{array}$     | $\begin{array}{c} 129.8 \\ (105.5, 152.3) \\ [0.33] \end{array}$    |  |
| h            | 0.8   | $0.66 \\ (0.62, 0.70) \\ [0.18]$                                    | $0.68 \\ (0.64, 0.71) \\ [0.16]$                                    | $0.64 \\ (0.61, 0.67) \\ [0.20]$                                    | $0.63 \\ (0.60, 0.67) \\ [0.21]$                                    | $0.82 \\ (0.78, 0.86) \\ [0.04]$                                    | $0.80 \\ (0.77, 0.85) \\ [0.03]$                                    |  |
| $\rho_s$     | 0.8   | $0.76 \\ (0.72, 0.80) \\ [0.06]$                                    | $0.81 \\ (0.78, 0.84) \\ [0.03]$                                    | $0.76 \\ (0.73, 0.81) \\ [0.05]$                                    | $0.82 \\ (0.79, 0.86) \\ [0.04]$                                    | $0.82 \\ (0.76, 0.86) \\ [0.04]$                                    | $0.84 \\ (0.80, 0.88) \\ [0.06]$                                    |  |
| $\rho_i$     | 0.8   | $0.79 \\ (0.75, 0.82) \\ [0.03]$                                    | $0.80 \\ (0.75, 0.84) \\ [0.03]$                                    | $0.76 \\ (0.71, 0.79) \\ [0.06]$                                    | $0.77 \\ (0.73, 0.81) \\ [0.05]$                                    | $0.80 \\ (0.77, 0.83) \\ [0.02]$                                    | $0.80 \\ (0.77, 0.84) \\ [0.03]$                                    |  |
| $\sigma_g$   | 0.005 | $\begin{array}{c} 0.0032 \\ (0.0023, 0.0039) \\ [0.37] \end{array}$ | $\begin{array}{c} 0.0040 \\ (0.0030, 0.0052) \\ [0.23] \end{array}$ | $\begin{array}{c} 0.0051 \\ (0.0044, 0.0058) \\ [0.09] \end{array}$ | $\begin{array}{c} 0.0059 \\ (0.0050, 0.0069) \\ [0.22] \end{array}$ | $0.0038 \\ (0.0031, 0.0044) \\ [0.24]$                              | $\begin{array}{c} 0.0047 \\ (0.0039, 0.0055) \\ [0.12] \end{array}$ |  |
| $\sigma_s$   | 0.005 | $\begin{array}{c} 0.0052 \\ (0.0040, 0.0066) \\ [0.15] \end{array}$ | $\begin{array}{c} 0.0050 \\ (0.0039, 0.0062) \\ [0.13] \end{array}$ | $\begin{array}{c} 0.0051 \\ (0.0042, 0.0063) \\ [0.13] \end{array}$ | $\begin{array}{c} 0.0046 \\ (0.0036, 0.0056) \\ [0.15] \end{array}$ | $\begin{array}{c} 0.0085 \\ (0.0056, 0.0134) \\ [0.81] \end{array}$ | $\begin{array}{c} 0.0074 \\ (0.0050, 0.0107) \\ [0.60] \end{array}$ |  |
| $\sigma_i$   | 0.002 | $\begin{array}{c} 0.0017 \\ (0.0014, 0.0020) \\ [0.17] \end{array}$ | $\begin{array}{c} 0.0015 \\ (0.0013, 0.0019) \\ [0.24] \end{array}$ | $\begin{array}{c} 0.0020 \\ (0.0018, 0.0023) \\ [0.08] \end{array}$ | $\begin{array}{c} 0.0020 \\ (0.0019, 0.0024) \\ [0.09] \end{array}$ | $\begin{array}{c} 0.0020 \\ (0.0018, 0.0022) \\ [0.08] \end{array}$ | $\begin{array}{c} 0.0020 \\ (0.0018, 0.0023) \\ [0.08] \end{array}$ |  |
| $\phi_{\pi}$ | 2.0   | $2.04 \\ (1.88, 2.19) \\ [0.06]$                                    | $\begin{array}{c} 2.13 \\ (1.94, 2.31) \\ [0.09] \end{array}$       | $2.01 \\ (1.84, 2.16) \\ [0.06]$                                    | $1.96 \\ (1.77, 2.14) \\ [0.06]$                                    | $1.91 \\ (1.74, 2.04) \\ [0.07]$                                    | $1.81 \\ (1.63, 1.99) \\ [0.11]$                                    |  |
| $\phi_y$     | 0.5   | $0.35 \\ (0.21, 0.54) \\ [0.36]$                                    | $\begin{array}{c} 0.42 \\ (0.27, 0.62) \\ [0.28] \end{array}$       | $0.32 \\ (0.17, 0.48) \\ [0.41]$                                    | $0.44 \\ (0.27, 0.61) \\ [0.25]$                                    | $0.40 \\ (0.24, 0.58) \\ [0.28]$                                    | $0.50 \\ (0.33, 0.73) \\ [0.23]$                                    |  |
| Σ            |       | [1.90]                                                              | [2.08]                                                              | [1.53]                                                              | [1.91]                                                              | [1.71]                                                              | [1.59]                                                              |  |

Table 7: Average, (5, 95) percentiles and [NRMSE] of the parameter estimates.  $\Sigma$  is sum of the NRMSE.

NL-PF-5% to a properly solved but more misspecified model when the ZLB binds in the data.<sup>15</sup>

E.2 NO MISSPECIFICATION Table 8 compares the parameter estimates after removing model misspecification. Since it is numerically very expensive to estimate the medium-scale model used to generate the data with NL-PF, we created new datasets from the small-scale model used to estimate. The sum of the NRMSE shows about 40% of the error is due to model misspecification. For example, in datasets without any ZLB events, the error with NL-PF-5% increases from 1.12 to 1.90 when misspecification is added to the estimated model. Removing misspecification has the largest impact on the accuracy of  $\varphi_p$ , h, and  $\phi_y$  because the estimates no longer have to compensate for an incorrectly specified aggregate resource constraint or large differences in implied volatility. Notably, the NL-PF-5% estimate of  $\varphi_p$  declines from 152.6 to 97.5 in datasets without any ZLB events.

The other results emphasized in the paper are unchanged. The shock standard deviations are biased downward with NL-PF-5% because the filter incorrectly assigns some of the fluctuations to ME, reducing the estimated variances. When the ZLB binds in the data, it biases the estimates of  $\varphi_p$  and  $\rho_s$  upward, though NL-PF-5% and PW-IF-0% are both far more accurate than Lin-KF-5%.

<sup>&</sup>lt;sup>15</sup>In datasets without any ZLB events, the sum of the NRMSE increases from 1.53 to 1.71 when sticky wages are included in the model estimated with PW-IF-0%. However, the inaccuracy is entirely driven by the upward bias in  $\sigma_s$ .

| Ptr          | Truth | NL-P                                                                | No Misspecifica<br>F-5%                                             |                                                                     | stimation Use Sm<br>F-0%                                            | all-Scale Model<br>Lin-KF-5%                                        |                                                                     |  |
|--------------|-------|---------------------------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------------------|--|
|              |       | 0Q                                                                  | 30Q                                                                 | 0Q                                                                  | 30Q                                                                 | 0Q                                                                  | 30Q                                                                 |  |
| $\varphi_p$  | 100   | $96.8 \\ (81.6, 109.9) \\ [0.09]$                                   | $109.8 \\ (89.5, 130.3) \\ [0.15]$                                  | $94.3 \\ (81.8, 108.3) \\ [0.11]$                                   | $110.6 \\ (95.3, 125.1) \\ [0.15]$                                  | $\begin{array}{c} 103.7 \\ (92.6, 118.4) \\ [0.09] \end{array}$     | $\begin{array}{c} 128.5\\(111.2,145.3)\\[0.30]\end{array}$          |  |
| h            | 0.8   | $\begin{array}{c} 0.79\\ (0.76, 0.82)\\ [0.02]\end{array}$          | $\begin{array}{c} 0.79\\ (0.77, 0.82)\\ [0.02]\end{array}$          | $\begin{array}{c} 0.79\\ (0.75, 0.82)\\ [0.02]\end{array}$          | $\begin{array}{c} 0.79\\ (0.77, 0.82)\\ [0.02]\end{array}$          | $\begin{array}{c} 0.80\\ (0.76, 0.83)\\ [0.02]\end{array}$          | $\begin{array}{c} 0.79\\ (0.76, 0.82)\\ [0.03]\end{array}$          |  |
| $\rho_s$     | 0.8   | $0.80 \\ (0.76, 0.83) \\ [0.03]$                                    | $0.83 \\ (0.78, 0.86) \\ [0.04]$                                    | $0.81 \\ (0.76, 0.85) \\ [0.04]$                                    | $0.84 \\ (0.80, 0.87) \\ [0.06]$                                    | $0.82 \\ (0.77, 0.86) \\ [0.05]$                                    | $0.87 \\ (0.83, 0.91) \\ [0.10]$                                    |  |
| $\rho_i$     | 0.8   | $0.82 \\ (0.79, 0.84) \\ [0.03]$                                    | $0.82 \\ (0.78, 0.85) \\ [0.03]$                                    | $0.79 \\ (0.77, 0.82) \\ [0.02]$                                    | $0.79 \\ (0.74, 0.82) \\ [0.03]$                                    | $0.82 \\ (0.79, 0.84) \\ [0.03]$                                    | $0.86 \\ (0.83, 0.88) \\ [0.08]$                                    |  |
| $\sigma_g$   | 0.005 | $\begin{array}{c} 0.0037 \\ (0.0029, 0.0046) \\ [0.27] \end{array}$ | $\begin{array}{c} 0.0035 \\ (0.0025, 0.0045) \\ [0.33] \end{array}$ | $\begin{array}{c} 0.0051 \\ (0.0044, 0.0056) \\ [0.08] \end{array}$ | $\begin{array}{c} 0.0052 \\ (0.0043, 0.0061) \\ [0.11] \end{array}$ | $\begin{array}{c} 0.0038 \\ (0.0029, 0.0046) \\ [0.26] \end{array}$ | $\begin{array}{c} 0.0034 \\ (0.0026, 0.0044) \\ [0.33] \end{array}$ |  |
| $\sigma_s$   | 0.005 | $\begin{array}{c} 0.0047 \\ (0.0035, 0.0058) \\ [0.19] \end{array}$ | $\begin{array}{c} 0.0043 \\ (0.0032, 0.0058) \\ [0.22] \end{array}$ | $\begin{array}{c} 0.0049 \\ (0.0039, 0.0060) \\ [0.16] \end{array}$ | $\begin{array}{c} 0.0046 \\ (0.0034, 0.0057) \\ [0.17] \end{array}$ | $\begin{array}{c} 0.0047 \\ (0.0034, 0.0059) \\ [0.21] \end{array}$ | $\begin{array}{c} 0.0036 \\ (0.0027, 0.0046) \\ [0.32] \end{array}$ |  |
| $\sigma_i$   | 0.002 | $\begin{array}{c} 0.0016 \\ (0.0013, 0.0020) \\ [0.20] \end{array}$ | $\begin{array}{c} 0.0014 \\ (0.0010, 0.0018) \\ [0.31] \end{array}$ | $\begin{array}{c} 0.0020 \\ (0.0017, 0.0022) \\ [0.07] \end{array}$ | $\begin{array}{c} 0.0019 \\ (0.0016, 0.0022) \\ [0.10] \end{array}$ | $\begin{array}{c} 0.0016 \\ (0.0013, 0.0019) \\ [0.20] \end{array}$ | $\begin{array}{c} 0.0015 \\ (0.0012, 0.0017) \\ [0.27] \end{array}$ |  |
| $\phi_{\pi}$ | 2.0   | $2.00 \\ (1.81, 2.21) \\ [0.06]$                                    | $2.01 \\ (1.82, 2.20) \\ [0.06]$                                    | $1.95 \\ (1.74, 2.14) \\ [0.06]$                                    | $1.80 \\ (1.58, 2.06) \\ [0.12]$                                    | $1.97 \\ (1.76, 2.18) \\ [0.07]$                                    | $1.62 \\ (1.42, 1.86) \\ [0.20]$                                    |  |
| $\phi_y$     | 0.5   | $0.45 \\ (0.29, 0.61) \\ [0.22]$                                    | $0.48 \\ (0.28, 0.61) \\ [0.18]$                                    | $0.46 \\ (0.30, 0.63) \\ [0.21]$                                    | $\begin{array}{c} 0.52 \\ (0.32, 0.73) \\ [0.23] \end{array}$       | $0.46 \\ (0.31, 0.63) \\ [0.22]$                                    | $0.50 \\ (0.34, 0.66) \\ [0.19]$                                    |  |
| Σ            |       | [1.12]                                                              | [1.35]                                                              | [0.78]                                                              | [0.99]                                                              | [1.14]                                                              | [1.82]                                                              |  |

Table 8: Average, (5, 95) percentiles and [NRMSE] of the parameter estimates.  $\Sigma$  is sum of the NRMSE.

Figure 6 plots the recession responses in figure 3 without misspecification. The solid line shows the responses based on the true parameterization of the small-scale model, rather than the medium-scale model that generates our original datasets. The dashed line shows the mean responses, given the parameter estimates with our alternative datasets. Consistent with the previous results, the responses based on the NL-PF-5% and PW-IF-0% parameter estimates are very similar. The key difference is that the mean estimated simulations are much closer to the true simulation and the (5,95) percentiles almost always encompass the truth. This result shows the muted responses in figure 3 are primarily driven by model misspecification, rather than inaccuracies in the estimation methods.

E.3 IMPULSE RESPONSES This section shows generalized impulse response functions (GIRFs) of a technology growth and monetary policy shock when the economy is in a severe recession and the ZLB binds. To compute the GIRFs, we follow Koop et al. (1996). We first calculate the mean of 10,000 simulations, conditional on random shocks in every quarter (i.e., the baseline path). We then calculate a second mean from another set of 10,000 simulations, but this time the shock in the first quarter is replaced with a two standard deviation negative technology growth or monetary policy shock (i.e., the impulse path). Finally, we plot the differences between the two mean paths.

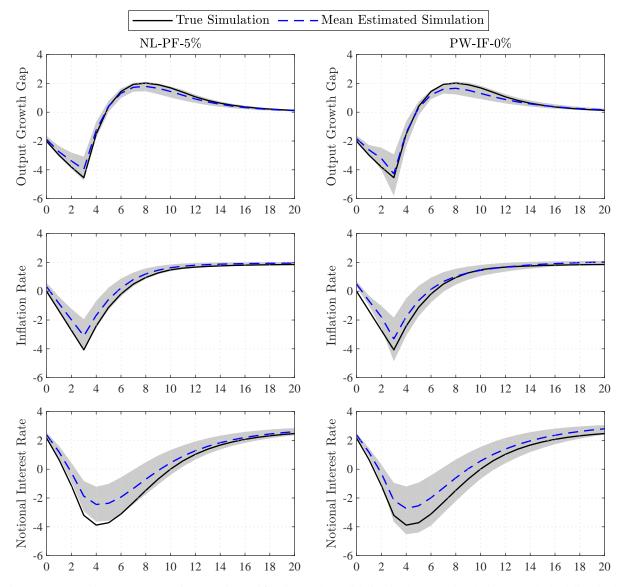


Figure 6: Recession responses without misspecification. The solid line is the true simulation, the dashed line is the mean estimated simulation, and the shaded area contains the (5,95) percentiles across the datasets. The simulations are initialized in steady state and followed by four 1.5 standard deviation positive risk premium shocks.

The benefit of a GIRF over a traditional impulse response function is that it allows us to calculate the responses in any state of the economy without the influence of mean reversion. For the true model, we initialize at the state following four consecutive 1.5 standard deviation positive risk premium shocks, consistent with figure 3. We then find a sequence of four equally sized risk premium shocks that produce the same notional rate in our estimated model as the true model, so the simulations begin at the same point. The NL-PF-5% simulations are shown in the left column and the PW-IF-0% simulations are in the right column. The true simulation of the DGP (solid line) is compared to the mean estimated simulation of the small-scale model (dashed line). The (5, 95) percentiles account for the differences in the simulations across the parameter estimates for each dataset.

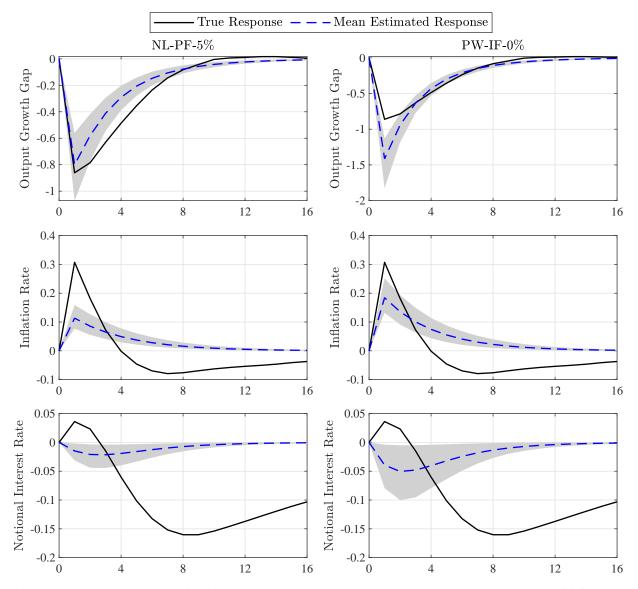


Figure 7: Responses to a -2 standard deviation technology growth shock in a severe recession. The solid line is the true simulation, the dashed line is the mean estimated simulation, and the shaded area contains the (5, 95) percentiles.

Figure 7 shows the responses to a technology growth shock. Qualitatively the responses of output growth and inflation are similar across the specifications. Higher technology growth increases the output growth gap and decreases the inflation rate like a typical supply shock. Since the Fed faces a tradeoff between stabilizing the inflation and output gaps, the notional interest rate response depends on the parameterization. The notional rate rises with the DGP, but falls with both of the estimated models. Quantitatively, there are important differences between all of the responses. Consistent with figure 3, model misspecification leads to muted responses of the output growth gap and the inflation rate. There are also differences in the magnitudes of the estimated responses, but most of that is driven by the downward bias in the shock standard deviation with NL-PF-5%.

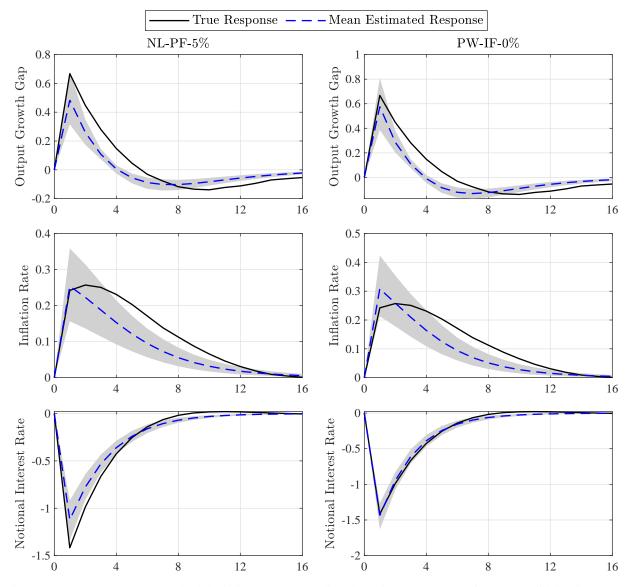


Figure 8: Responses to a -2 standard deviation monetary policy shock in a severe recession. The solid line is the true simulation, the dashed line is the mean estimated simulation, and the shaded area contains the (5, 95) percentiles.

Figure 8 shows the responses to a monetary policy shock. Although the ZLB binds in the true and estimated models, the shock is expansionary because it lowers the expected nominal interest rate in future periods. Therefore, the output growth gap and the inflation rate both increase in all three models. Unlike with the other two shocks, model misspecification has a relatively small effect on the responses, as the (5, 95) percentiles of the estimated responses encompass the true responses in most periods. There are some differences in the NL-PF-5% and PW-IF-0% responses, but they are smaller than in figure 7 and never large enough to have meaningful policy implications.